
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS EFFICIENT LLM GROUNDING FOR EMBOD-
IED MULTI-AGENT COLLABORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Grounding the reasoning ability of large language models (LLMs) for embodied
tasks is challenging due to the complexity of the physical world. Especially,
LLM planning for multi-agent collaboration requires communication of agents
or credit assignment as the feedback to re-adjust the proposed plans and achieve
effective coordination. However, existing methods that overly rely on physical
verification or self-reflection suffer from excessive and inefficient querying of
LLMs. In this paper, we propose a novel framework for multi-agent collaboration
that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement
of plans. Specifically, we perform critic regression to learn a sequential advantage
function from LLM-planned data, and then treat the LLM planner as an optimizer
to generate actions that maximize the advantage function. It endows the LLM with
the foresight to discern whether the action contributes to accomplishing the final
task. We provide theoretical analysis by extending advantage-weighted regression
in reinforcement learning to multi-agent systems. Experiments on Overcooked-
AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in
success rate, and also significantly decreases the interaction steps of agents and
query rounds of LLMs, demonstrating its high efficiency for grounding LLMs.
More results are given at https://read-llm.github.io/.

1 INTRODUCTION

Large Language Models (LLMs) have exhibited remarkable capabilities across various domains,
including long-text understanding, reasoning, and text generation (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020; Raffel et al., 2020). Benefiting from large-scale text corpora mined from the
web, LLMs can absorb and capture vast quantities of knowledge about the world for decision-making.
Recent research has shown that LLMs can interactively make decisions through zero-shot or few-shot
example prompting to solve embodied tasks (Firoozi et al., 2023) via chain-of-thought (CoT) (Wei
et al., 2022) or tree-of-thought (Yao et al., 2023a) planning. However, LLMs perform planning
only using their internal knowledge, which is often not grounded in the physical world due to the
lack of task-specific knowledge of complex embodied agents. Such a problem can lead to fact
hallucination and nonsensical instruction interpretation issues in reasoning (Ahn et al., 2022). To
prevent LLMs from outputting infeasible plans in embodied tasks, existing methods mostly design a
closed-loop framework for the interaction process with feedback. Specifically, one line of research
adopts self-reflection by performing self-evaluation by LLMs to improve the plan generation of LLM
planner (Shinn et al., 2023; Yao et al., 2023b; Hao et al., 2023; Liu et al., 2023b); and the other
works perform physical verification by using feedback of the external environment to dynamically
replan depending on unexpected feedback (Huang et al., 2022b; Song et al., 2023a). Nevertheless,
these feedback is often sparse or designed heuristically, a more principled feedback mechanism for
LLM-based embodied task planning is still lacking.

Considering more challenging planning problems in multi-agent settings, an LLM-based agent needs
to cooperate with other agents through communication and negotiation, which causes more difficulties
in effective feedback. Specifically, it is hard for both self-reflection and physical verification to
evaluate the effects of individual action in a team outcome of multi-agents. Consequently, the
feedback mechanisms suffer from either excessive queries of LLMs or frequent interactions with
the physical environment. For instance, RoCo (Mandi et al., 2023) introduces physical verification
as feedback to refine the LLM-generated actions in multi-agent cooperative settings, but faces the

1

https://read-llm.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Task: Sweep Yellow and Green cubes Bob Prompt
Alice Prompt

You are Alice, and you
are collaborating with Bob
-[Task Context] [Observation]
-[Agent Capability] [History]
-Improve plans with
[Env Feedback].

Your response:

Multi-Agent Dialog Bob Prompt
Alice Prompt

You are Alice, and you
are collaborating with Bob

Your response:

Alice

Bob

Multi-Agent Dialog

-[Task Context] [Observation]
-[Agent Capability] [History]
- Critic: [Advantage Score].
- The higher the value, the
more helpful the answer is.
- If the value < [Threshold],
you need revise the plan.

……..

……..

……..
I am Alice, the cube you
sweep has a wrong color.

I am Bob, I apologize for
the confusion. I will…

The maximum steps meet,
mission failed.

I am Alice, cube-1 is
close to me, I will move..
I am Bob, cube-1 is very
far from me, can we …

(a) The task snapshot (b) Multi-Agent negotiation with env. feedback (RoCo) (c) Multi-Agent negotiation with Adv. feedback (Ours)

I am Alice. I will move to
cube-1. Adv. score is 1.3.
I am Bob. I will move &
sweep cube-1. Adv. is 1.2.

I am Alice. I will move to
cube-6. Adv. score is -0.5.

I am Alice. Adv. of plan is
too low. A revised plan is..
I am Bod. I will move to
cube-7. Adv. score is 1.0.

……..
All eligible cubes are
swept, mission success.

I am Alice, according to
your new plan, I plan to..

Figure 1: An illustration of the negotiation process of RoCo and our method. RoCo interacts with
the environment for each plan and takes the environment’s feedback as prompts. In contrast, our
method takes the advantage function (Adv.) evaluated by a critic as feedback, and revises the plan if
the advantage value is lower than the threshold, which significantly reduces the interaction rounds to
the environment.

difficulty of poor efficiency. As we illustrated in Figure 1, RoCo requires excessive interaction to
obtain physical feedback and queries to LLMs to get feasible joint-action plans, which can be heavily
inefficient for embodied tasks. In contrast, various methods in Multi-Agent Reinforcement Learning
(MARL) (Zhang et al., 2021) have developed value or advantage decomposition theories for credit
assignment of multiple agents (Rashid et al., 2020; Kuba et al., 2022a), which provide effective
mechanisms to evaluate the contribution of individual actions in accomplishing final tasks and can
generate actions for monotonic policy improvement (Kuba et al., 2022b). Inspired by these principles,
we ask ”How to enhance the reasoning ability of LLMs for embodied multi-agent collaboration with
theoretical supports of MARL?”. Our objective is to build an efficient feedback and refinement
algorithm with utilizing multi-agent advantage functions, for multi-agent planning assisted by LLMs.

In this paper, we propose Reinforced Advantage (ReAd) as a closed-loop feedback for LLMs
in multi-agent collaboration. We provide two optional LLM-generated plan refinement scheme,
including Sequential Individual Plan Refinement with the local advantage (named ReAd-S) and Joint
Plan Refinement with the joint advantage (named ReAd-J). Among them, (i) ReAd-J evaluates the
advantage function of joint actions, which requires LLMs to generate the joint planning of all agents
at once. In contrast, (ii) ReAd-S evaluates the local advantages of each agent’s action by following
the principle of multi-agent advantage decomposition (Kuba et al., 2022a) in MARL, which allows
LLMs to generate actions for each agent sequentially. Both advantage functions are estimated by a
critic network that regresses LLM-planned data. Based on the advantage function, an LLM planner is
used as an optimizer by prompting to generate actions that maximize the advantage value. Otherwise,
the LLM planner is required to re-plan if the advantage value is small. We provide a theoretical
motivation for such a process by extending advantage-weighted regression (Peng et al., 2019) to
multi-agent settings. In experiments, we extend RoCoBench (Mandi et al., 2023) to a difficult variant,
which we term DV-RoCoBench. The results on DV-RoCoBench and Overcooked-AI show that ReAd
significantly decreases the interaction and query rounds, and also surpasses baselines in success rate,
highlighting its effectiveness for grounding LLMs in embodied multi-agent collaboration tasks.

2 PRELIMINARIES

We consider a Markov game, which is defined by a tuple ⟨N ,S,A, P, r, γ⟩, in which N denotes
the set of agents, S denotes state space, A =

∏n
i=1Ai denotes the product of finite action spaces

of all agents (i.e., joint action space), P : S ×A × S → [0, 1] denotes the transition probability
function, r : S ×A→ R denotes the reward function, and γ ∈ [0, 1) denotes the discount factor. In
the Markov game, every agent at time step t ∈ N observes the state of environment st ∈ S and takes
an action ait ∈ Ai from its corresponding policy πi(·|st), which together with other agents’ actions
forms a joint action at = (a1t , a

2
t , ..., a

n
t) ∈ A drawn from the joint policy π(·|st) =

∏n
i=1 π

i(·|st).
Then agents receive a shared reward rt = r(st,at) and observe a new state st+1 with probability
P (st+1|st,at). With the joint policy π and the transition probability function P , the state value
function is defined as Vπ(s) ≜ Es1:∞∼P,a0:∞∼π[

∑∞
i=0 γ

iri|s0 = s]. And the state-action value

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

function is defined as Qπ(s,a) ≜ Es1:∞∼P,a1:∞∼π[
∑∞

i=0 γ
iri|s0 = s,a0 = a]. We aim at finding a

joint policy to maximize the expected return J(π) ≜ Es0:∞∼P,a0:∞∼π [
∑∞

t=0 γ
trt]. In the following,

we consider the LLM planner as a special RL policy, which can be evaluated by a value function.

3 METHODOLOGY

We first give definitions and learning algorithms for the two kinds of advantage functions in §3.1.
Then, we provide theoretical motivation for grounding LLMs by extending advantage-weighted
regression in multi-agent settings in §3.2. Finally, we describe how to derive Reinforced Advantage
(ReAd) feedback from the theoretical motivation and use an LLM planner as an optimizer and refine
the plan in §3.3.

3.1 LEARNING OF ADVANTAGE FUNCTIONS

We first introduce the estimation of joint advantage function. Then the local advantage is obtained
via advantage decomposition by following theories from MARL.

Joint Advantage Function. Based on joint value functions Qπ(s,a) and Vπ(s), we define the joint
advantage function as

Aπ(s,a) ≜ Qπ(s,a)− Vπ(s),

which evaluates the advantage value of joint actions at = (a1t , a
2
t , ..., a

n
t) from all agents. Aπ(s,a)

will be used for ReAd-J to evaluate the joint planning of all agents as feedback. Here, we assume the
option of taking no actions is available to each agent, which is reasonable and common in embodied
tasks. With this special action that we term WAIT, we can estimate the joint advantage using only
Qπ(s,a).

When taking WAIT action a = w, the agent will keep dormant at the current time step. The joint
WAIT action is denoted as w = (w,w, ..., w). Choosing w at the current state s signifies all agents
take no actions, then the next state s′ = s and the agents receive shared reward r(s,w) = 0 since w
bring no changes to the environment. Further, we can derive the relationship between Qπ(s,w) and
Vπ(s), as

Qπ(s,w) = Es1:∞∼P,a1:∞∼π

[∑∞

i=0
γiri

∣∣s0 = s,a0 = w
]

= γEs2:∞∼P,a1:∞∼π

[∑∞

i=0
γiri+1

∣∣s1 = s
]
= γVπ(s).

Therefore, the joint advantage function can be derived by using only the Qπ function, as

Aπ(s,a) = Qπ(s,a)−
1

γ
Qπ(s,w). (1)

Local Advantage Function. In cooperative multi-agent settings, we can further consider the
contribution to performance in different subsets of agents’ views. We adopt the standard definition in
MARL to measure the local advantages.
Definition 1. (Kuba et al., 2022a) Let i1:m denote an ordered subset {i1, ..., im} of N , and let
−i1:m refer to its complement. We mark ik when we refer to the kth agent in the ordered subset.
Correspondingly, the multi-agent local state-action value function is defined as

Qi1:m
π (s,ai1:m) ≜ Ea−i1:m∼π−i1:m

[
Qπ(s,a

i1:m ,a−i1:m)
]

(2)

and for disjoint sets j1:k and i1:m, the multi-agent local advantage function is

Ai1:m
π (s,aj1:k ,ai1:m) ≜ Qj1:k,i1:m

π (s,aj1:k ,ai1:m)−Qj1:k
π (s,aj1:k) (3)

Monte Carlo Estimation. Both Eqs. (1) and (3) can be estimated via the local value function
Qi1:u

π (s,ai1:u) with arbitrary action subset ai1:u . More precisely, the local advantages can be
estimated by changing ai1:u to disjoint action sets or subsets, and the joint advantages can be obtained
by changing ai1:u to a1:n that contains the joint actions or the joint WAIT action. In the following,
we denote the underlying policy of the LLM planner as µ = πllm(a|s). To estimate Qi1:u

µ , we collect
a dataset D by following the behavior policy µ, and further augment it with enhanced trajectories to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

overcome the out-of-distribution (OOD) problem of action estimation (Levine et al., 2020). Then we
estimate Qi1:u

µ (s,ai1:u) via Monte Carlo estimation by followingRs,ai1:u =
∑

a−i1:u∈D
∑T

t=0 γ
trt,

where the complement sets is sampled from the dataset. Then the value function is learned by a
regression loss as

Es,ai1:u∼D

[∥∥Rs,ai1:u −Qi1:u
µ

∥∥2].
We refer to Alg. 1 in §C for the details. The setting of reward rt depends on the specific task, e.g., for
sweeping cubes in Figure 1, rt = 1 if a correct cube is swept and rt = 0 otherwise. The details of
data collection are given in §E.5.

Advantage Decomposition. Based on Eq. (2), we can express the state value function Vπ(s) in a
new form. Given the whole set of agents N = {1, .., n},

Vπ(s) = Ea1:n∼π1:n

[
Qπ(s,a

1:n)
]
.

Based on Definition 1, we can introduce a pivotal lemma, which reveals that joint advantage function
can be decomposed into the summation of local advantages of each agent.
Lemma 1. (Multi-Agent Advantage Decomposition). In any cooperative Markov games, given a
joint policy π and the whole set of agents N = {1, .., n}, for any state s, and any ordered set i1:n of
all agents, we have

Aπ(s,a) =

n∑
k=1

Aik
π (s,ai1:k−1 , aik), (4)

where a = (a1, a2, ..., an).

The proof follows Kuba et al. (2022a) and is given in §A.1. Lemma 1 will be used for derivation in
§3.2.

