
Improving Graph Contrastive Learning with Community Structure

Xiang Chen1,2 Kun Yue1,2 Liang Duan1,2 Lixing Yu1,2

1School of Information Science and Engineering, Yunnan University, Kunming, China
2Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming, China

Abstract

Graph contrastive learning (GCL) has demon-
strated remarkable success in training graph neural
networks (GNNs) by distinguishing positive and
negative node pairs without human labeling. How-
ever, existing GCL methods often suffer from two
limitations: the repetitive message-passing mech-
anism in GNNs and the quadratic computational
complexity of exhaustive node pair sampling in
loss function. To address these issues, we pro-
pose an efficient and effective GCL framework that
leverages community structure rather than relying
on the intricate node-to-node adjacency informa-
tion. Inspired by the concept of sparse low-rank ap-
proximation of graph diffusion matrices, our model
delivers node messages to the corresponding com-
munities instead of individual neighbors. By ex-
ploiting community structures, our method signif-
icantly improves GCL efficiency by reducing the
number of node pairs needed for contrastive loss
calculation. Furthermore, we theoretically prove
that our model effectively captures essential struc-
ture information for downstream tasks. Extensive
experiments conducted on real-world datasets il-
lustrate that our method not only achieves the state-
of-the-art performance but also substantially re-
duces time and memory consumption compared
with other GCL methods. Our code is available at
https://github.com/chenx-hi/IGCL-CS.

1 INTRODUCTION

Graph neural networks (GNNs) are essential for analyz-
ing complex graph-structured data by learning effective
node representations that capture rich structural information
through message passing on the graph topology [Veličković
et al., 2018]. Most GNNs are trained in a semi-supervised

manner, where their performance heavily depends on the
availability of labeled nodes [Zheng et al., 2022]. However,
obtaining these labels is often expensive and labor-intensive.
To address this challenge, graph contrastive learning (GCL)
has emerged as a successful method for training GNNs
without requiring specific task labels, making it particularly
useful in fields such as social network analysis and recom-
mendation systems [Ju et al., 2024].

The core technology of GCL revolves around optimizing a
contrastive loss that discriminates positive and negative node
pairs to maximize feature consistency across augmented
graph views [Zhu et al., 2021, Ko et al., 2023]. While some
GCL variants enhance performance by improving the qual-
ity and quantity of sampled node pairs and achieve results
comparable to or even surpassing those of methods trained
with ground truth labels [Shen et al., 2023, Wen et al., 2024],
their scalability remains severely constrained by two inher-
ent bottlenecks: (1) the intensive message passing in GNNs,
and (2) the quadratic computational complexity of node
pairs in contrastive loss. Several methods improve efficiency
by simplifying the computation process of GCL, such as
eliminating the need for negative node pairs in contrastive
loss [Thakoor et al., 2022, Sun et al., 2024], or reducing the
number of graphs that require encoding by GNNs [Mo et al.,
2022]. Despite these improvements, the high computational
cost of the message-passing mechanism remains a bottle-
neck. Other strategies aim to speedup GNN by decoupling
graph convolution and embedding transformation [Wu et al.,
2019] or performing message passing on subgraphs [Huang
et al., 2021]. However, these techniques are not directly
applicable to unlabeled scenarios.

Community structures, characterized by dense internal con-
nections and sparse external connections, are prevalent in
many real-world graphs [Li and Pan, 2016]. This inherent
property aligns well with the diffusion process on graphs
[Girvan and Newman, 2002, Huang et al., 2021, Zhang et al.,
2024], and recent methods have demonstrated the effective-
ness of utilizing community structures in GCL to improve
downstream task performance [Li et al., 2022, Chen et al.,

mailto:<duanl@ynu.edu.cn>?Subject=Your UAI 2025 paper "IGCL-CS"
https://github.com/chenx-hi/IGCL-CS

2023]. However, these methods primarily focus on enhanc-
ing task performance and often overlook the scalability chal-
lenges associated with GCL. Generally, given a problem,
simpler data structures can lead to simpler and more efficient
algorithms. The partition matrix indicating node-community
memberships offers a straightforward yet essential structure
for graph representation [Wu et al., 2022a]. This naturally
raises the question: can we leverage community structures
to simultaneously address the two scalability issues, while
still maintaining high downstream task performance?

For the computation consumption caused by GNNs, we uti-
lize a community partition matrix instead of the original
graph structure for message passing. Based on the dense
internal connections within the community, we treat each
community as a subgraph where internal nodes are intercon-
nected. Thus, all nodes within a community share the same
representation, referred to as the community centroid. This
approach simplifies the message-passing process by allow-
ing node features in a community to be aggregated at the
community centroid instead of individual nodes, avoiding
the issue of exponential growth in the number of nodes that
need to be computed during message passing.

For the quadratic computational complexity of node pair
similarity in contrastive loss, we propose an approach
that effectively exploits both intra-community and inter-
community information to reconstruct the loss. Specifically,
our method encourages the embedding representations of
community centroids to be similar to their internal nodes,
and leverages the hierarchical structure of communities to
implicitly model long-range dependencies between nodes
in adjacent communities for capturing both basic (intra-
community) and higher-level (inter-community) structural
information. Since the number of communities is typically
much smaller than the number of individual nodes, this ap-
proach significantly reduces the computational load required
for calculating node pair similarities in GCL. In addition,
our reconstructed loss facilitates the construction of positive
and negative samples more effectively, avoiding the misla-
beling of closely connected nodes as negative samples to
improve the performance of downstream tasks.

The main contributions are summarized as follows:

• We propose a simple and effective method to improve
the scalability and performance of GCL by leveraging
community structure instead of fine-grained adjacency
information between nodes.

• We provide theoretical analysis showing that our com-
munity structure-based loss can effectively capture the
essential structural information and achieves good gen-
eralization performance.

• Extensive experiments on widely used benchmarks
across different scales and homophily levels show that
our method significantly reduces computational over-
head while achieving the best performance.

2 PRELIMINARIES

Graph Neural Network. Let G = (V, E) denote a graph
with n nodes, where V = {v1, · · · , vn} is the node set and
E ⊆ V × V is the edge set. The original graph structure
can be represented by an adjacency matrix A ∈ {0, 1}n×n,
where Ai,j = 1 if there is an edge (vi, vj) ∈ E , other-
wise Ai,j = 0. The node features are represented by a fea-
ture matrix X ∈ Rn×h, where xi ∈ X is a h-dimensional
feature vector of node vi. Thus, the complete graph (i.e.,
graph structure together with node features) can be denoted
as G = (A,X). For scenarios of isolating node features
from the graph structure, we define a feature-only graph
as G0 = (In,X), where In is the n × n identity matrix
indicating the absence of edge connections.

In this paper, we focus on training a GNN encoder fθ(G) :
G → Rn×d parameterized by θ in the absence of labeled
data to generate node representations vi = fθ(G)[vi] ∈ Rd

optimized for downstream tasks (e.g., node classification).
Specifically, a single-layer GNN [Kipf and Welling, 2017]
can be formulated as

fθ(G) = σ(ÂXW) (1)

where σ(·) denotes a non-linear activation function, Â repre-
sents the symmetrically normalized adjacency matrix of A,
and W ∈ Rh×d is the learnable weight matrix correspond-
ing to θ. It means that the GNN leverages the graph structure
by Â and the node features by X to produce effective node
embeddings suitable for downstream applications.

Graph Partition. Let P = {P1, · · · , Pm} represent a par-
tition of G, where each Pj denotes a community within G
that preserves regional structure and clustering properties.
For any j ̸= k, we have Pj ∩ Pk = ∅. A node vi ∈ Pj must
satisfy the condition that its internal degree within Pj ex-
ceeds its external degree. We use P ∈ {0, 1}n×m to denote
the partition matrix corresponding to P , where Pi,j = 1
if node vi ∈ Pj , and Pi,j = 0 otherwise. The normalized
partition matrix is denoted as P̂. The adjacency matrix of
the community-level graph can be constructed by PTAP,
where each entry indicates the connections between commu-
nities. This formulation enables the analysis of higher-level
interactions among communities, instead of focusing on
individual nodes.

