
Mixed Samples Data Augmentation with Replacing
Latent Vector Components in Normalizing Flow

Genki Osada1,2, Budrul Ahsan3, and Takashi Nishide2

1LINE Corporation, Japan
2University of Tsukuba, Japan

3IBM Japan

Abstract

Data augmentation mixing two samples has been acknowledged as an effective
regularization method for various deep neural network models. Given that images
mixed by popular methods (e.g., MixUp and CutMix) are unnatural to the human
eye, we hypothesized that generating more natural images could achieve better
performance as data augmentation. To verify this, we propose a new mixing method
that synthesizes images in which two source images coexist naturally. Our method
performs a mixing operation in latent space through a normalizing flow, and the
key is how to mix two latent vectors. We preliminarily observed that there exists
a dependency between the dimensions in input space and those in latent space in
transformation with normalizing flows. Based on this observation, we designed our
mixing scheme in latent space. We show that our method yields visually natural
augmented images and improves classification performance.

1 Introduction

Source-1Source-2 MixUp CutMix LS-Mix

Figure 1: Visual comparison of mixing methods.
Unlike MixUp and CutMix, our method, LS-Mix,
generates natural mixed images.

Data augmentation methods that generate new
training data by mixing two source samples have
been increasingly popular to regularize deep neu-
ral network models. We refer to those methods
as mixed samples data augmentation (MDA).
Even basic methods such as MixUp [1, 2] and
CutMix [3] are widely acknowledged for their
effectiveness. However, their success is some-
what surprising, given that the images generated
by these methods are unnatural to the human eye.
(see Fig. 1.) Considering that input images at
the test time do not contain such unnaturalness,
we hypothesize that if we can generate mixed
samples more naturally, it would become more effective as augmented data.

We thus propose an MDA method that synthesizes images, in which two source images coexist
naturally by being stitched together without producing artifacts. We perform mixing operations in
latent space instead of input data space using lossless invertible transformation with normalizing
flows (NFs) [4, 5, 6]. How to mix two latent vectors is the key to generating natural images. As we
will describe in Section 3, we found a dependency between the dimensions of a latent vector and
the pixels of its corresponding image. By utilizing that dependency, we design a mixing scheme
that naturally stitches part of two source images while preserving their original appearance to the
maximum extent. We call our method Latent space Sequential Mix (LS-Mix). The overview of

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 2: Illustration of our method, LS-Mix. Mixed image xm is generated from two source images
x1 and x2, shape of which is [4, 4, 1], i.e., dimensionality D = 16. Encode and Decode in figure
correspond to invertible function g() and g−1(), respectively. In Encode process, squeezing with
space_to_depth operation transforms x1 and x2 into [1, 1, 16] shape tensors, z1 and z2, via [2, 2, 4]
tensors. Let mixture rate λ be 5

16 , first 5 components of M are set to 0, 1 otherwise, and mixed
latent vector zm is generated with it, and M̂ denotes 1−M in figure. In Decode process, inverse
operation of squeezing, depth_to_space, transforms zm with shape of [1, 1, 16] into xm of [4, 4, 1]
via [2, 2, 4] tensor.

Figure 3: Observation of squeezing dependency. Decoded images x′ = g−1(z′) are shown where
z′ is made by replacing last bλDe components of latent vector z = g(x) ∈ RD with 0-value and x
denotes original image. λ increases as 1

12 ,
2
12 , . . . ,

11
12 and corresponding x′ are shown left to right.

LS-Mix is shown in Fig. 2, and the images generated by LS-Mix are shown in Fig. 1. In this short
paper, we perform the evaluation on SVHN, CIFAR-10, CIFAR-100, and TinyImageNet, and show
that LS-Mix outperforms MixUp, CutMix, and other methods that perform mixing in latent space.