3.2 THEORETICAL MOTIVATION FOR GROUNDING LLM

In this section, we give a theoretical motivation that closely resembles advantage-weighted regression
(Peng et al., 2019) in single-agent RL, while we extend it for multi-agents via advantage decomposi-
tion in Lemma 1. To achieve efficient LLM grounding, i.e., to obtain a superior policy to the LLM
planner, one option is adopting LLM as a basic policy and searching for a stronger policy than it.
Therefore, we derive our objective as an approximate optimization of a constrained policy search
problem. Specifically, we denote the policy of LLM planners as µ = πllm(a|s), and our goal is to
find a policy π that maximizes the expected improvement η(π) = J(π)−J(µ) over the basic policy
µ. Following the performance difference lemma (Kakade & Langford, 2002; Schulman et al., 2015),
we show the expected improvement η(π) can be expressed in terms of the advantage over µ(a|s), as

η(π) = Es∼ρπ(s),a∼π(a|s) [Aµ(s,a)] , (5)

where ρπ(s) =
∑∞

i=0 γ
iP (si = s) is the (unnormalized) discounted visitation frequencies over

policy π. Since the objective in Eq. (5) is difficult to optimize due to the dependency on ρπ(s) and
π, we introduce an objective η̂(π) to approximate η(π), instructed by Schulman et al. (2015), as

η̂(π) = Es∼ρµ(s),a∼π(a|s) [Aµ(s,a)] . (6)

By replacing the original objective with the surrogate objective, we can formulate the following
constrained policy search problem as

argmax
π

∫
s

ρµ(s)

∫
a

π(a|s)Aµ(s,a) da ds, s.t.

∫
s

ρµ(s)DKL (π(·|s)∥µ(·|s)) ds ≤ ϵ.

The constraint asserts that when the new policy π is close to the basic policy µ, the surrogate objective
η̂(π) becomes a precise approximation to η(π)1. To get the solution to this constrained optimization,
we form the Lagrangian of the primal problem presented above,

L(π, β) =
∫
s

ρµ(s)

∫
a

π(a|s)Aµ(s,a) da ds+ β

(
ϵ−

∫
s

ρµ(s)DKL (π(·|s)∥µ(·|s)) ds
)

(7)

1We refer to Schulman et al. (2015) for a detailed derivation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where β > 0 is a Lagrange multiplier.

Optimal Joint Policy. According to KKT conditions (Kuhn & Tucker, 1950), the optimal policy π∗

for the constrained optimization problem in Eq. (7) is expressed by

π∗(a|s) = 1

Z(s)
µ(a|s) exp

(
1

β
Aµ(s,a)

)
, (8)

where Z(s) is the partition function.

Optimal Individual Policy. Following advantage decomposition in Lemma 1, we can decompose
optimal joint policy π∗(a|s) to optimal individual policies by assuming the agents choose actions
sequentially in the order of 1, 2, ..., n, as

π∗(ai|s,a1:i−1)=
µi(ai|s,a1:i−1)

Zi(s)
exp

(
1

β
Ai

µ(s,a
1:i−1, ai)

)
(9)

where Zi(s) is the partition function. We refer to §A.2 for a detailed derivation of Eqs. (8) and (9).

By maximizing the expected policy improvement η(π) = J(π)− J(µ), we obtain stronger joint and
individual policies (i.e., π∗(a|s) and π∗(ai|s,a1:i−1)) over the basic policy µ = πllm. The key in-
sight behind the policy improvement is to re-weight the LLM policy with exponential weights defined
in terms of advantages. The advantage function is estimated by local value function Qi1:u

µ (s,ai1:u),
where we calculate it via Monte-Carlo estimation from a collected dataset D, as we discussed in §3.1.

3.3 PROMPTING BY REINFORCED ADVANTAGE FEEDBACK

Upon the basic policy µ = πllm, the advantage-weighted solution in Eq. (9) offers a crucial
intuition that (i) by increasing the probability of µi(aipos|s,a1:i−1) for those actions aipos with positive
advantages, i.e., Ai

µ(s,a
1:i−1, aipos) > 0, and (ii) decreasing the probability of µi(aineg|s,a1:i−1)

for those actions aineg with negative advantages, i.e., Ai
µ(s,a

1:i−1, aineg) < 0, we can ensure an
expected performance improvement over J(µ). Therefore, Eq. (9) can be equivalently viewed as
behavior cloning (BC) on the exponential weighting dataset D̄ where the better actions are given
by higher weights eA

i
µ(s,a1:i−1,ai)/β . When β is sufficiently small, it becomes BC on a dataset

processed by binary filtering 1[Ai
µ(s,a

1:i−1, ai) > 0] where 1 is the indicator function. This
provides an ideal alternative for improving µ without access to the exact probability of the sampled
action ai ∼ µi(·|s,a1:i−1), there being convenient for grounding close-source LLMs. We provide
theoretical proof for the monotonic improvement with the binary filtering in §A.3.

Inspired by the binary filtering, we develop a novel feedback mechanism, wherein the main idea is to
convert the filter 1[Ai

µ(s,a
1:i−1, ai) > ϵ ≥ 0] into the feedback of LLM-proposed plans with their

corresponding scores Ai
µ(s,a

1:i−1, ai) for refining the plans. Based on different types of advantages,
we design two algorithms for plan refinement: ReAd-S and ReAd-J. The process of prompting and
refinement is depicted in Figure 2. Algorithmic details of ReAd-S and ReAd-J are given in §C.

Prompting and Refinement for ReAd-S. For each time step, we initialize an empty action-set at =
{} and follow the order of [1, . . . , n] for agents in planning. For planning action ait of agent i at state st,
the process of ReAd-S contains two parts. (i) Prompting as Optimizing. An LLM planner is given the
history of advantages of previous state-action pairs, i.e.,H = {(s, (a1:i−1, ai), Ai

µ(s,a
1:i−1, ai))},

and is prompted to choose an action with the highest advantage for agent i, which recovers the
principle of advantage-weighted regression. Leveraging the in-context learning ability, we hope the
LLM planner can induce the advantage values of available actions implicitly and choose the action ait
with the highest advantage. This process is inspired by recent work for LLM as optimizer (Yang et al.,
2023), where the agent is prompted to give a plan that optimizes a score function. (ii) Feedback
for Refinement. Nevertheless, the implicit advantage maximizing can be hard since the number of
available actions can be large. Thus, we introduce a refinement process to allow the LLM to refine the
policy if an unsatisfactory action is generated. We use the pre-trained critic network Qi1:u

θ (s,ai1:u)
with parameter θ to estimate the advantage score of a generated action, as

SReAd−S(a
i
t) = Ai

θ(st,a
1:i−1
t , ait) = Q1:i

θ (st,a
1:i−1
t , ait)−Q1:i−1

θ (st,a
1:i−1
t).

Given a threshold ϵ ≥ 0, if the score function is less than the threshold (i.e., SReAd−S(a
i
t) < ϵ), we

add this failed action to the historyH and prompt the agent to re-plan. Such a refinement guarantees

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Language Model Generated Plans

Plan Prompt

• History of (s, a, Adv)
• task/state/capability

“Please generate plan
with the highest

advantages”

？

Critic Evaluator

scored by Critic

Refinement Prompt

• History of (s, a, Adv)
• task/state/capability

• Failed Plan & Score

Add low-score plan (𝕊𝕊 < 𝜖𝜖)

into Failed Plan & Score List

“You need to refine the plan
as the advantage is low”

reason and generate

Allow high-score
 plan (𝕊𝕊 > 𝜖𝜖) to interact

External Env

Figure 2: An overview of prompting and refinement. For each timestep t, the LLM planner is given
the history, which contains states, actions, and advantages, and is prompted to generate a plan with
the highest advantage. The pre-trained critic is used to evaluate the score of the generated action
SReAd(a

i
t). If SReAd(a

i
t) < ϵ, the failed plan is used as a prompt, and the LLM planer is asked to

refine the policy until the SReAd(a
i
t) > ϵ. The (refined) action is used to interact with the environment,

and the LLM planner is processed in the next step.

embodied agents always take the actions with Ai
θ(st,a

1:i−1
t , ait) > ϵ, further ensuring monotonic

improvements over πllm. It significantly decreases the interaction rounds of agents since the action
ait has been evaluated and refined via advantage feedback before execution. In contrast, previous
methods like RoCo need to interact with the environment to get physical feedback regardless of the
quality of the generated actions. The refined action is added into the action-set at ← at ∪ {ait} and
we then perform sequential decision for agent i+ 1.

Prompting and Refinement for ReAd-J. The planning process of the LLM planner for ReAd-J is
similar to that of ReAd-S. The main difference is the LLM planner for ReAd-J is required to give a
joint action at for all agents at once. Meanwhile, we use the joint advantage function for history
prompting withH = {(s,at, Aµ(st,at))} rather than considering the local advantages. The score
function is

SReAd−J(at) = Aθ(st,at) = Qθ(st,at)− 1/γ Qθ(st,w)

based on Eq. (8). The joint plan at is refined if it is less than a threshold (i.e., SReAd−J(at) < ϵ).

4 RELATED WORKS

Task Planning with LLMs. LLMs (Chowdhery et al., 2023; OpenAI, 2023; Touvron et al., 2023a;b)
trained on a large-scale corpus exhibits notable reasoning abilities via in-context learning (Dong et al.,
2022; Abernethy et al., 2023; Akyürek et al., 2023). However, LLMs can also give infeasible plans for
embodied agents due to the lack of real-world knowledge. A line of research modifies the open-loop
planning framework to a closed-loop one via self-evaluation and reflection. For example, ReAct (Yao
et al., 2023b), Reflexion (Shinn et al., 2023), and BeamSearch (Xie et al., 2023b) incorporate the
feedback of an LLM evaluator in the prompts after the previous plan is completed. Other works
integrate domain knowledge of embodied agents in feedback. For example, RoCo (Mandi et al., 2023)
and Inner Monologue (Huang et al., 2022b) design physical verification such as collision checking,
object recognition, and scene description for feedback. DoReMi (Guo et al., 2023) leverages LLM to
generate physical constraints, and ViLA (Hu et al., 2023b) adopts Vision-Language Model (VLM)
as a constraint detector for verification. Another line of research develops advanced reasoning
frameworks, including chain-of-thought (Wei et al., 2022; Mu et al., 2023) and tree-of-thought (Yao
et al., 2023a). Works like (Zhao et al., 2023; Hao et al., 2023) consider LLMs as a world model (Lin
et al., 2023c) and adopt tree search in planning (Hu et al., 2023a). Other works adopt the planning
domain definition language (PDDL) for searching in long-horizon problems (Silver et al., 2023; Liu
et al., 2023a; Zhou et al., 2023). Our work lies in closed-loop frameworks but has a novel advantage
function in feedback, which is different from self-reflection or physical feedback and does not rely on
advanced searching algorithms.

Grounding LLM with RL. RL with Human Feedback (RLHF) has been used to align LLM with
human preference through parameter tuning (Dai et al., 2023; Fernandes et al., 2023; Song et al.,
2023b). In contrast, our work focuses on grounding closed-source LLM with RL via few-shot
prompting and closed-loop feedback (Zeng et al., 2023; Wu et al., 2023; Huang et al., 2022a; Lin

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

et al., 2023b). Previous works tried to integrate RL into LLM planning under the framework tree
search (Browne et al., 2012). For example, FAFA (Liu et al., 2023b) and TS-LLM (Feng et al.,
2023) learn an environment model and value function to plan the subroutine in MCTS. REX (Murthy
et al., 2023) proposes to balance exploration and exploitation in LLM-based MCTS. Other works like
SayCan (Ahn et al., 2022) and Text2Motion (Lin et al., 2023d) adopt a model-free manner by learning
value functions to connect LLM knowledge to physical environments. SwiftSage (Lin et al., 2023a)
performs imitation learning for rapid thinking and LLM for methodical training. Remember (Zhang
et al., 2023b) learns value functions for LLM to predict Q-value via exemplars in prompts and select
actions based on Q-values. Unlike the Remember framework, which retrieves similar states from
a buffer, we evaluate the advantage function of planned actions via a neural network and follow
advantage-weighted regression in prompting. We employ the advantage function in a multi-agent
setting, while previous methods focus on single-agent planning. Previous LLM-based multi-agent
works mostly manually designed communication, reflection, and reasoning modules (Zhang et al.,
2023a;c; Kannan et al., 2023; Chen et al., 2023). CAMEL (Li et al., 2023a) facilitated cooperation
among communicative agents through role-playing and inception prompting, which also includes
a critic with different purposes and does not have theoretical guarantees. MetaGPT (Hong et al.,
2023) similarly incorporated Standardized Operating Procedures (SOPs) into LLM-based multi-agent
collaborations where the roles of each agent was predefined by humans. Compared to previous
LLM-based multi-agent works, we propose a more principled way by using the sequential advantage
function from multi-agent RL for cooperation.

5 EXPERIMENTS

We first introduce two multi-agent collaboration environment in §5.1. Then we design a series of
experiments to compare our approach with baselines in §5.2. Finally, we conduct ablation studies
and analyze the impact of modules in §5.3.

5.1 EXPERIMENTAL SETUP

DV-RoCoBench. We present Difficult Variants of RoCoBench (DV-RoCoBench) for embodied multi-
robot collaboration, which is derived from RoCoBench (Mandi et al., 2023). RoCoBench consists
of 6 multi-robot collaboration tasks in a tabletop manipulation environment, typically involving
interactive objects that are semantically straightforward to comprehend and reason about for LLMs.
The tasks encompass a range of collaboration scenarios that necessitate robots’ communication and
coordination behaviors. Robots receive their observation and select one action from the high-level
action set, which includes diverse functionalities such as WAIT, moving, sweeping, grasping, and
dropping, across multiple tasks. The execution of high-level actions is subsequently translated into
low-level actions for manipulation. In contrast to RoCoBench, which focuses primarily on tasks with
a fixed difficulty level, we select three tasks to enrich the complexity of the benchmark and create the
new DV-RoCoBench, where each task is tailored to have 4-5 difficulty levels for experiments. Due
to technically unresolved issue in the original RoCoBench, we have already selected all executable
tasks to form our newly developed DV-RoCoBench.