Graph Contrastive Learning. The typical GCL framework
consists of a shared GNN encoder fθ, a MLP projection
head gφ, and a graph contrastive loss Lgc. Initially, GCL
generates two augmented views G1 and G2 by applying ran-
dom perturbations to the input graph G, such as DropEdge
and feature masking [Hassani and Ahmadi, 2020]. These
augmented views are then fed into fθ to obtain node repre-
sentations. During the training phase, the projection head
gφ maps the node representations from both views into a
common embedding space for contrastive learning. The
contrastive loss Lgc is designed to pull together the rep-

Positive node pairs Negative node pairs

𝐺1

𝐺2

𝐺

Figure 1: An Example of Contrastive Scheme.

resentations of the same node from different views (i.e.,
positive node pairs) while pushing apart the representations
of different nodes (i.e., negative node pairs). Formally, Lgc

can be written as

Lgc = −
1

n

∑
vi∈V

log
exp (gφ(v

1
i)

Tgφ(v
2
i)/τ)∑

vj∈V− exp (gφ(v1
i)

Tgφ(vj)/τ)

(2)
where v1

i = fθ(G
1)[vi] and v2

i = fθ(G
2)[vi] are the em-

bedding representations of the same node vi in the two
augmented views, V− denotes the set of negative node pairs
from the two views [Zhu et al., 2021], and τ > 0 is the
temperature parameter. In addition, given the graph homo-
geneity assumption, positive node pairs can be extended
from the two augmented views to the neighbors of node v.
An illustration of this scheme is presented in Figure 1.

3 METHODOLOGY

In this section, we present the technical details of our method
and provide a theoretical analysis to ensure its effective
application to downstream tasks.

3.1 COMMUNITY CONTRASTIVE LEARNING

The basic idea behind our method is to encourage the rep-
resentations of community centroids to be similar to those
of their internal nodes, while pushing dissimilar community
centroids apart. As illustrated in Figure 2, our method does
not utilize a GNN encoder during the training phase, thereby
reducing the computational overhead associated with gener-
ating negative sample pairs. This simplified GCL framework
significantly decreases the computational resources required
for model training.

3.1.1 Partition Convolutional Network

Conventional GCL methods suffer from prohibitive com-
plexity due to the exponential growth of the number of nodes
that need to be computed in layer-wise message passing
and the redundant computations across augmented views.

Prior attempts to reduce graph instances processed by GNNs
[Mo et al., 2022] have not address the root complexity bot-
tleneck, i.e., dense message passing. We replace the adja-
cency matrix with a sparse partition matrix, which enables
a low-rank approximation of the k-step diffusion matrix:
Âk ≈ PP̂T [Loukas, 2019, Zhang et al., 2024]. Then, the
GNN encoder in Eq. 1 simplifies to:

fθ(G) = σ(ÂXW) ≈ σ(PP̂TXW) = fθ(P) (3)

where P̂TXW denotes the community centroid represen-
tations C ∈ Rm×d. We refer to Eq. 3 as a single-layer
Partition Convolutional Network (PCN), which performs
message passing exclusively within each community.

In practice, we use a fast graph partition algorithm
METIS [Karypis and Kumar, 1997] to generate P. The
sparsity of the partition matrix P ensures that PCN requires
fewer computational resources, making it particularly ef-
ficient for large-scale graphs. Moreover, by focusing on
message passing within communities, PCN can effectively
exchange information among nodes within the same commu-
nity without unnecessary interactions across communities.
Moreover, our experimental results further show that even
with a single-layer architecture, PCN achieves high accuracy
while significantly reducing computational costs.

3.1.2 Community Contrastive Loss

The success of existing GCL methods lies in emphasizing
similarities in the neighborhood representations of the same
node across different augmented views [Zhu et al., 2021,
Shen et al., 2023]. Inspired by this, we leverage the dense
connections within communities to strengthen the learn-
ing of neighborhood similarities. Building on the principle
of PCN, which focuses on message passing in communi-
ties to capture local structural information, we make node
representations within the same community more similar,
ensuring that intra-community nodes have consistent and
closely aligned embeddings. Moreover, to fully extract hi-
erarchical structure information, we also encourage closer
proximity between neighboring community centroids.

Intra-community Reconstruction Loss. We utilize the
community centroid representations to reconstruct the origi-
nal features of internal nodes, leveraging the fact that nodes
within a community share the same centroid representation.
This approach naturally reduces the distance between the
internal node representations without needing to compute
all pairwise distances within the same community. Formally,
the intra-community reconstruction loss is defined as

Lcr =
1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥gφ(ci)− vj∥22 (4)

where ci = fθ(P)[Pi] is the centroid representation of Pi

and vj = fξ(G
0)[vj] is the feature-only representation of

MLP

PCN
Projection

Head

Centroid 𝐂

𝑔𝜑(𝐂𝑖)
𝑓𝜃(𝒫)

𝑓𝜉 𝐺0 𝑣𝑗

𝑣𝑗 ∈ 𝑃𝑖

Positive Pairs Negative Pairs

ℒ𝑐𝑟

EMA

Partition

Semantic Feature

ℒ𝑐𝑟

ℒ𝑐𝑛 and ℒ𝑐𝑢𝑟

Figure 2: The Framework of Our Proposed GCL Method.

vj . The term |Pi| is the number of nodes in Pi and ∥·∥2 de-
notes the L2 norm. Minimizing Lcr ensures the embeddings
of nodes within the same community are closely aligned
with their community centroids.

Inter-community Neighborhood Loss. Note that adjacent
communities tend to merge into larger communities, form-
ing hierarchical structures, a phenomenon widely observed
in real-world graph data [Li and Pan, 2016]. To incorporate
this hierarchical structure information and address the limi-
tations of Lcr, where nodes are adjacent but do not belong
to the same community, we introduce the inter-community
neighborhood loss, defined as

Lcn =
1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

∥ci − ck∥22 (5)

where ck = fθ(P)[Pk], andN (P) represents the neighbors
of P , which can be obtained from the community adjacency
matrix PTAP. Minimizing Lcn ensures that neighboring
communities have similar centroid representations, effec-
tively capturing the hierarchical structure information.

Community Uniformity Regularization Loss. Although
Lcr and Lcn provide a framework for combining intra-
community similarity and inter-community hierarchy, these
losses alone may lead to collapsed representations [Thakoor
et al., 2022]. In such a scenario, all node representations de-
generate to the same vector on the hyperplane, minimizing
the loss but rendering the model ineffective for downstream
tasks. To address this issue, we introduce the community
uniformity regularization loss to further enhance the repre-
sentation diversity, defined as

Lcur = − 1

m2

∑
Pi,Pt∈P

∥ci − ct∥22 (6)

where Pt denotes any community distinct from Pi (i.e.,
i ̸= t), and ct is the representation of Pt. By maximizing
the distances between different community centroids, this
loss encourages diversity in the learned representations.

Overall Loss. Directly jointly optimizing the three losses
can result in an overall loss Lall = Lcr + Lcn + Lcur.
However, minimizing Lall is not a suitable optimization
objective because Lcur can cause Lall to become negative,
leading to abnormal training. Although scaling Lcur via a
hyperparameter can mitigate this issue, it increases the com-
plexity and time required to find optimal model parameters.
Therefore, we integrate the three losses and derive an upper
bound representation as the overall loss:

LP ≤ −
1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

log ℓ(Pi) (7)

where ℓ(Pi) =

exp(1
|Pi|

∑
vj∈Pi

gφ(ci)
Tvj + αcTi ck)

exp(1
|Pi|

∑
vj∈Pi

gφ(ci)Tvj) +
∑

Pt∈P exp cTi ct

, and α controls the influence of the neighboring communi-
ties. The larger α is, the more focus on global information
of G. For reading simplicity, we omit the temperature pa-
rameter τ in Eq. 7 and the specific value can be found in
Appendix B.2. The derivation of the overall loss is outlined
below, with more details available in Appendix A.1.

Proof. Since vectors in contrastive losses are usually nor-
malized, we have

minLcr ⇔ min− 1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

gφ(ci)Tvj (8)

minLcn ⇔ min− 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

cTi ck (9)

minLcur ⇔ min
1

m2

∑
Pi,Pt∈P

cTi ct (10)

Let LP be the sum of Eq. 8, Eq. 9 and Eq. 10, and define
B = 1

|Pi|
∑

vj∈Pi
gφ(ci)

Tvj + cTi ck. Then, according to

Jensen’s inequality, we have

LP
c
= − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

(B− 1

m

∑
Pt∈P

cTi ct)

≤ − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

(B− log
∑
Pt∈P

exp cTi ct
m

)

≤ − 1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

[log expB −

log (exp (
1

|Pi|
∑
vj∈Pi

gφ(ci)
Tvj) +

∑
Pt∈P

exp cTi ct)]

= − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

log ℓ(Pi)

where c
= denotes the equation minimization is equivalent.

