
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

DecETT: Accurate App Fingerprinting Under Encrypted Tunnels
via Dual Decouple-based Semantic Enhancement

Anonymous Author(s)∗

Abstract
Due to the growing demand for privacy protection, encrypted tun-
nels have become increasingly popular among mobile app users,
which brings new challenges for app fingerprinting (AF)-based net-
work management. Existing methods primarily transfer traditional
AF methods to encrypted tunnels directly, ignoring the core ob-
fuscation and re-encapsulation mechanism of encrypted tunnels,
thus resulting in unsatisfactory performance. In this paper, we
propose DecETT, a dual decouple-based semantic enhancement
method for accurate AF under encrypted tunnels. Specifically, De-
cETT improves AF under encrypted tunnels from two perspectives:
app-specific feature enhancement and irrelevant tunnel feature
decoupling. Considering the obfuscated app-specific information
in encrypted tunnel traffic, DecETT introduces TLS traffic with
stronger app-specific information as a semantic anchor to guide
and enhance the fingerprint generation for tunnel traffic. Further-
more, to address the app-irrelevant tunnel feature introduced by
the re-encapsulation mechanism, DecETT is designed with a dual
decouple-based fingerprint enhancement module, which decouples
the tunnel feature and app semantic feature from tunnel traffic
separately, thereby minimizing the impact of tunnel features on
accurate app fingerprint extraction. Evaluation under five prevalent
encrypted tunnels indicates that DecETT outperforms state-of-the-
art methods in accurate AF under encrypted tunnels, and further
demonstrates its superiority under tunnels with more complicated
obfuscation. Project page: https://github.com/DecETT/DecETT

Keywords
App Fingerprinting, Encrypted Tunnel, Encrypted Traffic Analysis,
Decouple-based Representation Learning

1 Introduction
Over the past few years, we have witnessed the widespread use of
encrypted tunnels in mobile network communications[10, 34, 41].
Serving as intermediaries that forward traffic between apps and
servers, encrypted tunnels conceal both the identities of the com-
municating parties and the transmitted traffic characteristics, thus
providing an effective way for privacy protection[3] and anony-
mous communication[25]. However, the prevalence of encrypted
tunnels also poses new challenges to network management, such as
Quality of Service (QoS)[42] and behavior auditing[1]. Traditional
network management strategies primarily rely on app fingerprint-
ing (AF) that identifies app usage activities by analyzing server
information[26, 33] (e.g., IP address or Server Name Indicator) or
TLS traffic characteristics[20, 30, 37]. However, encrypted tunnels
obfuscate these two distinctive features, making accurate AF more
challenging than in the traditional TLS scenario.

While prior work has developed some AF methods under en-
crypted tunnels, most of them directly transfer traditional AF meth-
ods, ignoring the core impact caused by tunnel mechanism. As

隧道通信架构图

 Variety of Encrypted Tunnels TLS Traffic

APPs Proxy Server

APPs Server

APP Fingerprinting × N

 Visible Communicating
Server Information

 Inaccessible
Server Information

 Raw TLS Traffic

 Re-encapsulated By
Tunnel-specific Protocol

Si
C

C

Si

C

Si
Traditional TLS

Encrypted
Tunnel

 Standard TLS Protocol

Figure 1: Three main challenges in App Fingerprinting under
encrypted tunnels: (1) Diversity of encrypted tunnels, (2)
Server concealment, and (3) Traffic re-encapsulation.

illustrated in Figure 1, there exist three primary challenges in em-
ploying AF under encrypted tunnels compared with traditional
TLS scenarios. (1) Diversity of encrypted tunnels. Currently,
there are numerous kinds of encrypted tunnels that have been
widely used. Some studies design effective AF methods for spe-
cific encrypted tunnels[9, 14, 35], such as Shadowsocks and SSH.
However, since different encrypted tunnels employ varying for-
warding policies and encapsulation protocols for the original TLS
traffic, developing specific AF methods for each tunnel type is labor-
intensive and inefficient. (2) Lack of server information. In tra-
ditional TLS scenarios, server information, such as IP addresses,
TLS certificates, and high-level interaction patterns, can be directly
extracted from the original TLS traces to facilitate fingerprint con-
struction. However, in encrypted tunnels, all traffic is forwarded to
the tunnel server instead of the actual app servers, concealing any
server-related information. As a result, server information-based
methods, which perform excellently in TLS scenario[5, 26, 33], can-
not be applied under encrypted tunnels. (3) Weaker AF semantic
representations caused by re-encapsulation. Existing methods
attempt to extract discriminative features directly from the tunnel
traffic[17, 21, 24, 39, 43]. However, encrypted tunnels employ re-
encapsulation mechanism on the forwarded TLS traffic to ensure
the confidentiality of tunnel communication. This process not only
obfuscates the raw app-specific information, but also introduces
tunnel-related information that are irrelevant to apps into the tun-
nel traffic, resulting in unsatisfactory performance and making
accurate AF more challenging.

To address the aforementioned issues, in this paper, we propose
DecETT, a dual decouple-based semantic enhancement method
for accurate AF under encrypted tunnels. DecETT utilizes flow se-
quences as the representation form of traffic to avoid the limitations
of inaccessible server information. Specifically, DecETT consists

1

https://github.com/DecETT/DecETT

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

of three key steps as follows. Firstly, to mitigate the obfuscated
app-specific features caused by re-encapsulation, we introduce TLS
traffic as a stronger and more stable semantic anchor to guide and
enhance the fingerprint generation for tunnel traffic. Each tun-
nel flow is correlated with its corresponding original TLS flow for
further analysis. Secondly, to address the negative impact of tunnel-
related features within tunnel traffic, DecETT incorporates a dual
decouple-based fingerprint enhancement module, which adopts
a dual-branch Siamese network to tackle TLS and tunnel traffic
separately. By decoupling the disentangled protocol features and
app semantic features within the traffic, DecETT isolates protocol-
related features that are irrelevant to app fingerprints, therefore
reducing the impact of the re-encapsulation mechanism on cap-
turing distinguishable app-specific information. Finally, the app
semantic features extracted from tunnel traffic are input into the
classifier as the generated fingerprint for the final AF results. To
validate the effectiveness of DecETT, we conduct extensive experi-
ments under five widely used encrypted tunnels.

Contributions. Our contributions can be summarized as:
• We propose a dual decouple-based semantic enhancement

method, DecETT, which can achieve accurate app finger-
printing under various encrypted tunnels.

• Considering the obfuscation of app-specific information
caused by re-encapsulation, we introduce TLS traffic with
stronger and more stable app semantic information to guide
and enhance effective fingerprint generation.

• We design a dual decouple-based semantic enhancement
module to decouple tunnel-related features and app-specific
semantic features, which mitigates the negative impact of
re-encapsulation on accurate fingerprint extraction.

• Evaluated under five widely-used encrypted tunnels, De-
cETT outperforms state-of-the-art methods on multiple
metrics, and shows superiority under tunnels with more
complicated obfuscation.

The remainder of this paper is organized as follows. Section
2 summarizes the prior research related to our work. Section 3
introduces the necessary foundational knowledge of this paper.
Section 4 highlights the overall design of DecETT, and Section 5
illustrates the experiments. Section 6 concludes the paper.

2 Related Work
From the task perspective, prior relevant works mainly focus on app
fingerprinting and encrypted tunnel traffic analysis, respectively.
In this section, we briefly review and discuss these works.

2.1 App Fingerprinting
App Fingerprinting (AF) refers to a side-channel network man-
agement technique that identifies app usage activities through
encrypted traffic analysis. Although the packet payloads are en-
crypted, certain traffic characteristics, such as server profiles, TLS
certificates, and flow sequences, still allow for successful AF under
encrypted traffic. Generally, prior works can be categorized into
two main groups, including server information analysis and flow
feature mining.

Server Information Analysis. Server information analysis-
based methods refer to using server-related features for accurate AF.

Van Ede et al. [33] and Pham et al. [26] explore temporal correlations
among destination-related features of network traffic and use these
correlations to generate app fingerprints.