In the following, we give a brief description of tasks and settings. See §D for details.

- Sweep Floor. Two robot arms need to work together to sweep all the cubes on the table into the
bin. The aim is to sweep away the cubes with given colors. We establish 5 difficulty levels based
on the number of overall cubes and the target cubes. An LLM planner is more likely to produce
fact hallucinations in more difficult settings.

- Make Sandwich. Two robot arms need to stack the ingredients to make a sandwich according to
the recipe. Each arm is limited in operating range and cooperation between agents is required. We
establish 4 difficulty levels depending on the length of the recipe.

- Sort Cubes. Three robot arms within their operating ranges are required to coordinate and place
cubes on the table to their target positions. We establish 5 different difficulty levels based on the
distance between the cubes and their target locations.

Overcooked-AI. Overcooked-AI (Carroll et al., 2019) is a fully cooperative multi-agent benchmark
environment based on the wildly popular video game Overcooked. In this environment, agents
need to deliver soups as fast as possible. Each soup requires placing up to 3 ingredients in a pot,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 3 4 5
0

10

20

30

40

50

NQ

Sweep Floor

1 2 3 4

Make Sandwich

ReAd-J Central ReAct Reflexion MindAgent ReAd-S RoCo

1 2 3 4 5

Sort Cubes

1 2 3 4 5
0

5

10

15

ES

Sweep Floor

1 2 3 4

Make Sandwich

1 2 3 4 5

Sort Cubes

1 2 3 4 5
Task difficulty level

0%

25%

50%

75%

100%

SR

Sweep Floor

1 2 3 4
Task difficulty level

Make Sandwich

1 2 3 4 5
Task difficulty level

Sort Cubes

Figure 3: We report mean SR (↑), ES (↓), and NQ (↓) in 3 tasks with various difficulty levels averaged
over 10 random seeds. The detailed score is given in Table 4 of §E.2.

waiting for the soup to cook, and having an agent pick up the soup and deliver it. The environment
consists of 5 different kitchen scenarios, covering from low-level motion coordination challenges to
high-level strategy coordination challenges. In our experiment, we chose two representative scenarios:
Cramped Room and Forced Coordination, and set the number of ingredients to make soups as 2
and the timesteps to cook as 2. To enable the computation of the success rate, we modify the task to
cook and deliver a soup within a specified number of timesteps. Details of the environment are given
in §D.4. For quantitative comparisons, we impose the maximum number of environment steps per
episode to 15 in DV-RoCoBench, 20 in Cramped Room, and 25 in Forced Coordination. Specially,
for our adapted Cramped Room and Forced Coordination, we deliberately set the maximum
environment steps almost equal to the least number of environment steps for accomplishing the
task, thereby presenting a challenge for highly effective coordination. And the maximum rounds of
re-planning per step is set to 15 for all tasks except for Sort Cubes where it is set to 10.

Baseline Methods. We use GPT-4-Turbo (OpenAI, 2023) as the basic LLM policy for all experiments.
Since our ReAd lies in the setting of LLM grounding on embodied tasks, we mainly choose LLM-
based methods as baselines. On both benchmarks, we compare ReAd-J with three strong close-loop
baselines – ReAct (Yao et al., 2023b), Reflexion (Shinn et al., 2023) and MindAgent (Gong et al.,
2023), and a planner named Central Plan which instructs the LLM to generate actions for all robots
based on the history of all agents. These five methods output agents’ plans in a parallel manner. In
DV-RoCoBench, we particularly add one more baseline RoCo (Mandi et al., 2023) which achieves the
state-of-the-art performance in RoCoBench (Mandi et al., 2023), for comparisons with ReAd-S. Both
of them generate joint plans in a sequential manner. Due to the expensive cost of sequential planning
with more environment steps in Overcooked-AI, we only evaluate the performance of methods that
generate joint plans in a parallel manner. We provide a detailed comparison in Table 3 of §E.1.

Evaluation Metrics. We evaluate the performance of algorithms on three metrics that closely
resemble that in RoCoBench: (i) SR: the success rate of completing tasks within the limited interaction
rounds; (ii) ES: the number of interaction steps to the environment taken by the robots to complete the
task; (iii) NQ: the number of queries to LLMs in completing the task, which measures the efficiency
in enquiring LLMs to obtain a feasible plan. An algorithm is better if it has higher SR, fewer ES,
and fewer NQ. Among these metrics, SR and ES directly reflect the effectiveness of a planner in
completing tasks, while NQ can be somewhat trivial since a planner can have much fewer queries to
LLM but has a low SR. In contrast, methods that require policy refinement often require more queries
to lead to a high SR.

5.2 RESULTS

ReAd-S and ReAd-J outperform their corresponding strong baselines on all metrics and achieve
more efficient LLM grounding. As shown in Figure 3, with the increase of difficulty levels in DV-
RoCoBench, the performance contrast in SR becomes pronounced gradually. In more difficult

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Cramped room Forced coordination
0

5

10

15

20

25

30

NQ

ReAd-J Central ReAct Reflexion MindAgent

Cramped room Forced coordination
0

5

10

15

20

25

ES

Cramped room Forced coordination
0%

20%

40%

60%

80%

100%

SR

Figure 4: We report mean SR (↑), ES (↓), and NQ (↓) in two scenarios of Overcooked-AI averaged
over 10 random seeds. The detailed score is given in Table 5 of §E.2.

settings (e.g., level 4 or 5 in tasks), our approach obtains higher success rates while baseline
methods fail to make progress. Meanwhile, ReAd-S and ReAd-J present lower ES and comparable or
even lower NQ on most tasks in DV-RoCoBench when compared to their corresponding baselines.
A lower ES suggests that prompting LLMs to generate actions maximizing the advantages can
improve the optimality of the proposed plans because a higher advantage implies the generated action
contributes more to accomplishing the task. Furthermore, as shown in Figure 4, our methods achieve
a significantly higher SR compared with the methods relying on physical verification as feedback in
Overcooked-AI. Due to the heavy coordination challenges inherent to Overcooked-AI, LLM-based
agents cannot advance toward task completion unless the LLM planner generates highly collaborative
plans. By replacing the physical verification feedback with advantage function, we implicitly transfer
the understanding and reasoning of the LLMs from semantic comprehension towards the current
state of the environment to digesting the numerical relationship. As the scenario becomes more
challenging for multi-agent collaboration, it is inevitable to involve more redundant information and
disturbing components in the environment, which poses a challenge for the LLM planner to capture
and reason about the essential part inside the state and physical feedback. In contrast, benefiting
from ReAd feedback, the LLM planner only needs to concentrate on how to maximize the advantage
score no matter how challenging the scenario is. Hence, our approach exhibits superior planning
capabilities and better LLM grounding results for embodied tasks. Additionally, we evaluate the
performance of the open-source model Llama-3.1-70B-Instruct (Dubey et al., 2024) equipped with
our algorithm on the Y2 G3 task. The result is provided in §E.3.

With sudden disturbances towards the environments, the LLM-planner can re-adjust plans
rapidly to accomplish the task via ReAd feedback. Since the critic takes both the current state
and the proposed actions as input, it endows the LLM planner with not only the foresight to dis-
cern whether the action contributes to realizing the goal but also the ability to reschedule the
planning quickly when encountering sudden disturbances to the advancement of the task. To evaluate

Table 1: Evaluation results over 10 runs of ReAd-
S and RoCo and its modified versions on distur-
bances at timestep n. We present the disturbance
as resetting the environment. n = 0: no resetting.

Method NQ ES SR

ReAd-S 22.1±1.65 8.9±0.28 1.0±0.00
recipe3 RoCo-L 44.7±4.90 12.0±0.54 0.9±0.10
(n = 0) RoCo-P 33.7±3.16 11.5±0.95 0.8±0.13

RoCo 33.7±3.16 11.5±0.95 0.8±0.13

ReAd-S 39.7±5.30 10.4±0.34 1.0±0.00
recipe3 RoCo-L 55.3±2.63 14.1±0.28 0.8±0.13
(n = 1) RoCo-P 33.6±2.03 12.5±0.73 0.9±0.10

RoCo 46.3±3.60 13.9±0.43 0.7±0.15

ReAd-S 44.9±4.34 12.5±0.34 1.0±0.00
recipe3 RoCo-L 53.4±2.28 14.8±0.20 0.3±0.15
(n = 2) RoCo-P 35.2±0.98 14.3±0.26 0.8±0.13

RoCo 61.2±11.95 14.2±0.44 0.5±0.16

ReAd-S 49.1±4.53 13.4±0.54 1.0±0.0
recipe3 RoCo-L 75.9±6.91 15.0±0.00 0.0±0.00
(n = 3) RoCo-P 40.0±2.94 14.3±0.26 0.5±0.17

RoCo 74.8±10.79 15.0±0.00 0.0±0.00

the robustness of the LLM planner, we com-
pare ReAd-S and RoCo in extra extended sce-
narios with unexpected disruptions. We select
recipe3 (3rd difficulty level in Make Sandwich)
that takes a minimum environment step of 8 to
accomplish the task. When a disruption occurs
at timestep n (0 ≤ n < 8, n ∈ N), we reset the
task and reinitialize the state without giving any
hints about this resetting in the prompt and clear-
ing previous history information contained in
the prompt. Specifically, the “adversarial” case
affects the LLM-based agent from two aspects:
(i) the description of current state sreset which is
given to the LLM planner before planning; (ii)
the unexpected transition of environment after
executing an action. It raises an intractable chal-
lenge as the remaining historical information
becomes misaligned with the actual situation.
The lack of a complete description of the sudden
disruption significantly increases the likelihood
of the LLM planner proposing erroneous actions.
To eliminate the influence induced by the different history information utilized between ReAd-S

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and RoCo, we provide two more variants of RoCo as baselines. One uses only the history of the
previous round, which we name RoCo-L, while the other is informed with descriptions of the sudden
disturbance, which we name RoCo-P. The evaluation results are shown in Table 1. A larger step n
signifies a more severe influence of disturbance. As n increases from 0 to 3, ReAd-S consistently
outperforms RoCo and its variants on SR and ES. Although RoCo retains a high SR under n = 1, 2,
it fails to recalibrate the misalignment between the remaining history information and the actual
status of the environment, leading to a significant drop in SR when n = 3. Regardless of what
kind of history information RoCo relies on, consistent superior performance demonstrates that ReAd
feedback alleviates the potentially severe hallucination issue and brings reliable robustness.

5.3 ABLATION STUDIES

Table 2: The performance of the multi-step
and single-step version of ReAd-S and ReAd-J
on the Y3 G3 task.

NQ ES SR

ReAd-J(Multi-Step) 16.4±0.54 13.4±0.27 0.8±0.13
ReAd-J(Single-Step) 19.1±1.25 14.1±0.28 0.6±0.16

ReAd-S(Multi-Step) 31.4±1.11 14.0±0.26 0.8±0.13
ReAd-S(Single-Step) 35.1±1.16 14.5±0.17 0.6±0.16

Plan refinement has a remarkable impact on
grounding LLM. The advantage score plays two
roles in ReAd: (i) prompting as optimizing for gener-
ating actions with the highest score, and (ii) feedback
as refinement for re-plan if the score is less than a
threshold. The policy refinement makes our method a
multi-step process since the action can be refined for
multi-rounds. To investigate the role of plan refine-
ment, we adopt a single-step version by removing the
second role, which forms an open-loop plan genera-
tion without refinement. In Table 2, we denote the original version as Multi-Step and the open-loop
version as Single-Step. We pick the most difficult variant Y3 G3 in Sweep Floor and observe a
marginal decline in both efficiency and success rates in Single-Step. It suggests that plan refinement
that ensures monotonic policy improvement is crucial for performance. Interestingly, ReAd-J(Single-
Step) can also achieve a considerable success rate of 60%, which is dramatically comparable or
superior to the baselines with physical verification as feedback.

6 DISCUSSION AND CONCLUSION

We have presented ReAd as a novel LLM feedback for closed-loop planning in multi-agent collab-
oration. We provide theoretical motivation based on multi-agent advantage-weighted regression.
The LLM is prompted to generate plans with high advantages and perform policy refinement. The
experiments on DV-RoCoBench and Overcooked-AI show that our method outperforms physical
feedback with improved efficiency. Moreover, the advantage feedback can handle sudden distur-
bances and is crucial for refinement. Due to the limitation of currently available benchmark for
embodied multi-agent collaboration evaluation, most of our experiments are conducted in 2 or 3-agent
scenarios. In a case with an increasing number of agents, theoretically speaking, ReAd-J would
be hindered by the exponential growth of the joint state-action space while ReAd-S could maintain
consistent performance by scoring in the individual state-action space, enjoying the benefit of sequen-
tial decision-making manner. However, it also necessitates more computational costs and time for
dataset collection in such a scenario. Thus, how our proposed ReAd feedback mechanism practically
scales under scenarios with many agents remains fascinating. To this end, building a well-established
embodied many-agent collaboration benchmark is essential, which provides an opportunity to push
our algorithm to the limit. We consider investigating the ReAd feedback mechanism in the many-agent
scenario and tackling the potential limitation in future works. Future works also include extending
the advantage feedback to multi-objective and safe planning scenarios. Last but not least, we provide
extended discussion on Symbol Grounding Problem (Harnad, 1990) in §F.

REPRODUCIBILITY STATEMENT

For the theoretical motivation of multi-agent advantages, we provide the detailed theoretical proof
in Appendix A. The experiment setup and implementation details are given in Appendix D. The
prompts, interaction process of LLMs, and videos of interaction process are provided in the Appendix
E, Appendix H, and the project website https://read-llm.github.io. The code will be
released publicly after the review process.