Since minLall ⇔ minLP , we derive the upper bound of
the overall loss, as shown in Eq. 7.

3.1.3 Model Training

Once the training is completed, we retain the model pa-
rameters learned in PCN and replace the partition convo-
lutional operator with a graph convolutional operator, i.e.,
σ(ÂkXW) to obtain node representations for downstream
tasks. By this way, we avoid complex calculations during
the training process and also use the graph convolutional
operator to improve model performance, which we have
verified in experiments. Note that the weight parameters ξ
of the MLP encoder are updated via the exponential mov-
ing average (EMA) of the PCN encoder weights θ (i.e.,
ξ ← wθ + (1 − w)ξ, where w ∈ [0, 1] is the target de-
cay rate). This is a common method in contrastive learn-
ing [Thakoor et al., 2022]. The overall procedure of our
model is illustrated in Algorithm 1.

Given a graph G with n nodes and m communities, the time
complexity of our method primarily arises from PCN and
contrastive loss LP . In the former, aggregating node repre-
sentations to community centroids takes O(nd), where d is
the representation dimension. In the latter, the comparison
between centroids and internal nodes is O(nd), and the com-
parison between communities is O(m2d). Since m ≪ n,
we can complete the computations in linear time.

3.2 PROPERTIES OF OVERALL LOSS

We provide theoretical evidence to prove that our method
can capture essential structural information for downstream
tasks, and all detailed proofs can be found in Appendix A.
First, we demonstrate that our method can capture structure
information of one-hop neighborhood, which is beneficial
for heterophilic graphs, as nodes from the same semantic
class tend to share similar neighborhood contexts [Xiao
et al., 2023].

Algorithm 1 Model Training
Input: a graph G = (A,X)
Parameter: number of communities m, hidden dimensions
d, training epochs T , PCN encoder fθ, MLP encoder fξ,
projection head gφ
Output: node representations H
Steps:

1: Initiate parameters θ, ξ and φ;
2: P ← construct a partition of G by METIS;
3: Construct adjacency matrix based on P;
4: for t = 1 to T do
5: c← generate community representations via Eq. 3;
6: v← generate node representations via fξ(X);
7: LP ← calculate the overall loss via Eq. 7;
8: Update model parameters θ and φ via LP ;
9: Update model parameters ξ via EMA;

10: end for
11: H← generate node representation via σ(ÂkXW);
12: return H

Theorem 1. Let N (v) denote the neighbors of v. Minimiz-
ing the community contrastive loss LP will try to minimize
the alignment loss between one-hop neighbors, which is
defined as

Lalig =
1

n

∑
vj∈V

1

|N (vj)|
∑

vi∈N (vj)

∥vj − gφ(vi)∥2 (11)

where vj = fθ(G)[vj] and vi = fθ(G
0)[vi].

Theorem 1 shows that our method can capture the one-hop
neighborhood context from the central node representations,
which captures the local structure information of the graph.
Next, we prove that our method can capture higher-level
structure information, i.e., multi-hop neighborhood depen-
dencies.

Theorem 2. Suppose the contrastive loss LP and Lgc are
L-Lipschitz continuous. Then, LP can be approximated by
Lgc under the graph homophily assumption

∥Lgc − LP∥ ≤ L∥Âk −PP̂T∥∥X∥∥Wall∥ (12)

where L is the Lipschitz constant and Wall is the learnable
parameters in GCL model.

Theorem 2 shows that our loss in Eq. 7 can estimate the orig-
inal contrastive loss Lgc of the diffusion matrix. Minimizing
∥Âk −PP̂T∥ is the minimum cut problem in graph theory,
which is consistent with the goal of graph partition meth-
ods [Hofmeyr, 2016]. Moreover, we also provide formal
guarantees on the generalizability for downstream tasks.

Theorem 3. Let f∗
θ be the optimal model parameters

learned by the global minimizer of LP , and y(vi) denote the
label of vi. Then, there exists a linear classification function
ŷ : V → Rc such that the error upper bound is

Ev∈V∥y(vi)− ŷ[f∗
θ (vi)]∥22 ≤

1− ϕP

λd+1
(13)

where λd+1 is the d + 1 smallest eigenvalue of diffusion
matrix Âk and ϕP is partition homophily ratio, defined as

ϕP =
1

m

∑
Pi∈P

1

|Pi|2
∑

vj ,vk∈Pi

1[y(vj) = y(vk)] (14)

where 1[·] is the indicator function.

Theorem 3 shows that the classification error of the learned
representations is bound by the partition rate ϕP and em-
bedding dimension d, which means that we can dynami-
cally adjust the number of communities and d to improve
performance. It is worth noting that the nodes within the
same community in a homophilic graph tend to be of the
same class (ϕP → 1), while the opposite may be true in
a heterophilic graph (ϕP → 0). This theorem indicates
that heterophilic graphs might require a larger dimension to
ensure model performance.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the effectiveness and scalability of our method.

4.1 EXPERIMENTAL SETTINGS

Datasets. We choose fourteen benchmark datasets for exper-
iments, including: (a) eight homophilic graph datasets Cora,
CiteSeer, PubMed, Wiki-CS, Amazon Computer, Ama-
zon Photo, Coauthor CS and Coauthor Physics [Kipf and
Welling, 2017, Shchur et al., 2018, Mernyei and Cangea,
2020], (b) four heterophilic graph datasets Texas, Wisconsin,
Cornell and Actor [Pei et al., 2020], and (c) two large-scale
homophilic datasets Ogbn-Arxiv and Ogbn-Products [Hu
et al., 2020].

Splitting Strategies. For Cora, CiteSeer and Pubmed
datasets, we adopt the public splits, with each class hav-
ing 20 nodes for training, another fixed 500 nodes and
1000 nodes for validation and testing, respectively [Kipf
and Welling, 2017, Veličković et al., 2019]. For the other
five homophilic datasets, we adopt the 10%/10%/80% train-
ing/validation/testing splits following previous works [Liu
et al., 2023]. For heterophilic and large-scale graphs, we
adopt the splits that come with datasets Zheng et al. [2022],
Zhang et al. [2024]. The details of the datasets are summa-
rized in Appendix B.1.

Comparison Methods. We compare our method with the
following four categories of methods:

• Semi-supervised learning methods: GCN [Kipf and
Welling, 2017], GAT [Veličković et al., 2018],
SGC [Wu et al., 2019] and NodeFormer [Wu et al.,
2022b].

• Classical GCL methods: DGI [Veličković et al., 2019],
MVGRL [Hassani and Ahmadi, 2020], gCooL [Li
et al., 2022] and CSGCL [Chen et al., 2023].

• Efficiency-oriented GCL methods: BGRL [Thakoor
et al., 2022], SUGRL [Mo et al., 2022], GGD [Zheng
et al., 2022], SGCL [Sun et al., 2024] and Struct-
Comp [Zhang et al., 2024].

• Heterophily-aware GCL methods: HGRL [Chen et al.,
2022], DSSL [Xiao et al., 2022], SP-GCL [Wang et al.,
2023], GraphACL [Xiao et al., 2023], GREET [Liu
et al., 2023] and HEATS [Zhuo et al., 2024].

Metrics. We adopt node classification and node clustering
tasks to evaluate the quality of node representations. For
node classification, we train a logistic regression classifier
on the frozen representations and report the test accuracy.
For node clustering, we perform K-Means clustering on
the representations, and report the Normalized Mutual In-
formation (NMI) and Adjusted Rand Index (ARI) scores.
We verify the scalability of our method using GPU memory
usage and training time per epoch.

Implementation Details. We randomly initialize all weight
parameters of the model and use the Adam optimizer to
train the encoder. All experiments are implemented in Py-
Torch and conducted on a machine equipped with an Intel
i9 13900KF CPU, 128GB RAM, and NVIDIA RTX 4090
GPU. Each experiment is repeated 20 times, and the average
performance and standard deviation are reported here. The
detailed settings of the model and specific hyper-parameters
can be found in Appendix B.2.