2 Preliminary

We use normalizing flows (NFs), g(·), for the invertible transformation between the input space X
and the latent space Z . An NF produces clear reconstructed images because of its invertibility, unlike
VAE [7, 8], whose reconstructed images are known to become blurred [9, 10]. See Appendix A for
NFs. The architecture we use is Glow [11]. Our proposed method utilizes the mechanism called
squeezing, which is one of the building blocks of NFs.

Squeezing. While the shape of images x is [h,w, c] with spatial dimensions h × w and channel
dimension c, the latent vectors z = g(x) mapped with a NF are D dimensional flat vectors with no
spatial structure, where D = h×w× c. NFs perform the conversion of shapes between x and z by an
operation called squeezing. The squeezing is typically done with iterative use of space_to_depth
operation which converts the shape of inputs from [h,w, c] to [h2 ,

w
2 , 4c] until it becomes [1, 1, D],

which are treated as D(= 1 × 1 × D) dimensional flat vectors in the implementation. In the in-
verse transformation g−1 that transforms z back to x, the opposite conversion, depth_to_space
operation is performed. How exactly the space_to_depth and depth_to_space operations per-
form the folding of the spatial dimensions into the channel dimension depends on the implemen-
tation, but typically it is implemented to work in a manner equal to tf.nn.space_to_depth and
tf.nn.depth_to_spaceAPI in TensorFlow, which we use in our experiments. We depict the process
of space_to_depth and depth_to_space in Fig. 2.

3 Our Method

Motivating observation: squeezing dependency. The key to synthesizing natural images is how
to mix two latent vectors. We preliminarily observed that in the transformation with NFs, there

2

Figure 4: Mixed images with our method, LS-Mix. Columns at both ends are source images, and
images in middle are mixture of them with mixing rate λ = { 2

16 ,
5
16 ,

7
16 ,

9
16 ,

11
16 ,

14
16}.

exists a dependency between the dimensions in X and Z , which we call squeezing dependency. We
experimentally observed how the generated image x = g−1(z) changes when some consecutive
components of latent vector z are replaced with 0-value. Fig. 3 shows that as the number of
consecutive components replaced with 0 gradually increases, the generated image becomes closer to
being all black. We can see that the transition to the black image follows not the way that the entire
image gradually becomes darker but instead the way that a small black area initially appearing in
the lower right corner expands to cover the entire image. We identified that the order of the black
area expansion is in accordance with the alignment order of the depth_to_space conversion in the
squeezing operation described in Section 2. We thus interpreted that this dependency comes from
the order of squeezing applied during the training of the NF model. We note that what we did in
this experiment corresponds to the case where all elements of z1 in Fig. 2 were replaced by 0. From
this observation, it is shown that consecutive components in z correspond to consecutive areas in
x = g−1(z). It suggests that manipulating the latent vectors following the squeezing dependency
allows us to generate an image preserving a specific region of the source images. Based on this
observation, we designed our mixing method.

Method. We call our method Latent space Sequential Mix (LS-Mix). LS-Mix works as follows:
mapping two source inputs x1 and x2 to the latent space Z , we obtain the corresponding latent
vectors, z1 = g(x1) and z2 = g(x2). The mixing operation is done as

zm = M⊗ g(x1) + (1−M)⊗ g(x2) (1)

where M ∈ {0, 1}D is a binary mask, D is the dimensionality of Z (and X), 1 is a D-dimensional
vector in which all elements are 1, and ⊗ is an element-wise product. The key of our method is how
to create M, and following the squeezing dependency, we simply set the first bλDe components of
M to 0 and 1 otherwise, according to the mixing rate λ. As the value of λ increases from 0 to 1,
the size of the area that comes from x2 via z2 increases, following the order of depth_to_space
operation. After mixing, mapping zm back to X by g−1, we obtain synthesized image xm = g−1(zm).
Fig. 2 illustrates the case of D = 16 and λ = 5

16 . Like the blue and green regions on xm in Fig. 2,
LS-Mix performs mixing in such a way that the parts of each source image are embedded spatially
continuously in the generated xm. Indeed, other mixing ways can be thought of, and we evaluate four
alternatives, including Linear interpolation and Bernoulli mixup (Bern-Mix) [12], in Sections 4 and 5.