10

https://read-llm.github.io

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Abernethy, Alekh Agarwal, Teodor V Marinov, and Manfred K Warmuth. A mechanism for
sample-efficient in-context learning for sparse retrieval tasks. arXiv preprint arXiv:2305.17040,
2023.

Michael Ahn, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov, Sergey Levine,
and et al. Do as i can, not as i say: Grounding language in robotic affordances. In Annual
Conference on Robot Learning, 2022.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In International Conference
on Learning Representations, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu, Montse Gon-
zalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander Herzog, and
et al. RT-2: vision-language-action models transfer web knowledge to robotic control. CoRR,
abs/2307.15818, 2023a.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, and et al. Rt-1: Robotics trans-
former for real-world control at scale. In Robotics: Science and Systems, 2023b.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-ai coordination. Proceedings of
the 33rd International Conference on Neural Information Processing Systems, 2019.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-
robot collaboration with large language models: Centralized or decentralized systems? CoRR,
abs/2309.15943, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Open X.-Embodiment Collaboration. Open x-embodiment: Robotic learning datasets and RT-X
models. CoRR, abs/2310.08864, 2023.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. arXiv preprint
arXiv:2310.12773, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT, pp. 4171–4186, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. In International Conference on Machine Learning, volume 202, pp.
8469–8488, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-
search can guide large language model decoding and training. arXiv preprint arXiv:2309.17179,
2023.

Patrick Fernandes, Aman Madaan, Emmy Liu, António Farinhas, Pedro Henrique Martins, Amanda
Bertsch, José GC de Souza, Shuyan Zhou, Tongshuang Wu, Graham Neubig, et al. Bridging the
gap: A survey on integrating (human) feedback for natural language generation. arXiv preprint
arXiv:2305.00955, 2023.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, Brian Ichter, Danny Driess, Jiajun Wu, Cewu
Lu, and Mac Schwager. Foundation models in robotics: Applications, challenges, and the future.
CoRR, abs/2312.07843, 2023.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng,
Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. Mindagent: Emergent gaming interaction.
arXiv preprint arXiv:2309.09971, 2023.

Yanjiang Guo, Yen-Jen Wang, Lihan Zha, Zheyuan Jiang, and Jianyu Chen. Doremi: Grounding
language model by detecting and recovering from plan-execution misalignment. arXiv preprint
arXiv:2307.00329, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3):335–346,
1990.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding, Shiguang Wu, Wenqi Shao, Qiguang Chen,
Bin Wang, Yu Qiao, and Ping Luo. Tree-planner: Efficient close-loop task planning with large
language models. arXiv preprint arXiv:2310.08582, 2023a.

Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
power of gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023b.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and brian ichter. Inner monologue: Embodied reasoning
through planning with language models. In Annual Conference on Robot Learning, 2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. In Annual Conference
on Robot Learning, 2023.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, pp. 267–274, 2002.

Shyam Sundar Kannan, Vishnunandan L. N. Venkatesh, and Byung-Cheol Min. Smart-llm: Smart
multi-agent robot task planning using large language models. CoRR, abs/2309.10062, 2023.

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. In International
Conference on Learning Representations, ICLR, 2022a.

Jakub Grudzien Kuba, Xidong Feng, Shiyao Ding, Hao Dong, Jun Wang, and Yaodong Yang.
Heterogeneous-agent mirror learning: A continuum of solutions to cooperative MARL. CoRR,
abs/2208.01682, 2022b.

Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In Berkeley Symposium on
Mathematical Statistics and Probability, pp. 481–492, 1950.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023a.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, Hang Li, and Tao Kong. Vision-language foundation models
as effective robot imitators. CoRR, abs/2311.01378, 2023b.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In IEEE
International Conference on Robotics and Automation, pp. 9493–9500. IEEE, 2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. In Neural Information Processing Systems, 2023a.

Bill Yuchen Lin, Chengsong Huang, Qian Liu, Wenda Gu, Sam Sommerer, and Xiang Ren. On
grounded planning for embodied tasks with language models. In AAAI Conference on Artificial
Intelligence, volume 37, pp. 13192–13200, 2023b.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language. arXiv preprint arXiv:2308.01399, 2023c.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
from natural language instructions to feasible plans. Auton. Robots, 47(8):1345–1365, 2023d.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023a.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for future, act for now: A principled architecture for autonomous llm agents. In NeurIPS 2023
Foundation Models for Decision Making Workshop, 2023b.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. CoRR, abs/2310.12931, 2023.

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. CoRR, abs/2307.04738, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. EmbodiedGPT: Vision-language pre-training via embodied chain of
thought. In Neural Information Processing Systems, 2023.

Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao
Feng, Zeyuan Chen, Akash Gokul, Devansh Arpit, et al. Rex: Rapid exploration and exploitation
for ai agents. arXiv preprint arXiv:2307.08962, 2023.

OpenAI. Gpt-4 technical report, 2023.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. CoRR, abs/1910.00177, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:140:1–140:67, 2020.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning. In Neural Information
Processing Systems, 2023.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pretrained large language models. arXiv preprint
arXiv:2305.11014, 2023.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
IEEE/CVF International Conference on Computer Vision (ICCV), 2023a.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference ranking optimization for human alignment. arXiv preprint arXiv:2306.17492, 2023b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. Microsoft Auton. Syst. Robot. Res, 2:20, 2023.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
models. CoRR, abs/2310.01361, 2023a.

Yen-Jen Wang, Bike Zhang, Jianyu Chen, and Koushil Sreenath. Prompt a robot to walk with large
language models. CoRR, abs/2309.09969, 2023b.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Zackory Erickson, David Held,
and Chuang Gan. Robogen: Towards unleashing infinite data for automated robot learning via
generative simulation. CoRR, abs/2311.01455, 2023c.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, 2022.

Zhenyu Wu, Ziwei Wang, Xiuwei Xu, Jiwen Lu, and Haibin Yan. Embodied task planning with large
language models. arXiv preprint arXiv:2307.01848, 2023.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. Advances in neural information processing systems,
34:6683–6694, 2021.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and
Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learning.
CoRR, abs/2309.11489, 2023a.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie. Self-
evaluation guided beam search for reasoning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023b.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models to understand point clouds. arXiv preprint arXiv:2308.16911,
2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Neural
Information Processing Systems, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations, 2023b.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao,
Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, and Fei
Xia. Language to rewards for robotic skill synthesis. CoRR, abs/2306.08647, 2023.

Andy Zeng, Maria Attarian, brian ichter, Krzysztof Marcin Choromanski, Adrian Wong, Stefan
Welker, Federico Tombari, Aveek Purohit, Michael S Ryoo, Vikas Sindhwani, Johnny Lee, Vincent
Vanhoucke, and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning with
language. In International Conference on Learning Representations, 2023.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: Building proactive cooperative ai with large
language models. arXiv preprint arXiv:2308.11339, 2023a.

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language
models are semi-parametric reinforcement learning agents. In Neural Information Processing
Systems, 2023b.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua Tenenbaum, Tianmin
Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023c.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Studies in Systems, Decision and Control, 325:321 – 384,
2021.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. arXiv preprint arXiv:2305.14078, 2023.

Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu, and Lei Ma. Isr-llm: Iterative self-refined
large language model for long-horizon sequential task planning. arXiv preprint arXiv:2308.13724,
2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A THEORETICAL PROOF

A.1 PROOF OF MULTI-AGENT ADVANTAGE DECOMPOSITION

Proof. With the definition of the multi-agent local advantage function in Eq. (3), we can have
n∑

k=1

Aik
π (s,ai1:k−1 , aik) =

n∑
k=1

Qi1:k
π (s,ai1:k)−Q

i1:k−1
π (s,ai1:k−1)

= Qi1:n
π (s,ai1:n)−Qi1:n−1

π (s,ai1:n−1) +Qi1:n−1
π (s,ai1:n−1)−Qi1:n−2

π (s,ai1:n−2)

+ ...+Qi1:1
π (s,ai1:1)−Qi1:0

π (s,ai1:0)

= Qi1:n
π (s,ai1:n)−Qi1:0

π (s,ai1:0)

= Qπ(s,a)− Vπ(s)

= Aπ(s,a).

A.2 DERIVATION OF OPTIMAL JOINT POLICY AND OPTIMAL INDIVIDUAL POLICY

In this section, we begin with the constrained policy search problem. Following the performance
difference lemma (Kakade & Langford, 2002), the expected improvement η(π) = J(π)− J(µ) can
be expressed by

Es0,a0,...∼π

[∞∑
t=0

γtAµ(st,at)

]
= Es0,a0,...∼π

[∞∑
t=0

γt (r(st,at) + γVµ(st+1)− Vµ(st))

]

= Es0,a0,...∼π

[
−Vµ(s0) +

∞∑
t=0

γtr(st,at)

]

= −Es0∼p(s0) [Vµ(s0)] + Es0,a0,...∼π

[∞∑
t=0

γtr(st,at)

]
= −J(µ) + J(π). (10)

We can rewrite Eq. (10) with an expectation over states using discounted visitation frequencies ρπ(s),

η(π) = Es0,a0,...∼π

[∞∑
t=0

γtAµ(st,at)

]

=

∞∑
t=0

∫
s

p(st = s|π)
∫
a

π(a|s)γtAµ(s,a) da ds

=

∫
s

∞∑
t=0

γtp(st = s|π)
∫
a

π(a|s)Aµ(s,a) da ds

=

∫
s

ρπ(s)

∫
a

π(a|s)Aµ(s,a) da ds, (11)

where ρπ(s) =
∑∞

t=0 γ
tp(st = s|π) represents the (unnormalized) discounted visitation frequencies

over policy π and p(st = s|π) is the likelihood of the agent at state s after following π for t timesteps.
Our goal is to find the optimal policy π∗ that maximizes the expected improvement η(π).

However, it’s intractable to sample over the target policy π, further causing that the objective in
Eq. (11) can be difficult to optimize. Following (Schulman et al., 2015), we can introduce an
approximation η̂(π) of η(π) using the discounted visitation frequencies over the old policy µ,

η̂(π) =

∫
s

ρµ(s)

∫
a

π(a|s)Aµ(s,a) da ds.

η̂(π) matches η(π) to first order (Kakade & Langford, 2002), and provides a good estimate of η if π
is close enough to µ. In practice, we initialize the target policy π with the LLM policy µ to satisfy

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the above condition. Therefore, we can formulate the following constrained policy search problem,

argmax
π

∫
s

ρµ(s)

∫
a

π(a|s)Aµ(s,a) da ds, (12)

s.t. DKL (π(·|s)∥µ(·|s)) ≤ ϵ, ∀s, (13)∫
a

π(a|s) da = 1, ∀s. (14)

However, enforcing the pointwise KL constraint in Eq. (13) at all states is intractable. To simplify
the constrained optimization problem, we relax the hard KL constraint by converting it into a soft
constraint in an expectation form, as

argmax
π

∫
s

ρµ(s)

∫
a

π(a|s)Aµ(s,a) da ds,

s.t.

∫
s

ρµ(s)DKL (π(·|s)∥µ(·|s)) ds ≤ ϵ,∫
a

π(a|s) da = 1, ∀s.

Next, we form the Lagrangian, as

L(π, β, ν) =
∫
s

ρµ(s)

∫
a

π(a|s)Aµ(s,a) da ds+ β

(
ϵ−

∫
s

ρµ(s)DKL (π(·|s)∥µ(·|s)) ds
)

+

∫
s

νs

(
1−

∫
a

π(a|s) da
)

ds,

where ν = {νs|∀s ∈ S} and β > 0 correspond to the Lagrange multipliers.

Derivation of Optimal Joint Policy. Differentiating L(π, β, ν) with respect to π(a|s) gives the
following,

∂L
∂π(a|s)

= ρµ(s)Aµ(s,a)− βρµ(s) logπ(a|s) + βρµ(s) logµ(a|s)− βρµ(s)− νs. (15)

According to KKT conditions (Kuhn & Tucker, 1950), if (π∗, β∗, ν∗) is a saddle point of L, π∗ is
the optimal solution of the primal problem. Thus, let Eq. (15) be equal to zero, then we have

logπ∗(a|s) = 1

β∗Aµ(s,a) + logµ(a|s)− 1− 1

ρµ(s)

ν∗s
β∗ , (16)

π∗(a|s) = µ(a|s) exp
(

1

β∗Aµ(s,a)

)
exp

(
− 1

ρµ(s)

ν∗s
β∗ − 1

)
. (17)

Note that the primal problem holds the constraint
∫
a
π(a|s) da = 1, the second exponential term is

consequently viewed as the partition function Z(s) that normalizes the conditional action distribution,

Z(s) = exp

(
1

ρµ(s)

ν∗s
β∗ + 1

)
=

∫
a′
µ(a′|s) exp

(
1

β∗Aµ(s,a
′)

)
da′. (18)

Optimal Joint Policy is then given by,

π∗(a|s)︸ ︷︷ ︸
Left-Hand Side

=
1

Z(s)
µ(a|s) exp

(
1

β∗Aµ(s,a)

)
︸ ︷︷ ︸

Right-Hand Side

. (19)

Derivation of Optimal Individual Policy. Given the set of agents N = {1, 2, ..., n}, we assume
the agents choose actions sequentially in the order of 1, 2, ..., n, i.e., agents i is aware of current state
s and the chosen actions of agents 1, 2, ..., i − 1 and select actions based on that. The following
equation holds by the support of the definition of conditional probability,

π(a|s) =
n∏

i=1

πi(ai|s,a1:i−1), (20)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where πi is the individual policy of agent i. Here we consider a general case that the old joint
policy and the target joint policy are both in a sequential manner. Following multi-agent advantage
decomposition in Lemma 1, the LHS and RHS of Eq. (19) can be expressed respectively (in order to
present the Optimal Individual Policy we omit the superscript of it which denotes agent id),

LHS =

n∏
i=1

π∗(ai|s,a1:i−1), (21)

RHS =
1

Z(s)

n∏
i=1

µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)

=

n∏
i=1

1

Zi(s)
µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)
. (22)

Thus, we can get the expression of Optimal Individual Policy,

π∗(ai|s,a1:i−1) =
1

Zi(s)
µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)
, (23)

where Zi(s) is the partition function that normalizes the conditional action distribution
π∗(ai|s,a1:i−1) of agent i and satisfies Z(s) =

∏n
i=1 Z

i(s). Finally, all that remains for us to
do is to derive the validity of Z(s) =

∏n
i=1 Z

i(s).