4.2 EXPERIMENTAL RESULTS

Node Classification. The node classification results on
homophilic and heterophilic graphs are reported in Ta-
ble 1 and Table 2, respectively. These results tell us that:
(a) Our method achieves the best performance across all
datasets, especially on heterophilic graphs where it outper-
forms heterophily-aware GCL methods. (b) Unsupervised
GCL methods demonstrate significant competitiveness com-
pared to semi-supervised methods that leverage label infor-
mation during the training process. (c) Community-based
GCL methods, such as gCooL and CSGCL, also achieve im-
pressive results, confirming the utility of community infor-
mation in enhancing contrastive learning. These empirical
findings support the theoretical analysis in Section 3.2 and
validate the effectiveness of our method.

Table 1: Node Classification Accuracy (%) on Homophilic Graphs (Bold: Best, Underline: Second Best).

Methods Cora CiteSeer PubMed Wiki-CS Computer Photo CS Physics

GCN 81.5±0.2 70.3±0.4 79.0±0.5 76.9±0.4 86.3±0.5 92.2±0.2 93.1±0.2 95.4±0.2
GAT 83.0±0.7 72.5±0.3 79.0±0.3 77.4±0.2 87.1±0.4 92.7±0.5 92.4±0.3 95.3±0.2
SGC 81.0±0.1 71.9±0.1 78.9±0.0 79.4±0.3 85.9± 0.7 92.3±0.2 92.6±0.2 95.1±0.2
NodeFormer 82.7±0.8 72.4±1.2 79.6±0.9 80.4±0.4 86.6±0.3 92.9±0.1 93.5±0.2 95.9±0.2

DGI 82.3±0.5 71.5±0.7 79.4±0.3 75.7±0.2 84.1±0.4 91.6±0.2 92.0±0.4 94.6±0.4
MVGRL 82.9±0.7 72.8±0.4 80.1±0.4 77.9±0.3 87.1±0.3 92.0±0.1 91.9±0.2 95.5±0.5
gCooL 82.1±0.4 71.4±0.5 82.1±0.3 78.7±0.1 88.9±0.1 92.8±0.2 92.8±0.1 95.1±0.1
CSGCL 81.2±0.2 71.1±0.1 81.2±0.3 78.6±0.1 90.2±0.2 93.2±0.4 93.6±0.1 95.3±0.2

BGRL 82.7±0.6 71.6±0.4 79.9±0.4 80.0±0.1 89.7±0.4 92.9±0.3 93.3±0.4 95.6±0.4
SUGRL 83.4±0.5 73.0±0.4 81.9±0.3 79.8±0.3 88.9±0.2 93.1±0.2 92.7±0.1 94.1±0.4
GGD 83.9±0.4 73.0±0.6 81.3±0.8 78.7±0.6 90.1±0.9 92.5±0.6 92.4±0.2 95.0±0.2
SGCL 83.0±0.2 72.6±0.3 81.3±0.3 79.9±0.5 90.7±0.3 93.4±0.3 93.3±0.2 95.7±0.1
StructComp 82.3±0.8 71.6±1.0 78.3±2.5 80.1±0.1 89.1±1.4 92.7±1.0 93.1±0.4 95.0±0.1

Ours 84.9±0.5 74.2±0.9 82.8±0.7 81.1±0.3 90.9±0.1 93.8±0.2 94.3±0.3 96.3±0.1

Table 2: Node Classification Accuracy (%) on Heterophilic
Graphs (Bold: Best, Underline: Second Best).

Methods Texas Wisconsin Cornell Actor

HGRL 61.8±0.7 63.9±0.6 51.8±1.0 28.0±0.3
DSSL 62.1±1.5 62.3±0.6 53.2±1.3 28.2±0.3
SP-GCL 59.8±1.3 60.1±0.4 52.3±1.2 28.9±0.7
GraphACL 71.1±0.3 69.2±0.4 72.7±3.7 30.0±0.1
GREET 84.6±4.2 80.9±5.2 72.9±1.7 36.1±1.2
HEATS 64.9±4.7 65.9±5.6 67.0±5.9 30.1±1.2

Ours 85.4±5.6 83.7±3.2 74.6±5.0 37.4±1.3

Node Clustering. We select the methods with clustering
effects in their original papers for comparison and report the
results in Table 3. The results tell us that: (a) Our method
performs better than other methods due to the effective uti-
lization of community structure information. (b) Our method
outperforms gCooL and CSGCL which only use the intra-
community information. This suggests that leveraging both
intra-community and inter-community relationships is cru-
cial for node representation. These results not only validate
the effectiveness of our method but also demonstrate its
adaptability to other downstream tasks.

Scalability Evaluation. We compare the node classifica-
tion accuracy and training consumption of our method with
efficiency-based GCL methods, and report the results on
large-scale datasets in Table 4. For fairness, we omitted the
memory usage of methods trained in a mini-batch manner.
These results tell us that: (a) Our method achieves the best
accuracy while simultaneously reducing time consumption
and memory usage. (b) The efficiency improvement of our
method becomes more significant as the dataset scale in-

Table 3: Node Clustering Results Measured by NMI (%)
and ARI (%). K-Means Represents Clustering Directly on
the Original Node Features.

Methods Photo CS Physics

NMI ARI NMI ARI NMI ARI

K-Means 25.8 14.5 60.1 40.4 48.9 27.6
gCooL 56.6 43.1 75.3 62.1 65.2 57.8
CSGCL 58.8 46.3 77.1 63.6 66.1 58.3
SUGRL 63.6 52.8 76.6 62.5 65.7 60.4
GREET 52.3 37.1 75.8 62.1 66.4 63.6
GraphACL 61.1 47.9 74.7 62.8 64.2 62.5

Ours 64.8 54.4 77.4 63.9 69.3 66.1

creases. Notably, on Ogbn-Products, where many methods
must adopt mini-batch training, our method can be trained
in full-batch mode, which is attributed to our method’s sig-
nificant reduction in message passing and contrastive loss
calculation consumption. These results validate the scalabil-
ity of our method.

Impacts of Parameters. We explore the impacts of parti-
tion rate β and node embedding dimension d in Figure 3, and
report the effect of coefficient α in Appendix B.3. These
results tell us that: (a) When β becomes very large, the
accuracy tends to flatten or even decrease, indicating that
setting β to a smaller value is a practical choice. Moreover,
a smaller β requires less GPU memory. (b) A larger d can
generally improve node classification accuracy, especially
on heterophilic graphs. This observation supports Theo-
rem 3, which posits that a larger dimension can effectively
reduce the upper bound of the classification error. (c) On
homophilic graphs, a smaller α is required to emphasize

Table 4: Scalability Evaluation on Node Classification. 'Acc':
Accuracy (%), 'Time': Training Time per Epoch, 'Mem':
GPU Memory (GB), '-': Training in Mini-batch.

Methods Ogbn-Arxiv Ogbn-Products

Acc Time(s) Mem Acc Time(m) Mem
BGRL 71.6 0.29 10.7 64.0 53.3 -
SUGRL 67.8 0.05 2.6 72.9 1.5 23.5
GGD 71.6 0.95 14.3 75.7 12.7 -
SGCL 71.0 0.09 5.1 76.0 1.9 -
S.Comp 71.7 0.05 3.4 75.7 0.06 12.0

Ours 71.9 0.06 5.4 76.8 0.001 6.3

1% 3% 5% 7% 9%60

70

80

90

100

A
cc

ur
ac

y
(%

)

(a) Partition Rate
256 512 1024 2048 409660

70

80

90

100

(a) Dimension d

Cora Wiki-CS Photo Arxiv Texas Cornell

Figure 3: Impacts of Hyperparameters β and d ('β = 1% ':
The Number of Communities is Fixed to 0.01× n).

the local information of the graph, while on heterophilic
graphs, increasing the value of α is needed to focus on
global information.

Impacts of Partition Algorithms. We evaluate the impacts
of different graph partition methods, including Graph Cut
(GC) [Loukas, 2019], Louvain [Blondel et al., 2008], and
Structural Entropy (SE) [Li and Pan, 2016], on node classi-
fication in Figure 4. The results tell us that: (a) SE performs
better across all datasets because it does not require manual
specification of the number of communities, which avoids
overfitting to a some extent. This indicates that more power-
ful partition method leads to higher accuracy improvement.
(b) Despite its simplicity, METIS also demonstrates good
performance on node classification. Thus, we adopt METIS
in our method. The graph partition time consumption for
all datasets is summarized in Appendix B.4, showing that it
requires only a few seconds on large-scale datasets.