4 Experiments

Preparation. We evaluated LS-Mix in classification accuracies, comparing to the baseline model
(trained without MDA), MixUp, and CutMix. The datasets we used are SVHN [13], CIFAR-
10/100 [14], and TinyImageNet [15], the details of which are shown in Appendix B.1. Following the
previous works such as [16], we used two architectures for the classifier, the 13-layer CNN (CNN-13)
and Wide-ResNet-28-10 (WRN-28-10) 1 [17]. The CNN-13 has been used in the literature such
as [18, 19, 20, 21, 22, 10], whose architecture is described in Appendix B.2. We first trained only the
Glow model separately from the classifier for each dataset, and we use the same model throughout all
the experiments of classifier training. For the model parameters and the training settings, we would

1github.com/tensorflow/models/tree/master/research/autoaugment

3

Table 1: Error rates (%) with CNN-13.
Best three are shown in bold.

SVHN CIFAR-10

baseline 2.46 5.00
MixUp 2.43 4.33
CutMix 2.69 4.40
Linear Intrpl. (α = 0.2) 2.34 5.04
Linear Intrpl. (α = 0.4) 2.33 4.94
Linear Intrpl. (α = 0.6) 2.36 4.89
BernMix (α = 0.2) 2.44 4.35
BernMix (α = 0.4) 2.40 4.53
BernMix (α = 0.6) 2.56 4.65

(ours)
LS-Mix (α = 0.2) 2.27 4.21
LS-Mix (α = 0.4) 2.25 4.01
LS-Mix (α = 0.6) 2.31 3.99

Table 2: Error rates (%) with WRN-28-10 in format
of ‘mean ± std’. Each experiment was run 3 times.

CIFAR-10 CIFAR-100 TinyImageNet

baseline 3.61± 0.102 17.63± 0.143 33.57± 0.232
MixUp 2.61± 0.044 16.26± 0.117 32.81± 0.183
CutMix 2.57± 0.181 16.19± 0.470 31.92± 0.549
LS-Mix 2.45± 0.061 15.55± 0.190 31.15± 0.292

Table 3: Error rates (%) for combination methods
with WRN-28-10. Each experiment was run 3 times.

CIFAR-10 CIFAR-100 TinyImageNet

MixUp + CutMix 2.03± 0.170 15.35± 0.290 31.01± 0.309
MixUp + LS-Mix 2.13± 0.108 15.19± 0.274 32.59± 0.295
CutMix + LS-Mix 1.00± 0.195 11.99± 0.231 30.70± 0.347

like to refer the reader to Appendix B. MDA methods, including LS-Mix, have a hyper-parameter
α ∈ (0, 1), based on which the mixing rate λ is sampled as λ ∼ Beta(α, α) where Beta(·) is a beta
distribution. We tested α ∈ (0.1, 1.0) for MixUp, the full results of which are shown in Table 6 in
Appendix C, and we picked the best ones, α = 0.7, through the experiments. For CutMix, we used
α = 1.0 according to [3]. We run the experiments on a single NVIDIA Quadro P5000 GPU.

Results. We first evaluated LS-Mix with different α using CNN-13 classifier on SVHN and CIFAR-
10. To compare the mixing scheme employed in LS-Mix with different mixing ways in Z , we
also evaluated two other methods that perform mixing in Z , Linear interpolation (Linear Intrpl)
and Bernoulli mixup (Bern-Mix) [12], Linear Intrpl performs linear interpolation in Z . Mixing by
Bern-Mix is written as Eq. 1, but unlike LS-Mix, the binary mask M in Bern-Mix is made at random
by sampling from Bernoulli(λ) distribution. The results are shown in Table 1. The LS-Mix achieved
the best results regardless of the value of α. Linear Intrpl and Bern-Mix were less effective than
MixUp and CutMix on CIFAR-10. We present the synthesized images in Appendix E. We found that
the images produced by Linear Intrpl are almost totally darkened entirely when λ is in a neighborhood
around 0.5. The phenomenon of all-gray images concentrated in the center of Z has been reported
in [23], and the result of Linear Intrpl is considered to be the same phenomenon. Also, we saw that
Bern-Mix produces unnatural images, as described in [12].

