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ABSTRACT

This study proposes a quantum-inspired methodology that transforms time-series
data into image representations for prediction. Unlike classical encodings such as
the Gramian Angular Field (GAF), Recurrence Plot (RP), and Markov Transition
Field (MTF), which rely on additive pairwise relations, our approach embeds both
probabilistic amplitudes and dynamic phase information. Observations are first
mapped into quantum amplitudes via Gaussian soft encoding, and local temporal
structures are incorporated through phase-function encoding, allowing interfer-
ence effects that reveal volatility, cumulative imbalances, and phase shifts hidden
to classical methods. Building on this foundation, we extend GAF, RP, and MTF
into their quantum analogues—Q-GAF, Q-RP, and Q-MTF—producing complex-
domain images suitable for CNN-based forecasting. Empirical analysis on the
S&P 500 and Russell 3000 indices shows that these quantum-inspired encodings
substantially improve predictive accuracy. Our contributions are both method-
ological and empirical: we present a novel representation framework for financial
time series and demonstrate that quantum-inspired image encodings capture richer
dynamics and previously undetectable patterns, with implications for forecasting
and risk modeling.

1 INTRODUCTION AND RELATED WORKS

Time-series classification (TSC) has become increasingly important across domains where accu-
rate recognition of temporal patterns carries both scientific and practical significance. In finance in
particular, improved predictive models translate directly into better decision-making and economic
value.

The rapid progress of deep learning reshapes how such problems are addressed. Convolutional
neural networks (CNNs), which achieved groundbreaking success in image recognition tasks
(Krizhevsky et al., 2012; LeCun et al., 2010), have been adapted to time-series settings by trans-
forming one-dimensional signals into two-dimensional representations. Literature shows that treat-
ing time series as texture-like images enables CNNs to extract discriminative features that remain
inaccessible in raw sequential form.

Well-established approaches convert time series into images, chief among them are Gramian Angu-
lar Fields (GAF) and Markov Transition Fields (MTF) introduced by (Wang & Oates, 2015), and
Recurrence Plots (RP) by Hatami et al. (2018). These approaches introduce new feature types be-
yond 1D signals, enable intuitive visualization of periodic and trajectory characteristics, and have
achieved competitive accuracy. Importantly, in financial forecasting, encoding market time series
into GAF images has been shown to improve the prediction of market behavior Barra et al. (2020).
These developments confirm that image encoding constitutes a powerful approach for extracting
and leveraging complicated structures in time-series data. Despite these advances, existing image
encodings remain fundamentally constrained by their reliance on real-valued, additive formulations.
This limitation motivates a richer representation space—one capable of capturing both probabilistic
amplitudes and phase dynamics.

Time-series data are not merely sequences of real values; they often embody probabilistic and phase-
like structures that classical encodings systematically overlook. In this respect, a quantum-inspired
representation provides a more suitable framework for capturing and expressing such dynamics (e.g.,
(Ahn et al., 2018)). From the perspective of representation, existing image-encoding methods are
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grounded in real-valued formulations that reduce pairwise relationships to additive combinations
without phase information. By contrast, when a time series is represented as a quantum-inspired
state, the combination of complex amplitudes and phases enables constructive or destructive in-
terference, thereby revealing patterns that classical additive statistics cannot detect. In this sense,
quantum encoding goes beyond a metaphor drawn from physics: it opens a fundamentally richer
functional space through complex-valued, phase-aware representations.

Financial time series, such as stock prices, exemplify why such an enriched framework is needed.
Their defining characteristics include volatility clustering, where variance structures evolve even
when the mean remains constant, asymmetric accumulation effects between upward and downward
movements, and the interplay between short-term noise and long-term mean reversion Bondt &
Thaler (1989). The phase functions we introduce—whether expectation-to-volatility or volatility-
based—map naturally onto these empirical properties, allowing the encoding to reflect precisely
those structural asymmetries and dynamics. Thus, our approach does not simply borrow the lan-
guage of quantum mechanics; it leverages the analogy as a mathematically coherent means of rep-
resenting the probabilistic and phase-like structures intrinsic to financial data.