Flow Feature Mining. These methods focus on extracting fin-
gerprints from the transmitted traffic flows and can be further di-
vided into three parts. A typical approach is to utilize statistical fea-
tures that are independent of encryption, such as packet lengths[30]
and time-related features[4]. Another kind of approach[36, 38, 43]
extracts the raw bytes of packets and employs deep learning to iden-
tify distinguishable app features based on the pseudo-randomness
of encryption algorithms. For instance, ET-Bert[17] transforms the
packet payloads into word-like tokens and achieves satisfactory
performance based on the pre-training technique. Besides, deep
mining of flow sequences also provides effective AF strategies. Liu
et al. [18] utilize multi-layer end-to-end encoder-decoder struc-
ture to mine the potential sequence characteristics. Shen et al. [28]
construct each flow sequence as a graph by burst division and
association, and transform AF to a graph classification task.

While these methods have demonstrated high accuracy in tradi-
tional TLS scenario, their performance diminishes under encrypted
tunnels since both server information and traffic characteristics are
obfuscated, making effective AF more challenging.

2.2 Encrypted Tunnel Traffic Analysis
Currently, works for encrypted tunnel traffic analysis mainly fo-
cus on detecting tunnel flows from a massive amount of traffic.
Several studies [16, 19, 22, 23] analyze and extract tunnel-specific
protocol features to achieve accurate identification. For instance,
Xue et al. [41] constructs OpenVPN traffic fingerprints from the
aspects of byte pattern, packet size, and server response to achieve
accurate OpenVPN traffic identification.Alice et al. [2] observe that
the length and entropy value of the first packet in a flow can be used
as specific features for Shadowsocks traffic detection, and combine
active probing to further improve the identification accuracy.

Some other methods [8, 13, 24] dive into AF under encrypted
tunnels for more fine-grained analysis. Xu et al. [40] convert each
tunnel flow into a graph and combine it with statistical features to
realize app classification. Wang et al. [35] add the sliding window
JS divergence feature based on the traditional packet length and
timestamp-related statistics to promote the accuracy and robustness
of AF under Shadowsocks.

In summary, existingAFmethods under encrypted tunnelsmainly
follow the technical roadmap of traditional TLS traffic classification
and lack targeted solutions for the tunnel mechanism. Therefore,
their performance is still limited by the weak app semantic fea-
tures in tunnel traffic. In this work, we aim to mitigate the negative
impact of tunnel obfuscation by both irrelevant tunnel feature de-
coupling and app semantic feature enhancement with the help of
TLS traffic, thereby achieving accurate AF under various tunnels.

3 Preliminaries
In this section, we first provide the threat model of app fingerprint-
ing, and then conduct a detailed analysis of the core principle of
the tunnel re-encapsulation mechanism and its impact on tunnel
flow sequences, to provide the necessary theoretical foundation.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Source code of re-encapsulation mechanism sum-
marized from Shadowsocks. Illustrations for the other 4 en-
crypted tunnels can be found in Appendix A.

3.1 Threat Model
In this paper, we refer to the threat model [26, 33] in previous app
fingerprinting studies, with the critical difference that we focus on
the more complex encrypted tunnel scenario. Specifically, an app
fingerprinting system is located at the network boundary, where it
can collect and analyze all traffic sent out from this network. The
primary goal of AF is to identify app usage activities concealed in
encrypted tunnels of specific mobile devices by analyzing the cor-
responding tunnel traffic. We assume that only one app is executed
at a time, i.e., composite app fingerprints are not considered[33].

3.2 Re-encapsulation Mechanism
Firstly, to reveal the principle of the re-encapsulation mechanism in-
tuitively, we summarize the source code of traffic re-encapsulation
and forwarding process in Shadowsocks[27], a widely used en-
crypted tunnel tool for mobile devices, as shown in Figure 2. Unnec-
essary functions and parameters are omitted, and annotations are
added for clarity. When a local app attempts to send data through
the tunnel, the tunnel client establishes a connection with the local
app via 𝑙𝑜𝑐𝑎𝑙_𝑠𝑜𝑐𝑘 and creates a corresponding 𝑟𝑒𝑚𝑜𝑡𝑒_𝑠𝑜𝑐𝑘 to the
tunnel server simultaneously. The tunnel client then receives and
encrypts the data from the local app according to the tunnel proto-
col, and forward it to the tunnel server. Similarly, upon receiving
responses from the tunnel server, the tunnel client decrypts the
data and sends it back to the local app, thereby achieving traffic
forwarding of encrypted tunnels.

In summary, the tunnel client maintains two TCP connections
and their correlation: one for communicating with the local app
called 𝑖𝑛𝑏𝑜𝑢𝑛𝑑 and another for data transmission with the tun-
nel server called 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 . Both connections are implemented via
socket communication, so the process of data encryption and for-
warding does not vary based on the class of app data. Therefore,
tunnel protocol features and app semantic features can be viewed
as two independent variables for tunnel traffic generation, thereby
ensuring the feasibility of the feature decoupling.

3.3 Impact on Tunnel Flow Sequences
Based on the principle of the re-encapsulation mechanism above,
this section discusses its impact on tunnel flow sequences. We select
a TLS flow and its two corresponding tunnel flows forwarded by
V2Ray[31] for comparison.

Cross App Decouple
Loss (CAL)

Cross Protocol Decouple
Loss (CPL)

Self Reconstruction Loss
(SRL)

Semantic Alignment Loss
(SAL)

Shared Parameters

Non-shared
Parameters

Label Cross Entropy Loss
(SAL)

517 -1440 -1440 -1448 -1432 -430 31 -31

586 -1448 -1448 -1448 -1448 -477 74 -70110 -62 -65 -84

589 -1448 -1448 -1448 -1448 -481 82 -88-63 -24 -72 -15

……

……

……

……

Original TLS Flow 𝑅𝑅 Tunnel Flow A Tunnel Flow B

Figure 3: Flow sequence variation caused by tunnel re-
encapsulation mechanism.

As shown in Figure 3, the tunnel flow sequences differ from
the TLS flow sequence after being forwarded by the tunnel. This
variation can be attributed to the fact that tunnel flow sequences
are affected by both the original app and tunnel re-encapsulation.
Specifically, the impact of the latter on flow sequences mainly lies
in three aspects. (1) Packet length variation. Compared to the
original TLS traffic, the packet lengths in both flow𝐴 and 𝐵 increase
to varying degrees due to the additional byte overhead caused by
tunnel re-encapsulation. Furthermore, the same TLS packet may
correspond to packets of different lengths after re-encapsulation.
For example, a packet with a length of 517 in flow 𝑅 corresponds to
packets of 586 and 589 in flows 𝐴 and 𝐵, respectively. (2) Packet
fragmentation. Due to the extra byte overhead and the limitation
of the Maximum Transmission Unit (MTU), the payload data of a
single TLS packet may be split into two packets for transmission in
tunnel traffic. For instance, a packet with a payload of 1440 bytes
in flow 𝑅 is split into two packets of 1448 bytes and 62 bytes in
flow 𝐴. (3) Packet redundancy. Some packets, such as the first
packet in flow 𝐴 with a payload of 110 bytes, are not generated by
the upper-layer app and are more likely to serve as control packets
for tunnel communication.

These variations indicate that tunnel mechanism obfuscate the
app-specific information hidden in the flow sequences, resulting in
poor AF performance. Considering that TLS traffic remains unaf-
fected by the tunnel mechanism and shares the same app-specific
information with tunnel traffic, it can serve as a robust semantic
anchor for learning representative app semantic features in tunnel
traffic, thereby facilitating accurate AF under encrypted tunnels.

4 Design of DecETT
Based on the aforementioned analysis of tunnel mechanism, in this
section, we introduce our dual decouple-based semantic enhance-
ment app fingerprinting method, DecETT. As shown in Figure 4, the
architecture of DecETT could be divided into three main processes:
traffic preprocess and correlation, dual decouple-based fingerprint
enhancement, and generated AF classification.

4.1 Traffic Preprocess and Correlation
DecETT utilizes TLS traffic as a semantic anchor to mitigate app se-
mantics loss and enhance the representation learning of the tunnel
traffic. In this process, we construct parallel correlation flow pairs
from the obfuscated network traffic to facilitate subsequent work.

