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ABSTRACT

We perceive our surrounding environments with an active focus, paying more at-
tention to regions of interest, such as the shelf labels in a grocery store or a family
photo on the wall. When it comes to scene reconstruction, this human perception
trait calls for spatially varying degrees of detail ready for closer inspection in crit-
ical regions, preferably reconstructed on demand as users shift their focus. While
recent approaches in 3D Gaussian Splatting (3DGS) can achieve fast, generaliz-
able scene reconstruction from sparse views, their uniform resolution output leads
to high computational costs, making them unscalable to high-resolution training.
As a result, they cannot leverage available image captures at their original high
resolution for detail reconstruction. Per-scene optimization methods reconstruct
finer details with heuristic-based adaptive density control, yet require dense obser-
vations and lengthy offline optimization. To bridge the gap between the prohibitive
cost of high-resolution holistic reconstructions and the user needs for localized
fine details, we propose the problem of localized high-resolution reconstruction
through on-demand generalizable Gaussian densification. Given an initial low-
resolution 3DGS reconstruction, the goal is to learn a generalizable network that
densifies the reconstruction to capture fine details in a user-specified local region
of interest (RoI), based on sparse high-resolution observations of the RoI. This for-
mulation avoids the high cost and redundancy of uniformly high-resolution recon-
structions and enables the full leverage of high-resolution observations in critical
regions. To address the problem, we propose GaussianLens, a feed-forward densi-
fication framework that fuses multi-modal information from the initial 3DGS and
multi-view images. We further propose a pixel-guided densification mechanism
that effectively captures details under significant resolution increases. Experi-
ments demonstrate our method’s superior performance in local high-fidelity detail
reconstruction and strong scalability to images of up to 1024× 1024 resolution.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023; Huang et al., 2024; Yu et al., 2024c) has shown
great promise in photorealistic 3D reconstruction and novel-view synthesis. More recently, gen-
eralizable 3DGS reconstruction methods (Charatan et al., 2024; Wewer et al., 2024; Szymanowicz
et al., 2024b;a; Tang et al., 2025; Xu et al., 2024b; Zhang et al., 2025b;a; Chen et al., 2025a) have
extended these capabilities to sparse input views and on-the-fly reconstruction settings. Most exist-
ing works predict Gaussians with a regular structure, typically pixel-aligned (Charatan et al., 2024;
Szymanowicz et al., 2024b; Chen et al., 2025b; Xu et al., 2024a; Tang et al., 2025; Zhang et al.,
2025b) or voxel-aligned (Chen et al., 2025a; Zhang et al., 2024b). While structured outputs facili-
tate learning, they lead to a uniform-resolution reconstruction, with the same number of Gaussians
allocated to each pixel or voxel. This approach is inefficient, as capturing fine details requires a com-
putationally costly global increase in the reconstruction resolution, making it impractical to leverage
readily available high-resolution observations. For example, while DL3DV (Ling et al., 2024) con-
tains 3840× 2160 videos, existing novel-view synthesis works only use up to 960× 540, with many
defaulting to 256× 256. Training state-of-the-art DepthSplat (Xu et al., 2024a) on 1024× 1024 in-
puts is also infeasible as it cannot fit into the memory of an 80GB H100 GPU. In contrast, per-scene
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Figure 1: We introduce the problem of localized high-resolution reconstruction via on-demand Gaussian den-
sification. While the majority of feed-forward models are confined to single-pass, uniform-resolution recon-
struction, GaussianLens achieves low-cost, high-resolution local reconstruction by learning to densify low-
resolution initial 3DGS reconstructions conditioned on high-resolution local observations.

optimization methods produce non-uniform reconstructions adapted to varying scene complexity
via Adaptive Density Control (Kerbl et al., 2023), a heuristic mechanism to densify Gaussians in
under-reconstructed regions. Yet they rely on dense observations and lengthy offline optimization.
To sum up, existing methods are bottlenecked by computational costs to fully leverage all available
high-resolution images for reconstruction, especially in fast, interactive settings.

Meanwhile, uniformly high-resolution reconstruction of the entire scene is often unnecessary. Hu-
mans typically focus on the fine details within a small region of interest, while a lower-resolution
view of the surroundings suffices for a holistic understanding. For example, in an interactive room
capture, the user may want to ensure the titles on book spines are legible, but care less about the
tiny dents on the floor. This perceptual trait calls for a more efficient approach: reconstructions with
spatially varying degrees of detail, where critical areas are reconstructed at higher fidelity. To reduce
redundancy and cost, these details are ideally reconstructed on demand as the user’s focus shifts.

To bridge the gap between prohibitively costly high-resolution holistic reconstructions and the user
needs for localized fine details, we introduce the problem of localized high-resolution reconstruction
through on-demand Gaussian densification. Given a low-resolution 3DGS reconstruction of the
entire scene, the goal is to densify a user-specified region of interest to reveal finer details, guided by
a sparse set of high-resolution images of the region. The region is specified by 2D masks, mimicking
the scenario where a user selects an area from the current view to “zoom in” for more details. The
reconstruction is evaluated on high-resolution novel view renderings of the selected region.

To address the problem, we introduce GaussianLens, a cross-modal framework that aggregates in-
formation from 2D images to the initial 3D Gaussians via complementary mechanisms. We first
render the initial 3D Gaussians and compare them to groundtruth observations to obtain residual
information, based on which we construct initial Gaussian features and image features. We then use
a PointTransformerV3 (Wu et al., 2024)-based encoder for Gaussian feature extraction, where we
introduce projection-based image-Gaussian cross-attention layers to further fuse information from
images. Finally, we decode Gaussian features into densified Gaussian parameters, expressed as off-
sets from initial Gaussian parameters. The whole process can be viewed as a learned version of the
densify-by-clone step and subsequent optimizations in per-scene 3DGS reconstruction.

However, with larger resolution increases, cloning-based densification struggles to capture all newly
introduced details. We therefore propose pixel-guided densification, where we spawn one Gaussian
for each high-resolution pixel in the region of interest. These Gaussians effectively preserve high-
resolution details and complement the input Gaussians that serve as a coarse scaffold.

To summarize, our main contributions are:

• We propose the problem of localized high-resolution reconstruction via on-demand Gaussian
densification, a formulation that avoids the prohibitive and unnecessary cost of uniformly high-
resolution reconstructions and enables full leverage of high-resolution local observations.

• We develop GaussianLens, a multi-modal framework featuring complementary mechanisms to
fuse information from 3D Gaussians and multi-view images for effective densification prediction.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We propose a novel pixel-based densification mechanism that better captures details under sub-
stantial resolution increase in the one-step feed-forward densification scenario.

We build a benchmark for the proposed problem based on RealEstate10K (Zhou et al., 2018) and
DL3DV (Ling et al., 2024), and compare our method against state-of-the-art generalizable 3DGS
reconstruction methods. We achieve efficient on-demand high-resolution detail reconstruction in lo-
cal regions with qualities above or on par with uniformly high-resolution models, while using fewer
computational resources. We can also leverage up to 1024 × 1024 high-resolution observations,
which uniform feed-forward models cannot scale up to.