Finally, the adoption of a quantum formalism carries practical significance for predictive perfor-
mance. Classical encodings, such as GAF, RP, and MTF, struggle to capture hidden nonlinear
patterns, including volatility transitions and phase shifts, which limit their forecasting power. By
contrast, quantum-inspired encodings are capable of uncovering such latent dynamics, transforming
the framework from a conceptual embellishment into a source of measurable gains in predictive ac-
curacy. This dual role—conceptual richness and empirical effectiveness—underlines the substantive
necessity of adopting quantum analogies in time-series forecasting.

Methodologically, we extend classical GAF, RP, and MTF into their quantum analogues—Q-GAF,
Q-RP, and Q-MTF—generating images from quantum states. Our framework maps normalized
time-series values into probability amplitudes over discretized basis intervals through Gaussian soft
encoding, embedding the distributional structure of the data. Local dynamics are then incorporated
via phase-function encoding based on local windows, which reflects features such as cumulative
imbalance and volatility. The resulting complex-valued states combine amplitudes and phases, al-
lowing interference effects that classical encodings cannot capture. Building on these states, we
construct quantum-inspired extensions of GAF, RP, and MTF, yielding image representations that
integrate both probabilistic and dynamical information for forecasting with CNNs.

To evaluate the empirical effectiveness of our framework, we conduct experiments on two repre-
sentative equity indices—the Russell 3000 and the S&P 500—over the period from 2009 through
the first quarter of 2025. A moving-window procedure is employed, with two years of training
data, six months for validation, and three months for testing in each iteration. Across this exten-
sive evaluation, all quantum-analogue models consistently outperform their classical counterparts,
achieving on average 2.6% higher accuracy. Under the same evaluation procedure, the average win
rate across the quantum models exceed that of the classical benchmarks by 32.9%. Furthermore,
the best-performing quantum variant further surpass the strongest classical baseline, yielding gains
of 41.1% in average win rate. Taken together, these findings provide strong empirical evidence that
quantum-inspired image encodings offer a more suitable and effective representation for forecasting
financial time series.

The contributions of this study can be summarized along two dimensions. First, on the method-
ological side, we introduce a novel quantum-inspired framework that encodes time-series data into
complex states combining probabilistic amplitudes and phase information, and extend classical im-
age representations into their quantum analogues. Second, on the empirical side, we demonstrate
that these quantum-inspired representations consistently outperform their classical counterparts in
forecasting accuracy. Taken together, these findings provide strong empirical evidence that quantum-
inspired image encodings offer a more effective representation for financial time series forecasting,
including latent structures and dynamics that remain undetected by classical approaches.

2 QUANTUM STATE ENCODING

Assume the original time-series is as follows:

Xorigin = {x1, x2, . . . , xT } where xt ∈ R.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

After normalization,

Xnorm =

{
x

∣∣∣∣ x =
xorigin − µXorigin

σXorigin

, xorigin ∈ Xorigin

}

µglobal =
1

T

T∑
t=1

xt, σglobal =

√√√√ 1

T

T∑
t=1

(xt − µ)
2 where xt ∈ Xnorm.

2.1 GAUSSIAN SOFT ENCODING

To represent normalized time-series values as quantum states, we first apply a soft encoding proce-
dure. This encoding incorporates both the magnitude and probabilistic information of the quantum
state, capturing the probabilistic weights that determine the likelihood of a given time-series obser-
vation falling into each interval. The subsequent step formalizes these intervals through a precise
bin definition.

2.1.1 DEFINITION OF QUANTUM STATE BIN SET

Bin range = [µglobal − kσglobal, µglobal + kσglobal ]

The bin interval ∆b =
σglobal

h

where k is a hyperparameter that controls the bin range in multiples of σglobal, and h is a constant that
determines the bin interval so that the number of bins Nbins = 2kh+ 1. In this work, we set k = 3
and h = 10 as a baseline configuration, which provides a reasonable trade-off between resolution
and computational cost.