Firstly, we reassemble TLS and tunnel flows separately based on
5-tuple information of the packets, including source IP, source port
(𝑆𝑃𝑜𝑟𝑡), destination IP, destination port (𝐷𝑃𝑜𝑟𝑡), and protocol, and
then pad or truncate them to the unified flow sequence length 𝑛.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Traffic Preprocess
And Correlation Dual Decouple-based Fingerprint Enhancement

Generated Fingerprint
Classification

App-specific Semantic
Alignment (ASA)

Cross-Protocol Semantic
Decoupling (CPD)

Self Reconstruction
Constraint (SRC)

Shared Parameters
AF-view Encoder And
Decoder

Non-shared Parameters
Protocol-view Encoder

Protocol-feature Semantic
Minimization (PSM)

Em
be

dd
in

g TLS-Branch

Tunnel-Branch

Cl
as

sif
ie

r

AF-view
Encoder

“ ”

AF-view
Encoder

P-view
Encoder

Decoder

GRL

AF-view
Encoder

P-view
Encoder

GRL

Cl
as

sif
ie

r

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃

𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴

App Semantic Feature
Classification (ASC)

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡′

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡′

TLS flow

Tunnel
flow

Co
rr

el
at

io
n

Decoder

Figure 4: The overall architecture of DecETT.

Next, the reassembled TLS and tunnel traffic flows are corre-
lated according to the mapping table 𝑇 maintained by the tunnel
client. As we mentioned in Section 3.2, the tunnel client maintains
a socket mapping relation (𝑖𝑛𝑏𝑜𝑢𝑛𝑑, 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑) ∈ 𝑇 for each pair of
the forwarded traffic. The 𝑖𝑛𝑏𝑜𝑢𝑛𝑑 keyword records the 𝑆𝑃𝑜𝑟𝑡 of the
TCP connection established with the app, while the 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 key-
word records the 𝐷𝑃𝑜𝑟𝑡 of the TCP connection established with the
tunnel server. Therefore, TLS flow that satisfies 𝑆𝑃𝑜𝑟𝑡 == 𝑖𝑛𝑏𝑜𝑢𝑛𝑑

and tunnel flow that satisfies 𝑆𝑃𝑜𝑟𝑡 == 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 share the same
app-specific information and are correlated as a parallel flow pair.
Moreover, in order to avoid the confusion caused by port reuse, we
restrict the time difference between the two flow start timestamps
𝑡𝐹𝑡𝑙𝑠 , 𝑡𝐹𝑡𝑢𝑛 of the correlated flows to be less than a certain thresh-
old 𝜀. In summary, the flow correlation process can be formally
described as the concatenation of 𝐹𝑡𝑙𝑠 and 𝐹𝑡𝑢𝑛 that satisfy:{

(𝑆𝑡𝑙𝑠𝑝𝑜𝑟𝑡 , 𝑆
𝑡𝑢𝑛
𝑝𝑜𝑟𝑡) == (𝑖𝑛𝑏𝑜𝑢𝑛𝑑, 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑) ∈ 𝑀

|𝑡𝐹𝑡𝑙𝑠 − 𝑡𝐹𝑡𝑢𝑛 | ≤ 𝜀
(1)

By correlating each tunnel flow with its corresponding TLS flow
that shares the same app-specific information, an additional se-
mantic supervisory signal is provided for fingerprint learning of
the tunnel flow, thereby facilitating accurate AF under encrypted
tunnels.

Furthermore, in order to enrich the information retained in the
packets, each parallel flow pair 𝐹𝑡𝑙𝑠−𝑡𝑢𝑛 is mapped through a train-
able embedding layer 𝐸𝑚𝑏 (·). Formally, given a flow pair sequence
as 𝐹𝑡𝑙𝑠−𝑡𝑢𝑛 = {[𝑝1,𝑡𝑙𝑠 , . . . , 𝑝𝑛,𝑡𝑙𝑠], [𝑝1,𝑡𝑢𝑛, . . . , 𝑝𝑛,𝑡𝑢𝑛]}, the embed-
ding layer 𝐸𝑚𝑏 (·) maps each packet 𝑝𝑖 to an embedding vector 𝑒𝑖
of dimension 𝑑 . Therefore, the raw flow pair is mapped to represen-
tation 𝑥𝑡𝑙𝑠−𝑡𝑢𝑛 = [[𝑒1,𝑡𝑙𝑠 , . . . , 𝑒𝑛,𝑡𝑙𝑠], [𝑒1,𝑡𝑢𝑛, . . . , 𝑒𝑛,𝑡𝑢𝑛]] ∈ R2𝑛×𝑑

for further analysis.

4.2 Dual decouple-based Fingerprint
Enhancement

As we discussed in Section 3.2, the representation of encrypted
tunnel traffic is jointly influenced by both app semantic and tunnel
protocol features. Therefore, irrelevant protocol features inevitably
hinder the learning of accurate app semantic features and thus
bring negative impact to AF. In this process, we aim to decouple
the protocol and app semantic features entangled in the traffic, and
further enhance the semantic features with the help of TLS traffic
to reduce the negative impact of tunnel re-encapsulation.

Specifically, DecETT employs a partially parameter-shared Siamese
Network[7] with two branches to process TLS traffic and tunnel
traffic separately. Each branch comprises a protocol-view encoder
𝐸𝑛𝑐𝑃 , an AF-view encoder 𝐸𝑛𝑐𝐴 , a decoder 𝐷𝑒𝑐 , and a classifier
𝐶 . Each of the encoders and decoders utilizes a 2-layer stacked
Bi-GRU[6] as the backbone to model the contextual bidirectional
information of the flow sequences. The protocol-view encoder aims
at learning protocol features 𝑍𝑃 = 𝐸𝑛𝑐𝑃 (𝑥) that are independent
of the app, while the AF-view encoder focuses on extracting app
semantic features 𝑍𝐴 = 𝐸𝑛𝑐𝐴 (𝑥) from the raw traffic. In order to
facilitate the decoupling between these two representations and
enhance accurate fingerprint extraction, we propose two specific
sub-modules to train DecETT. In the following, we present each of
them in detail.

4.2.1 Flow Representation Decoupling. In this sub-module, we force
the app semantic features to be decoupled with the tunnel proto-
col features to minimize the negative influence caused by tunnel
re-encapsulation.

Self Reconstruction Constraint (SRC). Since the original flow
representation is decoupled into two independent features 𝑍𝑃 and
𝑍𝐴 , it is essential to ensure that these two features retain as much of

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

the original flow information as possible. Therefore, we first intro-
duce self-reconstruction loss to ensure the fundamental correctness
of feature decoupling, which can be calculated as follows:

𝑥 ′
𝑖,𝑡𝑙𝑠

= 𝐷𝑒𝑐 (𝑍𝑃
𝑖,𝑡𝑙𝑠

, 𝑍𝐴
𝑖,𝑡𝑙𝑠

) (2)

𝑥 ′𝑖,𝑡𝑢𝑛 = 𝐷𝑒𝑐 (𝑍𝑃
𝑖,𝑡𝑢𝑛, 𝑍

𝐴
𝑖,𝑡𝑢𝑛) (3)

L𝑆𝑅𝐶 = − 1
𝑁

𝑁∑︁
𝑖=1

(| |𝑥 ′
𝑖,𝑡𝑙𝑠

− 𝑥𝑖,𝑡𝑙𝑠 | |2 + ||𝑥 ′𝑖,𝑡𝑢𝑛 − 𝑥𝑖,𝑡𝑢𝑛 | |2) (4)

where 𝑁 stands for the total number of flow pairs. By minimizing
the difference between the reconstructed and the original flow
representations, SR loss constrains the two decoupled features to
fully preserve essential characteristics of the original traffic flow,
ensuring that no critical information in the original flow is lost
during feature decoupling.