2 RELATED WORK

Generalizable 3D Gaussian Prediction Generalizable 3D Gaussian prediction methods learn to
predict 3D Gaussian reconstructions with a network forward pass, typically conditioned on sparse
observations. Significant progress has been made to reconstruct objects (Zhang et al., 2025b; Xu
et al., 2024b; Zhang et al., 2024b; Chen et al., 2025a; Tang et al., 2025; Szymanowicz et al., 2024b;
Zou et al., 2024; Lu et al., 2024; Shen et al., 2024a) and scenes (Charatan et al., 2024; Wewer et al.,
2024; Szymanowicz et al., 2024a; Chen et al., 2025b; Xu et al., 2024a; Zhang et al., 2025a; Liu
et al., 2025) under sparse-view settings. Integration with large 2D (Blattmann et al., 2023) or geo-
metric (Wang et al., 2024; Leroy et al., 2024) foundation models enables 360◦ view synthesis (Chen
et al., 2024a), semantic (Fan et al., 2024b) and pose-free reconstructions (Kang et al., 2024; Fan
et al., 2024a; Li et al., 2025; Ye et al., 2024a; Hong et al., 2024). Most methods predict a structured
set of Gaussians, typically pixel-aligned (Charatan et al., 2024; Szymanowicz et al., 2024b; Chen
et al., 2025b; Xu et al., 2024a; Tang et al., 2025; Zhang et al., 2025b) or voxel-aligned (Chen et al.,
2025a; Zhang et al., 2024b). While structured outputs facilitate learning, their uniform resolution
limits their ability to reconstruct high-resolution details due to the high computational cost. An ex-
ception, PanSplat (Zhang et al., 2024a), specifically targets 4K (2048 × 4096) panorama synthesis.
It supports up to 768× 1536 with efficient hierarchical cost volume and Gaussian head designs, but
scaling to 4K is only achieved with deferred backpropagation.

Generalizable 3D Gaussian Update More recently, generalizable frameworks have been used to
update given initial Gaussians. Chen et al. (2024b) learns to iteratively update Gaussians by leverag-
ing cues from rendering gradients. Chen et al. (2024c) trains a point transformer to refine flawed 3D
Gaussians to reduce artifacts at out-of-distribution views. Most related to us is Generative Densifi-
cation (GD) (Nam et al., 2024), which proposes to attach a learned Gaussian densification module
to feed-forward frameworks to improve the reconstruction in high-frequency, under-reconstructed
regions. However, GD consumes latent features from the base feed-forward model, and has to be
tailored to and fine-tuned with it. The resulting model still performs single-pass image-to-Gaussian
prediction for the full scene. In contrast, our model is source-agnostic, operating directly on the
Gaussians with no access to or assumptions about the source model. We also have the flexibility to
build on an existing reconstruction and densify exclusively in specified local regions.

Adaptive Density Control In per-scene 3D Gaussian optimization, Adaptive Density Control (Kerbl
et al., 2023) enables efficient reconstruction of spatially varying scene details, by heuristically se-
lecting and densifying Gaussians in under-reconstructed regions. Many methods have been pro-
posed to improve the selection heuristic (Ye et al., 2024b; Zhang et al., 2024c; Rota Bulò et al.,
2024; Kheradmand et al., 2024; Lyu et al., 2024; Cheng et al., 2024) and the initialization of new
Gaussians (Kheradmand et al., 2024; Rota Bulò et al., 2024; Lyu et al., 2024; Cheng et al., 2024).
However, they all require dense observations and time-consuming per-scene optimization.

Multi-Scale Gaussian Splatting Multi-scale and hierarchical Gaussian Splatting methods recon-
struct the scene with layers of Gaussians capturing scene details at different scales. During render-
ing, levels of details are flexibly chosen based on computational resources and user needs, allowing
large-scale scene reconstruction (Kerbl et al., 2024; Liu et al., 2024a; Ren et al., 2024), anti-aliased
view-adaptive rendering (Yan et al., 2024; Shi et al., 2024; Seo et al., 2024; Di Sario et al., 2025),
and generalizable coarse-to-fine scene reconstruction (Tang et al., 2024). They require lengthy of-
fline optimization and costly storage of the full Gaussian hierarchy, before rendering with flexible
level-of-detail. In contrast, we aim to support on-demand level-of-detail at the reconstruction stage.
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Figure 2: Method overview. (a)-(d) illustrates GaussianLens, our feed-forward densification framework. It
constructs multi-modal features for initial Gaussians and images (a), further extracts features via a PTv3-based
encoder with projection-based cross attention (d) to images (b), and decodes them into residual parameters of
densified Gaussians (c). (e) illustrates our pixel-guided densification. (f) shows the overall workflow.

Super-Resolution and Close-Up Novel View Synthesis Most super-resolution and close-up novel
view synthesis methods reconstruct high-resolution details by distilling 2D image super-resolution
models (Yoon & Yoon, 2023; Lee et al., 2024; Yu et al., 2024a; Feng et al., 2024; Shen et al.,
2024b; Xie et al., 2024; Wan et al., 2025; Xia et al., 2025; Xia & Liu, 2025). While they all rely
on slow per-scene optimization, we reconstruct fine details with a fast network forward pass. Closer
to our setting is Zhang et al. (2025c), which proposes a unified frequency-aware radiance field to
capture both normal-resolution global scene structure and tiny details in an area of interest, given
high-resolution captures of the area. We share the same goal of leveraging local high-resolution
observations, but pursue it in the context of generalizable 3D Gaussians.

3 METHOD

Given a set of 3D Gaussians Ginput reconstructed from low-resolution input images, our goal is to
densify and refine Ginput to reconstruct high-resolution details in a user-specified local region of
interest (RoI) based on additional high-resolution images of the specified region.

Concretely, we start with a sparse set of low-resolution input images Ilow with known camera
parameters, and apply state-of-the-art feed-forward 3D Gaussian reconstruction method Depth-
Splat (Xu et al., 2024a) to obtain the initial 3DGS reconstruction Ginput.
We take another sparse set of high-resolution images capturing the RoI, denoted by I =
{Ii}Ni=1, Ii ∈ RH×W×3, with known camera projection matrices {Pi}Ni=1. The RoI is specified by
its 2D projections onto the input views, given as binary masksM = {Mi}Ni=1,Mi ∈ {0, 1}H×W .

To tackle the problem, we design a cross-modal Gaussian densification prediction framework Gaus-
sianLens (Sec. 3.1). It fuses multi-modal information from a set of initial Gaussians Ginit and 2D
images, and predicts a set of densified Gaussians Gden. We divide the input Gaussians Ginput into
those in the RoI (GRoI ) and the background (Gbg), apply GaussianLens to GRoI for local densifica-
tion, i.e. Ginit ← GRoI , and merge the results with the background, i.e., Gfinal = Gden ∪ Gbg .