Next, we evaluated the methods with WRN-28-10 classifier on CIFAR-10, CIFAR-100, and Tiny-
ImameNet. We set α to 0.4 for LS-Mix, 0.7 for MixUp, and 1.0 for CutMix on all datasets. The
results in Table 2 show that LS-Mix also outperformed other methods.

We also tested the performance of the combined use of LS-Mix, MixUp, and CutMix. As shown
in Table 3, the combined use always improves the performance. In particular, LS-Mix + CutMix
achieved remarkable improvement.

5 Discussion and Conclusion

Table 4: Error rates (%) with CNN-
13. α is 0.4 for three mix methods.

SVHN CIFAR-10

baseline 2.46 5.00
Swap-Mix 4.39 5.20
Reverse-Mix 4.21 4.60
LS-Mix 2.25 4.01

Aside from Linear Intrpl and Bern-Mix, alternative mixing
schemes in the latent space are possible. We introduced two
more alternatives, Swap-Mix and Reverse-Mix. The mixing
schemes and synthesized images are presented in Appendix
D. We found that those two yield images drastically deformed
from the source image and that their performance as MDA is
far worse than LS-Mix, as shown in Table 4. This ablation
study implies that complying with the squeezing dependency,
as in LS-Mix, is important when performing mixes that replace
components of the latent vectors.

Unlike other mixing methods in latent space (i.e., Linear Intrpl, Bern-Mix [12], Swap-Mix, and
Reverse-Mix), LS-Mix is designed to preserve the original structure of both source images as much as
possible and to stitch them naturally. That enables LS-Mix to yield natural images, and we empirically

4

showed that such images work better as data augmentation. Although it is necessary to evaluate its
effectiveness for large-size images such as ImageNet [15] in the future, this short paper demonstrated
that the LS-Mix is promising as an MDA method.

Acknowledgements

The authors would like to thank Eric Jang for insightful discussions.

References
[1] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond

empirical risk minimization. In International Conference on Learning Representations, 2018.

[2] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Between-class learning for image
classification. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[3] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In The
IEEE International Conference on Computer Vision (ICCV), October 2019.

[4] Oren Rippel and Ryan Prescott Adams. High-dimensional probability estimation with deep
density models. arXiv preprint arXiv:1302.5125, 2013.

[5] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 1530–1538, Lille, France, 07–09 Jul 2015. PMLR.

[6] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2017.

[7] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

[8] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Eric P. Xing and Tony Jebara,
editors, Proceedings of the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pages 1278–1286, Bejing, China, 22–24 Jun 2014.
PMLR.

[9] Huaibo Huang, zhihang li, Ran He, Zhenan Sun, and Tieniu Tan. Introvae: Introspective varia-
tional autoencoders for photographic image synthesis. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc., 2018.

[10] Genki Osada, Budrul Ahsan, Revoti Prasad Bora, and Takashi Nishide. Regularization with
latent space virtual adversarial training. In Computer Vision – ECCV 2020, pages 565–581,
Cham, 2020. Springer International Publishing.

[11] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolu-
tions. In Advances in Neural Information Processing Systems 31, pages 10215–10224. Curran
Associates, Inc., 2018.

[12] Christopher Beckham, Sina Honari, Vikas Verma, Alex M Lamb, Farnoosh Ghadiri, R Devon
Hjelm, Yoshua Bengio, and Chris Pal. On adversarial mixup resynthesis. In Advances in Neural
Information Processing Systems 32, pages 4346–4357. Curran Associates, Inc., 2019.

[13] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

5

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[16] Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz. Interpolation
consistency training for semi-supervised learning. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-19, pages 3635–3641. International
Joint Conferences on Artificial Intelligence Organization, 7 2019.

