
Multi-Step Visual Reasoning with Visual Tokens
Scaling and Verification

Tianyi Bai1,3∗, Zengjie Hu2∗, Fupeng Sun4∗, Jiantao Qiu3†, Yizhen Jiang2,
Guangxin He1, Bohan Zeng2, Conghui He3‡, Binhang Yuan1‡, Wentao Zhang2‡

1The Hong Kong University of Science and Technology, 2Peking University
3Shanghai Artificial Intelligence Laboratory, 4Imperial College London

heconghui@pjlab.org.cn, biyuan@ust.hk, wentao.zhang@pku.edu.cn

Abstract

Multi-modal large language models (MLLMs) have achieved remarkable capa-
bilities by integrating visual perception with language understanding, enabling
applications such as image-grounded dialogue, visual question answering, and
scientific analysis. However, most MLLMs adopt a static inference paradigm, en-
coding the entire image into fixed visual tokens upfront, which limits their ability to
iteratively refine understanding or adapt to context during inference. This contrasts
sharply with human perception, which is dynamic, selective, and feedback-driven.
In this work, we introduce a novel framework for inference-time visual token
scaling that enables MLLMs to perform iterative, verifier-guided reasoning over
visual content. We formulate the problem as a Markov Decision Process, involving
a reasoner that proposes visual actions and a verifier—trained via multi-step Di-
rect Preference Optimization (DPO)—that evaluates these actions and determines
when reasoning should terminate. To support this, we present a new dataset, VTS,
comprising supervised reasoning trajectories (VTS-SFT) and preference-labeled
reasoning comparisons (VTS-DPO). Our method significantly outperforms existing
approaches across diverse visual reasoning benchmarks, offering not only improved
accuracy but also more interpretable and grounded reasoning processes. These
results demonstrate the promise of dynamic inference mechanisms for enabling
fine-grained, context-aware visual reasoning in next-generation MLLMs. Code and
datasets are publicly released at https://vts-v.github.io/.

1 Introduction

Multi-modal large language models (MLLMs) that can perceive and reason over visual content are
a foundational component of modern AI systems. By extending large language models (LLMs)
with visual perception capabilities, MLLMs support a wide range of applications—from image-
grounded dialogue and visual question answering to robotics and scientific analysis. Yet despite
their impressive generalization, one fundamental challenge remains unsolved: how can we conduct
effective inference-time scaling for MLLMs to enable fine-grained, context-aware interaction with
visual information?

Current MLLMs typically adopt a static inference paradigm—processing the whole image into a
static fixed set of visual tokens in a single step, and conducting all reasoning based solely on this static
embedding. This approach limits the model’s ability to recover from ambiguity, occlusion, or missing

∗Equal contribution.
†Project leader.
‡Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://vts-v.github.io/

𝒕𝟏 ∶

𝒂𝟏:
𝒐𝟏

：

𝒕𝟐 ∶

𝒂𝟐:
𝒐𝟐

𝒕𝟑 ∶

：

Llama-3.2-11B-Vision-Instruct (Ours trained) + VTS-V
𝒕𝟏 ∶

𝒂𝟏:
𝒐𝟏

𝒕𝟐:

𝒂𝟐:

𝒐𝟐

𝒕𝟑 ∶

Qwen2-VL-7B-Instruct (Ours trained) + VTS-V

Visual Correspondence

：

𝒕𝟏 ∶

𝒂𝟏:
𝒐𝟏

𝒕𝟐:

𝒂𝟐:

𝒐𝟐

𝒕𝟑 ∶

Qwen2.5-VL-7B-Instruct (Ours trained) + VTS-V

：

𝒕𝟏 ∶

𝒂𝟏:

𝒐𝟏

𝒕𝟐 ∶
𝒂𝟐:

𝒐𝟐

𝒕𝟑 ∶

ChatGPT-4o+ VTS-V (Ours)

Fine-grained Recognition

Counting Forensic Detection

Figure 1: Iterative Visual Reasoning with VTS-V. Our framework equips both open-source and
closed-source models with dynamic visual token scaling and step-wise verification to solve complex
visual tasks. The example shows how VTS-V: (1) decomposes questions into executable steps, (2)
invokes vision tools, and (3) iteratively refines answers via verifier feedback, achieving correct results.
In contrast, vanilla models fail to ground detailed visual operations without token scaling, leading to
incorrect answers.
detail: once the initial representation is formed, there is no mechanism to query the image again or
refine visual understanding. In contrast, human perception is inherently dynamic—we iteratively
inspect regions, zoom in, and seek new visual evidence as reasoning unfolds. Bridging this gap
between static MLLM inference and dynamic human reasoning is the central problem addressed in
this work.