To better reconstruct details, we propose a novel pixel-guided Gaussian densification mechanism
(Sec. 3.2) that augments GRoI with another set of pixel-guided Gaussians Gpixel, before applying
GaussianLens to their union, i.e., Ginit ← GRoI ∪ Gpixel. The full workflow is shown in Fig. 2 (f).
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3.1 GaussianLens: CROSS-MODAL GAUSSIAN DENSIFICATION PREDICTION FRAMEWORK

Given initial Gaussians Ginit and 2D images, our Gaussian densification framework Gaussian-
Lens (illustrated in Fig. 2) constructs initial multi-modal features, encodes them into latent features
through a transformer network, which employs cross-attention to images to further fuse information,
and finally decodes latent features into the parameters of new densified Gaussians Gden. For brevity,
below we present a simplified description. Please refer to Sec. B.1 for full details.

Multi-Modal Residual Gaussian Feature Initialization As shown in Fig. 2 (a), given input images
I and initial Gaussians Ginit, we first construct initial per-Gaussian features {gj} and image features
{Hi} by fusing 3D Gaussian and 2D multi-view information.

To associate input 3D Gaussians with 2D images, we render Ginit at input views and compare them
with the input images. Concretely, at each view i, we obtain reconstructed RGB, depth, and opacities
(Îi, D̂i, Âi), and explicitly compute the residual between groundtruth images and reconstruction as
Ei = Ii − Îi. We define the reconstruction-residual image features as Hrecon

i = (Îi, D̂i, Âi, Ei).
We also extract dense multi-view features {Hmv

i }Ni=1 with a pretrained multi-view feature extractor
from Xu et al. (2023). Finally, we construct image features {Hi} as Hi = (Ii, H

mv
i , Hrecon

i ).

We construct initial Gaussian features {gj} as gj = (gparamj , ggradj , gprojj ), where gparamj are the
Gaussian parameters, ggradj are the gradients of the rendering loss L =

∑
i ||Ei||2 with respect to

the parameters, i.e., ∇GjL. We incorporate them to leverage the residual signal, similar to Chen
et al. (2024b). gprojj refers to local image features at the projected Gaussian centers. Concretely, we
compute the 2D projection of Gaussian Gj’s center to view i, take the bilinear interpolation of image
feature Hi at the projection, and concatenate projection features from all views to obtain gprojj .

PointTransformer-based Feature Encoder with Projection-Based Cross-Attention We encode
initial Gaussian features {gj} into latent features {fj} with an encoder network ϕenc based on
PointTransformerv3 (PTv3) (Wu et al., 2024), as shown in Fig. 2 (b). We adopt its standard U-Net
architecture with serialized self-attention layers, progressive down-/up-sampling and skip connec-
tions to efficiently extract spatial features at multiple scales.

We further propose a projection-based cross-attention layer (ProjCrossAttn) to fully inte-
grate image information. As Fig. 2 (e) illustrates, given image features {Hi}Ni=1 and projection
matrices {Pi}Ni=1, for each Gaussian feature fj centered at pj , ProjCrossAttn projects the 3D
Gaussian center pj to each view i, bilinearly-interpolates image features Hi at the 2D projection to
obtain sampled image feature hi,j = Hi[πPi(pj)]. Finally, it applies a standard cross-attention with
Gaussian feature fj as the query and sampled image features {hi,j}Ni=1 as key and values. Formally,
ProjCrossAttn((pj , fj), {Hi,Pi}Ni=1) = CrossAttn({fj}, {hi,j}Ni=1), hi,j = Hi[πPi

(pj)],

where CrossAttn is a standard pair-wise cross-attention between token sets {fj} and{hi,j}Ni=1.
This projection-based approach establishes localized correspondences and is more scalable than
global cross-attention that relates all Gaussians to all image tokens (Fan et al., 2024b).

To facilitate information exchange across varying scales, we build a multi-scale image feature pyra-
mid (H,H

1
2 ,H

1
4 ), and apply ProjCrossAttn to the last three decoder blocks of PTv3, fusing

low-resolution image features with downsampled, low-resolution Gaussians and, conversely, high-
resolution image features with full-resolution Gaussians.

In summary, ϕenc processes Gaussian features {(µj , gj)}Mj=1 and image features H with spatial self-
attention and multi-scale projection-based cross-attention to produce per-Gaussian features {fj}Mj=1.

Gaussian Densification Decoder As shown in Fig. 2 (c), for each initial Gaussian Gj , we use an
MLP decoder ϕdec to map its final feature fj into the Gaussian parameters of K final densified
Gaussians {Ĝk

j }Kk=1, expressed as residuals to the original Gaussian parameters. Formally,
Ĝk

j = Gj +∆Ĝk
j , {∆Ĝk

j }Kk=1 = {(∆µk
j ,∆αk

j ,∆Σk
j ,∆ckj )}Kk=1 = ϕdec(fj).
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K is a predefined densification factor, which we find sufficient to set to K = 1. 1 The final output
of GaussianLens is the union of all densified Gaussians, i.e., Gden = {Ĝk

j }j=1...M,k=1...K .

We train our model with mean squared error (MSE) between images rendered from predicted Gaus-
sians and the groundtruth at N ′ novel target test views {Ii}N

′

i=1, within RoI masks {Mi}N
′

i=1:

LMSE =

N ′∑
i=1

sum(Mi · ||Ipredi − IGT
i ||22)/

N ′∑
i=1

sum(Mi)

3.2 PIXEL-GUIDED GAUSSIAN DENSIFICATION

Conceptually, GaussianLens densifies initial Gaussians Ginit with learned cloning and refinement.
However, for large resolution increases, solely cloning existing Gaussians is insufficient. For a 4×
zoom-in, a single initial Gaussian becomes responsible for capturing a 4 × 4-pixel region. Aggre-
gating all information and mapping them to Gaussian parameters is a challenging learning task.

To address the challenge, we propose pixel-guided densification, a mechanism that directly injects
information from the high-resolution observations by augmenting the initial Gaussians with a set of
pixel-guided Gaussians, Gpixel = {Gi,xy}1≤i≤N,Mi,xy=1. As shown in Fig. 2 (e), we spawn one
new Gaussian Gi,xy for each pixel pi,xy within the RoI mask Mi of each view i. The color ci,xy of
the Gaussian is initialized to the corresponding pixel color Ii,xy . The 3D position µi,xy is determined
by back-projecting the pixel along its camera ray to the depth rendered from the coarse initial 3DGS
reconstruction. The opacity and scale are initialized to small constant values. Pixel-guided Gaus-
sians explicitly incorporate dense appearance details, providing GaussianLens with a better foun-
dation. We pass the union of input RoI Gaussians and pixel-guided Gaussians to GaussianLens for
further densification and refinement, i.e., Ginit ← GRoI ∪ Gpixel,Gden = GaussianLens(Ginit).