[17] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA Press, September 2016.

[18] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Distribu-
tional smoothing with virtual adversarial training. In International Conference on Learning
Representations, 2016.

[19] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In Advances in Neural
Information Processing Systems 30, pages 1195–1204. Curran Associates, Inc., 2017.

[20] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Ruslan R Salakhutdinov. Good
semi-supervised learning that requires a bad gan. In Advances in Neural Information Processing
Systems 30, pages 6510–6520. Curran Associates, Inc., 2017.

[21] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. There are many
consistent explanations of unlabeled data: Why you should average. In International Conference
on Learning Representations, 2019.

[22] Sungrae Park, JunKeon Park, Su-Jin Shin, and Il-Chul Moon. Adversarial dropout for supervised
and semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[23] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detecting
out-of-distribution inputs to deep generative models using typicality, 2020.

[24] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
Do deep generative models know what they don’t know? In International Conference on
Learning Representations, 2019.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[26] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[27] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[28] Krzysztof Kolasinski. An implementation of the GLOW paper and simple normalizing flows lib,
2018.

[29] Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Joern-Henrik Jacobsen.
Understanding and mitigating exploding inverses in invertible neural networks. In Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 1792–1800. PMLR, 13–15 Apr 2021.

6

[30] Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity
constraints with continuously indexed normalising flows. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 2133–2143. PMLR, 13–18 Jul 2020.

[31] Alexandre Verine, Yann Chevaleyre, Fabrice Rossi, and benjamin negrevergne. On the expres-
sivity of bi-lipschitz normalizing flows. In ICML Workshop on Invertible Neural Networks,
Normalizing Flows, and Explicit Likelihood Models, 2021.

7

A Normalizing Flow

Let g(·) be an invertible function and h0 and h1 be random variables of equal dimensionality.
With the change of variables rule, a transformation h1 = g(h0) can be written as the change in
the probability density function (pdf): p(h0) = p(h1)|det(dh1/dh0)|. Defining h0 := x and
hT := z, T -times repetition of this transformation, h1,h2, . . . ,hT , yields log p(x) = log p(z) +∑T

t=1 log |det(dht/dht−1)|,which gives us a invertible map between an image x and a correspondent
latent vector z. The target distribution p(z), i.e., the latent space Z , can be set to arbitrary distribution,
but we choose a standard Gaussian N (0, I). Due to an invertible mapping, the dimensionality of Z
is equal to that of the input space X , which we denote as D. Through the training the flow model
learns g() so that it transforms the distribution of training images p(x) intoN (0, I). There are several
types of flow models, but we use Glow [11], which is the most popular and has been used in many
applications such as [24, 10].

A.1 Factor Out

Figure 5: Illustration of factor out cited from [6]. f i in figure corresponds to gi in text.

To reduce computation cost and memory usage, flow models, including Glow, typically employ the
mechanism called factor out [6, 11]. Fig. 5 shows the illustration cited from [6], and it is formalized
as

(z(i+1),h(i+1)) = g(i)(h(i)) (2)

z(L+1) = g(L)(h(L)) (3)

z = (z(1), . . . , z(L+1)) (4)

where L is the number of factor out operations. Also, z(i) (and h(i)) and g(i) indicate the outputs of
i-th operation and i-th transform function, respectively. For i < L+ 1, the dimension of the outputs
of g(i) are split in half (Eq. (2)). The splitting is not applied for i = L (Eq. (3)). All z(i) which have
been factored out at different timing are concatenated to obtain the final output z (Eq. (4)). Thus, the
components of z are gradually stacked in L+ 1 times. For example, when L = 4 for 64× 64 size
RGB image datasets, z is composed of 5 levels as [z1, z2, z3, z4, z5] = z, with dimensions of 6144,
3072, 1536, 768, and 768, respectively.