Multi-step visual reasoning is critical for robust AI systems. Many tasks require identifying small
objects, interpreting text in images, or reasoning about spatial relations—activities that benefit from
an iterative, context-sensitive exploration of visual content. Furthermore, dynamic scaling enables
more efficient reasoning by focusing computational resources on the most relevant parts of the image,
rather than uniformly processing all pixels or tokens. Without this flexibility, existing models exhibit
degraded performance on benchmarks such as BLINK [6], V-Star Bench [27], and MMVP [23],
which are designed to probe deeper visual understanding.

The core technical challenge lies in the absence of an expressive framework for flexible, inference-
time visual exploration. Existing approaches either construct improved visual reasoning datasets
for fine-tuning [7, 21], which still rely heavily on the pretrained model’s image-text alignment
quality, or attempt to enhance inference through text token scaling [2] and the use of external vision
tools [11, 8, 22, 27]. However, these methods are limited in scope, focusing narrowly on static
token expansion or employing a small set of fixed visual tools in predefined pipelines. As a result,
these methods fail to give the model agency in choosing what to observe next, how to focus visual
attention, or when to stop reasoning. What’s needed is a unified framework that allows the model to
take structured, interpretable visual actions—guided by feedback—while remaining grounded in the
image content.

Contributions. To address this, we propose a novel framework for inference-time visual token scaling,
enabling MLLMs to engage in iterative, verifier-guided reasoning over images. Our contributions are
threefold:

2

• Expressive and theoretically grounded framework. We formulate visual reasoning as a Markov
Decision Process (MDP) with two key components: a reasoner that proposes visual actions, and a
verifier, trained via multi-step Direct Preference Optimization (DPO), which evaluates action quality
and terminates reasoning when appropriate. We prove that our reasoner and verifier cooperation
system ensures alignment between reasoning actions and visual content, while guaranteeing a
bounded number of steps through an early stopping mechanism.

• A new dataset for tool-augmented visual reasoning. We introduce a two-part dataset: VTS-SFT
(supervised reasoning trajectories with tool use), and VTS-DPO (preference-labeled reasoning
pairs). These resources enable effective training of both the reasoner and verifier, supporting
dynamic visual interaction with multi-step grounding.

• Comprehensive evaluation and state-of-the-art results. Our experiments span a variety of
vision-language tasks demanding multi-step reasoning. Across these scenarios, our approach
significantly outperforms strong baselines, including models augmented with limited tool use and
those employing chain-of-thought prompting. We observe not only accuracy improvements but also
more interpretable reasoning traces, as the model’s step-by-step process explicitly justifies each
answer with visual evidence. These results underscore the effectiveness of inference-time visual
token scaling: by enabling an AI to look deeper into images in a controlled, stepwise fashion, we
achieve new state-of-the-art performance on tasks that previously stymied conventional MLLMs.

These contributions move us toward flexible, grounded, and interpretable visual reasoning in
MLLMs—crucial for building AI systems that can “think with their eyes.”

2 Related Work

Visual reasoning. Visual reasoning in VLMs focuses on integrating visual and textual inputs to
enable effective decision-making. Early approaches, such as Shikra [2], applied Chain of Thought
(CoT)[26] techniques to visual tasks. Meanwhile, methods like SoM[29] and Scaffolding [13]
improved reasoning by leveraging visual anchors, such as segmentation maps. V∗ [27] introduced a
two-step CoT approach for high-resolution visual search, demonstrating the potential of structured
reasoning in visual contexts. More recently, efforts have been made to develop improved reasoning
datasets for training visual language models (VLMs) [21, 7]. However, most of this work primarily
focuses on scaling text tokens during the visual reasoning phase. Limited attention has been given to
frameworks that scale visual tokens to address complex visual reasoning tasks.