4 EXPERIMENT

4.1 REGION-OF-INTEREST VIEW SYNTHESIS BENCHMARK

Dataset We build our region-of-interest view synthesis benchmark based on RealEstate10K
(RE10K) (Zhou et al., 2018) and DL3DV (Ling et al., 2024). RE10K contains real estate walk-
through videos captured at 1280× 720 resolution, while most feed-forward Gaussian works (Zhang
et al., 2024c; Szymanowicz et al., 2024b; Chen et al., 2025b) use a downscaled 256 × 256 version,
with few (Xu et al., 2024a) using higher resolution for qualitative results. DL3DV captures diverse,
challenging scenes with 3840× 2160 videos. So far, existing novel-view synthesis works (Ye et al.,
2024a; Fischer et al., 2025; Ling et al., 2024; Seo et al., 2024; Chen et al., 2024a; Xu et al., 2024a;
Kang et al., 2024) only use resolutions up to 960× 540.
Zoom-in Resolution Setting On both datasets, we use 256×256 for low-resolution, full-sized input
images for global capture. For high-resolution images focusing on the region-of-interest, we use
512× 512 and 1024× 1024 resolutions for RE10K and DL3DV, respectively. Given we only focus
on local regions that constitute a small portion of the full-size image, to reduce redundancy and ease
implementation, we only use 256 × 256 crops from high-res images that enclose the RoI projected
masks. This can also be viewed as mimicking close-up captures with available high-res, global-
scale images in the dataset. Below, we refer to the two settings by “RE10K, 256 → 512 (2×)” and
“DL3DV, 256→ 1024 (4×)” to emphasize the resolution increase and zoom-in factors.

RoI Generation To mimic the use case where users specify 3D RoIs via a 2D selection interface,
we generate 3D RoIs by sampling 2D crops from context views and backprojecting them to the 3D
scene. Please refer to Sec B.4 for more details.

Evaluation Setting We use the official train/test scene splits and follow the context/target view se-
lection protocols of pixelSplat (Charatan et al., 2024) on RE10K and DepthSplat (Xu et al., 2024a)
on DL3DV. We use the same views for both low-resolution and high-resolution images. We eval-
uate the results using standard novel view synthesis metrics PSNR, SSIM (Wang et al., 2004), and
LPIPS (Zhang et al., 2018). We adapt them to the Region-of-Interest setting and only apply them

1To reduce redundancy and support selective densification, we can optionally predict an existence mask for
each densified Gaussian. Please see Sec A.3 for more details.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to pixels within the RoI mask. We also report efficiency metrics, including the number of predicted
Gaussians, trainable model parameters, and per-iteration training time and memory consumption.

4.2 BASELINES

We compare to the following adaptations of state-of-the-art feed-forward Gaussian reconstruction
methods DepthSplat (Xu et al., 2024a), pixelSplat (Charatan et al., 2024), and MVSplat (Chen et al.,
2025b). 1) low-res full is the standard model operating on 256 × 256 low-resolution, full-size
inputs and predicts per-pixel Gaussians. We use this variant of DepthSplat to generate the initial
Gaussians as inputs to our model. 2) high-res full uses high-resolution, full-size inputs (512 ×
512 on RE10K), and outputs per-pixel Gaussians at high-resolution. This variant has unfair access
to additional information from the full-sized, high-resolution context images, and is therefore not
directly comparable. 3) high-res crop takes 256 × 256 RoI crops from full-size high-resolution
images as inputs, and only outputs Gaussians for pixels in the crop, avoiding the costly per-high-
res-pixel prediction. Please refer to Sec. B.3 for details.

As all baselines predict new Gaussians of the RoI independent of the global initial ones, they do not
produce a single, consistent reconstruction with both global content and local details. We only use
them for reference in evaluating the reconstruction quality of the RoI.

4.3 BENCHMARK COMPARISONS

Table 1: Quantitative comparisons on DL3DV and RE10K. Best overall results are in bold. Best results un-
der fair comparison, which excludes methods with privileged access to full high-res images (*), are underlined.
Time and memory consumptions are measured with a batch size of 1 on an NVIDIA a6000 GPU.

Method PSNR↑ SSIM↑ LPIPS↓ Trainable
Param.↓

Training Cost Num.
GS↓

Time↓ Mem. ↓

R
E

10
K

2
5
6
→

5
1
2

pixelSplat low-res full 25.94 0.820 0.128 118M 0.89s 14.32G 393K
MVSplat low-res full 26.08 0.832 0.089 12M 0.49s 8.27G 131K

DepthSplat low-res full 27.28 0.852 0.101 120M 0.66s 8.90G 131K
MVSplat high-res full* 27.12 0.862 0.085 12M 1.15s 25.91G 524K

DepthSplat high-res full* 28.18 0.876 0.083 120M 2.03s 32.66G 524K
DepthSplat high-res crop 24.38 0.759 0.161 120M 0.78s 8.90G 131K

Ours 28.46 0.874 0.087 43M 1.74s 13.27G 214K

D
L

3D
V

2
5
6
→

1
0
2
4 DepthSplat low-res full 22.31 0.652 0.286 120M 0.91s 8.15G 131K

DepthSplat high-res full* Out of Memory on an 80GB H100 GPU
DepthSplat high-res crop 19.51 0.571 0.352 120M 0.87s 8.10G 131K

Ours 23.62 0.719 0.231 43M 1.67s 9.46G 220K

Table 1 shows the quantitative comparison with baselines. Our method consistently improves upon
initial Gaussians predicted by ‘DepthSplat low-res full’ by more than 1dB PSNR, effectively lever-
aging high-resolution observations. Compared to ‘Depthsplat high-res full’ with unfair access to
full-size high-resolution images, we achieve on-par performance on RE10K with only 40% Gaus-
sian budgets, fewer model parameters, shorter training time, and much smaller memory consump-
tion. Our method’s efficiency and reduced computational requirements are more evident in the
DL3DV 256→ 1024 setting, where ‘DepthSplat high-res full’ fails to train as it runs out of memory
even on an 80GB H100 GPU, revealing the inefficiency and lack of scalability of standard, uniform-
resolution feed-forward models. ‘DepthSplat high-res crop’ scales to high resolutions by operating
on crops. However, it struggles to learn reliable multi-view geometry from the small-overlap, off-
center local image crops, leading to lower performance. In contrast, our method effectively leverages
initial Gaussians as a coarse 3D scaffold to aggregate information onto.

As shown in Fig. 3, our model improves details originally blurred out in low-resolution initial recon-
structions, such as thin structures and fine patterns. Please see Sec. C for more qualitative results.

4.4 ZERO-SHOT GENERALIZATION TO DIFFERENT GAUSSIAN SOURCES

Despite trained exclusively on input 3D Gaussians predicted by DepthSplat, our method can zero-
shot generalize to input 3D Gaussians from distinct sources: Gaussians predicted by unseen feed-
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selection for now
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Figure 3: Novel view synthesis on RealEstate10K (Zhou et al., 2018) and DL3DV (Ling et al., 2024). Our
method reconstructs finer details by effectively leveraging high-resolution observations and initial Gaussians.

forward models pixelSplat and MVSplat on RE10K, and Gaussians per-scene optimized from dense
observations on DL3DV. As summarized in Table 2, our model achieves consistent improvement
upon the input Gaussians in all metrics, showing strong generalization ability to inputs from dif-
ferent distributions. This is crucial for the flexible deployment of the method and underscores the
advantage of not relying on prior knowledge or access to the internal features of the Gaussian source.
Please refer to Sec A.1 for details and qualitative results.

4.5 ABLATION STUDIES

We ablate our method under the DL3DV 256→ 1024 setting and summarize the results in Table 3.