B Experimental Setup

B.1 Datasets

The SVHN dataset [13] consists of 32× 32 pixel RGB images of real-world house numbers, having
10 classes. The CIFAR-10 dataset [14] also consists of 32 × 32 pixel RGB natural images in 10
different classes. Similarly, CIFAR-100 [14] has 100 classes. The TinyImageNet dataset [15]
consists of 64× 64 pixel RGB natural images of 200 classes. The numbers of training/test images
are 73, 257/26, 032 for SVHN, 50, 000/10, 000 for CIFAR-10 and CIFAR-100, 100, 000/10, 000 for
TinyImageNet, respectively. We adopt the standard data-augmentation: random 2× 2 translation to
both datasets and horizontal flips to CIFAR-10/100 and TinyImageNet. The same augmentation is
applied to the training of Glow.

8

B.2 Architecture of CNN-13 Classifier

Table 5: Architecture of CNN-13 classifier. BNorm stands for batch normalization. Slopes of all
Leaky ReLU are set to 0.1.

Input: 32× 32 RGB image 8: 2× 2 max-pool, dropout 0.5
1: 3× 3 conv. 128 same padding, BNorm, lReLU 9: 3× 3 conv. 512 valid padding, BNorm, lReLU
2: 3× 3 conv. 128 same padding, BNorm, lReLU 10: 1× 1 conv. 256 BNorm, lReLU
3: 3× 3 conv. 128 same padding, BNorm, lReLU 11: 1× 1 conv. 128 BNorm, lReLU
4: 2× 2 max-pool, dropout 0.5 12: Global average pool 6× 6→ 1× 1
5: 3× 3 conv. 256 same padding, BNorm, lReLU 13: Fully connected 128→ 10
6: 3× 3 conv. 256 same padding, BNorm, lReLU 14: BNorm (only for SVHN)
7: 3× 3 conv. 256 same padding, BNorm, lReLU 15: Softmax

The architecture of CNN-13 is shown in Table 5.

B.3 Hyper-Parameters

Classifiers. We used the Adam optimizer [25] for the CNN-13 with the momentum parameters
β1 = 0.9 and β2 = 0.999. For WRN-28-10, we use stochastic gradient descent with Nesterov
momentum of 0.9. We trained with 200, 300, and 120 epochs for SVHN, CIFAR-10/100, and
TinyImageNet, respectively. For CNN-13, the learning rate starts with 0.001 and exponentially
decays with a rate 0.97 at every 2 epochs after the first 60,000 and 184,000 updates for SVHN and
CIFAR-10, respectively. For WRN-28-10, we use a cosine learning decay, which is used in [26],
starting with 0.1. The size of a mini-batch is 128 for CNN-13 and 50 for WRN-28-10.

Glow. We used the Adam optimizer with the momentum parameters β1 = 0.9 and β2 = 0.999.
The learning rate starts with 0.0001, and we trained 8, 200 iterations for both datasets, with batch
size 256 for SVHN and CIFAR-10/100 and 16 for TinyImageNet, respectively. There are two major
parameters to design the architecture: the depth of flow K and the number of factoring out operations
L. For SVHN, CIFAR-10 and CIFAR-100, we chose K = 32 and L = 3. For TinyImageNet, we
chose K = 48 and L = 4. The channel width of convolutions is 128 for all datasets. In accordance
with [11], we train the Glow model on 5-bit images converted from the original 8-bit for high fidelity.
We also would like to refer to our experimental code for the details. 2

C Results of MixUp

Table 6: Error rates (%) of MixUp with CNN-13 on SVHN and CIFAR-10.

α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SVHN 2.51 2.53 2.58 2.54 2.54 2.48 2.43 2.54 2.46 2.56
CIFAR-10 4.92 4.65 4.65 4.36 4.65 4.40 4.33 4.47 4.44 4.33

We tested MixUp with different α ∈ (0.1, 1.0), and the results are shown in Table 6. For both datasets,
the setting α = 0.7 was the best, although α = 1.0 achieved the same result on CIFAR-10.