Visual programming and tool-using. Recent research has focused on integrating visual tools with
large language models (LLMs) and vision-language models (VLMs) to address complex visual tasks.
These studies aim to leverage LLMs and VLMs to generate code that utilizes external vision tools
for solving complex vision problems [11, 8, 22, 31]. For instance, Visprog [8] and ViperGPT [22]
prompt VLMs to produce single-step Python code that interacts with external vision tools, while
Visual Sketchpad [10] enhances these methods by introducing multi-step reasoning capabilities,
enabling VLMs to rethink and correct execution errors. However, these approaches fail to address
the critical aspect of iterative visual reasoning, as their reasoning steps are typically limited to only
1–2 steps. This prevents them from performing reflective refinements akin to VLMs, hindering their
ability to tackle complex visual tasks that require deeper inference and multi-step adjustments.

Verifier design. Recent advancements have leveraged verifiers to enhance language model rea-
soning and solution quality. Approaches include deriving reward signals for reasoning [15, 16],
combining solution- and step-level verifiers for math problems [33], and using graph search or Monte
Carlo rollouts for rationale generation [19, 24]. Training methods range from human annotations
for RL with feedback [34] to synthetic data for RL with AI feedback [30]. Some treat verifiers as
generative models, scoring solutions via control tokens [12] or likelihoods [17]. Closely related
is V-STaR [9], which uses Direct Preference Optimization (DPO) for solution ranking. However,
existing verifiers are typically designed for specific tasks and tailored training datasets. Our work
utilizes multi-step DPO as a verification mechanism, supported by theoretical guarantees.

3 Visual Tokens Scaling with Verification

We first formally formulate the visual reasoning tasks with visual token scaling and verification.

3

3.1 Problem Formulation
At the first step, a question-image pair s14 is sampled from some distribution D as the initial state.
For each step h ≥ 2, we conduct:
• Planning: the VLM observes the current state sh, which is the history of the previous h − 1

reasoning steps, i.e., sh = (sh−1, th−1, ah−1, oh−1), and generates planning of h-th step th by
some distribution p(· | sh). th can be regarded as the text tokens and determines how to manipulate
the image at the h-th step.

• Action: based on planning th, the VLM further chooses an action ah ∈ A according to policy
π(· | th), where A is the finite action (module) set. This means that the VLM decides which visual
module to implement for a specific instruction th.

• Observation: in response to the action, the environment then returns a visual observation
oh = fah

(th) for some deterministic function f . Here the visual observation is assumed to
be deterministic since it is the code execution result by some visual module, the depth map of an
image, for example.

Then we transit to a new state sh+1 and a new reasoning step begins.
• Verification: after each set of planning, action and observation, a verifier r∗ is designed to decide

whether to continue this iterative reasoning, or to stop and give out the final result.
We regard the final planning as the final result of the initial question-image pair. Eventually, we will
collect a reasoning sequence

τ = (s1, t1, a1, o1, . . . , tHτ
, aHτ

, oHτ
, tHτ+1) = sHτ+1 ∪ {tHτ+1} , (1)

where Hτ (a random variable) is the length of the total reasoning steps for path τ .

3.2 Visual Reasoning with Visual Token Scaling and Verification
To enhance performance in visual reasoning tasks, the reasoning process will consist of two main
components: a reasoner capable of generating visual reasoning steps, and a verifier that guides the
reasoner in visual token scaling and determines the terminal condition.

Reasoner. The reasoner is a pre-trained VLM augmented with plug-and-play modules, which are
denoted by Rθ0 , where θ0 encapsulates all the parameters. The module tools can be off-the-shelf vision
models (depth maps, bounding box generation, etc), table operations (add columns, select row, etc),
web search engines, and Python functions (plot figures, calculation, etc). The reasoner is supposed to
present the reasoning steps in a sequential format as in equation (1), where p(· | sh) = Rθ0(· | sh)
and π(· | th) = Rθ0(· | th). In practice, the reasoner can be: (i) a model such as GPT-4o; or (ii) an
open-source model fine-tuned on self-crafted datasets. In this case, θ0 can be further updated to θ̂SFT
by SFT.