Source Gaussians to Densify from. Our method densifies Gaussians from both the input (GRoI )
and pixel-guided densification (Gpixel). As shown in Tab. 3a, densifying from either input Gaussians
only (‘input, K×’), or pixel-guided Gaussians only (‘pixel’) leads to decreased performance. Simply
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Table 2: Generalization to different input Gaussian sources. We take our models trained exclusively on input
Gaussians predicted by the DepthSplat low-res full model, and directly apply them to Gaussians from unseen
feed-forward models pixelSplat and MVSplat on RE10K, or per-scene optimized Gaussians on DL3DV.

Dataset Source of
input Gaussians

input Gaussians predicted densification

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RE10K
256 → 512

DepthSplat low-res full 27.28 0.852 0.101 28.46(+1.18) 0.874(+0.022) 0.087(-0.014)
pixelSplat low-res full 25.94 0.820 0.128 27.09(+1.15) 0.844(+0.024) 0.108(-0.020)
MVSplat low-res full 26.08 0.832 0.089 27.32(+1.24) 0.853(+0.021) 0.087(-0.002)

DL3DV
256 → 1024

DepthSplat low-res full 22.31 0.652 0.286 23.62(+1.31) 0.719(+0.067) 0.231(-0.055)
per-scene optim. 22.34 0.659 0.291 24.46(+2.12) 0.742(+0.083) 0.225(-0.066)

Table 3: Ablation studies. All models are trained and evaluated under the DL3DV 256 → 1024 setting.

GS Source PSNR↑ SSIM↑ LPIPS↓
input,4× 23.27+0.96 0.695 0.260
input,16× 23.25+0.94 0.697 0.260
pixel 22.97+0.66 0.694 0.248
Ours (both) 23.62+1.31 0.719 0.231

(a) Source Gaussians to densify from. ‘input,
K×’ only densifies the original Gaussians GRoI by
densification factor K(K= 4 or 16). ‘pixel’ only den-
sifies pixel-guided Gaussians Gpixel . Ours densifies
both sources of Gaussians GRoI ∪ Gpixel .

Init. Feat. PSNR↑ SSIM↑ LPIPS↓
no grad. 23.46+1.16 0.711 0.239
no recon. 23.19+0.88 0.703 0.244
no m.view 23.41+1.10 0.708 0.241
Ours 23.62+1.31 0.719 0.231

(b) Initial features. ‘no grad’ removes gradi-
ent feature ggrad from initial Gaussian fea-
tures. ‘no recon.’, and ‘no m.view’ remove re-
construction features Hrecon and multi-view
features Hmv from initial image features.

Attn. PSNR↑ SSIM↑ LPIPS↓
no attn. 22.59+0.28 0.661 0.276
global 22.64+0.33 0.663 0.274
last block 23.47+1.17 0.714 0.236
Ours 23.62+1.31 0.719 0.231

(c) Image-point cross-attention. ‘no attn.’ re-
moves cross-attention. ‘global’ performs atten-
tion between all images and points at the bot-
tleneck. ‘last block’ only performs projection-
based cross-attention at the last block.

increasing the densification factor K from 4 to 16 does not lead to further improvement, implying
the limitation of using input Gaussians only and the necessity of pixel-guided densification.

Multi-Modal Residual Feature Initialization. To analyze the construction of the initial Gaussian
and image features, we remove gradient-based features ggrad from initial Gaussian features (‘no
grad.’), reconstruction-residual features Hrecon or multi-view features Hmv from image features
(‘no recon.’ and ‘no m.view’). As shown in Tab. 3b, all features contribute to the final performance.
The most significant drop occurs when we remove image reconstructions and residuals rendered
from initial Gaussians (‘no recon.’), highlighting the importance of explicitly associating Gaussians
and images through rendering for effective residual learning.

Projection-Based Gaussian-Image Cross-attention. We replace our multi-scale, projection-based
cross-attention with 1) no cross-attention with images (‘no attn.’), PTv3 performs self-attention only;
2) a global cross-attention between all image and Gaussian tokens (‘global’), similar to Fan et al.
(2024b), which is only applied to the bottleneck block with downsampled tokens due to the squared
computation complexity; 3) a single-scale projection-based cross-attention at the last transformer
block (‘last block’). As shown in Tab. 3c, both no attention and global attention suffer significant
performance drop, suggesting the vital role of local image information in Gaussian densification
prediction. Multi-scale attention further improves performance upon single-scale (‘last block’).

5 CONCLUSION

In this paper, we introduce the task of localized high-resolution reconstruction via on-demand Gaus-
sian densification. Our formulation addresses the practical need for spatially varying detail recon-
struction, avoids the prohibitive cost of uniformly high-resolution reconstruction, and enables the
effective use of high-resolution observations. We develop GaussianLens, a generalizable densifica-
tion prediction framework that effectively fuses multi-modal input information. We further propose a
novel pixel-guided densification mechanism to capture details under significant resolution increases.
Our model achieves state-of-the-art performance in localized high-resolution reconstruction while
consuming fewer computational resources.

Limitations and Future Directions Our model focuses on improving detail reconstruction based
on a coarse initial Gaussian reconstruction. It is not designed to handle catastrophic errors already
present in the initial reconstruction. Developing a method to leverage emerging geometry cues from
high-resolution observations to recover from reconstruction failures at low resolution would be an
exciting future direction.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, we provide the model,
implementation, and benchmark details in Appendix Sec. B. We will also release the source code
and benchmark dataset upon acceptance.
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A ADDITIONAL EXPERIMENTS AND ANALYSIS

A.1 GENERALIZATION TO PER-SCENE OPTIMIZED 3DGS

In this section, we present additional details and qualitative results on zero-shot generalization to
per-scene optimized 3DGS on DL3DV, which we introduced in Sec. 4.4.

We repurpose the per-scene optimized 3D Gaussian reconstructions of the 140 test scenes from
DL3DV (Ling et al., 2024), which we used for sampling Regions-of-Interest (RoI) for the evalu-
ation benchmark (detailed in Sec B.4). We initialize the 3D Gaussians with the Structure-from-
Motion (Snavely et al., 2006) points from DL3DV’s official COLMAP cache release, and optimize
them with 480 × 280 (1/8) resolution images for 7K iterations. Consistent with the observation of
the original 3DGS paper (Kerbl et al., 2023), the reconstructions at 7K iterations already capture
the overall scene geometry and appearance. They are sufficient for our original purpose of sampling
RoI, and serve as an interesting testbed for evaluating the generalization ability of our model.

Figure 4 shows qualitative examples of our generalization results. We compare the initial Gaussians
and our corresponding densifications side-by-side for both DepthSplat predicted and per-scene op-
timized input Gaussians. As shown in the first two rows, our method improves detail reconstruction
upon input Gaussians from both sources, demonstrating strong zero-shot generalization capabil-
ity. The last two rows illustrate cases where per-scene optimization provides a better initialization,
thanks to dense observations. In contrast, DepthSplat predictions suffer from the challenging sparse-
view setting, leading to floaters in the third row and wrongly angled door structures in the fourth
row. Our model is able to leverage the better starting point from per-scene optimization and produce
more accurate final reconstructions.