Protocol-feature Semantic Minimization (PSM). Based on
the assurance from SRC that app-specific information is preserved
by either 𝑍𝐴 or 𝑍𝑃 , minimizing the app-specific information in
𝑍𝑃 equals to maximizing the app-specific information captured by
𝑍𝐴 . To achieve this goal, we propose the Protocol-feature Seman-
tic Minimization cross-entropy loss for 𝑍𝑃 under the fingerprint
classification task. Suppose 𝑦𝑃

𝑖
is the predicted app label of 𝑍𝑃

𝑖
, the

PSM loss can be formulated as

L𝑃𝑆𝑀 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 (𝑙𝑜𝑔(𝑦𝑃𝑖,𝑡𝑙𝑠) + 𝑙𝑜𝑔(𝑦
𝑃
𝑖,𝑡𝑢𝑛)) (5)

During the training process, we apply Gradient Reversal Layer
(GRL) [11] to reverse the gradient during back-propagation to max-
imize L𝑃𝑆𝑀 , thereby minimizing the app-specific information
captured by 𝑍𝑃 . Under the dual constraints of both SRC and PSM,
DecETT encourages 𝑍𝐴 to capture more app-specific information,
thereby achieving effective feature decoupling and extraction.

Cross-Protocol Semantic Decoupling (CPD). To further facil-
itate the feature decoupling, we propose the cross-protocol seman-
tics decoupling that swaps the extracted app semantic features 𝑍𝐴

to reconstruct the original flow representations 𝑥𝑡𝑙𝑠 and 𝑥𝑡𝑢𝑛 to-
gether with𝑍𝑃

𝑡𝑙𝑠
and𝑍𝐴

𝑡𝑢𝑛 , respectively. Formally, the cross-protocol
reconstruction process can be described as follows:

𝑥𝑖,𝑡𝑙𝑠 = 𝐷𝑒𝑐 (𝑍𝑃
𝑖,𝑡𝑙𝑠

, 𝑍𝐴
𝑖,𝑡𝑢𝑛) (6)

𝑥𝑖,𝑡𝑢𝑛 = 𝐷𝑒𝑐 (𝑍𝑃
𝑖,𝑡𝑢𝑛, 𝑍

𝐴
𝑖,𝑡𝑙𝑠

) (7)

Thus the CPD loss can be calculated as:

L𝐶𝑃𝐷 = − 1
𝑁

𝑁∑︁
𝑖=1

(| |𝑥𝑖,𝑡𝑙𝑠 − 𝑥𝑖,𝑡𝑙𝑠 | |2 + ||𝑥𝑖,𝑡𝑢𝑛 − 𝑥𝑖,𝑡𝑢𝑛 | |2) (8)

By minimizing CPD loss, DecETT not only reduces the amount
of protocol information irrelevant to apps contained in 𝑍𝐴 , but
also implicitly aligns the app semantic features extracted from the
parallel flow pairs.

Therefore, the total loss of flow representation decoupling sub-
module L𝐹𝑅𝐷 can be summarized as:

L𝐹𝑅𝐷 = 𝜆1L𝑆𝑅𝐶 + 𝜆2L𝑃𝑆𝑀 + 𝜆3L𝐶𝑃𝐷 (9)

4.2.2 App Semantic Feature Augmentation. In this sub-module, the
app semantic features decoupled from the tunnel traffic are further
augmented by aligning with two supervisory signals with strong
semantics.

App-specific Semantic Alignment (ASA).
Based on the two decoupled features, ASA explicitly aligns the

app semantic features 𝑍𝐴
𝑡𝑙𝑠

and 𝑍𝐴
𝑡𝑢𝑛 decoupled from TLS traffic and

tunnel traffic, respectively. Specifically, DecETT achieves seman-
tic alignment between 𝑍𝐴

𝑡𝑙𝑠
and 𝑍𝐴

𝑡𝑢𝑛 by minimizing their cosine
similarity loss:

L𝐴𝑆𝐴 = − 1
𝑁

𝑁∑︁
𝑖=1

(1 −
𝑍𝐴
𝑖,𝑡𝑙𝑠

· 𝑍𝐴
𝑖,𝑡𝑢𝑛

| |𝑍𝐴
𝑖,𝑡𝑙𝑠

| | · | |𝑍𝐴
𝑖,𝑡𝑢𝑛

| |
) (10)

By increasing the similarity between 𝑍𝐴
𝑡𝑙𝑠

and 𝑍𝐴
𝑡𝑢𝑛 in the high-

dimensional semantic space, 𝑍𝐴
𝑡𝑙𝑠

serves as an additional class-level
supervisory signal that provides richer and more stable app-specific
information than the class label, thus facilitating more accurate
fingerprint generation under encrypted tunnels.

App Semantic Feature Classification (ASC). To ensure the
correct semantic mapping between the generated fingerprint 𝑍𝐴

and the corresponding app label, we calculate another classification
loss as follows:

L𝐴𝑆𝐶 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 (𝑙𝑜𝑔(𝑦𝐴𝑖,𝑡𝑙𝑠) + 𝑙𝑜𝑔(𝑦
𝐴
𝑖,𝑡𝑢𝑛)) (11)

Therefore, the loss of app semantic feature augmentation sub-
module L𝐴𝐹𝐴 is calculated as:

L𝐴𝐹𝐴 = 𝜆4L𝐴𝑆𝐴 + 𝜆5L𝐴𝑆𝐶 (12)
Combined with L𝐹𝑅𝐷 , the total loss of DecETT can be summa-

rized as follows:

L𝐷𝑒𝑐𝐸𝑇𝑇 = L𝐹𝑅𝐷 + L𝐴𝐹𝐴 (13)

4.3 Generated Fingerprint Classification
Once DecETT is well-trained, only 𝐸𝑚𝑏 (·), 𝐸𝑛𝑐𝐴𝑡𝑢𝑛 and the tun-
nel traffic flows 𝐹𝑡𝑢𝑛 instead of parallel flow pairs are needed to
generate corresponding fingerprints. This allows DecETT to be
employed in real network environments, since parallel flows are
inaccessible in real-world deployment. Formally, for a tunnel flow
𝐹𝑡𝑢𝑛 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, the corresponding fingerprint 𝐹𝑃𝐹𝑡𝑢𝑛 can
be generated as:

𝐹𝑃𝐹𝑡𝑢𝑛 = 𝐸𝑛𝑐𝐴𝑡𝑢𝑛 (𝐸𝑚𝑏 (𝐹𝑡𝑢𝑛)) (14)

Ultimately, the corresponding AF result can be calculated as:

𝑦𝑝𝑟𝑒𝑑 = 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝐹𝑃𝐹𝑡𝑢𝑛) (15)

5 Experiments
In this section, we perform empirical evaluations to demonstrate
the effectiveness of our proposed framework. We first provide the
dataset collection and composition, and then introduce the exper-
imental setup, including baselines, evaluation metrics and imple-
mentation details. Finally, we proceed to detail the experimental
results and their analysis.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Details of 5 evaluation datasets. TLP refers to the
abbreviation of Transport Layer Protocol used by correspond-
ing tunnel protocol.

Dataset TLP #Apps #Flows #Payloads

Shadowsocks TCP 54 346,388 29.70G
ShadowsocksR TCP 54 346,418 22.78G

V2Ray TCP 54 339,667 23.28G
Trojan TCP 54 346,378 29.13G

OpenVPN UDP 54 346,296 28.14G

5.1 Dataset
DecETT utilizes parallel TLS and tunnel flow pairs to realize accu-
rate app fingerprinting. Although there have been previous related
studies, datasets that provide parallel flow pairs have not been estab-
lished yet. Consequently, we first select 5 representative encrypted
tunnels and 54 widely-used apps for our study, and invite several
volunteers to interact with these apps through the 5 tunnels sepa-
rately, thereby producing corresponding traffic flows. In order to
purify the collected traffic without noise flows generated by other
apps, we follow the traffic collection framework proposed in [15]
that uses iptables and NFLOG to mirror and capture pure TLS traffic
generated by specific app. The detailed information of 5 datasets is
described in Table 1, the configurations of 5 tunnels can be found
in Appendix B, and the full list of apps is shown in Appendix C.