Verifier. The verifier r∗ is a function that maps the reasoning trajectory generated by the reasoner to
a real number. At each reasoning step h, the reasoner will continue to generate one additional step
if the reward difference between step h and step h+ 1 is no less than some predetermined positive
threshold ϵ. In this paper, we utilize a verifier derived from multi-step DPO [28]. Specifically, we
begin with a base VLM Vϕ0

, capable of generating reasoning sequences, where ϕ0 is known and
encompasses all the parameters. Using multi-step DPO with preference data, ϕ0 is further updated to
ϕ̂SDPO. Consequently, the verifier can be represented by Vϕ0

and Vϕ̂SDPO
jointly.

3.3 Reasoner and Verifier Training
The training stage is divided into two parts: fine-tuning the reasoner with SFT and verifier training
based on DPO (answer level and multi-step level). Correspondingly, the training dataset consists
DSFT and DDPO, we will describe the details of Visual Tokens Scaling SFT and DPO training dataset
construction in Section 4.

Fine-tune the reasoner by SFT. Suppose we have a base reasoning model Rθ0 .

SFT training. Given a Visual Token Scaling SFT training dataset DSFT, the supervised finetuning
process refers to the learning of reasoner Rθ through minimizing the following cross-entropy loss

θ̂SFT := argminθ

1

|DSFT|
∑

τ∈DSFT

1

Hτ + 1
LSFT (Rθ (τ) , τ) ,

4In practice, s1 will also include system prompts.

4

where LSFT(·, ·) is defined as

LSFT (Rθ (τ) , τ) = −
Hτ+1∑
h=1

log Rθ (tτh | sτh)−
Hτ∑
h=1

log Rθ (aτh | tτh) . (2)

θ̂SFT then can be obtained by the iteration of gradient descent

θk+1 = θk − α
1

|DSFT|
∑

τ∈DSFT

1

Hτ + 1
∇LSFT (Rθ (τ) , τ) , (3)

where α is the learning rate and the initial parameter is θ0.

Verifier training by DPO. We use multi-step DPO to derive the desired verifier that aligns with
human preferences, building upon a base VLM Vϕ0

, such as LLaVA-v1.5-7B. Suppose we are given
preference pairs

(
s1, τ

w, τ l
)
, where τw is preferred trajectory over unpreferred trajectory τ l.

The key idea of multi-step DPO is to assume that r∗ belongs to a family of one-parameter functions
{rϕ(·)}ϕ, i.e., r∗(·) = rϕSDPO(·) for some unknown ground truth parameter ϕSDPO. Specifically, if
rϕ(·) is defined as

rϕ(τ) = η

Hτ+1∑
h=1

log
Vϕ (th | sh)
Vϕ0

(th | sh)
+ η

Hτ∑
h=1

log
Vϕ (ah | th)
Vϕ0

(ah | th)
+Q(s1),

where η is a positive constant and Q(·) is a fixed function that depends only on s1, then the preference
model VϕSDPO will align with the verifier rϕSDPO while remaining close to the original Vϕ0

automatically,
as shown by Equation 8 and Proposition A.1.

Furthermore, ϕSDPO can be determined by maximizing the expected likelihood under the Bradley-
Terry model

E(s1,τw,τ l)

[
P
(
τw ≻ τ l

)]
, (4)

where
P
(
τw ≻ τ l

)
= σ

(
r∗ (τw)− r∗

(
τ l
))

. (5)

Once ϕSDPO is obtained, the verifier rϕSDPO can be used to guide the reasoner in generating the
reasoning procedure. The detailed training procedure is as follows.

Multi-step DPO. Define the empirical multi-step DPO loss LSDPO (ϕ, ϕ0) by equation (11). Let

ϕ̂SDPO = argminϕLSDPO (ϕ, ϕ0) ,

then ϕ̂SDPO can be obtained by the iteration of gradient descent

ϕk+1 = ϕk − α′
∑

(s1,τw,τ l)∈DDPO

∇LSDPO (ϕ, ϕ0) , (6)

where α′ is the learning rate and the initial parameter is ϕ0. The verifier r∗ operates on some
reasoning trajectory τ could be approximated by rϕ̂SDPO

(τ).