Since Zi(s) is the partition function that normalizes the conditional action distribution
π∗(ai|s,a1:i−1), we can have,

Zi(s) =

∫
ai

µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)
dai. (24)

Meanwhile, we can rewrite Eq. (18) after applying multi-agent advantage decomposition in Lemma
1,

Z(s) =

∫
a

µ(a|s) exp
(

1

β∗Aµ(s,a)

)
da (25)

=

n∏
i=1

∫
ai

µi(ai|s,a1:i−1) exp

(
1

β∗A
i
µ(s,a

1:i−1, ai)

)
dai (26)

=

n∏
i=1

Zi(s). (27)

Beyond the general case, if we consider a special case that the old policy µ is in a parallel manner
(i.e., µ =

∏n
i=1 µ

i(ai|s)) while the target policy remains in a sequential manner, we can still derive
similar results, differing only by the modification from µi(ai|s,a1:i−1) to µi(ai|s).

A.3 PROOF OF MONOTONIC IMPROVEMENT WITH BINARY FILTERING

Proposition 1. (Relationship between Exponential Weighting and Binary Filtering). In terms of the
weight eA

i
µ(s,a1:i−1,ai)/β in Exponential Weighting where β > 0, for any Ai

µ(s,a
1:i−1, ai) < 0, we

have the following limitation,

lim
β→0+

exp(
Ai

µ(s,a
1:i−1, ai)

β
) = 0 , for ∀Ai

µ(s,a
1:i−1, ai) < 0 (28)

As β → 0+, Exponential Weighting becomes a special case – Binary Filtering where the samples
with Ai

µ(s,a
1:i−1, ai) < 0 are filtered out.

Proof. We first define the minimum of the absolute value of those negative Ai
µ,

α = min
Ai

µ<0
|Ai

µ| = min
Ai

µ<0
−Ai

µ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

To achieve Eq. (28), we only need to ensure that the rate at which eA
i
µ(s,a1:i−1,ai)/β approaches zero

is faster than the rate at which β approaches zero. One way to guarantee this is to choose β such
that it is proportional to the absolute value of A. Thus, we define β = k · α where k is a positive
hyperparameter. Then we have,

exp

(
Ai

µ(s,a
1:i−1, ai)

β

)
≤ exp

(
−α
β

)
= exp

(
−1
k

)
Finally, for any positive ϵ > 0, there exists a positive k > 0, it holds the following:

exp

(
−1
k

)
< ϵ

Taking the natural logarithm of both sides, we get:

k ln(ϵ) + 1 > 0 (29)

With an arbitrary ϵ > 0, we can always find a k that satisfies Eq. (29), further satisfying Eq. (28).

Proposition 2. (Policy improvement with Binary Filtering). By behaviour cloning (BC) on a filtered
dataset with Binary Filtering 1[Ai

µ(s,a
1:i−1, ai) > ϵ] where ϵ ≥ 0, new policy π is superior to the

basic policy µ, i.e., J(π)− J(µ) > 0.

Proof. According to BC on a filtered dataset with Binary Filtering 1[Ai
µ(s,a

1:i−1, ai) > ϵ], we
have:

πi(ai|s,a1:i−1) =
1[Ai

µ(s,a
1:i−1, ai) > ϵ]µi(ai|s,a1:i−1)

Zi(s)
(30)

where Zi(s) is the partition function. Given the new policy π(a|s) =
∏n

i=1 π
i(ai|s,a1:i−1), the

expected improvement from Eq. (6) can be rewritten as,

η̂(π) = Es∼ρµ(s),a∼π(a|s) [Aµ(s,a)]

= Es∼ρµ(s)Ea1∼π1(a1|s)Ea2∼π2(a2|s,a1) · · ·Ean∼πn(an|s,a1:n−1) [Aµ(s,a)]

Substituting Lemma 1 and Eq. (30) into the above equation, we get:

η̂(π) = Es∼ρµ(s)Ea1∼π1(a1|s)Ea2∼π2(a2|s,a1) · · ·Ean∼πn(an|s,a1:n−1)

[
n∑

i=1

Ai
µ(s,a

1:i−1, ai)

]

= Es∼ρµ(s)

[
n∑

i=1

Eai∼πi(ai|s,a1:i−1)

(
Ai

µ(s,a
1:i−1, ai)

)]

= Es∼ρµ(s)

[
n∑

i=1

Eai∼µi(ai|s,a1:i−1)

(
1[Ai

µ(s,a
1:i−1, ai) > ϵ]Ai

µ(s,a
1:i−1, ai)

Zi(s)

)]
(31)

And we note that the expected improvement from Eq. (6) entails the following relationship,

η̂(µ) = J(µ)− J(µ) = Es∼ρµ(s),a∼µ(a|s) [Aµ(s,a)]

= Es∼ρµ(s)

[
n∑

i=1

Eai∼µi(ai|s,a1:i−1)

(
Ai

µ(s,a
1:i−1, ai)

)]
= 0 (32)

Comparing Eq. (31) with Eq. (32), it is obvious that those local advantages Ai
µ(s,a

1:i−1, ai) below
the threshold ϵ would not be calculated in the expectation η̂(π). Hence, when the threshold ϵ ≥ 0 it
naturally holds η̂(π) > η̂(µ) = 0, i.e., J(π)− J(µ) > 0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B ADDITIONAL RELATED WORKS

Other LLM-based Embodied Agent. Beyond task planning, LLMs also shoulder other roles
for embodied agents. (i) Foundation Policy. Robot Transformer (Brohan et al., 2023b;a), PaLM-
E (Driess et al., 2023), Open-X (Collaboration, 2023), and RoboFlamingo (Li et al., 2023b) use
pre-trained LLM or VLM as the foundation policies and fine-tune the parameters with embodied
data from real-world tasks. The LLM tokens and action tokens of agents are unified in fine-tuning.
(ii) Code Generator. Given high-level task descriptions, LLMs can generate executable code by
calling the basic control primitives (Liang et al., 2023; Vemprala et al., 2023) or low-level actions
(Wang et al., 2023b) of embodied agents. VoxPoser (Huang et al., 2023) leverages the code-writing
capabilities of LLMs to compose 3D value maps via VLM and adopt model-predictive control (MPC)
for planning. (iii) Reward Designer. Text2Reward (Xie et al., 2023a), Language2Reward (Yu et al.,
2023), and Eureka (Ma et al., 2023) leverage GPT-4 to produce interpretable reward codes, and
allow iterative refinement with feedback. (iv) Data Generator. To enhance task-level generalization,
GenSim (Wang et al., 2023a) adopts LLMs to propose task curriculum and novel sub-tasks to solve
complex tasks. RoboGen (Wang et al., 2023c) proposes a closed-loop process to generate robot data,
including proposing tasks, generating simulation environments, decomposing sub-tasks, and solving
sub-tasks via RL or MPC.

C ALGORITHMIC DESCRIPTION

In this section, we give the algorithm descriptions of critic regression via Monte Carlo estimation, as
well as the process of ReAd-S and ReAd-J algorithms. We highlight the difference between ReAd-S
and ReAd-J by different colors.

Algorithm 1 Critic regression on D following µ = πllm

Require: data buffer D, batch size B, critic Qθ, the set of agents N
for iteration k = 1, ...,M do

for all ordered subsets {i1, i2, ..., iu} ⊆ N do
compute Monte Carlo return estimatesRs,ai1:u

Rs,ai1:u =
∑

a−i1:u∈D

T∑
t=0

γtrt

update estimated critic Qi1:u
θ by using

argmin
Q

i1:u
µ

Es,ai1:u∼D

[∥∥Rs,ai1:u −Qi1:u
µ

∥∥2]
end for

end for

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 2 ReAd-S: Reinforced Advantage Feedback with Sequential Individual Plan Refinement

Require: agent name u1, ..., uN , task horizon T , refinement threshold α, history buffer H , critic
Qθ

Denotation: dialog d; agent ui’s plan ai

initialize timestep t← 0
initialize observation s0 ← env.reset()
while t < T do

initialize joint action at = {} and history H = {}
set α← 2α
for i = 1, ..., N do

initialize the history of evaluated action-score pairs P = {}
repeat
d, ait ← LLMPrompt(H, st, u

i
t,P)

SReAd−S(a
i
t) = Q1:i

θ (st,a
1:i−1
t , ait)−Q1:i−1

θ (st,a
1:i−1
t)

P ← P ∪ {(st,a1:i−1
t , ait,SReAd−S(a

i
t))}

α← α/2
until SReAd−S(a

i
t) > α

H ← H ∪ {d}
end for
σt ←MotionPlanner(ot,at)
ot+1, done← env.step(σt)
if done is True then

break
end if

end while

Algorithm 3 ReAd-J: Reinforced Advantage Feedback with Joint Plan Refinement

Require: agent name u1, ..., uN , task horizon T , pick action threshold α, history buffer H , critic
Qθ, discount factor γ
Denotation: dialog d; Joint WAIT action w
set H = {}
initialize timestep t← 0
initialize observation s0 ← env.reset()
while t < T do

set α← 2α
initialize the history of evaluated action-score pairs P = {}
repeat
d,at ← LLMPrompt(H, st, [u

1, ..., uN],P)
SReAd−J(at) = Qθ(st,at)− 1

γQθ(st,w)

P ← P ∪ {(st,at,SReAd−J(at))}
α← α/2

until SReAd−J(at) > α
H ← {d}
σt ←MotionPlanner(ot,at)
ot+1, done← env.step(σt)
if done is True then

break
end if

end while

D ENVIRONMENT DETAILS

We use Difficult Variants of RoCoBench (DV-RoCoBench) adapted from RoCoBench (Mandi et al.,
2023) and Overcooked-AI (Carroll et al., 2019) in our experiments. DV-RoCoBench involves three
tasks: Sweep Floor, Make Sandwich and Sort Cubes. And we choose two representative scenarios –
Cramped Room and Forced Coordination from Overcooked-AI in our experiments. In this section, we

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

present a comprehensive overview of the task specifications along with the difficulty modifications
we have made in DV-RoCoBench and the scenario specifications in two scenarios of Overcooked-AI.

As for DV-RoCoBench, we directly inherit the action set and quantity of robots from RoCoBench,
but design diverse task goals to introduce different difficulty levels. In original RoCoBench, the
action set is not the same among different tasks.

As for Overcooked-AI, different scenarios share the same action space but are initialized with different
kitchen layouts.

D.1 SWEEP FLOOR

Task Description. In this task, the two robots are positioned on opposite sides of the table. Each
robot arm equipped with a dustpan and broom must collaborate to efficiently sweep all cubes of the
designated color into the dustpan. Subsequently, the robot that holds the dustpan is responsible for
disposing of the collected cubes in the trash bin. In this environment, two distinct types of robots
with different action sets are used.

1. UR5E robot holding a dustpan (‘Alice’): can move to all cubes and can perform only three
operations: MOVE, DUMP, and WAIT.

2. Franka Panda holding a broom (‘Bob’): can move to all cubes and can perform only three
operations: MOVE, SWEEP, and WAIT.

3. Action sets: (i) MOVE [target]: target can only be a cube. (ii) DUMP: pour all cubes in the
dustpan into the trash bin. (iii) SWEEP [target]: sweep the target cube into the dustpan. (iv)
WAIT.

Difficulty Settings. We shift the task goal from sweeping away all the cubes to sweeping away the
cubes of a given color. We establish 5 distinct difficulty levels based on the number of cubes and the
number of the target cubes. By increasing the difficulty level step by step, the quantity of all cubes
and the cubes of a given color increase also gradually, as shown in Figure 5.

Y1_G1 Y1_G2 Y2_G2 Y2_G3 Y3_G3

Figure 5: The initial states of the 5 difficulty levels in modified Sweep Floor. The yellow and green
squares are the ones to be swept in this task. The first three tasks have a total of 7 squares, while the
last two have 9. We assess task difficulty based on the number of cubes to be swept and the total cube
number. For example, the Y1 G1 in the figure represents 1 yellow cube and 1 green cube needs to be
swept.

D.2 MAKE SANDWICH

Task Description. In this task, two robots are positioned on opposite sides of a table to assemble a
sandwich based on a given recipe, requiring collaborative effort to collect and stack the ingredients in
the specified order until all components have been properly arranged. This environment accommo-
dates two distinct types of robots capable of executing all actions in the action set. Each robot has a
restricted range to manipulate the cubes.

1. UR5E robot (‘Chad’): can only retrieve the food on the right side.
2. Humanoid robot (‘Dave’): can only retrieve the food on the left side.
3. Action set: 1) PICK [object]: object must be a food. 2) PUT [object] on [target]: object

must be a food and target could be a food, cutting board, or table. 3) WAIT.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Difficulty Settings. We establish 4 distinct difficulty levels dependent on the length of the recipe.
A longer recipe requires more complex collaboration between humanoid and robot arm. The recipe
lengths for these different settings are set to 3, 5, 7, and 9, respectively, as shown in Figure 6.

recipe1 recipe2 recipe3 recipe4

Figure 6: The initial states of the 4 difficulty levels in modified Make Sandwich. The initial three
tasks shared the same food and layout, differing only in the length of the recipe. Conversely, the final
task presented distinct food and layout, accompanied by a lengthier recipe. The recipe lengths for
four tasks are set to 3, 5, 7, and 9, respectively.