The bin set is defined as follows:

B = { bm | bm = µglobal − kσglobal + (m− 1)∆b, m = 1, . . . , Nbins }.

Each bin center defines a quantum state |bm⟩

2.1.2 UNNORMALIZED GAUSSIAN WEIGHT

The unnormalized Gaussian weight function serves as a distance-based Gaussian measure, reflecting
how strongly xt is associated with the bin center bm. The function is as follows:

P̃m(xt) = exp

[
− (xt − bm)2

2σ2
kernel

]
, where σkernel = σscale · σglobal.

The scaling factor σscale is a hyperparameter to adjust the kernel width; we set σscale = 1 as the
baseline in this work.

2.1.3 NORMALIZED PROBABILITY DISTRIBUTION OVER BINS

Pm(xt) =
P̃m(xt)∑Nbins
j=1 P̃j(xt)

so that
Nbins∑
m=1

Pm(xt) = 1

P(xt) = ⟨P1(xt), P2(xt), . . . , PNbins(xt)⟩

Here, P (xt) denotes the probability vector representing the likelihood that a specific xt belongs to
each bin bm.
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2.1.4 PROBABILITY AMPLITUDE MAPPING

As the quantum amplitude corresponds to the square root of the probability, we can define the
amplitude of each bin bm for xt as follows:

αm(xt) =
√
Pm(xt).

Then, without the phase information applied yet, the quantum state at time t can be represented as a
superposition of the basis states |bm⟩:

|ψt⟩ =
∑
m

αm(xt) |bm⟩

2.2 PHASE FUNCTION ENCODING

There are four proto-types that we use as a phase function ϕm(t), which captures the intrinsic dy-
namical properties of the time series. We first define the local time window centered at t as

Wt = {xt−w, . . . , xt−1, xt, xt+1, . . . , xt+w}

where xt ∈ Xnorm and the window size is 2w + 1. To ensure empirical practicality, we set the
default window size to the larger of 3 and the smallest integer not less than 10% of the total length
of the time series, |Xorigin|. Moreover, to maintain symmetry around the center point, if the resulting
window size is even, we increment it by 1. We further define the sets of positive (non-negative) and
negative signal values within the window as

Ut = {x ∈Wt | x ≥ 0}, Dt = {x ∈Wt | x < 0}.

2.2.1 EXPECTATION-TO-VOLATILITY RATIO PHASE

ϕexvol
m (t) =


π · sigmoid

(
λe ·

Eup(t)

σglobal

)
, bm > 0,

π · sigmoid
(
λe ·

Edown(t)

σglobal

)
, bm < 0,

0, otherwise,

where
sigmoid(z) =

1

1 + e−z
, Eup(t) =

1

|Ut|
∑
x∈Ut

x, Edown(t) =
1

|Dt|
∑
x∈Dt

x,

and λe is a scaling hyperparameter, set to 1 as our baseline.

2.2.2 VOLATILITY PHASE

ϕvol
m (t) = π · σt,local

λv · σglobal
,

where λv is a scaling hyperparameter, set to 3 as our baseline.

2.3 FINAL QUANTUM STATE

Soft encoding conveys the magnitude of the state through probabilistic weights, while phase en-
coding enriches it with temporal and structural characteristics, so that the final state integrates both
amplitude and phase. Including both the probabilistic amplitude and the dynamic phase informa-
tion, the quantum state at time t can be expressed as a superposition of the basis states |bm⟩. In
our framework, a quantum state at time t can be expressed in two equivalent forms. First, using the
standard ket notation:

|ψt⟩ =
Nbins∑
m=1

αm(xt) e
iϕm(t)|bm⟩,

where {|bm⟩}Nbins
m=1 denotes the orthonormal basis states.
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Equivalently, this state can be represented as a complex vector in CNbins :

ψt ≡ (ψt,1, ψt,2, . . . , ψt,Nbins) ≡


α1(xt)e

iϕ1(t)

α2(xt)e
iϕ2(t)

...
αNbins(xt)e

iϕNbins (t)

 ∈ CNbins .