3.4 Inference Algorithm with Practical Efficiency and Theoretical Guarantees
In this subsection, we show our algorithm during inference time and the theoritical guarantees.

Given a new test pair s1 ∼ D, we use the reasoner Rθ̂SFT
for scaling the inference sequence, and we

use the verifier Vϕ̂SDPO
to instruct reasoner whether to continue generating the reasoning sequence.

Assume a reasoning sequence sh is generated by the reasoner Rθ̂SFT
. We determine whether Rθ̂SFT

need
to generate one additional reasoning step

th ∼ Rθ̂SFT
(· | sh) , ah ∼ Rθ̂SFT

(· | th) , oh = fa
h
(th) ,

sh+1 = (sh, th, ah, oh) ,
(7)

by checking whether
∣∣rϕ̂SDPO

(sh+1) − rϕ̂SDPO
(sh)

∣∣ ≥ ϵ, where ϵ is some predetermined positive
threshold. We repeat such procedure unless

∣∣rϕ̂SDPO
(sh+1)− rϕ̂SDPO

(sh)
∣∣ < ϵ. The following lemma

gives an equivalent explicit termination condition.

5

Lemma 3.1. The reasoner Rθ0 stops at the reasoning step h if

∣∣rϕ̂SDPO
(sh+1)− rϕ̂SDPO

(sh)
∣∣ < ϵ ⇔

∣∣∣∣ log Vϕ̂SDPO
(th | sh)

Vϕ0 (th | sh)
+ log

Vϕ̂SDPO
(ah | th)

Vϕ0 (ah | th)

∣∣∣∣ < ϵ.

Algorithm 1 characterizes the full training and test procedure of our method.

Given s1 ∼ D, denote by Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
5 the total reasoning step given by Algorithm 1, the

next theorem shows that Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
is finite almost surely (a.s.).

Theorem 3.2 (Reasoning steps characterization). The total reasoning step satisfies that

1. Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
is a stopping time.

2. (Informal). Under some mild condition, Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
is finite with probability 1.

Theorem 3.2 shows that our algorithm is not only flexible—allowing variational reasoning steps that
improve upon the results of Xiong et al. [28]—but also guarantees a bounded number of reasoning
steps. This ensures that our method avoids scenarios in which the reasoner would otherwise produce
looping or repetitive outputs. The detailed proof can be found in Appendix A.4. The superiority of
our algorithm can be shown in the following experiments.

4 Visual Tokens Scaling Dataset Construction

As discussed in Section 3, our goal is to train a reasoner capable of performing visual token
scaling—namely, learning to invoke visual understanding tools throughout the reasoning process to
generate intermediate images rich in detailed visual token information. At the same time, we aim
to train a verifier that can distinguish between two reasoning trajectories of similar structure for the
same task, identifying the one that more effectively scales visual information. This collaborative
setup enables the verifier to guide and refine the reasoner’s visual reasoning process.

However, a major challenge lies in the absence of existing datasets that contain long-chain, tool-
grounded reasoning traces with rich intermediate visual states. In particular, no existing datasets
provide both detailed visual CoT-style supervision and curated accepted–rejected trajectory pairs
required for DPO training. To address this, we construct a dedicated dataset by building upon the
single-image dataset of the LLaVA-OneVision dataset (LLaVA-OV) [14], which contains 3.2M
vision-language examples covering a broad range of tasks.

In this section, we describe our dataset construction pipeline in detail. Section 4.1 introduces how we
collect and preprocess visual reasoning examples from LLaVA-OV to produce structured tool-based
trajectories. Section 4.2 then explains how we derive both the SFT and DPO datasets from these
verified trajectories.
4.1 Visual Token Scaling Dataset Collection and Preprocessing
We begin our dataset construction by sampling image-question pairs from the single-image portion of
the LLaVA-OV dataset, which covers a wide range of vision-language tasks such as grounding, chart
understanding, OCR, and mathematical reasoning. To ensure sufficient task diversity, we uniformly
sample across all 83 task types included in the dataset.