Ablation Study. We conduct an ablation study, as shown
in table 5. The results tell us that: (a) All components con-
tribute to the performance improvement of our method. (b)
The message passing mechanism is critical for improving
the accuracy of node classification on homophilic graphs. (c)
For node classification, the impact of Lcr is greater than that
of Lcn, which indicates that intra-community information
is more useful than inter-community information. (d) Even
without the graph convolutional operator, our method still

Table 5: Ablation Study on Node Classification. A1: Remov-
ing Graph Convolutional Operator during Testing Phase, A2:
Removing Intra-community Reconstruction Loss Lcr, A3:
Removing Inter-community Neighborhood Loss Lcn, '- ':
Without using Graph Convolutional Operator, that is, k = 0.

Baselines CiteSeer PubMed Photo Actor

MLP 56.1±0.4 71.4±0.1 78.5±0.1 35.6±0.9
GCN 70.3±0.4 79.0±0.5 92.4±0.2 30.8±0.7

A1 (w/o GC) 69.5±0.2 76.2±0.8 88.3±0.2 -
A2 (w/o Lcr) 70.8±0.8 45.7±1.7 90.2±0.5 34.5±1.2
A3 (w/o Lcn) 72.7±0.2 80.9±0.3 93.3±0.1 36.1±1.4
A1 & A2 52.6±0.2 35.9±0.4 75.1±0.6 -
A1 & A3 68.9±0.2 74.6±0.4 88.4±0.1 -

Ours 74.2±0.9 82.8±0.7 93.8±0.2 37.4 ±1.3

83

84

85

86
A

cc
ur

ac
y

(%
)

(a) Cora
72

73

74

75

(b) CiteSeer
81

82

83

84

(c) PubMed
79

80

81

82

(d) Wiki-CS

89

90

91

92

A
cc

ur
ac

y
(%

)

(e) Computer
92

93

94

95

(f) Photo
92

93

94

95

(g) CS
94

95

96

97

(h) Physics

METIS GC Louvain SE

Figure 4: Comparison of Different Partition Algorithms.

outperforms semi-supervised MLP and remains competi-
tive with GCN, which verifies the rationality of our method.
These explore the contributions of different components of
our method.

Visualization. We evaluate the effectiveness of our loss
in capturing graph structural information by removing the
GNN during the test phase, and report the pairwise cosine
similarity of node representations for randomly sampled
nodes, one-hop neighbors, and multi-hop neighbors in Fig-
ure 5. The results tell us that: (a) Our method increases the
similarity of node representations for one-hop neighbors
compared to random pairs, indicating effective preservation
of local structural information. (b) Node representations of
multi-hop neighbors maintain high similarity, demonstrating
our method’s ability to capture higher-level structural pat-
terns without stacking multiple GNN layers. These results
confirm that our loss function effectively captures essential
graph structural information.

0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

200

400

600

800
N

od
e

Pa
irs

(a) Cora

1-hop
5-hop
Random

0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

150

300

450

600

(b) CiteSeer

1-hop
3-hop
Random

0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

150

300

450

600

(c) Actor

1-hop
2-hop
Random

Figure 5: The Pair-wise Similarity Distribution of Randomly Sampled Node, One-hop and Multi-hop Neighbors.

5 RELATED WORKS

Scalable Graph Neural Networks. GNNs facilitate feature
propagation between nodes through the message passing
mechanism Kipf and Welling [2017]. To improve the scal-
ability of GNNs, GraphSage [Hamilton et al., 2017] and
Cluster-GCN [Chiang et al., 2019] employ subgraph sam-
pling techniques or mini-batch processing mode to train
models. SGC [Wu et al., 2019] simplifies GNNs by remov-
ing the non-linear function of graph convolutional layers.
Coarse-GNN [Huang et al., 2021] proposes to use a comp-
reseed graph for scalable training of GNNs. Other methods
use global attention mechanisms with linear complexity to
process large-scale graphs, such as NodeFormer [Wu et al.,
2022b]. However, these methods are not suitable for graph
representation learning without task-specific labels.

Graph Contrastive Learning. GCL has demonstrated
excellent performance in graph representation learning
tasks without labels [Shen et al., 2023, Ju et al., 2024].
DGI [Veličković et al., 2019] and MVGRL [Hassani and
Ahmadi, 2020] maximize the mutual information between
local and global embeddings to learn node representations.
gCool [Li et al., 2022] and CSGCL [Chen et al., 2023]
improve node representations by introducing community
structure to construct positive and negative samples. Recent
works focus on the scalability of GCL [Ju et al., 2024], such
as BGRL [Thakoor et al., 2022] and SGCL [Wu et al., 2019]
compute the contrastive loss without negative node pairs.
SUGRL [Mo et al., 2022] reduces the number of graphs that
need to be processed by GCL. GGD [Zheng et al., 2022]
directly uses binary cross entropy loss to distinguish be-
tween positive and negative samples. StructComp [Zhang
et al., 2024] conducts contrastive learning on the constructed
compressed graph, significantly improving the scalability of
GCL. However, it relies on a fixed graph coarsening process,
leading to overly homogeneous center representations and
loss of node-level information [Huang et al., 2024].

There are also some methods that explore the potential
of GCL on heterophilic graphs [Yang and Mirzasoleiman,
2024]. HGRL captures distant neighbors to learn node rep-
resentations [Chen et al., 2022]. DSSL decouples different

neighborhood contexts of nodes [Xiao et al., 2022]. SP-
GCL studies the concentration property of features on het-
erophilic graphs [Wang et al., 2023]. GraphACL captures
one-hop neighborhood information and two-hop monophily
similarity [Xiao et al., 2023]. GREET learns node represen-
tations by distinguishing homophilic and heterophilic edges
[Liu et al., 2023]. HEATS optimizes positive sampling tech-
niques for heterophilic graphs [Zhuo et al., 2024]. However,
most of these methods still need to use mini-batch mode
when processing large-scale graphs.

6 CONCLUSION

In this paper, we propose a simple and efficient method
to improve the scalability of GCL by leveraging commu-
nity structures. The core idea is to replace finer-grained
node adjacency information with community-level struc-
tures. Specifically, we use a sparse partition matrix for
message passing with linear time complexity, and design
an efficient contrastive loss function that considers both
intra-community and inter-community structural informa-
tion. Theoretical analysis shows that our loss can effectively
capture the basic and high-level structural information of the
graph and has good generalization performance guarantees.
Experimental results demonstrate that our method achieves
the best performance while significantly reducing the time
and memory overhead. We plan to explore a simple adap-
tive graph partition technique to improve the robustness of
our method, addressing potential issues where community
structures become unreliable due to noise in the graph.

Acknowledgements

This work was supported by the Key Program of National
Natural Science Joint Foundation of China (U23A20298);
Program of Yunnan Key Laboratory of Intelligent Systems
and Computing (202405AV340009); Yunnan Fundamental
Research Projects (202501AS070102, 202401AS070138);
Scientific Research Fund Project of Yunnan Education De-
partment (2025Y0061). For any correspondence, please re-
fer to Liang Duan.

References

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of communi-
ties in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, 2008.

Han Chen, Ziwen Zhao, Yuhua Li, Yixiong Zou, Ruixuan
Li, and Rui Zhang. Csgcl: community-strength-enhanced
graph contrastive learning. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence
(IJCAI), pages 2059–2067, 2023.

Jingfan Chen, Guanghui Zhu, Yifan Qi, Chunfeng Yuan,
and Yihua Huang. Towards self-supervised learning on
graphs with heterophily. In Proceedings of the 31st ACM
International Conference on Information and Knowledge
Management (CIKM), pages 201–211, 2022.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Ben-
gio, and Cho-Jui Hsieh. Cluster-gcn: An efficient algo-
rithm for training deep and large graph convolutional
networks. In Proceedings of the 25th ACM Conference
on Knowledge Discovery and Data Mining (SIGKDD),
pages 257–266, 2019.

Michelle Girvan and Mark EJ Newman. Community struc-
ture in social and biological networks. Proceedings of the
National Academy of Sciences, 99(12):7821–7826, 2002.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In Proceedings
of Advances in Neural Information Processing Systems
(NeurIPS), pages 1024–1034, 2017.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma.
Provable guarantees for self-supervised deep learning
with spectral contrastive loss. In Proceedings of Advances
in Neural Information Processing Systems (NeurIPS),
volume 34, pages 5000–5011, 2021.

Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive
multi-view representation learning on graphs. In Proceed-
ings of the 37th International Conference on Machine
Learning (ICML), pages 4116–4126, 2020.