A.2 EXTENSION TO HIGHER RESOLUTIONS

We show additional results on two higher-resolution settings on DL3DV, where the original image
resolution is 2160× 3840: 1) 4× zoom-in from 256× 480 to 1024× 1920, and 2) 8× zoom-in from
256 × 256 to 2048 × 2048 (largest square from the original DL3DV images). Similar to the main
experiments, we finetune the DepthSplat ‘low-res, full’ variants using low-resolution input images
and high-resolution supervision, then train our model to refine and densify the 3DGS produced
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Figure 4: Our densification results given input Gaussians from DepthSplat prediction or per-scene opti-
mization. Our model achieves zero-shot generalization to per-scene optimized 3D Gaussians, improving upon
initial reconstructions from both sources. The last two rows illustrate cases where per-scene optimization pro-
vides a more robust initialization, while DepthSplat struggles with sparse-view ambiguity, resulting in floaters
in the third row, and wrongly angled door structure in the fourth row. Our model can leverage improved initial
Gaussians and produce more accurate final reconstructions.

by finetuned DepthSplat. However, due to limited storage space, we only trained our models on
DL3DV-3K and DL3DV-4K splits, a 2K-scene subset of the complete DL3DV dataset. We perform
the evaluation on the 140 standard DL3DV test scenes.

Table 4: Extension to higher resolutions. We experiment with two additional higher-resolution settings on
DL3DV, where our method consistently improves the initial Gaussian reconstruction from DepthSplat.

Resolution Setting DepthSplat low-res full predicted densification

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

256× 480 → 1024× 1920 (4×) 22.76 0.685 0.283 23.98(+1.22) 0.739(+0.054) 0.233(-0.050)
256× 256 → 2048× 2048 (8×) 22.32 0.653 0.330 23.24(+0.92) 0.692(+0.039) 0.281(-0.049)

As shown in Table 4, our method consistently improves the input 3DGS from DepthSplat at higher-
resolution settings, including the challenging case of 8× zoom-in.

A.3 LEARNING EXISTENCE MASKS FOR SELECTIVE DENSIFICATION

To reduce redundancy and support selective densification, conceptually, our framework can addi-
tionally predict an existence probability pkj ∈ [0, 1] for each densified Gaussian Gk

j . To reduce
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Table 5: Selective densification by learning existence masks. We perform the experiments under the DL3DV
256 → 1024 setting. Training our model with a mask regularization loss achieves performance close to the
full model with 80% of Gaussians, suggesting the potential to further reduce the number of Gaussians and the
flexibility to balance quality and cost.

Method wmask PSNR↑ SSIM↑ LPIPS↓ Num. GS↓

Ours 0 23.62 0.719 0.231 220K
masked 0.0001 23.56 0.711 0.239 170K

the final number of Gaussians, we can apply a regularization loss Lmask to {pkj }, and only keep
Gaussians with high existence probabilities.

Implementation-wise, we adapt MaskGaussian (Liu et al., 2024b), a per-scene 3D Gaussian opti-
mization method. For Gaussian Gj (k omitted for simplicity), the decoder predicts two mask logits
mY

j ,m
N
j , corresponding to the categories “exists” and “does not exist”. A discrete yet differen-

tiable category Mj ∈ {0, 1} is then sampled with Gumbel Softmax (Jang et al., 2016), determining
whether Gj is active in the current pass. The Gaussian parameters and masks {(Gj ,Mj)} are then
processed by MaskGaussian’s specialized rasterizer, which renders active Gaussians with Mj = 1
during the forward pass. In the backward pass, it computes gradients both with respect to the param-
eters of rendered Gaussians, and the mask values Mj of all Gaussians. The gradients are backprop-
agated all the way to the mask logit decoder, enabling learnable masking and selective densification.

The mask regularization loss is formally defined as:

Lmask = mean(
∑
j,k

Mk
j +

∑
i,xy,k

Mk
i,xy)

2,

where the two terms account for Gaussians densified from input RoI Gaussians GRoI and pixel-
guided Gaussians Gpixel, respectively.

The final objective is L = LMSE +wmaskLmask, with wmask = 0 in main experiments to prioritize
reconstruction quality.

As shown in Table 5, the variant trained with mask regularization (wmask = 0.0001) achieves
performance close to the full model while using only 80% Gaussians, indicating our framework’s
potential to flexibly trade off reconstruction quality and computational cost.

A.4 VISUALIZING THE ROLES OF INPUT GAUSSIANS AND PIXEL-GUIDED DENSIFICATION

For an intuitive understanding of the contribution from input Gaussians and pixel-guided densifi-
cation, we show a breakdown visualization of source and predicted Gaussians in Figure 5. The
network learns to update both input coarse Gaussians GRoI and pixel-guided Gaussians Gpixel to
collaboratively reconstruct the scene. While some details emerge from the input Gaussians, they
serve more as a coarse backdrop, on which pixel-guided Gaussians render sharp details.

candidates for pixel-guided GS figure

dl3dv_15ff83e25316
68d27c92091c97d31
401ce323e24ee7c84
4cb32d5109ab9335f
7_08

(e) updated input GS (f) updated pixel GS (g) output GS(d) pixel-guided GS (a) GT (b) input GS (c) input GS in RoI

(e) updated input GS (f) updated pixel GS (g) output GS(d) pixel-guided GS (a) GT (b) input GS (c) input GS in RoI

Figure 5: Breakdown visualization of source and output Gaussians. Starting from input Gaussians (b), our
network takes input Gaussians in the specified RoI (c), and Gaussians from pixel-guided densification (d), and
outputs updated versions of both (e, f). While the emergence of more details can already be observed in updated
input Gaussians (e), Gaussians from pixel-guided densification (f) reconstruct sharp details more effectively.
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B METHOD DETAILS

B.1 MODEL DETAILS

Feature Initialization To effectively associate input 3D Gaussians and 2D images, we render the
3D Gaussians at input views and compare the results with the input images. Note that we render all
Gaussians Ginput for the complete reconstruction. Concretely, we obtain reconstructed RGB, depth,
and accumulated opacities at view i as

(Îi, D̂i, Âi) = Rasterize(Ginput;Pi),

where Pi is the projection matrix of view i. We also explicitly compute the residual between
groundtruth images and reconstruction as Ei = Ii − Îi. We define the reconstruction-residual
image features as

Hrecon
i = (Îi, D̂i, Âi, Ei).

While Hrecon
i accounts for the totality of the input reconstruction Ginput, we only densify the subset

GRoI and keep the rest Gbg the same. Therefore, we also render the unchanged Gaussians Gbg alone
to encode background or context information. Specifically, we compute

Hbg recon
i = (Îbgi , D̂bg

i , Âbg
i ) = Rasterize(Gbg;Pi)

The image features {Hi} are constructed as
Hi = RayModulate(Ii, H

mv
i , Hrecon

i , Hbg recon
i ; Pi),

where Hmv
i ∈ RH×W×C is a multi-view feature from an off-the-shelf image encoder (Xu et al.,

2023; 2024a). To further exploit our knowledge of the camera poses, we use RayModulate( · ; Pi)
to incorporate per-pixel camera ray information, following Chen et al. (2025a). We compute the
Plücker coordinates for the camera rays at each pixel and use them to modulate the image feature
map via adaptive layer norm (Peebles & Xie, 2023).