5.2 Experimental Setup
Comparison Methods. We compare our proposed DecETT with
four categories of AF or encrypted tunnel traffic analysis methods,
including (1) Statistical-based method (AppScanner[30]), which
extracts time or packet-related statistical features for further classi-
fication; (2) Server information-related method (i.e. FlowPrint[33])
where the communicated server information is considered; (3)
Payload-based methods (ET-BERT[17], YaTC[43]) which directly
use the raw packet payload content to achieve AF, and (4) Sequence-
based methods, such as DF[29], FS-Net[18] and GraphDApp[28],
that dedicate to mining the flow sequences for accurate AF.

Evaluation Metrics. In this paper, we choose the four widely-
used metrics in multi-class classification tasks, i.e., Accuracy, Preci-
sion, Recall, and F1-score, to comprehensively evaluate the perfor-
mance of different methods on AF under encrypted tunnels.

Implementation Details. We conduct our evaluation on a
server with two Intel(R) Xeon(R) Gold 6240R CPU @2.40 GHz
processors, Ubuntu 20.04, 64GB RAM. An NVIDIA Tesla A800
GPU with 80GB VRAM is used to accelerate the computations.
Our method is implemented based on Python 3.8.16 and PyTorch
1.12.1+cu113. As for the hyper-parameters, we set the mini-batch
size as 256, the hidden size of GRU as 128, the embedding size as
3000, the flow sequence length as 200, and the five loss weights 𝜆𝑖
as 1. For all the baselines, we follow their official implementations.

5.3 Analysis of AF Results Under Single Tunnel
Firstly, we evaluate the performance of all the comparison methods
on accurate app fingerprinting under the specific single tunnel. The
corresponding results are reported in Table 2.

5.3.1 Main Evaluation. From Table 2, we can draw the following
conclusions:

(1) In terms of the four comprehensive evaluation metrics, our ap-
proach DecETT outperforms all the other comparison methods by
significant margins. Specifically, DecETT achieves the best perfor-
mance of 94.2% Accuracy, Recall, and F1-score under ShadowsocksR.
The following method is FS-Net, which reaches the F1-score of 61%
under V2Ray and around 85% under the other tunnels. The perfor-
mance of FlowPrint is the worst among all the comparison methods,
with nearly all metrics lower than 10% under all five tunnels.

(2) DecETT shows more significant performance superiority
under tunnels with more complicated obfuscation. Results of var-
ious methods across 5 tunnels show that V2Ray employs more
obfuscated encapsulation to the raw TLS traffic. Under the other 4
tunnels, DecETT achieves a performance improvement of approxi-
mately 7% to 10% compared to the second best-performed method,
FS-Net, while under the V2Ray tunnel, the performance gap rises to
nearly 20%. By decoupling the app-irrelevant protocol features and
enhancing the fingerprint representations through semantic-shared
TLS traffic, DecETT minimizes the negative impact caused by the
re-encapsulation mechanism, thereby significantly improving AF
performance under complex tunnels.

(3) The performance of both statistical and server information-
based methods is not satisfactory enough. Specifically, AppScanner
achieves nearly 100% Precision, but fails in Recall value of only
around 30% to 60%, indicating its insufficient capability in fully
characterizing app-specific information from tunnel traffic. The
server information-based method FlowPrint is also ineffective, with
an average F1-score of only 1.4% across five tunnels. FlowPrint re-
lies on the flow interaction relationships with various app servers;
however, server information is no longer invisible in tunnel traffic,
thus resulting in severe performance degradation. These results in-
dicate that statistical and server information-based features cannot
provide sufficient flow representation as flow sequences used in
DecETT for accurate AF under encrypted tunnels.

(4) As for the two payload-based methods, ET-BERT performs
poorly across five datasets, with the highest F1-score of only 25.6%.
YaTC achieves better performance than ET-BERT, but still has the
maximum performance gap of approximately 40% compared to
DecETT. These methods rely on specific plaintext fields in TLS
protocol or the pseudo-randomness of encryption algorithms to
construct app fingerprints. However, compared to flow sequences,
the impact of the re-encapsulation mechanism on these two fea-
tures is more pronounced and difficult to model, rendering these
methods insufficient for effectively modeling app fingerprints under
tunnels. These results further highlight the superiority of using flow
sequences as the form of tunnel traffic representation in DecETT.

(5) Sequence-basedmethods perform better than other approaches,
with FS-Net achieving the second-best performance across four tun-
nels. Reasons can be owing to that although the re-encapsulation
mechanism affects the packet lengths, changes in flow sequences
and packet transmitting directions stay relatively stable compared
to the packet payload. Based on utilizing flow sequence as the form
of traffic representations, DecETT introduces TLS traffic to provide
stronger app-specific information for fingerprint learning, and fur-
ther decouples the app semantic features hidden in the raw tunnel
traffic, thereby achieving accurate app fingerprinting.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Performance comparison results w.r.t. Accuracy (Acc), Precision (P), Recall (R) and F1-score (F1) under 5 tunnels. Bold
represents the best and underline refers to the second.

Method Dataset Shadowsocks ShadowsocksR V2Ray Trojan OpenVPN

Metric Acc P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc P R F1

Statistic AppScanner[30] 0.630 0.995 0.630 0.764 0.631 0.996 0.631 0.767 0.295 0.993 0.295 0.429 0.609 0.996 0.609 0.748 0.582 0.995 0.582 0.725

Server FlowPrint[33] 0.122 0.015 0.122 0.027 0.053 0.003 0.053 0.005 0.103 0.013 0.103 0.022 0.050 0.008 0.050 0.012 0.027 0.001 0.027 0.002

Payload ET-BERT[17] 0.079 0.085 0.079 0.045 0.098 0.134 0.098 0.085 0.055 0.072 0.055 0.032 0.280 0.216 0.203 0.203 0.265 0.300 0.265 0.256
YaTC[43] 0.596 0.656 0.596 0.592 0.771 0.825 0.771 0.785 0.436 0.496 0.436 0.407 0.602 0.678 0.602 0.606 0.884 0.934 0.884 0.899

Sequence
DF[29] 0.739 0.746 0.739 0.738 0.762 0.764 0.762 0.760 0.656 0.659 0.656 0.651 0.726 0.730 0.726 0.724 0.816 0.818 0.816 0.816

FS-Net[18] 0.845 0.837 0.838 0.837 0.856 0.849 0.850 0.849 0.610 0.610 0.606 0.610 0.822 0.828 0.822 0.823 0.876 0.874 0.873 0.874
GraphDApp[28] 0.786 0.800 0.786 0.789 0.817 0.812 0.811 0.812 0.503 0.516 0.501 0.516 0.767 0.763 0.760 0.763 0.810 0.805 0.806 0.805

Ours DecETT 0.925 0.926 0.925 0.925 0.942 0.942 0.942 0.942 0.802 0.803 0.802 0.801 0.920 0.922 0.920 0.921 0.941 0.941 0.941 0.941

0 50 100 150 200
Flow Length

0.0

0.5

1.0

A
cc

ur
ac

y

DecETT FS-Net

Figure 5: Comparison results of different flow lengths.

5.3.2 Performance Analysis on Short Flows. To better illustrate the
superiority of DecETT, we analyze its AF performance on flows
of varying lengths. Figure 5 shows the Accuracy results of both
DecETT and FS-Net on V2Ray flows with lengths ranging from 0
to 200. As shown in Figure 5, DecETT demonstrates a remarkable
improvement in fingerprinting short flows with lengths below 100
compared to FS-Net. This improvement can be attributed to both
the introduction of TLS traffic as the semantic anchor and the
decoupling of tunnel information. By correlating each tunnel flow
with its corresponding semantic-shared TLS flow, DecETT provides
richer app-specific information than simple label-based approaches.
This information is particularly important for short flows, which
are easier to suffer from insufficient feature extraction due to their
limited lengths. Additionally, the decoupling of tunnel features
further mitigates the negative impact caused by tunnel mechanism.
Therefore, DecETT can be effectively utilized in AF scenarios that
are sensitive to short flows, such as gambling activity detection[12].