David P Hofmeyr. Clustering by minimum cut hyperplanes.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 39(8):1547–1560, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: datasets for machine
learning on graphs. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), pages 22118–
22133, 2020.

Siyuan Huang, Yunchong Song, Jiayue Zhou, and Zhouhan
Lin. Cluster-wise graph transformer with dual-granularity

kernelized attention. In Proceedings of Advances in Neu-
ral Information Processing Systems (NeurIPS), pages
33376–33401, 2024.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu,
and Min Zhou. Scaling up graph neural networks via
graph coarsening. In Proceedings of the 27th ACM
Conference on Knowledge Discovery and Data Mining
(SIGKDD), pages 675–684, 2021.

Wei Ju, Yifan Wang, Yifang Qin, Zhengyang Mao, Zhip-
ing Xiao, Junyu Luo, Junwei Yang, Yiyang Gu, Dongjie
Wang, Qingqing Long, et al. Towards graph con-
trastive learning: A survey and beyond. arXiv preprint
arXiv:2405.11868, 2024.

George Karypis and Vipin Kumar. Metis: A software
package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse
matrices. 1997.

Thomas N. Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. In Proceedings
of International Conference on Learning Representations
(ICLR), 2017.

Taewook Ko, Yoonhyuk Choi, and Chong-Kwon Kim. Uni-
versal graph contrastive learning with a novel Laplacian
perturbation. In Proceedings of the 39th Conference on
Uncertainty in Artificial Intelligence (UAI), pages 1098–
1108, 2023.

Angsheng Li and Yicheng Pan. Structural information and
dynamical complexity of networks. IEEE Transactions
on Information Theory, 62(6):3290–3339, 2016.

Bolian Li, Baoyu Jing, and Hanghang Tong. Graph commu-
nal contrastive learning. In Proceedings of the ACM Web
Conference (WWW), pages 1203–1213, 2022.

Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent CS Lee,
and Shirui Pan. Beyond smoothing: Unsupervised graph
representation learning with edge heterophily discrimi-
nating. In Proceedings of the 37th AAAI Conference on
Artificial Intelligence (AAAI), pages 4516–4524, 2023.

Andreas Loukas. Graph reduction with spectral and cut
guarantees. Journal of Machine Learning Research, 20
(116):1–42, 2019.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-
based benchmark for graph neural networks. arXiv
preprint arXiv:2007.02901, 2020.

Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xi-
aofeng Zhu. Simple unsupervised graph representation
learning. In Proceedings of the 36th AAAI Conference on
Artificial Intelligence (AAAI), pages 7797–7805, 2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang,
Yu Lei, and Bo Yang. Geom-gcn: Geometric graph con-
volutional networks. In Proceedings of International
Conference on Learning Representations (ICLR), 2020.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bo-
jchevski, and Stephan Günnemann. Pitfalls of graph neu-
ral network evaluation. arXiv preprint arXiv:1811.05868,
2018.

Xiao Shen, Dewang Sun, Shirui Pan, Xi Zhou, and Lau-
rence T Yang. Neighbor contrastive learning on learnable
graph augmentation. In Proceedings of the 37th AAAI
Conference on Artificial Intelligence (AAAI), pages 9782–
9791, 2023.

Wangbin Sun, Jintang Li, Liang Chen, Bingzhe Wu, Yatao
Bian, and Zibin Zheng. Rethinking and simplifying boot-
strapped graph latents. In Proceedings of the 17th ACM
International Conference on Web Search and Data Min-
ing (WSDM), page 665–673, 2024.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi
Azar, Mehdi Azabou, Eva L Dyer, Remi Munos, Petar
Veličković, and Michal Valko. Large-scale representation
learning on graphs via bootstrapping. In Proceedings of
International Conference on Learning Representations
(ICLR), 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. In Proceedings of International Con-
ference on Learning Representations (ICLR), 2018.

Petar Veličković, William Fedus, William L Hamilton,
Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep
graph infomax. In Proceedings of International Confer-
ence on Learning Representations (ICLR), 2019.

Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji
Kawaguchi, and Xiaokui Xiao. Single-pass contrastive
learning can work for both homophilic and heterophilic
graph. Transactions on Machine Learning Research,
2023.

Qianlong Wen, Zhongyu Ouyang, Chunhui Zhang, Yiyue
Qian, Chuxu Zhang, and Yanfang Ye. Gcvr: Reconstruc-
tion from cross-view enable sufficient and robust graph
contrastive learning. In Proceedings of the 40th Con-
ference on Uncertainty in Artificial Intelligence (UAI),
volume 244, pages 3747–3764, 2024.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty,
Tao Yu, and Kilian Weinberger. Simplifying graph con-
volutional networks. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML), pages
6861–6871, 2019.

Junran Wu, Shangzhe Li, Jianhao Li, Yicheng Pan, and
Ke Xu. A simple yet effective method for graph classi-
fication. In Proceedings of the 31st International Joint
Conference on Artificial Intelligence (IJCAI), pages 3580–
3586, 2022a.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and
Junchi Yan. Nodeformer: A scalable graph structure learn-
ing transformer for node classification. In Proceedings
of Advances in Neural Information Processing Systems
(NeurIPS), pages 27387–27401, 2022b.

Teng Xiao, Zhengyu Chen, Zhimeng Guo, Zeyang Zhuang,
and Suhang Wang. Decoupled self-supervised learning
for graphs. In Proceedings of Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 620–634,
2022.

Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang
Wang. Simple and asymmetric graph contrastive learning
without augmentations. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), pages
16129–16152, 2023.

Wenhan Yang and Baharan Mirzasoleiman. Graph con-
trastive learning under heterophily via graph filters. In
Proceedings of the 40th Conference on Uncertainty in
Artificial Intelligence (UAI), pages 3936–3955, 2024.

Shengzhong Zhang, Wenjie Yang, Xinyuan Cao, Hongwei
Zhang, and Zengfeng Huang. Structcomp: Substituting
propagation with structural compression in training graph
contrastive learning. In Proceedings of International
Conference on Learning Representations (ICLR), 2024.

Yizhen Zheng, Shirui Pan, Vincent Lee, Yu Zheng, and
Philip S Yu. Rethinking and scaling up graph contrastive
learning: An extremely efficient approach with group
discrimination. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), pages 10809–
10820, 2022.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and
Liang Wang. Graph contrastive learning with adaptive
augmentation. In Proceedings of the ACM Web Confer-
ence (WWW), pages 2069–2080, 2021.

Jiaming Zhuo, Feiyang Qin, Can Cui, Kun Fu, Bingxin
Niu, Mengzhu Wang, Yuanfang Guo, Chuan Wang, Zhen
Wang, Xiaochun Cao, et al. Improving graph contrastive
learning via adaptive positive sampling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 23179–23187, 2024.

Improving Graph Contrastive Learning with Community Structure
(Appendix)

Xiang Chen1,2 Kun Yue1,2 Liang Duan1,2 Lixing Yu1,2

1School of Information Science and Engineering, Yunnan University, Kunming, China
2Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming, China

A PROOF DETAILS

A.1 THE OVERALL LOSS

We provide a detailed derivation of the overall loss in Eq. 7.

Proof. For the loss Lcr in Eq. 4, we have

Lcr =
1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥gφ(ci)− vj∥22

=
1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

(gϕ(ci)− vj)
T(gφ(ci)− vj)

=
1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

(gϕ(ci)Tgφ(ci) + vT
j vj − 2gφ(ci)

Tvj)

(15)

Since vectors in contrastive losses are usually normalized. Thus, we have

minLcr ⇔ min− 1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

gϕ(ci)Tvj (16)

Similarly, minimizing Lcn in Eq. 5 can be written as

minLcn ⇔ min− 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

cTi ck (17)

Minimizing Lcur in Eq. 6 can be written as

minLcur ⇔ min
1

m2

∑
Pi∈P

∑
Pt∈P

cTi ct (18)

Combining Eq. 16, Eq. 17 and Eq. 18. Then, we have

LP = − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

1

|Pi|
∑
vj∈Pi

gϕ(ci)Tvj + cTi ck −
1

m

∑
Pt∈P

cTi ct

= − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

1

|Pi|
∑
vj∈Pi

gϕ(ci)Tvj + cTi ck −
∑
Pt∈P

1

m
log exp cTi ct

(19)

mailto:<duanl@ynu.edu.cn>?Subject=Your UAI 2025 paper "IGCL-CS"

According to Jensen’s inequality, we have

LP = − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

1

|Pi|
∑
vj∈Pi

gϕ(ci)Tvj + cTi ck −
∑
Pt∈P

1

m
log exp cTi ct

≤ − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

1

|Pi|
∑
vj∈Pi

gϕ(ci)Tvj + cTi ck − log
∑
Pt∈P

exp cTi ct
m

≤ − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

1

|Pi|
∑
vj∈Pi

gϕ(ci)Tvj + cTi ck − log
∑
Pt∈P

exp cTi ct

≤ − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

1

|Pi|
∑
vj∈Pi

gϕ(ci)Tvj + cTi ck − log(exp(
1

|Pi|
∑
vj∈Pi

gφ(ci)
Tvj) +

∑
Pt∈P

exp cTi ct)

= − 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

log
exp(1

|Pi|
∑

vj∈Pi
gϕ(ci)Tvj + cTi ck)

exp (1
|Pi|

∑
vj∈Pi

gφ(ci)Tvj) +
∑

Pt∈P exp cTi ct
(20)

To this end, we derive the upper bound of the combination loss, as shown in Eq. 7.