We construct initial Gaussian features {gj} as
gj = (gparamj , ggradj , gprojj ),

where gparamj and ggradj are the Gaussian parameters and gradients of the rendering loss L =∑
i ||Ei||2 with respect to the parameters, i.e., ∇GjL. In particular, we represent the Gaussian

parameters as (µj , αj , sj , qj , cj), where we decompose the covariance matrix Σj ∈ R3×3 into
scale sj ∈ R3 and rotation qj ∈ R4, represented as a quaternion.

gprojj refers to features taken from images by projecting the Gaussian center to images. Concretely,
for view i, we compute the 2D projection of Gaussian Gj’s center to view i, πPi

(µj) ∈ R2, and
take the bilinear interpolation of image feature Hi at the projection, denoted as Hi[πPi

(µj)]. We
concatenate projection features from all views to obtain

gprojj = concatNi=1 Hi[πPi(µj)].

Projection-Based Cross-Attention Layer We construct the cross-attention layer following the
structure of PointTransformerv3 (Wu et al., 2024)’s point serialized attention block. It consists of
a residual cross-attention unit, with the point feature fj as queries and the image features from all
views {Hi[πPi(pj)]}Ni=1 as keys and values, and a residual MLP block. Layer normalization is
applied to all features before applying attention or MLP.

Densification Decoder Given output Gaussian feature fj from the transformer backbone, we use
Gaussian densification decoder ϕdec to map it to the Gaussian parameters of K final densified Gaus-
sians {Ĝk

j }Kk=1. To encourage diversification of the K densified Gaussians, we first decode the
position offsets {∆µk

j }Kk=1 from fj with a two-layer MLP, then decode the other parameter offsets
conditioned on both fj and ∆µk

j with another two-layer MLP. We also perform a final round of
cross-attention with image features H using the predicted Gaussian centers µ̂k

j = µj +∆µk
j , which

provide a more accurate spatial association with local image features.

Similar to how the opacities and scales of cloned Gaussians are set to smaller values in the original
Adaptive Density Control (Kerbl et al., 2023), we compute “default post-densification” Gaussian
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parameters G̃j
(K)

and predict offsets from them. We keep using the center, rotation, and color of
the original Gaussian as default for the densified Gaussians, i.e., µ̃(K)

j = µj , q̃
(K)
j = qj , c̃

(K)
j = cj ,

and follow Kheradmand et al. (2024) for the computation of opacity α̃j
(K) and scale s̃j(K) based on

the densification factor K. Intuitively, when predicted offsets are initialized as 0, K new Gaussians
with these default parameters provide a better approximation to the original Gaussian Gj .

Region-of-Interest Gaussian Selection Given input 3D Gaussians Ginput that reconstructs the
scene globally, we focus on a local set of Gaussians GRoI that reconstruct the Region of Interest
(RoI), and keep the other Gaussians (referred to as background Gaussians Gbg) intact. To select
GRoI , we compute a binary mask MRoI

j over all Gaussians Gj . Given binary RoI masks at input
viewsM = {Mi}Ni=1, we render Ginput at each view i, compute each Gaussian Gj’s contribution
contrib(i)j to the total opacity in the masked region Mi, and consider Gj as visible from view i by

thresholding contrib(i)
j , i.e., visible(i)j = [contrib(i)j > τ ], where we set τ = 0.1. We consider initial

Gaussians visible from at least two context views, i.e., MRoI
j = [

∑N
i=1 visible(i)j ≥ 2], assuming

that they are less likely to contain errors from single-view ambiguity and hallucination.

Pixel-Guided Densification For each input view i, we consider all pixels pi,xy with image coor-
dinate (x, y) within the RoI mask Mi, i.e. Mi(x, y) = 1, and create a Gaussian

Gi,xy = (µi,xy, αi,xy,Σi,xy, ci,xy).
We set

µi,xy = oi + ˆdepthi,xy · di,xy,

αi,xy = αinit,

Σi,xy = sinitI3×3,

ci,xy = Ii(x, y),

where oi is the camera origin, di,xy is the ray direction vector corresponding to (x, y) computed
from camera projection matrix Pi, ˆdepthi,xy is the reconstructed depth at (x, y), obtained by raster-
izing Ginput. αinit = 0.05, sinit = 0.02 are hyperparameters. Ii(x, y) is the color at (x, y).

We refer to the set of Gaussians created from pixels as Gpixel. To better handle Gpixel and GRoI that
follow two different distributions, we adjust the feature initialization and network as follows.

For feature initialization, we can compute the Gaussian parameter features gparami,xy and image-
projection features gproji,xy for Gi,xy ∈ Gpixel as before. However, the rendering-based gradient fea-
tures ggrad and reconstruction-residual image features Hrecon require a holistic association between
the images and the entire set of Gaussians. To accommodate this, we render the union of all Gaus-
sians, Ginput∪Gpixel, and compute an additional set of gradient features ggrad+ and reconstruction-
residual image features H+

recon. Note that ggrad+ is computed for both GRoI and Gpixel. We still
keep the original ggradj for Gj ∈ GRoI and set ggradi,xy = 0 for Gi,xy ∈ Gpixel.
To sum up, the final initial Gaussian features and image features are computed as

g = (gparam, ggrad, ggrad+, gproj),

H = RayModulate(I,Hmv, Hrecon, Hrecon+, Hbg recon ; P).

For our transformer backbone, we attach learnable d-dim embeddings eRoI , epixel to input Gaussian
features from the two sources, respectively. In the densification decoder, we also attach different
learnable embeddings to features of different Gaussians, and learn two separate decoder heads to
predict the final Gaussian parameters. Intuitively, one would focus on predicting residual updates
of GRoI conditioned on initial Gaussian parameters, while the other predicts some attributes, e.g.
scales and opacities, as absolute values due to our uniform initialization of Gpixel.

Gaussian Set Operation Workflow We start by dividing input Gaussians into those within the RoI
and those out of the RoI, i.e. Ginput = GRoI∪Gbg . We then introduce another set of Gaussians Gpixel
by pixel-guided densification, and apply the densification framework to the union GRoI ∪ Gpixel to
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obtain a densified set of Gaussians Gden = GaussianLens(GRoI ∪ Gpixel). Finally, we merge them
with the out-of-RoI Gaussians to obtain the final refined reconstruction Gfinal = Gden ∪ Gbg .

B.2 IMPLEMENTATION DETAILS

Training We implement our method in PyTorch (Paszke, 2019) and use an AdamW (Loshchilov,
2017) optimizer with a cosine learning rate schedule. We use a learning rate of 1 × 10−4 and a
weight decay factor of 0.01. We train our model for 200K iterations with a batch size of 6 on
RealEstate10K, and 200K iterations with a batch size of 4 on DL3DV.