5.3.3 Visualization. In addition to the above quantitative evalua-
tions, we conduct a qualitative visualization to further discuss the
performance of DecETT. Figure 6 shows the t-SNE[32] visualization
of random 5 app fingerprints learned by FS-Net and DecETT under
V2Ray, respectively. It can be observed that DecETT enables a more
significant aggregation of fingerprints from the same app compared
to FS-Net while reducing the overlapping area of fingerprints from
different apps, thereby achieving better AF results.

5.4 Analysis of AF Results Under Mixed-Tunnel
Evaluation in the previous section is conducted under a specific
single tunnel. However, due to the diversity of encrypted tunnels,
it is not always feasible to know the exact type of tunnel traffic in
advance in real network environments. To address this issue, in
this section, we further evaluate the AF performance of DecETT
and comparison methods under mixed tunnels.

60 40 20 0 20 40 60

60

40

20

0

20

40

60

(a) FS-Net

60 40 20 0 20 40 60

60

40

20

0

20

40

60

(b) DecETT

Figure 6: Visual distinction of generated fingerprints where
different colors stand for different classes.

Table 3: Performance comparison results w.r.t. Accuracy, Pre-
cision, Recall and F1-score onmixed-tunnels. Bold represents
the best and underline refers to the second.

Method Accuracy Precision Recall F1-score

Statistic AppScanner[30] 0.542 0.996 0.542 0.694

Server FlowPrint[33] 0.075 0.015 0.075 0.023

Payload ET-Bert[17] 0.102 0.126 0.107 0.099
YaTC[43] 0.601 0.652 0.601 0.603

Sequence
DF[29] 0.741 0.745 0.741 0.739

FS-Net[18] 0.785 0.790 0.785 0.786
GraphDApp[28] 0.656 0.661 0.656 0.650

Ours DecETT 0.842 0.844 0.842 0.842

To conduct this evaluation, we first mix the flows of five en-
crypted tunnels, where flows generated by the same app share the
same label, regardless of whether they are forwarded by the same
encrypted tunnel. Each method is required to extract unified app
fingerprints from the mixed tunnel traffic. Table 3 concludes the
performance of DecETT and other comparison methods. As can
be seen from the table, DecETT still outperforms all other base-
lines under mixed tunnels, achieving 84.2% on the four evaluation
metrics. GraphDApp, which relies on burst division, shows sig-
nificant performance degradation compared to the single-tunnel
scenario. This may be due to the fact that different tunnels may
employ different packet-sending strategies, thus leading to different
burst division results. DF and FS-Net demonstrate relatively better
stability, in which FS-Net achieves an F1-score of 78.6%. These re-
sults further highlight the superiority of DecETT. By decoupling

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.90

0.93

0.96

A
cc

ur
ac

y

0.90

0.93

0.96

0.64

0.73

0.82

0.90

0.93

0.96

0.90

0.93

0.96

SS0.00

0.02

0.04

SSR0.00

0.02

0.04

Vmess0.00

0.01

0.02

Trojan0.00

0.02

0.04

OpenVPN0.00

0.02

0.04

DecETT/SRC DecETT/PSM DecETT/CPD DecETT/ASA DecETT/ASC DecETT F1-Score

Figure 7: Ablation study results of key components in DecETT w.r.t. Accuracy and F1-score on 5 tunnel datasets.

the app-irrelevant tunnel information from flow representations,
DecETT enables the model to focus on learning unified app-specific
representations across various tunnels, and further provides TLS
traffic as robust semantic anchor , thereby achieving more accurate
app fingerprinting in real and complex network environment.

5.5 Ablation Study
To validate the effectiveness of DecETT, we conduct an ablation
study by evaluating its variants, i.e., DecETT/SRC, DecETT/PSM,
DecETT/CPD, DecETT/ASA, and DecETT/ASC, to indicate its supe-
riority sufficiently. Figure 7 shows all results of the ablation study.

(1) After removing SRC, the performance of DecETT/SRC de-
clines by 1% to 4% across 5 tunnels, which can be owing to the lack
of constraints on decoupling features to fully retain the information
in original flow sequences.

(2) Compared to DecETT, both DecETT/PSM and DecETT/CPD
show performance decreases, with average F1-score losses of 3.56%
and 2.01%, respectively. These results further indicate that decou-
pling app-irrelevant tunnel features to lower their negative impact
on fingerprint generation is essential for accurate AF under tunnels.

(3) The removal of ASA has the most significant impact on De-
cETT compared with other components despite ASC, with a maxi-
mum F1-score drop of 9% under V2Ray. This result demonstrates
the importance of stronger app-specific information provided by
TLS traffic in accurate AF.

(4) After removing ASC, the performance of DecETT drops dras-
tically, with a maximum F1-score of only 0.5%, highlighting the
importance of label supervision in feature decoupling. Without app
labels as supervisory signals, DecETT/ASC fails to distinguish use-
ful semantic features for downstream fingerprinting task, resulting
in meaningless feature decoupling.

(5) Our model performance get worse by removing any key
components, which proves that each of them contributes to the
improvement in accurate AF under encrypted tunnels. Furthermore,
the performance gaps between DecETT and its variants are further
widened when confronting tunnels with more complex obfuscation,
such as V2Ray, highlighting its powerful AF capability against
tunnel mechanism.

5.6 Sensitivity Analysis
In this section, we perform sensitivity analysis on the critical hyper-
parameter in DecETT, the flow sequence length, which determines
the amount of flow sequence information DecETT can utilize for
fingerprint learning. In the experimental setup for this section,

20 50 100 200 500
0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

20 50 100 200 500
0.75

0.80

0.85

0.90

0.95

F1
-s

co
re

Shadowsocks ShadowsocksR V2Ray Trojan OpenVPN

Figure 8: Sensitivity analysis of DecETT with different flow
sequence lengths on 5 tunnel datasets.

only the flow sequence length is varied, while all other parameters
remain the same as previously described.

Figure 8 shows the results under five tunnels. From this figure, we
can observe that: (1) DecETT maintains stable performance across
different flow sequence lengths, consistently outperforming other
comparison methods shown in Table 2; (2) DecETT still achieves
remarkable performance even with relatively short flow sequence
length (e.g., length=20), highlighting its strong capability in accurate
fingerprint construction; (3) Excessively long flow sequences lead to
performance decline. This can be attributed to that the later stages
of flow transmission mainly focus on transmitting large amounts of
data, resulting in packet length sequences with high similarity (e.g.,
numerous packets of MTU size). Overall, we thus conclude that
DecETT is relatively insensitive to different flow sequence lengths,
demonstrating its robustness to hyperparameter perturbations.

6 Conclusion
In this work, we propose DecETT, a dual decouple-based seman-
tic enhancement method to achieve accurate app fingerprinting
under encrypted tunnels. Considering the negative impact caused
by re-encapsulation mechanism of encrypted tunnels on accurate
fingerprint extraction, we first introduce TLS traffic as a relatively
stronger and robust semantic anchor to enhance fingerprint learn-
ing, and further decouple the protocol features and app semantic
features to reduce the impact of encrypted tunnels in fingerprint
generation. Finally, the decoupled app semantic features are utilized
for fingerprints generation and classification. Experiments under
five representative encrypted tunnels indicate that DecETT out-
performs state-of-the-art methods in accurate AF under encrypted
tunnels by significant margins, and further demonstrates its superi-
ority under tunnels with more complicated obfuscation.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DecETT: Accurate App Fingerprinting Under Encrypted Tunnels via Dual Decouple-based Semantic Enhancement Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Haider Abbas, Naina Emmanuel, Muhammad Faisal Amjad, Tahreem Yaqoob,

Mohammed Atiquzzaman, Zafar Iqbal, Narmeen Shafqat, Waleed Bin Shahid, Ali
Tanveer, and Umer Ashfaq. 2023. Security assessment and evaluation of VPNs: a
comprehensive survey. Comput. Surveys 55, 13s (2023), 1–47.

[2] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. 2020. How china
detects and blocks shadowsocks. In Proceedings of the ACM Internet Measurement
Conference. 111–124.

[3] Ahmad Reda Alzighaibi. 2023. Detection of DoH Traffic Tunnels Using Deep
Learning for Encrypted Traffic Classification. Computers 12, 3 (2023), 47.