A.2 PROOF OF THEOREM 1

Theorem 1. Let N (v) denote the neighbors of v. Minimizing the community contrastive loss LP will try to minimize the
alignment loss between one-hop neighbors, which is defined as

Lalig =
1

n

∑
vj∈V

1

|N (vj)|
∑

vi∈N (vj)

∥vj − gφ(vi)∥2 (21)

where vj = fθ(G)[vj] and vi = fθ(G
0)[vi].

Proof. Let S(vi) represents the set of one-hop neighbor nodes of vi in the same community and M(vi) = N (vi)− S(vi)
represents the set of one-hop neighbor nodes of vj not in the same community. Thus, we have

Lcr =
1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥ci − vj∥22

c
=

1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥
∑
v∈Pi

v − vj∥22

⇒ − 1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

(vT
j

∑
v∈S(vj)

v)

c
=

1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥vj −
∑

v∈S(vj)

v∥2

(22)

For the loss Lcn in Eq. 5, we have

Lcn =
1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

∥ci − ck∥22

c
=

1

m

∑
Pi∈P

1

|Pi|
∑

Pk∈N (P)

∥
∑
vj∈Pi

vj −
∑
v∈Pk

v∥22

⇒ 1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥vj −
∑

u∈M(vj)

u∥2

(23)

Combining the above two Equations, we have

Lcr + Lcn ≥
1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥2vj − (
∑

u∈M(vj)

u+
∑

v∈S(vj)

v)∥2

c
=

1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥2vj −
∑

v∈N (vj)

v∥2

c
=

1

m

∑
Pi∈P

1

|Pi|
∑
vj∈Pi

∥vj −
∑

v∈N (vj)

v∥2

c
=

1

n

∑
vj∈V

1

|N (vj)|
∑

vi∈N (vj)

∥vj − gφ(vi)∥2

(24)

The last equation holds since it is consistent with the goal of LG, which is to minimize the distance between neighbor
representations.

A.3 PROOF OF THEOREM 2

Theorem 2. Suppose the contrastive loss LP and Lgc are L-Lipschitz continuous. Then, LP can be approximated by Lgc

under the graph homophily assumption

∥Lgc − LP∥ ≤ L∥Âk −PP̂T∥∥X∥∥Wm∥ (25)

where L is the Lipschitz constant and Wm is the model parameters in GCL framework.

Proof. Let the computational process of contrastive learning represents as a function l(·). Then, we have

∥LG − LP∥ = |l(Âk)− l(PP̂T)|

≤ L∥ÂkXWm −PP̂TXWm∥

= L∥(Âk −PP̂T)XWm∥

≤ L∥Âk −PP̂T∥∥X∥∥Wm∥

(26)

Intuitively, our loss can be viewed as standard contrastive loss performed on PP̂T.

A.4 PROOF OF THEOREM 3

To prove Theorem 3, we first introduce a lemma, which provides the following theoretical guarantees for the model learned
using spectral contrastive loss [HaoChen et al., 2021].

Lemma 1. Let f∗ be the minimizer of the spectral contrastive loss: Lscl = −2
∑

x,x′ wxx′ · f(x)Tf(x′) +
∑

x,x′ wxx′ ·
(f(x)Tf(x′))2, where wxx′ is the probability of a random positive pair being (x, x′) while wx the probability of a random
selected data point being x. Then, we have

Evi∈V∥y(vi)− ŷ[f∗(vi)]∥22 ≤
1− ϕG

λd+1
(27)

where λd+1 is the d+ 1 smallest eigenvalue of normalized matrix Â and ϕG is the graph homophily ratio, defined as

ϕG =
1

n

∑
vi∈V

1

|N (vi)|
∑

vj∈N (vi)

1[y(vi) = y(vj)] (28)

According to Lemma 1, we only need to prove that our loss in Eq. 7 can be expressed as a spectral contrastive loss to
complete the proof.

Theorem 3. Let f∗
θ be the optimal model parameters obtained by the global minimizer of LP and y(v) denote the label of

v. Then, there exists a linear classification function ŷ : V → Rc such that the error upper bound is

Ev∈V∥y(v)− ŷ[f∗
θ (v)]∥22 ≤

1− ϕP

λd+1
(29)

where λd+1 is the d+ 1 smallest eigenvalue of diffusion matrix Âk and ϕP is the partition homophily ratio, defined as

ϕP =
1

m

∑
Pi∈P

1

|Pi|
1

|Pi|
∑
vj∈Pi

∑
vk∈Pi

1[y(vj) = y(vk)] (30)

where 1[·] is the indicator function.

Proof. Let N (vi) denotes the neighbors of node vi in the matrix PP̂T. According to Theorem 1, the positive node pairs of
our loss in Equ. 7 can be expressed as the one-hop neighbors of node. Thus, we have

L+
P =

1

n

∑
vi∈V

1

|N (vi)|
∑

vj∈N (vi)

∥vi − vj∥22

c
= − 1

n

∑
vi∈V

1

|N (vi)|
∑

vj∈N (vi)

vT
i vj

c
= − 1

n

∑
vi∈V

1

|N (vi)|
∑

vj∈N (vi)

2 · vT
i vj

(31)

For the negative node pairs in Equ. 7, we have

L−
P =

1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

log
∑
Pt∈P

exp(cTi ct)

=
1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

log(
∑
Pt∈P

exp(cTi ct)

m
m)

=
1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

log
∑
Pt∈P

exp(cTi ct)

m
+ logm

≥ 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

log
∑
Pt∈P

exp(cTi ct)

m

(32)

According to Jensen’s inequality, we have

L−
P ≥

1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

log
∑
Pt∈P

exp(cTi ct)

m

≥ 1

m

∑
Pi∈P

1

|N (Pi)|
∑

Pk∈N (Pi)

1

m

∑
Pt∈P

cTi ct

⇒ 1

m2

∑
Pi∈P

∑
vj∈Pi

∑
vt∈V

vT
j vt

c
=

1

n2

∑
vi∈V

∑
vj∈V

vT
i vj

c
=

1

n2

∑
vi∈V

∑
vj∈V

(vT
i vj)

2

(33)

Combining the Eq. 31 and Eq. 33, we have

LP ≥ −
1

n

∑
vi∈V

1

|N (vi)|
∑

vj∈N (vi)

2 · vT
i vj +

1

n

1

n

∑
vi∈V

∑
vj∈V

(vT
i vj)

2 (34)

Since PP̂T can be used as a low-rank approximation of the k-step diffusion matrix Âk, and the PP̂T connects nodes within
the same community to each other and removes the connections between nodes in different communities. According to
Lemma 1, our loss can be expressed as a spectral loss on PP̂T. Thus, we complete the proof of Theorem 3.

Table 6: Datasets Statistics.