Thus, the ket notation |ψt⟩ and the coordinate representation ψt ∈ CNbins are mathematically equiv-
alent descriptions of the same quantum state.

3 COMPLEX DOMAIN IMAGE ENCODING

The time-series information expressed as quantum states is further encoded into images to enable
application to AI-based image classification models such as CNNs. We extend the classical real-
valued approaches of Gramian Angular Field (GAF), Recurrence Plot (RP), and Markov Transition
Field (MTF) into the complex domain, thereby proposing advanced methodologies that capture
richer temporal dynamics.

3.1 QUANTUM-GAF

Quantum-GAF (Q-GAF) encodes temporal correlations by combining both the amplitude and phase
of quantum states. Unlike the classical GAF, which only relies on rescaled real values and angles,
Q-GAF incorporates complex amplitudes, capturing richer dynamics of the time series.

3.1.1 ALPHA-WEIGHTED

Gti,tj =

Nbins∑
m=1

αm(xti)αm(xtj ) cos
(
ϕm(ti) + ϕm(tj)

)
where
ti, tj ∈ {1, . . . , T}: time indices,
m ∈ {1, . . . , Nbins}: bin index,
αm(xt) = |ψt,m|: probability amplitude at bin m for xt,
ϕm(t) = arg(ψt,m): phase at bin m.

3.1.2 REAL INNER-PRODUCT BASED

Gti,tj = ℜ
(
ψti ψ

∗
tj

)
(scalar state)

G = ℜ
(
ΨΨ†) (vector state)

where
ψt ∈ CNbins : quantum state vector at time t,
ψ∗
tj : complex conjugate of ψtj ,

Ψ ∈ CT×Nbins : stacked quantum states matrix for all time,
Ψ†: Hermitian transpose (conjugate transpose) of Ψ,
ℜ(·): real part.

3.2 GUANTUM-RP

Quantum-RP (Q-RP) measures recurrence structures based on quantum state similarity, either by
distance or fidelity. Compared to the classical RP, which uses raw value differences, Q-RP leverages
complex-valued amplitudes and phases, providing a more informative recurrence map.

5
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3.2.1 L2-NORM BASED

RPti,tj = ∥ψti − ψtj∥2 =

√√√√Nbins∑
m=1

∣∣ψti,m − ψtj ,m

∣∣2
where
ψt ∈ CNbins : quantum state vector at time t,
ψt,m: m-th bin component of ψt,
| · |: complex modulus,
∥ · ∥2: Euclidean norm (always real and nonnegative).

3.2.2 FIDELITY BASED

RPti,tj =
∣∣⟨ψti | ψtj ⟩

∣∣2 =

∣∣∣∣∣
Nbins∑
m=1

ψ∗
ti,m ψtj ,m

∣∣∣∣∣
2

where
⟨ψti | ψtj ⟩ =

∑Nbins
m=1 ψ

∗
ti,m ψtj ,m: inner product,

ψ∗
ti,m: complex conjugate of ψti,m,

| · |2: squared magnitude (real, ≥ 0) where 1 if identical, 0 if orthogonal.

3.3 QUANTUM-MTF

Quantum-MTF (Q-MTF) discretizes quantum states via clustering and encodes their transition prob-
abilities across time. While classical MTF is built on discretized raw values, Q-MTF captures tran-
sitions between complex quantum states, reflecting both amplitude and phase evolution.
Complex states are mapped to real vectors by concatenating real and imaginary parts as follows:

ψ̃t =
(
ℜ(ψt),ℑ(ψt)

)
∈ R2Nbins

Then, using K-means clustering, each ψ̃t is assigned to a discrete state (cluster label):

qt ∈ {1, 2, . . . ,K}, t = 1, . . . , T

where K is the hyperparameter to decide the number of clusters and we tentatively choose 5 as a
baseline. Then, to count transitions between two discrete states, we define the transition counts from
a to b:

Cab = #{ t | qt = a, qt+1 = b }, a, b ∈ {1, 2, . . . ,K}
and the normalized transition probability matrix from a to b:

Wab =
Cab∑K

b′=1 Cab′
, W ∈ [0, 1]K×K .