[4] Blake Anderson and David McGrew. 2017. Machine Learning for Encrypted
Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Association for Computing Machinery, 1723–1732.

[5] Blake Anderson and David McGrew. 2020. Accurate TLS fingerprinting using
destination context and knowledge bases. arXiv preprint arXiv:2009.01939 (2020).

[6] Kyunghyun Cho. 2014. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

[7] Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005. Learning a similarity metric
discriminatively, with application to face verification. In 2005 IEEE computer
society conference on computer vision and pattern recognition (CVPR’05), Vol. 1.
IEEE, 539–546.

[8] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,
and Ali A Ghorbani. 2016. Characterization of encrypted and vpn traffic using
time-related. In Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP). 407–414.

[9] Maurizio Dusi, Alice Este, Francesco Gringoli, and Luca Salgarelli. 2014. Identi-
fying the traffic of SSH-encrypted applications. (2014).

[10] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,
Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, et al. 2020. The lockdown effect: Implications of the COVID-
19 pandemic on internet traffic. In Proceedings of the ACM internet measurement
conference. 1–18.

[11] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation
by backpropagation. In International conference on machine learning. PMLR,
1180–1189.

[12] Zheyuan Gu, Gaopeng Gou, Chang Liu, Chen Yang, Xiyuan Zhang, Zhen Li, and
Gang Xiong. 2024. Let gambling hide nowhere: Detecting illegal mobile gam-
bling apps via heterogeneous graph-based encrypted traffic analysis. Computer
Networks 243 (2024), 110278.

[13] Lulu Guo, Qianqiong Wu, Shengli Liu, Ming Duan, Huijie Li, and Jianwen Sun.
2020. Deep learning-based real-timeVPN encrypted traffic identificationmethods.
Journal of Real-Time Image Processing 17, 1 (2020), 103–114.

[14] Liuyong He and Yijie Shi. 2018. Identification of SSH applications based on con-
volutional neural network. In Proceedings of the 2018 1st International Conference
on Internet and e-Business. 198–201.

[15] Minghao Jiang, Zhen Li, Peipei Fu, Wei Cai, Mingxin Cui, Gang Xiong, and
Gaopeng Gou. 2022. Accurate mobile-app fingerprinting using flow-level rela-
tionship with graph neural networks. Computer Networks 217 (2022), 109309.

[16] Danielle Lambion, Michael Josten, Femi Olumofin, and Martine De Cock. 2020.
Malicious DNS tunneling detection in real-traffic DNS data. In 2020 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, 5736–5738.

[17] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. 2022.
Et-bert: A contextualized datagram representation with pre-training transform-
ers for encrypted traffic classification. In Proceedings of the ACM Web Conference
2022. 633–642.

[18] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. 2019. Fs-net: A
flow sequence network for encrypted traffic classification. In IEEE INFOCOM
2019-IEEE Conference On Computer Communications. IEEE, 1171–1179.

[19] Sicai Lv, Chao Wang, Zibo Wang, Shuo Wang, Bailing Wang, and Yongzheng
Zhang. 2023. AAE-DSVDD: A one-class classification model for VPN traffic
identification. Computer Networks 236 (2023), 109990.

[20] FatemehMarzani, Fatemeh Ghassemi, Zeynab Sabahi-Kaviani, Thijs Van Ede, and
Maarten Van Steen. 2023. Mobile App Fingerprinting through Automata Learning
and Machine Learning. In 2023 IFIP Networking Conference (IFIP Networking).
IEEE, 1–9.

[21] Yongwei Meng, Tao Qin, Haonian Wang, and Zhouguo Chen. 2022. TPIPD: A
Robust Model for Online VPN Traffic Classification. In 2022 IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 105–110.

[22] Rikima Mitsuhashi, Yong Jin, Katsuyoshi Iida, Takahiro Shinagawa, and Yoshiaki
Takai. 2022. Malicious DNS tunnel tool recognition using persistent DoH traffic
analysis. IEEE Transactions on Network and Service Management 20, 2 (2022),
2086–2095.

[23] Rikima Mitsuhashi, Akihiro Satoh, Yong Jin, Katsuyoshi Iida, Takahiro Shina-
gawa, and Yoshiaki Takai. 2021. Identifying malicious dns tunnel tools from
doh traffic using hierarchical machine learning classification. In Information

Security: 24th International Conference, ISC 2021, Virtual Event, November 10–12,
2021, Proceedings 24. Springer, 238–256.

[24] Sanghak Oh, Minwook Lee, Hyunwoo Lee, Elisa Bertino, and Hyoungshick Kim.
2023. Appsniffer: Towards robust mobile app fingerprinting against VPN. In
Proceedings of the ACM Web Conference 2023. 2318–2328.

[25] Annapurna P Patil and Lalitha Chinmayee M Hurali. 2023. Discerning the
traffic in anonymous communication networks using machine learning: concepts,
techniques and future trends. International Journal of Information and Decision
Sciences 15, 1 (2023), 94–115.

[26] Thai-Dien Pham, Thien-Lac Ho, Tram Truong-Huu, Tien-Dung Cao, and Hong-
Linh Truong. 2021. Mappgraph: Mobile-app classification on encrypted network
traffic using deep graph convolution neural networks. In Proceedings of the 37th
Annual Computer Security Applications Conference. 1025–1038.

[27] Shadowsocks. 2024. Shadowsocks | A fast tunnel proxy that helps you bypass
firewalls. https://shadowsocks.org/. Accessed: 2024-10-10.

[28] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du. 2021.
Accurate decentralized application identification via encrypted traffic analysis
using graph neural networks. IEEE Transactions on Information Forensics and
Security 16 (2021), 2367–2380.

[29] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep fin-
gerprinting: Undermining website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security. 1928–1943.

[30] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2016.
Appscanner: Automatic fingerprinting of smartphone apps from encrypted net-
work traffic. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 439–454.

[31] Project V. 2020. Project V·Project V Official. https://www.v2ray.com/en/index.
html. Accessed: 2024-10-10.

[32] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9, 11 (2008).

[33] Thijs Van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J
Dubois, Martina Lindorfer, David Choffnes, Maarten Van Steen, and Andreas
Peter. 2020. Flowprint: Semi-supervised mobile-app fingerprinting on encrypted
network traffic. In Network and distributed system security symposium (NDSS),
Vol. 27.

[34] Chenxu Wang, Jiangyi Yin, Zhao Li, Hongbo Xu, Zhongyi Zhang, and Qingyun
Liu. 2024. Identifying VPN Servers through Graph-Represented Behaviors. In
Proceedings of the ACM on Web Conference 2024. 1790–1799.

[35] Suixing Wang, Chao Yang, Gang Guo, Mingzhe Chen, and Jianfeng Ma. 2022.
SSAPPIDENTIFY: a robust system identifies application over Shadowsocks’s
traffic. Computer Networks 203 (2022), 108659.

[36] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. 2017.
End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In 2017 IEEE international conference on intelligence and security
informatics (ISI). IEEE, 43–48.

[37] Xin Wang, Shuhui Chen, and Jinshu Su. 2020. App-net: A hybrid neural network
for encryptedmobile traffic classification. In IEEE INFOCOM 2020-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 424–429.

[38] Xi Xiao, Wentao Xiao, Rui Li, Xiapu Luo, Haitao Zheng, and Shutao Xia. 2022.
EBSNN: Extended Byte Segment Neural Network for Network Traffic Classi-
fication. IEEE Transactions on Dependable and Secure Computing 19, 5 (2022),
3521–3538. https://doi.org/10.1109/TDSC.2021.3101311

[39] Hongbo Xu, Shuhao Li, Zhenyu Cheng, Rui Qin, Jiang Xie, and Peishuai Sun.
2022. VT-GAT: A Novel VPN Encrypted Traffic Classification Model Based on
Graph Attention Neural Network. In International Conference on Collaborative
Computing: Networking, Applications and Worksharing. Springer, 437–456.