Dataset Nodes Edges Classes Features Train / Val / Test

Cora 2708 10556 7 1433 140 /500 / 1000
CiteSeer 3327 9104 6 3703 120 / 500 / 1000
Pubmed 19717 88648 3 500 60 / 500 / 1000
Wiki-CS 11701 431206 10 300 1170 / 1171 / 9360
Amazon-Computer 13752 491722 10 767 1375 / 1376 / 11001
Amazon-Photo 7650 238162 8 745 765 / 765 / 6120
Coauthor-CS 18333 163788 15 6805 1833 / 1834 / 14666
Coauthor-Physics 34493 495924 5 841 3449 / 3450 / 27594

Texas 183 309 5 1703 87 /59 / 37
Wisconsin 251 499 5 1703 120 /80 / 51
Cornell 183 295 5 1703 87 /59 /37
Actor 7600 29926 5 932 3634 /2432 / 1520

Ogbn-Arxiv 169343 1166243 40 128 90941 /29799 / 48603
Ogbn-Products 2449029 61859140 47 100 196615 /39323 / 2213091

B EXPERIMENTAL STUDY

B.1 DETAILS OF DATASETS

The statistics of all datasets are summarized in Table 6.

• Cora, CiteSeer and Pubmed. They are three citation network datasets, where nodes represent articles, edges represent
citation relationships, features consist of bag-of-words representations of articles, labels correspond to the academic
domains or metadata of the articles.

• Wiki-CS. It is a ciation network extracted from Wikipedia dataset, where nodes represent articles about computer
science, edges represent the hyperlinks between two articles, features consist of bag-of-words representations of articles,
and labels are different fields of each article.

• Amazon-Computer and Amazon-Photo. They are two co-purchase networks from Amazon dataset, where nodes rep-
resent products, edges represent pairs of products often bought together, features consist of bag-of-words representations
of product reviews, and labels are the category of products.

• Coauthor-CS and Coauthor-Physics. They are two co-authorship networks extracted from Microsoft Academic Graph
in KDD Cup 2016 challenge, where nodes represent authors, edges represent co-authorship relationships, features
consist of bag-of-words representations of article keywords, and labels are the research fields of authors.

• Texas, Wisconsin and Cornell. They are three subsets of WebKB dataset, where nodes represent web pages, edges
represent hyperlinks, features are described by a word vector comprising keywords extracted from page content, labels
represent the categories of the web pages.

• Actor. It is a an actor co-occurrence network, where nodes represent actors, edges represent two actors have co-
occurrence in the same movie, features represent the key word in the Wikipedia pages, and labels are the words of
corresponding actors.

Table 7: Details of the Hyper-parameters in Our Method.

Dataset lr T k β d α τ

Cora 0.005 100 3 0.02 1024 0.1 0.1
CiteSeer 0.0005 100 2 0.04 2048 0.2 0.8
Pubmed 0.001 75 2 0.05 1024 0.4 0.45
Wiki-CS 0.005 50 2 0.01 2048 0.9 0.35
Amazon-Computer 0.0005 150 2 0.1 2048 0.6 0.2
Amazon-Photo 0.001 150 1 0.03 2048 0.4 0.6
Coauthor-CS 0.005 100 1 0.05 1024 0.2 0.6
Coauthor-Physics 0.1 25 1 0.09 2048 0.5 0.55

Texas 0.0005 100 0 0.05 4096 1.0 0.8
Wisconsin 0.001 25 0 0.07 4096 0.9 1.0
Cornell 0.0005 150 0 0.06 2048 0.9 0.3
Actor 0.001 25 0 0.01 2048 0.9 0.75

Ogbn-Arxiv 0.001 25 3 0.03 1500 0.6 0.4
Ogbn-Products 0.002 25 10 0.001 128 0.8 0.7

• Ogbn-Arxiv and Ogbn-Products. They are two datasets in the Open Graph Benchmark. Ogbn-Arxiv is a cation
network, where nodes represent articles, edges represent citation relationships, features through averaging the embed-
dings of words in its title and abstract, labels represent the categories of the articles. Ogbn-Products is a co-purchase
network, where nodes represent products, edges represent pairs of products often bought together, features consist of
bag-of-words representations of product reviews, and labels are the category of the products.

B.2 PARAMETERS SETTINGS

For fair comparison, we use the results provided by the authors in their original papers. For baselines not reported on specific
datasets or those not utilizing standard public data splits, we carefully tune the hyper-parameters based on the authors’
official code. We implement our method in PyTorch with Adam optimizer. All experiments are conducted on a machine with
Intel 13900KF CPU, 128GB RAM and RTX4090 GPU, running Windows 11. Each experiment is repeated for 20 times.

We use one layer of PCN and one layer of MLP as the mapping head to implement our method. The learning rate lr is chosen
from 0.0001, 0.0005, 0.001, 0.002, 0.005, 0.1. The training epochs T are chosen from 25, 50, 75, 100, 150. The order of the
diffusion matrix k is chosen from 0, 1, 2, 3, and Ogbn-Products is set to 10 since it is more complex. The partition rate β,
temperature parameter τ and coefficient α are selected from 0 to 1. The embedding dimension d is chosen from 1024, 1500,
2048, 4096, and Ogbn-Products is set to 128. The hyper-parameters for each dataset are listed in Table 7. More detailed
hyper-parameters can be found in the provided code.

B.3 IMPACTS OF PARAMETER α

We explore the impacts of coefficient α for controlling community neighbor loss in Figure 6. According to Table 8, we
found across 13 datasets that the optimal α generally correlates with the homophily level: higher homophily ratio requires
a smaller α (emphasizing local information), while lower homophily ratio requires a larger α (emphasizing high-order
structural information). This trend was observed in most of the datasets.

B.4 PRETEXT TIME

We report the time consumption for community segmentation using METIS (the fastest algorithm) and Structure Entropy
(the algorithm achieving the highest accuracy) for all datasets in Table 8. It can be seen that METS is very efficient. Given
that METIS offers a considerable speed advantage in constructing partitions, we propose a practical recommendation based
on the performance-efficiency trade-off: structural entropy is suitable for medium-scale graphs to potentially achieve better
performance, whereas METIS is recommended for large-scale graphs to ensure scalability.

0 0.1 0.3 0.5 0.7 0.9
82.5
83.0
83.5
84.0
84.5
85.0
85.5

A
cc

ur
ac

y
(%

)

(a) Cora

0 0.1 0.3 0.5 0.7 0.9
72.5
73.0
73.5
74.0
74.5
75.0
75.5

(b) Citeseer

0 0.1 0.3 0.5 0.7 0.990.0
90.2
90.4
90.6
90.8
91.0
91.2

(c) Amazon-Computer

0 0.1 0.3 0.5 0.7 0.993.3
93.5
93.7
93.9
94.1
94.3
94.5

(d) Coauthor-CS

0 0.1 0.3 0.5 0.7 0.9
95.8
95.9
96.0
96.1
96.2
96.3
96.4

A
cc

ur
ac

y
(%

)

(e) Coauthor-Physics

0 0.1 0.3 0.5 0.7 0.973.5
73.7
73.9
74.1
74.3
74.5
74.7

(f) Cornell

0 0.1 0.3 0.5 0.7 0.935.7
36.0
36.3
36.6
36.9
37.2
37.5

(g) Actor

0 0.1 0.3 0.5 0.7 0.970.8
71.0
71.2
71.4
71.6
71.8
72.0

(h) Ogbn-Arxiv

Figure 6: Sensitivity Analysis of the Hyper-parameters α. We Omitted the Variance Lines in Cornell and Actor.

Table 8: Partition Time on All Dataset.

Dataset METIS Time SE Time Homophily Ratio α

Cora 0.021s 1.43s 0.77 0.1
CiteSeer 0.027s 1.51s 0.63 0.2
Pubmed 0.385s 12.42s 0.66 0.4
Wiki-CS 0.247s 178.14s 0.57 0.9
Amazon-Computer 0.773s 7.04m 0.70 0.6
Amazon-Photo 0.275s 62.58s 0.77 0.4
Coauthor-CS 0.437s 33.22s 0.76 0.2
Coauthor-Physics 1.226s 11.72m 0.85 0.5

Texas 0.002s 1.18s 0.0013 1.0
Wisconsin 0.003s 1.18s 0.0941 0.9
Cornell 0.002s 1.17s 0.0311 0.9
Actor 0.095s 3.72s 0.0110 0.9

Ogbn-Arxiv 6.995s 3h 0.42 0.6
Ogbn-Products 79.73s >12h 0.46 0.8

	Introduction
	Preliminaries
	Methodology
	Community Contrastive Learning
	Partition Convolutional Network
	Community Contrastive Loss
	Model Training

	Properties of Overall Loss

	Experiments
	Experimental Settings
	Experimental Results

	Related Works
	Conclusion
	 Proof Details
	The Overall Loss
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Experimental Study
	Details of Datasets
	Parameters Settings
	Impacts of Parameter
	Pretext Time