D.3 SORT CUBES

Task Description. The task requires three robots positioned on opposite sides of a table to collab-
oratively place three target blocks in specific locations, utilizing their limited range of motion and
assisting each other as needed. The current environment consists of three robots capable of executing
all actions in the action set, albeit with limited mobility range.

1. UR5E with robotic gripper (‘Alice’): must put the blue square on panel2, can only reach:
panel1, panel2, panel3.

2. Franka Panda (‘Bob’): must put pink polygon on panel4, can only reach: panel3, panel4,
panel5.

3. UR5E with suction gripper (‘Chad’): must put yellow trapezoid on panel6, can only reach:
panel5, panel6, panel7.

4. Action set: 1) PICK [object] PLACE [panelX]: the object must be a cube and panelX cannot
be the target panel of another cube. 2) WAIT.

Difficulty Settings. We establish 5 difficulty levels based on the distance of the three blocks towards
their corresponding target location. Since each robot has limited range of motion, picking further
cube to the target location requires more complex collaboration between three robot arms.

sort1 sort2 sort3 sort4 sort5

Figure 7: The initial states of the 5 difficulty levels in modified Sort Cubes. In these tasks, we
orchestrated the initial placement of each block, and gauged difficulty based on the cumulative
distance between the three blocks and the target panel. The shape of the three cubes was modified to
avoid the robot’s inability to pick up the objects due to their shape.

D.4 OVERCOOKED-AI

In Overcooked-AI, two agents are originally required to make as much soup as possible in limited
timesteps with high coordination efficiency. Agents place a specified number of onions in a pot, leave
them to cook for a specified number of timesteps, put the resulting soup in a dish, and serve it, giving

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

all agents a reward. The capacity of all agents to pick up items is 1. Every agent can only carry 1
item such as the dish and the onion. In our experiment, to enable measuring with the success rate
metric, we modify the task as cooking and delivering a soup to the service counter within a specified
number of timesteps. The action set of this environment are as following:

1. north: agent moves one step north. If agent collides with another object, it will not move.

2. south: agent moves one step south. Same as the previous term.

3. east: agent moves one step east. Same as the previous term.

4. west: agent moves one step west. Same as the previous term.

5. interact: agent interacts with a object, including picking up or putting down an item, turning
on the cooking table, and putting the cooked soup in the dish.

6. stay: agent does nothing.

The first four actions (north, south, east and west) cover the movement of the agent, and the interact
action enables the interaction between the agent and other objects. We use Figure 8 to explain the
above rules:

begin
agent0: south
agent1: east

agent0: interact
agent1: interact

agent0: west
agent1: west

agent0: east
agent1: north

agent0: north
agent1: interact

agent0: stay
agent1: interact

agent0: west
agent1: north

agent0: stay
agent1: stay

agent0: interact
agent1: interact

agent0: east
agent1: stay

agent0: interact
agent1: stay

agent0: south
agent1: stay

agent0: interact
agent1: stay

Figure 8: In 2nd frame, since both agents collide with the workbench, the agents merely change
their current orientation. In 4th frame, since both agents have picked up an object in their hands,
executing ”interact” again will not pick up additional items. In 7th frame, agent1 places the onion on
the cooking table. And in 8th frame, agent1 turns on the cooking table and starts cooking. In 10th
and 11th frames, the soup is done and then put in a dish by agent0. In the last frame, agent0 serves
the cooked soup.

Cramped Room. Two agents collaborate in a relatively small kitchen, and thus two agents must be
extremely careful to avoid collisions in order to complete the cooking task as quickly as possible.
The scenario is shown in the Figure 8.

Forced Coordination. The working spaces of two agents are completely separated, where one
agent only has access to the cooking table and the service counter and the other only has access to
onions and dishes. The scenario is shown in the Figure 9.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 9: In this task, agent0 must wait for agent1 to deliver the onion to the table before agent0 can
place it on the cooking table, and after the soup is ready, agent0 must wait for agent1 to place the
plate on the table before it can serve the soup and deliver it to the service table.

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we give the detailed experiment results of 3 tasks in DV-RoCoBench and 2 scenarios
in Overcooked-AI. We also show the execution screenshots of our method and baselines in the
representative environments.

E.1 COMPARISON OF BASELINES

Table 3: Overview of the key properties that distinguish four methods. (i) State Type: whether the
environment state included in the prompt is global or not; (ii) Planning Scheme: whether LLM
output plans sequentially or not; (iii) History Info: whether all the history before is reserved in the
prompt or not.

STATE TYPE PLANNING SCHEME HISTORY INFO FEEDBACK TYPE

ROCO PARTIAL SEQUENTIAL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION
READ-S PARTIAL SEQUENTIAL LAST ROUND ADVANTAGE SCORE

CENTRAL-PLAN GLOBAL PARALLEL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION
READ-J GLOBAL PARALLEL LAST ROUND ADVANTAGE SCORE
REACT GLOBAL PARALLEL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION

REFLEXION GLOBAL PARALLEL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION
MINDAGENT GLOBAL PARALLEL ALL PREVIOUS ROUNDS PHYSICAL VERIFICATION

E.2 MAIN EXPERIMENTS

The results of all experiments are shown in Table 4, and Table 5. SR, NQ and ES represent success
rates, the average number of requests to LLMs, and rounds of environment interactions, respectively.
We have provided a detailed introduction to these metrics in §5.1.

E.3 EXTENDED EXPERIMENT WITH LLAMA-3.1-70B-INSTRUCT

Here, we instead use Llama-3.1-70B-Instruct (Dubey et al., 2024) as the basic LLM policy to validate
that our algorithm can improve the performance of not only the closed-source models but also the
open-source models. We select Y2 G3 as the task for evaluation, and compare our ReAd-J with other
baselines including Central Plan, ReAct, Reflexion and MindAgent. The result is reported in Table 6.
In terms of the prompt and generation parameters of Llama 3.1-70B in additional experiments, we
keep the prompt essentially unchanged. We coarsely search for suitable parameters for the Llama 3.1
70B instruct model. The current generation parameters are determined by a simple grid search on
them. Finally, we set the temperature as 0 and topp as 0.1.

Most methods have a 10%-20% decline in SR, with a slight increase in NQ and ES. Judging from
the performance of task Y2 G3, GPT-4 has better performance than the Llama-3.1-70B-Instruct.
Although using an open-source model like Llama 3.1-70B might result in suboptimal performance,
our ReAd-J significantly outperforms other baselines based on the same LLM, demonstrating the
effectiveness of our method.

E.4 VISUALIZATION OF ROBUSTNESS EVALUATION

We visualize the robustness comparison between ReAd-S and RoCo for accomplishing Make Sandwich
recipe3 task when the environment resets at timestep n = 2, as shown in Figure 10 and Figure 11.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 4: The detailed results of the comparison in different tasks with various difficulty levels in
DV-RoCoBench. The mean value and standard error are calculated over 10 random seeds.

ROCO REACT CENTRAL PLAN REFLEXION
SR NQ ES SR NQ ES SR NQ ES SR NQ ES

SWEEP

Y1 G1 0.9±0.32 14.4±5.95 6.2±3.12 1.0±0.00 5.5±0.50 5.5±0.50 0.4±0.52 15.3±0.48 11.2±4.92 1.0±0.00 5.0±0.00 5.0±0.00
Y1 G2 1.0±0.00 24.2±4.18 8.9±1.45 1.0±0.00 8.2±0.25 8.2±0.25 1.0±0.00 7.8±1.99 7.8±1.99 1.0±0.00 7.0±0.00 7.0±0.00
Y2 G2 1.0±0.00 29.1±5.40 10.6±1.35 1.0±0.00 10.0±0.00 10.0±0.00 0.8±0.42 12.7±1.77 12.7±1.77 1.0±0.00 10.1±0.10 10.0±0.00
Y2 G3 0.7±0.48 36.7±6.63 13.5±1.27 0.6±0.16 14.4±0.67 13.8±0.33 0.2±0.42 14.6±0.97 14.6±0.97 0.7±0.15 14.3±0.87 12.9±0.48
Y3 G3 0.6±0.52 41.8±7.73 14.7±0.48 0.4±0.16 15.2±0.25 14.9±0.32 0.0±0.00 15.0±0.00 15.0±0.00 0.3±0.15 15.1±0.23 14.9±0.10

SANDWICH

RECIPE1 1.0±0.00 13.2±3.74 4.7±0.67 1.0±0.00 4.0±0.00 4.0±0.00 1.0±0.00 6.2±0.63 4.0±0.00 1.0±0.00 5.0±0.00 4.0±0.00
RECIPE2 0.9±0.32 28.9±11.25 9.1±2.42 1.0±0.00 6.0±0.00 6.0±0.00 1.0±0.00 8.2±0.42 6.0±0.00 1.0±0.00 6.8±0.13 6.0±0.00
RECIPE3 0.8±0.42 33.7±10.00 11.5±2.99 0.7±0.15 12.9±2.61 10.1±1.07 1.0±0.00 10.2±0.42 8.0±0.00 0.6±0.16 14.9±2.47 10.8±1.14
RECIPE4 0.5±0.53 43.1±17.84 13.1±2.47 0.6±0.16 16.7±2.60 12.5±0.75 0.4±0.52 80.5±53.35 14.2±1.14 0.5±0.17 17.7±2.39 13.1±0.67

SORT

SORT1 1.0±0.00 3.3±0.95 1.1±0.32 1.0±0.00 1.2±0.13 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 1.0±0.00 1.2±0.13 1.0±0.00
SORT2 1.0±0.00 13.5±4.67 3.4±0.52 0.6±0.16 14.8±4.56 7.8±1.96 1.0±0.00 16.9±9.13 2.6±0.52 1.0±0.00 5.5±0.48 2.9±0.10
SORT3 1.0±0.00 18.6±15.10 4.9±2.60 0.8±0.13 19.4±6.18 6.4±1.45 1.0±0.00 8.3±4.32 2.3±0.95 1.0±0.00 6.6±0.50 4.7±0.33
SORT4 1.0±0.00 24.8±9.37 6.4±1.78 0.8±0.13 24.0±11.31 6.1±1.49 1.0±0.00 37.2±25.05 7.1±2.77 0.7±0.13 19.2±6.83 7.1±1.45
SORT5 1.0±0.00 38.5±9.96 7.4±2.95 0.7±0.15 17.3±3.00 8.4±1.59 0.6±0.52 128.4±115.99 11.0±3.97 0.8±0.13 13.9±3.27 6.9±1.43

AVERAGE 0.89±0.19 25.99±8.06 8.25±1.74 0.80±0.09 12.11±2.29 8.19±0.69 0.74±0.17 25.88±15.32 8.39±1.36 0.83±0.06 10.16±1.24 7.59±0.41
MIND READ-S READ-J

SR NQ ES SR NQ ES SR NQ ES

SWEEP

Y1 G1 1.0±0.00 5.0±0.00 5.0±0.00 1.0±0.00 10.4±0.52 5.0±0.00 1.0±0.00 5.9±0.99 5.0±0.00
Y1 G2 1.0±0.00 7.1±0.10 7.1±0.10 1.0±0.00 14.4±0.84 7.0±0.00 1.0±0.00 7.6±0.70 7.0±0.00
Y2 G2 1.0±0.00 9.9±0.18 9.8±0.13 1.0±0.00 19.9±3.28 9.4±0.70 1.0±0.00 13.0±4.32 9.0±0.00
Y2 G3 0.7±0.15 13.4±0.48 13.4±0.48 0.9±0.32 26.8±5.20 12.2±1.32 1.0±0.00 16.4±6.02 11.7±1.49
Y3 G3 0.2±0.13 15.1±0.10 15.0±0.00 0.8±0.42 31.4±3.50 14.0±0.82 0.8±0.42 16.4±1.71 13.4±0.84

SANDWICH

RECIPE1 1.0±0.00 5.1±0.10 4.0±0.00 1.0±0.00 10.5±4.74 4.2±0.42 1.0±0.00 4.3±0.48 4.0±0.00
RECIPE2 1.0±0.00 6.6±0.16 6.0±0.00 1.0±0.00 14.5±2.46 6.4±0.52 1.0±0.00 6.5±0.85 6.0±0.00
RECIPE3 0.7±0.16 12.4±1.92 10.1±1.07 1.0±0.00 22.1±5.22 8.9±0.88 1.0±0.00 14.6±8.04 8.9±1.00
RECIPE4 0.6±0.16 16.5±2.24 12.7±0.72 1.0±0.00 27.9±8.06 11.1±1.73 1.0±0.00 10.8±0.42 10.0±0.00

SORT

SORT1 1.0±0.00 1.2±0.13 1.0±0.00 1.0±0.00 3.4±0.52 1.0±0.00 1.0±0.00 1.1±0.32 1.1±0.32
SORT2 1.0±0.00 6.1±1.12 3.2±0.33 1.0±0.00 10.8±2.53 3.1±0.32 1.0±0.00 7.3±2.91 3.3±0.48
SORT3 0.8±0.13 11.1±3.70 6.2±1.54 1.0±0.00 17.5±2.80 3.9±0.57 1.0±0.00 8.3±3.80 3.4±0.84
SORT4 0.9±0.10 22.6±9.62 5.9±1.12 1.0±0.00 21.6±7.07 3.7±0.67 1.0±0.00 18.8±6.29 4.3±0.95
SORT5 0.8±0.13 18.0±4.12 7.8±1.35 1.0±0.00 33.5±6.35 6.1±0.88 1.0±0.00 17.3±11.87 4.4±1.26

AVERAGE 0.84±0.07 10.72±1.71 7.66±0.49 0.98±0.05 18.91±3.79 6.86±0.63 0.99±0.03 10.59±3.48 6.54±0.51

Table 5: The detailed results of the comparison in two scenarios in Overcooked-AI. The mean value
and standard error are calculated over 10 random seeds.