D Alternative Mixture Methods in Latent Space

We introduce two alternative mixing schemes in the latent space, Swap-Mix and Reverse-Mix. The
two alternative methods are depicted in Fig. 6 in correspondence with Fig. 2. The Swap-Mix creates
the mask M in the same way as LS-Mix, but the components taken from each z1 and z2 are combined
in the reverse order from LS-Mix. The Reverse-Mix sorts the components of z1 in reverse order
before the selection of components is done. The images mixed by them are shown in Fig. 7, which

2We used TensorFlow 1.13. [27] and the experiments were run on NVIDIA Quadro P5000. The code for
Glow is based on [28].

9

(a) Swap-Mix (b) Reverse-Mix

Figure 6: Illustration of alternative methods corresponding to one of LS-Mix in Fig. 2. In Swap-Mix,
order of green and blue in zm is reversed from LS-Mix. In Reverse-Mix, order of green components
in zm is reversed from LS-Mix. Consequently, ways to embed source images into xm differ.

Sw
ap

-M
ix

R
ev

er
se

-
M

ix

Figure 7: Mixed images with alternative methods. Images at both ends are source images
which are same as Fig. 4. Images in middle are mixture of them with mixing rate with λ =
{ 2
16 ,

5
16 ,

7
16 ,

9
16 ,

11
16 ,

14
16}.

are drastically deformed while retaining the remnants of their source images. The results showed
that Swap-Mix and Reverse-Mix are much less effective than LS-Mix as shown in Table 4. In fact,
their performances are often even worse than the baseline model which was trained without any
MDA. The poor performance of Swap-Mix and Reverse-Mix is probably caused by the fact that
their mixed images deviate too much from the source images, as shown in Fig. 7. As Swap-Mix
displaces the position of the source images horizontally and vertically on stitching, this effect is
probably too strong for data augmentation. On the other hand, Reverse-Mix showed that replacing
the latent components in reverse order immediately results in incomprehensible images to humans,
regardless of mixing, as the images with λ = { 2

16 ,
5
16 ,

7
16} shown in Fig. 7. Moreover, we also found

that, unlike LS-Mix, these methods often generated entire corrupted images as shown in Appendix
E. The same corruptions were found in the images with Bern-Mix, and those are probably what is
referred to as inverse explosion in [29], which is caused by the numerical errors that occur mainly
due to a high Lipschitz constant of g and g−1 [30, 31]. We conjecture that for images that deviate
from the training data more than a certain level, the flow model becomes unstable, i.e., Lipschitz
constants become large, which leads to the generation of corrupted images due to inverse explosion.

E More Samples

We show more samples as follows. We see that the mixed images with LS-Mix are more natural and
stable than those of other methods. Columns at both ends are the source images, and the images in
middle are mixture of them with mixing rate λ = { 2

16 ,
5
16 ,

7
16 ,

9
16 ,

11
16 ,

14
16}.

10

L
in

ea
r

In
tr

pl
B

er
n-

M
ix

Sw
ap

-M
ix

R
ev

er
se

-
M

ix
L

S-
M

ix
L

in
ea

r
In

tr
pl

B
er

n-
M

ix
Sw

ap
-M

ix
R

ev
er

se
-

M
ix

L
S-

M
ix

(o
ur

s)

11

L
in

ea
r

In
tr

pl
B

er
n-

M
ix

Sw
ap

-M
ix

R
ev

er
se

-
M

ix
L

S-
M

ix
(o

ur
s)

L
in

ea
r

In
tr

pl
B

er
n-

M
ix

Sw
ap

-M
ix

R
ev

er
se

-
M

ix
L

S-
M

ix
(o

ur
s)

12

	Introduction
	Preliminary
	Our Method
	Experiments
	Discussion and Conclusion
	Normalizing Flow
	Factor Out

	Experimental Setup
	Datasets
	Architecture of CNN-13 Classifier
	Hyper-Parameters

	Results of MixUp
	Alternative Mixture Methods in Latent Space
	More Samples