Finally, the Q-MTF image matrix M is obtained by indexing W with the state labels of each time
step as follows:

Mti,tj =Wqti , qtj
, ti, tj ∈ {1, . . . , T}.

4 EXPERIMENTS

4.1 SETTINGS

For the empirical study, we use high-frequency equity data from two representative U.S. market in-
dices—the Russell 3000 and the S&P 500—at five-minute intervals. The sample covers the period
from January 2, 2009, to April 1, 2025. We retain only those trading days with at least 30 obser-
vations recorded at five-minute intervals, and in order to ensure a uniform time length across days,
we restrict the intraday window to 08:00–17:00. Missing values are imputed by linear interpolation,
defined as the average of the two nearest neighboring observations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparative performance of quantum-inspired and classical encodings

Metric Dataset Q-GAF (4) Q-MTF (2) Q-RP (4) Classical (4)
Alpha-exvol Alpha-vol Inner-exvol Inner-vol exvol vol L2-exvol L2-vol Fidelity-exvol Fidelity-vol GAF (GADF) GAF (GASF) MTF RP

Accuracy

Russell3000 0.512 0.540 0.514 0.539 0.499 0.499 0.507 0.517 0.507 0.505 0.492 0.503 0.483 0.505
(0.070) (0.063) (0.075) (0.073) (0.057) (0.058) (0.068) (0.064) (0.079) (0.083) (0.065) (0.050) (0.066) (0.069)

S&P500 0.524 0.544 0.516 0.543 0.519 0.503 0.518 0.514 0.508 0.514 0.532 0.506 0.502 0.507
(0.076) (0.059) (0.082) (0.071) (0.051) (0.078) (0.070) (0.086) (0.071) (0.067) (0.067) (0.070) (0.066) (0.074)

Among whole models
Total Wins 8 7 6 8 4 6 3 7 1 9 5 3 3 2
Avg. Rank 6.98 4.96 6.91 5.38 7.33 8.00 7.11 6.53 6.93 7.27 6.91 7.69 7.95 7.67
Avg. Wins (%) 14.5 12.7 10.9 14.5 7.3 10.9 5.5 12.7 1.8 16.4 9.1 5.5 5.5 3.6
Among the same baseline models
Total Wins 11 14 9 17 24 21 12 16 10 17 10 6 17 12
Avg. Rank 3.62 2.60 3.40 2.80 1.80 1.98 2.84 2.66 2.82 2.89 3.51 3.89 2.02 3.00
Avg. Wins (%) 20.0 25.5 16.4 30.9 43.6 38.2 21.8 29.1 18.2 30.9 18.2 10.9 30.9 21.8

The dependent variable is constructed as a binary indicator that takes the value 1 if the next day’s
closing price exceeds its opening price, and 0 otherwise, thereby capturing whether the market rises
on the following day. To evaluate forecasting performance, we adopt a rolling-window procedure
with six-month steps. In each iteration, the estimation sample consists of a two-year training period,
followed by a six-month validation set, and a three-month test set.

We employ a CNN consisting of two convolutional layers with 16 and 32 filters of size 3×3, each
followed by a 2×2 max-pooling layer. The extracted feature maps are flattened and passed through a
fully connected layer with 64 units and ReLU activation. To reduce overfitting, a dropout rate of 0.3
is applied. Finally, the output layer consists of N units with a softmax/sigmoid activation, depending
on the classification task. The model was trained for 10 epochs with a batch size of 8.

4.2 RESULT AND DISCUSSION

Table 1 shows the comparative performance of the proposed quantum-inspired models against their
classical counterparts where the total number of shifted windows is 28. In this table, “Among whole
models” refers to evaluations conducted across the entire set of models, while “Among the same
baseline models” restricts the comparison to each quantum variant and its corresponding classical
baseline. The notations “exvol” and “vol” indicate the phase functions based on the expectation-
to-volatility ratio and volatility, respectively. Reported values in parentheses under Accuracy de-
note standard deviations. For the classical models, the entries GASF and GADF correspond to the
Gramian Angular Summation Field (GASF), which uses the sum of angular values to represent
temporal correlations, and the Gramian Angular Difference Field (GADF), which relies on angular
differences, respectively.