For each sampled example, we employ Qwen-2.5-VL-72B in a few-shot prompting setting to gener-
ate a visual token scaling trajectory. This trajectory is composed of a sequence of tool-based operations
drawn from our predefined action spaceA (as described in Section 3.1). In line with prior work [8, 11],
the action space comprises ten visual tools: GroundingAction, DepthAction, ZoomInAction,
VisualSearchAction, Crop, OCR, ImageSegment, ImageCaptioner, SimilarityComputing,
and Overlay. These tools allow the model to iteratively perceive, transform, and enrich the visual
content throughout the multi-step reasoning process.

Generated trajectories may include errors, invalid tool use, or inconsistent reasoning. We apply a
preprocessing pipeline to flatten nested structures, merge related turns, remove malformed examples,
and ensure metadata consistency. We also filter out trivial cases with no tool use and those exceeding
20,000 tokens due to memory limits. To guarantee the correctness of each trajectory, we employ

5For notation simplicity, here we omit the dependence on s1.

6

𝒕𝟏:

𝒂𝟏

𝒐𝟏

𝒕𝟐:

Multi-Step Reasoning with Visual Token Scaling

𝒂𝟐

𝒐𝟐

𝒕𝟑:

You need to evaluate whether

a model's prediction matches
the given correct answer…

The correct answer to this

question is: { gold_answer }

Based on this information,

generate an incorrect

reasoning path...

DPO Data

𝒕𝟏:

𝒂𝟏
𝒐𝟏

𝒕𝟐:

Multi-Step Reasoning with Visual Token Scaling

𝒂𝟐

𝒐𝟐

𝒕𝟑:

𝒂𝟑

𝒐𝟑

𝒕𝟒:

𝒕𝟏:

𝒂𝟏

𝒐𝟏

𝒕𝟐:

𝒂𝟐

𝒐𝟐

𝒕𝟑:

𝒕𝟏:

𝒂𝟏
𝒐𝟏

𝒕𝟐:

𝒂𝟐

𝒐𝟐

𝒕𝟑:
𝒂𝟑
𝒐𝟑

𝒕𝟒:

Figure 2: Pipeline for Synthetic Data Generation and Curation in VTS-V. Our data construction
process consists of three stages: (1) generating multi-step reasoning trajectories with visual tool
calls, (2) filtering out incorrect trajectories using an LLM-as-a-judge framework, and (3) creating
contrastive (correct vs. incorrect) trajectory pairs for multi-step DPO training.

the same Qwen-2.5-VL-72B model as an LLM-based verifier (llm_as_a_judge) to filter out those
whose final answers are deemed incorrect. Starting from over 650K generated trajectories, this
process results in a curated set of 315K high-quality visual token scaling examples, which serve as
the basis for supervised fine-tuning and preference training.

4.2 VTS-SFT and VTS-DPO Dataset Construction
Starting from the 315K verified visual token scaling trajectories described above, we construct
two datasets: one for supervised fine-tuning (VTS-SFT) and one for direct preference optimization
(VTS-DPO).

VTS-SFT Dataset Construction. To construct the VTS-SFT dataset, we transform each verified
trajectory into a supervised training instance. Each trajectory τ follows the reasoning path format
defined in Equation 1, consisting of a sequence of textual states, tool actions, and visual observations,
concluding with a final answer. We retain trajectories where the final answer satisfies tHτ+1 = t∗,
where t∗ is the ground-truth label associated with the input s1. The resulting supervised dataset is
defined as:

DSFT = {(s1, τ) | tHτ+1 = t∗, llm_as_a_judge(τ) = correct} .

Each trajectory in DSFT is tool-grounded and preserves all intermediate reasoning states, providing
rich supervision for training. After processing, the dataset contains approximately 315K high-quality
examples.