[40] Hongbo Xu, Shuhao Li, Zhenyu Cheng, Rui Qin, Jiang Xie, and Peishuai Sun.
2022. VT-GAT: A Novel VPN Encrypted Traffic Classification Model Based
on Graph Attention Neural Network. In Collaborative Computing: Networking,
Applications andWorksharing, Honghao Gao, XinhengWang, Wei Wei, and Tasos
Dagiuklas (Eds.). Springer Nature Switzerland, Cham, 437–456.

[41] Diwen Xue, Reethika Ramesh, Arham Jain, Michaelis Kallitsis, J Alex Halder-
man, Jedidiah R Crandall, and Roya Ensafi. 2022. OpenVPN is open to VPN
fingerprinting. Commun. ACM (2022).

[42] Jingjing Zhao, Xuyang Jing, Zheng Yan, and Witold Pedrycz. 2021. Network
traffic classification for data fusion: A survey. Information Fusion 72 (2021),
22–47.

[43] Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao Wang, Yijun Wang, Guan
Gui, and Zhi Xue. 2023. Yet another traffic classifier: A masked autoencoder
based traffic transformer with multi-level flow representation. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 37. 5420–5427.

9

https://shadowsocks.org/
https://www.v2ray.com/en/index.html
https://www.v2ray.com/en/index.html
https://doi.org/10.1109/TDSC.2021.3101311

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A RE-ENCAPSULATION MECHANISM
ILLUSTRATION OF ENCRYPTED TUNNELS

In section 3.2, we analyze the source code of the re-encapsulation
mechanism summarized from Shadowsocks to illustrate the in-
dependence of tunnel features and app semantic features. In this
section, we extend the discussion to the other four tunnels: Shad-
owsocksR, V2Ray, Trojan, and OpenVPN. Some of these tunnels are
implemented by different programming languages, such as Go, C
and C++, which are not as concise as Python used by Shadowsocks.
As a result, the source code pipeline can be too lengthy to be fully
presented in this paper. To this end, we provide a brief overview
of the other four re-encapsulation mechanisms together with the
corresponding source code link for interested readers.

In summary, the other four tunnels also forward data by main-
taining two socket communications and their correlation. The core
difference lies in the encryption algorithms and protocols used
for re-encapsulation: (1) ShadowsocksR1 employs the same re-
encryption mechanism as Shadowsocks. (2) V2Ray2, on the other
hand, uses closures requestDone() and responseDone() operations
to implements the re-encapsulation mechanism, in which the en-
cryption algorithms and encapsulation details follows its private
protocol Vmess. (3) Trojan3 conceals its traffic characteristics us-
ing the standard SSL protocol, and applies the SSL mechanism in
Boost.Asio for re-encapsulation of the forwarded data. (4) Open-
VPN4 also implements its re-encapsulation mechanism based on
OpenSSL protocol, while further developing its private protocol,
OpenVPN, on top of OpenSSL.

Overall, the varied re-encapsulationmechanisms pose challenges
to accurate app fingerprinting under encrypted tunnels. However,
their reliance on socket communication underscores the gener-
alizability and correctness of decouple-based AF methods across
various encrypted tunnels.

B CONFIGURATIONS OF FIVE ENCRYPTED
TUNNELS

Table 4 provides detailed configurations of the five encrypted tun-
nels used in our experiments. In the following, we illustrate each
of the configuration in detail.

• Encrypted Algorithm(EA). Encrypted algorithm refers
to the algorithm during the re-encryption of the forwarded
traffic data. In our experiments, ShadowsocksR uses AES-
256-CFB as the encrypted algorithm, while the other four
tunnels use AES-256-GCM.

• Protocol. Protocol refers to the specific communication
protocol used by the encrypted tunnel, which determines
the way of data re-encapsulation and transmission between
tunnel client and tunnel server. Some encrypted tunnels
use their specific private protocols, such as Origin used
by ShadowsocksR, Vmess used by V2Ray, and OpenVPN
protocol used by OpenVPN.

1https://github.com/shadowsocksrr/shadowsocksr/(shadowsocks/tcprelay.py)
2https://github.com/v2fly/v2ray-core/(proxy/vmess/outbound/oubound.go)
3https://github.com/trojan-gfw/trojan(/src/session/clientsession.cpp)
4https://github.com/OpenVPN/openvpn/(src/openvpn/ssl_openssl.c)

• Obfuscation(Obfs). Obfuscation refers to techniques used
to disguise the existence of the encrypted tunnel by modify-
ing the appearance of the traffic, making it harder to detect.
Obfuscation can be achieved by altering packet character-
istics or mimicking other types of traffic.

• Notes. OpenVPN provide two different tunneling modes,
TUN mode and TAP mode. TUN mode operates at the net-
work layer and is designed for routing IP packets, while
TAP mode operates at the data link layer, which emulates
a virtual Ethernet adapter. Since we focus on the applica-
tion fingerprinting, we choose TUN mode, which is more
suitable for this scenario, to implement OpenVPN.

Table 4: Detailed configurations of 5 encrypted tunnels in
our evaluation.

Tunnel EA Protocol Obfs Notes

Shadowsocks AES-256-GCM SOCKS - -
ShadowsocksR AES-256-CFB Origin tls1.2_ticket_auth -

V2Ray AES-128-GCM Vmess -
Trojan AES-128-GCM HTTPS - -

OpenVPN AES-128-GCM OpenVPN - TUN Mode

C FULL LIST OF MOBILE APPS
We provide a full list of 54 mobile apps selected in our experiments
(see Table 5).

Table 5: Full list of the mobile apps.

No. Package Name No. Package Name

1 air.tv.douyu.android 28 com.snapchat.android
2 cn.xdf.woxue.student 29 com.sohu.sohuvideo
3 com.amazon.mShop.android.shopping 30 com.ss.android.article.video
4 com.bilibili.app.in 31 com.ss.android.ugc.aweme
5 com.bilibili.comic 32 com.ss.android.ugc.trill
6 com.bittorrent.client 33 com.talk51.international
7 com.duowan.kiwi 34 com.taobao.idlefish
8 com.duowan.mobile 35 com.taobao.live
9 com.facebook.katana 36 com.taobao.taobao
10 com.google.android.youtube 37 com.tencent.androidqqmail
11 com.huajiao 38 com.tencent.mm
12 com.hunantv.imgo.activity 39 com.tencent.mobileqq
13 com.larksuite.suite 40 com.tencent.qqlive
14 com.meelive.ingkee 41 com.tencent.qqmusic
15 com.mogujie 42 com.tencent.weread
16 com.netease.cc 43 com.tmall.wireless
17 com.netease.edu.study 44 com.vipkid.ark.international.parent
18 com.nhn.android.nmap 45 com.xes.jazhanghui.activity
19 com.periscope.pscp 46 com.xiaomi.shop
20 com.pplive.androidphone 47 com.xingin.xhs
21 com.qihoo360.mobilesafe 48 com.xunlei.downloadprovider
22 com.qiyi.video 49 com.xunmeng.pinduoduo
23 com.sdu.didi.psnger 50 com.yandex.browser
24 com.shanbay.sentence 51 com.youku.phone
25 com.sina.weibo 52 com.zhihu.android
26 com.skype.raider 53 me.ele
27 com.smile.gifmaker 54 ru.ok.android

10

	Abstract
	1 Introduction
	2 Related Work
	2.1 App Fingerprinting
	2.2 Encrypted Tunnel Traffic Analysis

	3 Preliminaries
	3.1 Threat Model
	3.2 Re-encapsulation Mechanism
	3.3 Impact on Tunnel Flow Sequences

	4 Design of DecETT
	4.1 Traffic Preprocess and Correlation
	4.2 Dual decouple-based Fingerprint Enhancement
	4.3 Generated Fingerprint Classification

	5 Experiments
	5.1 Dataset
	5.2 Experimental Setup
	5.3 Analysis of AF Results Under Single Tunnel
	5.4 Analysis of AF Results Under Mixed-Tunnel
	5.5 Ablation Study
	5.6 Sensitivity Analysis

	6 Conclusion
	References
	A RE-ENCAPSULATION MECHANISM ILLUSTRATION OF ENCRYPTED TUNNELS
	B CONFIGURATIONS OF FIVE ENCRYPTED TUNNELS
	C FULL LIST OF MOBILE APPS