CRAMPED ROOM FORCED COORDINATION AVERAGE
SR NQ ES SR NQ ES SR NQ ES

REACT 0.0±0.00 20.1±0.10 20.0±0.00 0.0±0.00 26.9±0.75 25.0±0.00 0.00±0.00 23.50±0.43 22.50±0.00
REFLEXION 0.0±0.00 20.0±0.00 20.0±0.00 0.0±0.00 26.1±0.60 25.0±0.00 0.00±0.00 23.05±0.30 22.50±0.00

MINDAGENT 0.0±0.00 20.8±0.47 20.0±0.00 0.0±0.00 26.9±0.80 25.0±0.00 0.00±0.00 23.85±0.64 22.50±0.00
CENTRAL 0.0±0.00 20.0±0.00 20.0±0.00 0.0±0.00 25.0±0.00 25.0±0.00 0.00±0.00 22.50±0.00 22.50±0.00
READ-J 0.4±0.16 23.9±1.49 18.9±0.59 0.3±0.15 27.2±0.53 24.8±0.20 0.35±0.16 25.55±1.01 21.85±0.40

Table 6: The detailed result of the comparison in the task Y2 G3 with Llama-3.1-70B-Instruct as the
basic LLM.

ReAd-J Central Plan ReAct Reflexion MindAgent

SR 0.9±0.10 0.0±0.00 0.4±0.16 0.5±0.17 0.7±0.15
NQ 13.6±0.56 15.0±0.00 15.0±0.00 13.7±0.37 14.3±0.15
ES 11.8±0.42 15.0±0.00 15.0±0.00 13.6±0.43 14.3±0.15

Chad: PUT tomato bread_slice1
Dave: PICK bacon

reset env
Chad: WAIT
Dave: PICK bread_slice1

Chad: WAIT
Dave: PUT bread_slice1 cutting_board

Chad: PICK tomato
Dave: PICK bacon

Chad: WAIT
Dave: PUT bacon table

Chad: WAIT
Dave: PICK bread_slice1

Chad: WAIT
Dave: PUT bread_slice1 cutting_board

Chad: PICK cucumber
Dave: PUT bacon tomato

begin

Chad: PUT cucumber bacon
Dave: PICK cheese

Chad: PICK ham
Dave: PUT cheese cucumber

Chad: PUT ham cheese
Dave: PICK bread_slice2

Chad: WAIT
Dave: PUT bread_slice2 ham

Figure 10: Screenshots of ReAd-S completing the recipe3 task in robustness test. After the environ-
ment is reset, our method will be affected by the historical dialogue information in a short period.
After being prompted by the advantage function re-evaluated in the new state, our method can make
a rapid re-plan based on the new state.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

reset env
Chad: PICK tomato
Dave: WAIT

Chad: PUT tomato table
Dave: WAIT

Chad: WAIT
Dave: PICK bread_slice1begin

Chad: WAIT
Dave: PUT bread_slice1 cutting_board

Chad: PICK tomato
Dave: WAIT

Chad: PUT tomato bread_slice1
Dave: WAIT

Chad: WAIT
Dave: PICK bacon

Chad: WAIT
Dave: PUT bacon tomato

Chad: WAIT
Dave: PICK bread_slice2

Chad: WAIT
Dave: PICK cheese

Chad: WAIT
Dave: PUT cheese cucumber

Chad: PICK ham
Dave: WAIT

Chad: PUT ham cheese
Dave: WAIT

Chad: WAIT
Dave: PUT bread_slice2 ham

Chad: PUT cucumber bacon
Dave: WAIT

Chad: PICK cucumber
Dave: WAIT

Figure 11: Screenshots of RoCo completing the recipe3 task in robustness test. RoCo needs more
steps to recover from the environmental disturbance. Since the reset information is not included in
the history, RoCo will be misled by historical information and require multi-round physical feedback
to adjust the plan.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.5 DATASET AND CRITIC NETWORK

Dataset Collection Details. The advantage function relies on the Monte-Carlo estimation of value
function with access to an offline dataset collected by πllm. In practice, we employ two techniques to
enhance the quality of the collected dataset. (i) We perform data collection using an LLM planner
with physical verification, inspired by the RoCo policy (Mandi et al., 2023), which ensures the
acquisition of high-quality interaction samples. (ii) Additionally, to address the limited state coverage
issue that may arise from directly rolling out the πllm policy, we intentionally reset the environment
state to an unreachable state and initiate LLM-planning from that point.

Given that our theoretical analysis demonstrates that our method can achieve a superior policy
compared to the behavior policy µ through advantage-weighted regression, it is natural to consider
whether a better behavior policy than πllm can be utilized for dataset collection, potentially leading
to further policy improvement during optimization. Subsequently, we conduct an ablation study
utilizing a mixed dataset collected by an expert policy and an LLM policy. Our preliminary findings
indicate that the inclusion of additional optimal data does not result in performance improvement.
We hypothesize that two reasons contribute to these unexpected results. (i) The incorporation of data
from a different policy introduces increased variance in Monte-Carlo estimation, thereby reducing the
stability of the value functions. Consequently, the value function may produce high-variance outputs,
potentially leading to misleading optimization of the LLM planner as prompts. (ii) The LLM planner
equipped with enhanced augmentation techniques achieves improved data coverage of the resulting
policy. In contrast, the optimal policy is more deterministic, leading to more limited state coverage,
which poses challenges for value estimation of out-of-distribution (OOD) states and actions in LLM
planning. This issue bears resemblance to the distribution shift problem encountered in offline RL
(Levine et al., 2020; Xie et al., 2021).

We describe the differences between expert policy and an LLM policy in detail here.

• LLM policy: This policy is to leverage the reasoning power of LLM to solve specific tasks and use
physical verification as feedback. It is recommended to use a variant of ReAd-J for data collection,
which replaces ReAd feedback with physical verification and uses only the previous round of
historical information in the prompts. At each time step t, environment state st, robot optional
actions, and task goals are added into the prompt in the form of text. And then the LLM takes the
prompt as input, generates the joint action at of all robots and get a reward rt. We store every
transition as a tuple (st , at , rt) until the task is accomplished.

• Expert policy: Here we implement this policy with human control. This requires a human player
to analyze the task and infer the optimal action at each time step. The collected data format is the
same as the method described above.

Table 7: An ablation study of data ratio of optimal data and LLM planner data in the offline dataset.
The mixing ratio is represented by X% : Y%, where X% denotes the percent of samples collected
by the LLM policy, and Y% denotes the percent of samples collected by the optimal policy.

NQ ES SR

READ-J(0%:100%) 16.4±0.54 13.4±0.27 0.8±0.13
READ-J(50%:50%) 15.8±1.12 13.9±0.35 0.6±0.16
READ-J(100%:0%) 17.6±1.89 13.9±0.41 0.7±0.15

READ-S(0%:100%) 31.4±1.11 14.0±0.26 0.8±0.13
READ-S(50%:50%) 29.1±0.91 13.9±0.31 0.7±0.15
READ-S(100%:0%) 34.2±2.18 14.3±0.30 0.5±0.17

Critic Architecture. The critic learns to estimate the value function of state-action pairs from
the dataset. The state includes the environment state and the agent state, where the environment
state contains variables of the simulator and the agent state is described by language. The action is
also described by language. We adopt the pre-trained BERT Transformer model to extract language
features of the agent state and actions. Then we concatenate the output feature with environment state
features to some MLP layers to predict the Q-value. The structure of the critic network is given in
Figure 12, and the hyper-parameters are given in Table 8.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

BERT
Transformer

MLP Network

Input
layer

Output
layer Q value

Hidden
layer

Structure of Critic

 Action
（language）

Input of Bert

 Agent state
 (language) language

 feature

 env state
 (simulator)

MLP

 variable
 feature

Figure 12: In this figure, the parameters of BERT Transformer are fixed and will not be updated
during the training of Critic.

Table 8: The input dimensions for Critic of ReAd-J and ReAd-S are represented by JIS and SIS
respectively, while HS represents the hidden layer input dimension, HN represents the number of
hidden layers, LR is the learning rate, BS is batch size, TN represents the number of training iterations,
SS is the dimension of environment state, and n is the number of robots in the environment.

JIS SIS HS HN LR BS TN
VALUE 768+SS n× 768+SS 256 1 10−3 32 9× 105

Token Consumption. We report the details of token consumption on both benchmarks in Table 9
and Table 10 respectively. The total number of tokens consumed includes tokens consumed during
pre-sampling data for training critic network. We utilize LLM policy to collect data for critic training
in the experiment of DV-RoCoBench, while the data is collected by expert policy in the experiment of
Overcooked-AI. Obviously, during the phase of planning, ReAd-S and ReAd-J consume less tokens
than all other baselines. In terms of total consumed tokens, ReAd-J is comparable to the baselines
which also generate joint plans in a parallel manner, and ReAd-S is significantly superior to RoCo.

Critic Training. The quantity of trajectories required for critic training depends on how challenging
the task is. For 5 difficulty levels in Sweep Floor, critic training demands about 70, 120, 240, 600,
and 1400 trajectories respectively. For 4 difficulty levels in Make Sandwich, about 60 trajectories
are needed for critic training. For 5 difficulty levels in Sort Cube, critic training demands about 230,
240, 300, 400 and 510 trajectories respectively. For Cramped room and Forced coordination, the
number is about 128 and 2048 respectively. It is important to note that the volume of data utilized for
critic training can be adjusted flexibly to align with the specific demands and challenges of the actual
situation.

Table 9: Tokens consumed by all methods during the evaluation in DV-RoCoBench.

Methods ReAd-S ReAd-J RoCo Central Plan ReAct Reflexion MindAgent

Tokens for planning 9M 6M 24M 15M 11M 11M 13M
Tokens for training Q̂ 7M 7M - - - - -
Total tokens 16M 13M 24M 15M 11M 11M 13M

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 10: Tokens consumed by all methods during the evaluation in Overcooked-AI.

Methods ReAd-J Central Plan ReAct Reflexion MindAgent

Tokens for planning 1M 2M 4M 3M 4M
Tokens for training Q̂ - - - - -
Total tokens 1M 2M 4M 3M 4M

F EXTENDED DISCUSSION ABOUT SYMBOL GROUNDING

In this section, we would like to discuss the LLM grounding problem in embodied tasks beyond
our algorithm. Currently, most of available embodied multi-agent collaboration benchmarks (e.g.,
DV-RoCoBench and Overcooked-AI) establish the base for LLM grounding by transforming the
state/image in the environment to the textual description. Since the LLM is not capable of perceiving
the current situation in the environment via visual signals, such a transformation may be achieved
by directly using specific object identifiers without visual grounding. However, it may seem to ruin
the purpose of LLM grounding where the main role of language is originally to provide a vehicle
for establishing common ground and resolving ambiguities. It makes the evaluation of ours and
other LLM-based embodied algorithms (Ahn et al., 2022; Yao et al., 2023b; Shinn et al., 2023; Gong
et al., 2023) on these benchmarks possibly overestimated on solving the symbol grounding problem
(Harnad, 1990).

We acknowledge that directly using fictional object identifiers without visual grounding is a limitation
while at the same time it implies that a potential solution to overcome this limitation is to use strong
Visual Language Models (VLMs), e.g., GPT-4o. Specifically, it requires identifying the object
types (in Make Sandwich) or positions (in Sort Cubes and Sweep Floor), and summarizing the
information with a corresponding textual representation, which aligns well with the purpose of
symbol grounding. Inspired by this, we conduct a simple but essential experiment to investigate
how well GPT-4o captures and describes the necessary information compared with that generated
by the object identifiers. Taking the Forced Coordination as the test scenario, we give a example
in the prompt, which includes a image of current situation of the environment paired with a textual
description previously given by the human about this image. Then we ask GPT-4o for generating an
appropriate response for the input image, following the template in the example. The example case
and test case are shown as Figure 13, and the output textual state and ground truth textual state are
listed as follows.

(a) Example case (b) Test case

Figure 13: The example case and test case for testing the visual understanding and summarizing
capability of GPT-4o.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

[Inputting the example image observation]
[Prompt]:
You need to accomplish a task where you need to precisely summarize the necessary information from a given
image. We start by introducing the meaning of each character appeared in the *Current Env State* which
would be introduced in the example we provide later.
Character Meaning:
The letter X stands for table, P for cooking station, O and o stand for onion, D and d for plates, and S for
service desk. When the onion or dish is on the table or being held by agent, an o or d will be added after its
corresponding character. When the onion is placed on the cooking table, it will be denoted as p{ø, p{øø means
that there are two onions on the cooking table. And when the cooking table cooks the soup, it will show how
long it has been cooked, such as p{ø20 means that it has been cooked in 20 time steps. The numbers 1 and 0
represent the agent, and the direction arrow ↑ ↓ ← → represents the direction the agent is facing.Each object
occupies a grid size, and the agent moves one grid distance at a time.
Given a image we input, you should first describe the environment status of the image in *Current Env State*,
then summarize the events according to *Character Meaning*. Now we provide a specific example. Taking
the attached image as input, the standard response corresponding to this image is as follows:
Current Env state:
X X X P X
O ↑1 X ←0 P
O X X
D X X
X X X S X
Cook station local (0, 3) (1, 4), there are 0 onions on it, soup has not yet begun to cook
Onions local: (1, 0) (2, 0)
Dishes local: (3, 0)
Server desk local: (4, 3)
Agent0 local: (1, 3), direction: west, hold: nothing
Agent1 local: (1, 1), direction: north, hold: nothing
The above all is the instruction for the task.
[Inputting the test image observation]
[Prompt]:
Please describe this picture following the previous instruction.
[Output]:
Based on the new environment state:
Current Env state:
X X X P X
O ↑1 X ↑0 P
O X X
D X X
X X X S X
Cook station local: (0, 3) (1, 4), there are 0 onions on it, soup has not yet begun to cook.
Onions local: (1, 0), (2, 0).
Dishes local: (3, 0).
Server desk local: (4, 3).
Agent0 local: (1, 3), direction: north, hold: nothing.
Agent1 local: (1, 1), direction: north, hold: nothing.
This description follows the format used earlier to capture the environment’s status at the current timestep.
[Ground truth]:
Current Env state:
X X X P X
O X P
O ↓1 X ↓0 X
D X X
X X X S X
Cook station local (0, 3) (1, 4), there are 0 onions on it, soup has not yet begun to cook
Onions local: (1, 0) (2, 0)
Dishes local: (3, 0)
Server desk local: (4, 3)
Agent0 local: (2, 3), direction: south, hold: nothing
Agent1 local: (2, 1), direction: south, hold: nothing

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Shown in the above response, GPT-4o can generate a textual state with the correct format based on
the image and template, but the coordinates and relative positions of objects are inconsistent with the
actual situation, which has also been discussed in previous works (Xu et al., 2023). But surprisingly, it
can correctly summarize the location and status of all entities in the wrong text-format array. Overall
result shows that VLMs are hard to understand spatial relationship from images currently.