The empirical results reveal a consistent performance advantage of the quantum-inspired encodings.
Across the full evaluation, the quantum models deliver an average accuracy improvement of 2.6%
over classical benchmarks. When restricting the comparison to identical baselines, their average win
rate exceeds that of the classical models by 32.9%. Moreover, the strongest quantum variant out-
performs the best classical method, achieving additional gains of 41.1% in win rate. These findings
provide robust evidence that quantum-inspired image encodings not only capture richer temporal
dynamics but also yield practical forecasting gains beyond the reach of conventional methods.

5 CONCLUSIONS

This paper presents a quantum-inspired framework for transforming financial time-series data into
complex-domain image representations. Methodologically, we develop Gaussian soft encoding and
phase-function encoding to embed both probabilistic amplitudes and temporal dynamics, and extend
classical GAF, RP, and MTF into their quantum analogues. These innovations expand the represen-
tational space available for time-series modeling beyond the additive and real-valued constraints of
conventional approaches.

Empirically, extensive experiments using high-frequency data from the S&P 500 and Russell 3000
indices demonstrate that the proposed quantum-inspired encodings deliver consistent forecasting
improvements. Relative to established baselines, they achieve on the order of 2.6% higher accuracy
and a 32.9% advantage in average win rate, with the strongest quantum variant exceeding the best
classical benchmark by 41.1% in average win rate. These results highlight the practical value of
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encoding amplitude–phase structures, capturing latent temporal dynamics and market phase patterns
that classical models fail to detect.

Despite these findings, some limitations remain. Our models require greater computational re-
sources than conventional encodings, and the present evaluation is restricted to U.S. equity indices.
Future work may explore the scalability of quantum-inspired encodings to larger universes of assets,
other macroeconomic domains, and integration with advanced architectures beyond CNNs, such
as complex-valued deep networks. Addressing these directions may further clarify the scope and
robustness of quantum-inspired image representations in time-series forecasting.

REFERENCES

Kwangwon Ahn, MooYoung Choi, Bingcun Dai, Sungbin Sohn, and Biao Yang. Modeling stock
return distributions with a quantum harmonic oscillator. Europhysics Letters, 120(3):38003, 2018.

Silvio Barra, Salvatore Mario Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego Re-
forgiato Recupero. Deep learning and time series-to-image encoding for financial forecasting.
IEEE/CAA Journal of Automatica Sinica, 7(3):683–692, 2020.

Werner FM De Bondt and Richard H Thaler. Anomalies: A mean-reverting walk down wall street.
Journal of Economic Perspectives, 3(1):189–202, 1989.

Nima Hatami, Yann Gavet, and Johan Debayle. Classification of time-series images using deep
convolutional neural networks. In Tenth international conference on machine vision (ICMV 2017),
volume 10696, pp. 242–249. SPIE, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in Neural Information Processing Systems, 25, 2012.

Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional networks and applications
in vision. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.
253–256. IEEE, 2010.

Zhiguang Wang and Tim Oates. Imaging time-series to improve classification and imputation.
In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp.
3939–3945. AAAI Press, 2015. ISBN 9781577357384.

8


	Introduction And Related Works
	Quantum State Encoding
	Gaussian Soft Encoding
	Definition of Quantum State Bin Set
	Unnormalized Gaussian Weight
	Normalized Probability Distribution Over Bins
	Probability Amplitude Mapping

	Phase Function Encoding
	Expectation-to-Volatility ratio phase
	Volatility phase

	Final Quantum State

	Complex Domain Image Encoding
	Quantum-GAF
	Alpha-weighted
	Real inner-product based

	Guantum-RP
	L2-norm based
	Fidelity based

	Quantum-MTF

	Experiments
	Settings
	Result and Discussion

	Conclusions