Rasterization We implement our differentiable 3D Gaussian rasterizer based on MaskGaus-
sian (Liu et al., 2024b), with important changes to account for

• Anti-aliasing. We adapt the σ hyperparameter in the heuristic 2D dilation process (pointed out
by Yu et al. (2024b)) to the rendering resolution, similar to the 2D scale-adaptive filter proposed
in Song et al. (2024). This removes the immediate artifacts when we render the same set of
Gaussians at a resolution different from training. While it is not a critical concern, as we use the
same resolution for finetuning and evaluation, anti-aliasing facilitates finetuning from pretrained
checkpoints that were trained with low-resolution supervision.

• Median depth rendering. We follow Luiten et al. (2024) and render per-pixel depth as the depth
of the Gaussian center, which causes the accumulated rays transmittance to drop below 0.5.

Model For feature initialization, we use a ViT-B monocular backbone and a 2-scale multi-view
branch for the multi-view image encoder (Xu et al., 2023; 2024a). We freeze the model weights
from Xu et al. (2024a), and only finetune the weights of a DPT head (Ranftl et al., 2021) attached to
the encoder. For modulation with ray plücker coordinates, we follow the implementation from Chen
et al. (2025a). For the transformer backbone, we follow the default PointTransformerv3 (Wu et al.,
2024) architecture with 5 encoder blocks and 4 decoder blocks. We add cross-attention layers at the
end of the last 3 decoder blocks, each uses an 8-head attention. The corresponding image pyramid
features are downscaled to 1/4, 1/2, 1, with 128, 96, 64 channels, respectively.

B.3 BASELINE DETAILS

For experiments on the RealEstate10K (Zhou et al., 2018) (RE10K) dataset, we finetune DepthSplat-
based baselines from the official model checkpoint of the “Base” model (with a ViT-B monocular
branch and a 2-scale multi-view branch) trained on 2-view, 256×256 resolution images. We finetune
pixelSplat and MVSplat from their official checkpoints, both also trained on 2-view, 256 × 256
images. For experiments on the DL3DV (Ling et al., 2024) dataset, we finetune DepthSplat from
the official model checkpoint trained on 2-view, 256 × 448 RealEstate10K dataset and finetuned
on 2-6 views, 256 × 448 DL3DV (Ling et al., 2024) dataset. We finetune all baselines for 200K
iterations.

Below, we detail each baseline variant using the RE10K, 256→ 512 setting as an example.

• ‘low-res full’ variants take two low-resolution (256× 256), full-sized input images, and generate
K Gaussians per input pixel (K×2×256×256 Gaussians in total, K = 3 for pixelSplat, K = 1
for MVSplat and DepthSplat, following their original settings). The Gaussians are rendered at
high resolution (512×512), and supervised with high-resolution (512×512) groundtruth images.

• ‘high-res full’ variants take two high-resolution (512×512), full-sized input images, and generate
K Gaussians per input pixel (K × 2 × 512 × 512 Gaussians in total, K = 1 for MVSplat and
DepthSplat). The Gaussians are rendered at high resolution (512 × 512), and supervised with
high-resolution (512× 512) groundtruth images.

• ‘high-res crop’ variants take 256× 256 crops from two high-resolution (512× 512) input images
that enclose the region of interest, and generate K Gaussians per input pixel (K × 2× 256× 256
Gaussians in total, K = 1 for DepthSplat). The Gaussians are rendered at high resolution (crops
from 512×512), and supervised with high-resolution groundtruth images in the region of interest.
As this setting involves resizing and non-centered cropping of images, we make our best effort
to ensure the camera parameters are correctly modified. We also modify the Gaussian rasterizer
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to support non-centered intrinsic matrices and partial images. The modifications are carefully
verified, and the code will be released.
Meanwhile, we have confirmed with the authors that DepthSplat does not assume centered intrin-
sics and is compatible with the cropped setting.

B.4 REGION OF INTEREST GENERATION

Given a 3D scene S and a set of views i = 1, . . . , N , described with images and camera projection
matrices {Ii,Pi}Ni=1, Ii ∈ RH×W×3,Pi ∈ R4×4, we aim to generate a local 3D region of interest
(RoI)R suitable for our local high-resolution reconstruction task, and compute its 2D projections at
the views i = 1, . . . , N , described as binary masks {Mi}Ni=1,Mi ∈ RH×W .

Consistent with real-world usage where selections are made via a 2D interface, we first sample a 2D
region R2D

i from a random view i, which we set to i = 1 for simplicity. The 2D region R2D
i is then

back-projected to the 3D scene S to obtain 3D regionR.

To constrain the selection to be local, we sample a fixed-sized Hcrop×Wcrop rectangle Rcrop
i , where

Hcrop = c ·H,Wcrop = c ·W . We use c = 0.5 for RE10K and c = 0.25 for DL3DV.

For back-projection to 3D, as groundtruth 3D scene S is typically not available, we use a 3D Gaus-
sian reconstruction G as a proxy. To obtain G, we run per-scene optimization using all available
images on the 140 test scenes of DL3DV. Sec. A.1 provides more details. However, per-scene op-
timization takes more than 7 min even for a coarse reconstruction. Given limited resources, for
the 7K test scenes of RE10K and even more training scenes in both datasets, we use DepthSplat to
reconstruct G from two views. The back-projection process from 2D region to 3D Gaussians is the
same as Region-of-Interest Gaussian selection in our method, except for only considering one view,
please refer to Sec. B.1 for more details.

The backprojection process results in a set of Gaussians GRinit that constitute the initial 3D RoI
Rinit, which we will further prune and refine. We render GRinit to all views and obtain binary masks
{M init

i } by thresholding accumulated opacity Ainit
i . For each mask M init

i , we sample rectangular
crop Rcrop

i of size Hcrop ×Wcrop, with higher probability given to crops that enclose more masked
areas. We take the intersection of crops and masks as updated per-view binary RoI masks Mupd

i =

Rcrop
i ∩M init

i . Finally, we re-compute Gaussians visible from at least two views masked by Mupd
i ,

denoted by GRfinal , as our final 3D RoI. We render GRfinal to views i = 1, . . . , N for the final
binary RoI masks {Mi}. We limit our selection to Gaussians or 3D regions visible from more than
one view to avoid distraction from single-view ambiguity, and focus on the core of the problem, i.e.,
achieving better detail reconstruction.

C ADDITIONAL QUALITATIVE RESULTS

We show more novel view synthesis comparisons on RealEstate10K and DL3DV between initial
Gaussians predicted by DepthSplat and our predicted densification in Figure 6 7 8 9 and Fig-
ure 10 11 12 13.

D LLM USAGE

We used LLM to aid and polish writing, including word choice and sentence rephrasing.
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Figure 6: Novel view synthesis on RealEstate10K (Zhou et al., 2018).
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Figure 7: Novel view synthesis on RealEstate10K (Zhou et al., 2018).
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Figure 8: Novel view synthesis on RealEstate10K (Zhou et al., 2018).
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Figure 9: Novel view synthesis on RealEstate10K (Zhou et al., 2018).
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Figure 10: Novel view synthesis on DL3DV (Ling et al., 2024).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 11: Novel view synthesis on DL3DV (Ling et al., 2024).
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Figure 12: Novel view synthesis on DL3DV (Ling et al., 2024).
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Figure 13: Novel view synthesis on DL3DV (Ling et al., 2024).
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