G ILLUSTRATION OF THE INTERACTION PROCESS

we illustrate the distinctions between ReAd-S and RoCo by presenting a series of task execution
screenshots. In Figure 14 and Figure 15, we compare the screenshots of our method and RoCo
algorithm in task Sweep Floor Y2 G2. Our method can perform re-plan and correct the initial planning
using advantage feedback, which results in a minimum number of environmental interactions. In
contrast, RoCo which relies on physical feedback requires more negotiation and interactions with
the environment. A similar comparison is shown in Figure 16 and Figure 17 for Sort Cubes sort4. A
comparison between ReAd-J and Central Plan on Forced Coordination scenario is shown in Figure 18
and Figure 19.

begin
Alice: MOVE yellow_cube_2
Bob: MOVE yellow_cube_2

Alice: WAIT
Bob: SWEEP yellow_cube_2

Alice: MOVE green_cube_2
Bob: MOVE green_cube_2

Alice: WAIT
Bob: SWEEP green_cube_2

Alice: MOVE yellow_cube_1
Bob: MOVE yellow_cube_1

Alice: WAIT
Bob: SWEEP yellow_cube_1

Alice: MOVE green_cube_1
Bob: MOVE green_cube_1

Alice: WAIT
Bob: SWEEP green_cube_1

Alice: DUMP
Bob: WAIT

Figure 14: Snapshots of the interaction process of ReAd-J in task Sweep Floor Y2 G2. Our method
obtains the minimum number of environmental interactions needed to complete the task.

Alice: MOVE green_cube_1
Bob: MOVE green_cube_1

Alice: DUMP
Bob: WAIT

Alice: WAIT
Bob: SWEEP green_cube_2

Alice: WAIT
Bob: SWEEP green_cube_1

Alice: WAIT
Bob: WAIT

Alice: WAIT
Bob: WAIT

Alice: DUMP
Bob: WAIT

begin
Alice: MOVE yellow_cube_2
Bob: MOVE yellow_cube_2

Alice: WAIT
Bob: SWEEP yellow_cube_2

Alice: MOVE yellow_cube_1
Bob: MOVE yellow_cube_1

Alice: WAIT
Bob: SWEEP yellow_cube_1

Alice: DUMP
Bob: WAIT

Alice: DUMP
Bob: MOVE green_cube_2

Alice: MOVE green_cube_2
Bob: WAIT

Figure 15: Snapshots of the interaction process of RoCo in task Sweep Floor Y2 G2. The figure
above shows that after planning and sweeping a cube into the dustpan, RoCo will dump it into the
trash bin. However, after sweeping the last cube into the dustpan, instead of immediately planning to
dump it to complete the task, LLM stubbornly believes that the task is done and plans to wait for the
next two interactions.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Alice: PICK pink_polygon PLACE panel3
Bob: PICK blue_square PLACE panel3begin

Alice: PICK blue_square PLACE panel2
Bob: PICK pink_polygon PLACE panel4

Alice: PICK blue_square PLACE panel2
Bob: PICK pink_polygon PLACE panel4
Chad: PICK yellow_trapezoid PLACE panel6

Figure 16: Snapshots of the interaction process of ReAd-S in task Sort Cubes sort4. This task is
challenging and requires the collaboration of three robots and takes a minimum of three steps to
complete. Our approach efficiently accomplishes this task with minimal environment interactions.

begin

Bob: PICK pink_polygon PLACE panel4

Alice: PICK pink_polygon PLACE panel3Alice: PICK blue_square PLACE panel2Bob: PICK blue_square PLACE panel3

Bob: PICK yellow_trapezoid PLACE panel5 Chad: PICK yellow_trapezoid PLACE panel6

Figure 17: Snapshots of the interaction process of RoCo in task Sort Cubes sort4. Before the joint
actions of all robots are executed, the planning result can only be improved through the dialogue
of LLMs. In addition, environmental feedback can be generated only after the agent interacts with
the simulator. In contrast, our advantage feedback provides timely feedback in the process of LLM
planning for policy improvement before interaction.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

agent0: west
agent1: north

agent0: west
agent1: interact

agent0: interact
agent1: west

agent0: stay
agent1: interact

agent0: interact
agent1: east

agent0: interact
agent1: interact

agent0: interact
agent1: west

agent0: east
agent1: interact

agent0: interact
agent1: east

agent0: west
agent1: interact

agent0: interact
agent1: south

agent0: east
agent1: south

agent0: interact
agent1: west

agent0: interact
agent1: interact

agent0: stay
agent1: north

agent0: west
agent1: north

agent0: stay
agent1: east

begin

agent0: interact
agent1: south

agent0: interact
agent1: north

agent0: east
agent1: interact

agent0: south
agent1: north

agent0: south
agent1: west

agent0: north
agent1: interact

agent0: interact
agent1: west

agent0: stay
agent1: interact

Figure 18: Snapshots of the interaction process of ReAd-J in task Forced Coordination. This task is
challenging and requires the collaboration of two agents and takes a minimum of 22 steps to complete.
Most of the time, ReAd can improve the unreasonable planning result generated by LLM, so that
ReAd-J can complete the task smoothly. However, due to the out-of-distribution (OOD), it is possible
to evaluate the advantage value of some unreasonable planning to carry out environmental interaction

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

begin agent0: west
agent1: west

agent0: interact
agent1: north

agent0: west
agent1: interact

agent0: interact
agent1: south

agent0: south
agent1: interact

agent0: interact
agent1: east

agent0: east
agent1: interact

agent0: interact
agent1: east

agent0: north
agent1: interact

agent0: south
agent1: interact

agent0: interact
agent1: west

agent0: east
agent1: north

agent0: south
agent1: interact

agent0: interact
agent1: west

agent0: east
agent1: south

agent0: south
agent1: interact

agent0: interact
agent1: west

agent0: interact
agent1: interact

agent0: north
agent1: west

agent0: east
agent1: south

agent0: south
agent1: west

agent0: interact
agent1: interact

agent0: north
agent1: interact

agent0: south
agent1: interact

agent0: interact
agent1: east

Figure 19: Snapshots of the interaction process of Central Plan in task Forced Coordination. From
the screenshot of the interaction process, it can be found that in the Forced Coordination, it is difficult
for LLM to understand the state of the current environment, so hallucination occurs frequently,
resulting in the failure of Central Plan to effectively complete the task.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

H EXAMPLES OF REINFORCED ADVANTAGE FEEDBACK

Format of Advantage Feedback. The Advantage Feedback comprises of [Evaluation Score] and
[Improvement Feedback]. If the advantage score of the action is higher than a threshold, the response
will only contain [Evaluation Score]. Otherwise, we perform a re-plan to improve the previous action,
and the response will include both [Evaluation Score] and [Improvement Feedback].

Below we will briefly show a few examples of the LLM’s planning corrected by advantage feedback,
using ReAd-S to complete the Sweep Floor task.

[Alice Response]:
Bob, we have green cube 1 and green cube 2 in the dustpan. Let’s MOVE to the trash bin so I can DUMP
these cubes. After that, we can go for any remaining cubes.
PROCEED
NAME Alice ACTION MOVE trash bin.
[Advantage Feedback]:
[Evaluation Score]:
The advantage score of Alice’s action is -0.6652!
The advantage score is low and the plan need to be changed!
[Improve Feedback]
Alice’s previous response:
Bob, we have green cube 1 and green cube 2 in the dustpan. Let’s MOVE to the trash bin so I can DUMP
these cubes. After that, we can go for any remaining cubes.
PROCEED
NAME Alice ACTION MOVE trash bin
The advantage score is -0.665, it is too low to run. The answer may contain a misunderstanding of the state of
the environment, you must change your action to raise the advantage score over 0!
[Alice Response]:
Bob, I made a mistake in my previous plan. Since we already have green cube 1 and green cube 2 in the
dustpan, I should DUMP them into the trash bin. I’ll do that while you WAIT.
PROCEED
NAME Alice ACTION DUMP
[Advantage Feedback]:
[Evaluation Score]:
The advantage score of Alice’s action is 17.376!
The advantage score is high enough.

Explain. In this example, the MOVE action can only be used for cubes due to the task setting, and
the MOVE of the trash bin is illegal. However, the LLMs learned from the web may consider the
MOVE action can also be applied to the trash bin, which does not ground well with the specific
task, resulting in the fact of hallucination. Our method can correct this type of error with advantage
feedback according to the reward since taking MOVE action to the trash bin will obtain a zero reward
and lead to the same next state as the current state.

[Alice Response]:
Bob, we have green cube 1 and green cube 2 in the dustpan. Let’s MOVE to the next cube we need to sweep.
I suggest we go to pink cube 1 since it’s the closest cube on the table. Once we’re in position, I will WAIT for
you to SWEEP it.
PROCEED
NAME Alice ACTION MOVE pink cube 1
[Advantage Feedback]:
[Evaluation Score]:
The advantage score of Alice’s action is -0.0927!
The advantage score is low and the plan needs to be changed!
[Improve Feedback]

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Alice’s previous response:
Bob, we have green cube 1 and green cube 2 in the dustpan. Let’s MOVE to the next cube we need to sweep.
I suggest we go to pink cube 1 since it’s the closest cube on the table. Once we’re in position, I will WAIT for
you to SWEEP it.
PROCEED
NAME Alice ACTION MOVE pink cube 1 The advantage score is -0.0927, it is too low to run. The answer
may contain a misunderstanding of the state of the environment, you must change your action to raise the
advantage score over 0!
[Alice Response]:
Bob, I made a mistake in my previous suggestion. We should not move to pink cube 1 as it’s not one of our
targets. Instead, let’s DUMP the cubes we have in the dustpan into the trash bin. I will do that while you
WAIT.
PROCEED
NAME Alice ACTION DUMP
[Advantage Feedback]:
[Evaluation Score]:
The advantage score of Alice’s action is 18.4184!
The advantage score is high enough.

Explain. In this example, the target colors to sweep are yellow and green. Since the environment
also includes many cubes with other colors, LLM may plan to sweep cubes with the wrong colors
initially. In such cases, the advantage feedback is helpful to correct the plan generated by the LLM.

[Bob Response]:
Alice, I will WAIT as you move into position for yellow cube 3.
PROCEED
NAME Bob ACTION WAIT
[Advantage Feedback]:
[Evaluation Score]:
The advantage score of Bob’s action is -3.2211!
The score is low and the plan needs to be changed!
[Improve Feedback]
Bob’s previous response:
Alice, I will WAIT as you move into position for yellow cube 3.
PROCEED
NAME Bob ACTION WAIT
The advantage score score is -3.221, it is too low to run, the answer may contain a misunderstanding of the
state of the environment, you must change your action to raise the advantage score over -0.2!
[Bob Response]:
Alice, since you are moving to yellow cube 3, I will also MOVE to yellow cube 3 to be ready to SWEEP it
once you are in position.
PROCEED
NAME Bob ACTION MOVE yellow cube 3
[Advantage Feedback]:
[Evaluation Score]:
The advantage score of Bob’s action is 0.6383!
The advantage score is high enough.

Explain. In this example, the LLM plans for Bob to move to yellow cube 3 with Alice, it can sweep
directly into the dustpan in the next step. However, during the first LLM planning, the LLM plans the
WAIT action for Bob. If Bob performs this action at this time, Alice can only wait for Bob to move to
yellow cube 3. Thus, our method performs replanning based on the advantage feedback to reduces
the interaction steps to the environment.

37

	Introduction
	Preliminaries
	Methodology
	Learning of Advantage Functions
	Theoretical Motivation for Grounding LLM
	Prompting by Reinforced Advantage Feedback

	Related Works
	Experiments
	Experimental Setup
	Results
	Ablation Studies

	Discussion and Conclusion
	Theoretical Proof
	Proof of Multi-Agent Advantage Decomposition
	Derivation of Optimal Joint Policy and Optimal Individual Policy
	Proof of Monotonic Improvement with Binary Filtering

	Additional Related Works
	Algorithmic Description
	Environment Details
	Sweep Floor
	Make Sandwich
	Sort Cubes
	Overcooked-AI

	Additional Experimental Results
	Comparison of Baselines
	Main Experiments
	Extended Experiment with Llama-3.1-70B-Instruct
	Visualization of Robustness Evaluation
	Dataset and Critic Network

	Extended Discussion about Symbol Grounding
	Illustration of the Interaction Process
	Examples of Reinforced Advantage Feedback