VTS-DPO Dataset Construction. To construct the preference dataset DDPO, we generate suboptimal
reasoning trajectories as contrastive pairs. For each (s1, τ

w) ∈ DSFT, where τw is a correct trajectory,
we design prompts that instruct the model to begin from an intermediate point and then proceed
with incorrect reasoning steps, yielding a wrong final answer, which is also the Error Induction step
in Figure 4. The resulting suboptimal trajectory τ l is paired with τw to form a preference tuple
(s1, τ

w, τ l).

We format these pairs into the standard DPO training structure and remove any example where either
τw or τ l contains empty or missing image inputs. After filtering, the final dataset DDPO comprises
301K preference pairs for training the verifier to assess and guide visual token scaling quality.

5 Experiments
We conduct comprehensive experiments to evaluate the effectiveness of our proposed Visual Token
Scaling with Verification (VTS-V) framework across a range of visual reasoning tasks. This section
is organized as follows: In Section 5.1, we describe the experimental setup, including model variants,
training configurations, and evaluation benchmarks. Section 5.2 presents our end-to-end experiments,
comparing VTS-V to several strong baselines in both closed-source and open-source settings. Finally,
in Section 5.3, we conduct ablation studies to analyze the individual contributions of visual token
scaling and verifier integration.

7

Model Depth Spatial Jigsaw VisCorr SemCorr ArtStyle Count FunCorr Local MultiV Refl Fore Sim Avg

Qwen2.5-VL-7B-Instruct Variants

Qwen2.5VL-7B 65.32 83.22 56.67 40.12 24.46 58.97 65.00 19.23 41.80 43.61 25.37 34.85 79.26 49.07
Qwen2.5VL-7B + VTS-V 66.13 37.76 53.33 58.72 36.69 58.97 41.18 23.85 45.08 42.86 26.12 38.64 64.44 45.67
Ours + VTS-V 70.97 86.01 68.67 54.44 33.81 67.52 65.83 30.00 49.18 55.64 38.06 36.36 80.00 56.65

Qwen2-VL-7B-Instruct Variants

Qwen2VL-7B 57.26 79.72 54.00 33.72 31.65 51.28 73.33 18.46 54.10 45.11 33.58 38.64 53.33 48.01
Qwen2VL-7B + VTS-V 49.19 67.83 57.05 15.72 17.56 42.74 43.33 12.90 49.59 30.83 32.84 29.55 51.85 38.54
Ours + VTS-V 60.48 60.48 58.00 37.21 40.58 76.92 63.33 28.35 51.64 47.37 35.82 34.09 84.21 52.19

LLaMA-3.2-11B-Vision-Instruct Variants

LLaMA3.2-11B 63.71 67.13 53.33 50.58 39.57 47.86 55.00 32.31 62.30 48.12 31.34 25.76 46.67 47.98
LLaMA3.2-11B + VTS-V - - - - - - - - - - - - - -
Ours + VTS-V 68.55 69.23 57.33 38.60 47.48 55.56 56.67 35.43 58.20 52.63 33.58 23.48 57.46 50.32

GPT-4o Variants

GPT-4o 74.19 69.23 55.33 75.00 53.96 82.91 49.17 40.77 59.84 59.40 37.31 79.55 72.59 62.25
GPT-4o + Sketchpad 83.90 81.10 70.70 80.80 58.30 77.19 66.70 42.10 65.40 45.60 33.10 79.00 84.20 66.78
GPT-4o + CoT 73.39 82.52 62.00 82.56 57.55 82.05 65.00 57.69 60.66 53.38 41.04 62.88 63.70 64.96
GPT-4o + SoM 68.55 76.22 49.33 83.72 52.52 - 43.33 47.69 59.84 56.40 - - 63.70 60.13
GPT-4o + MMFactory 80.30 81.80 75.30 85.50 58.30 83.00 61.70 55.40 59.00 60.20 35.10 84.80 75.30 68.90
GPT-4o + VTS-V (Ours) 79.84 85.31 75.33 82.56 56.83 80.34 67.50 53.08 68.85 52.63 40.30 71.21 85.19 69.15

Table 1: Model performance on BLINK subtasks. Each column corresponds to a different visual
reasoning task in the BLINK benchmark. Highlighted cells show whether using the proposed VTS-V
method improves or degrades the performance compared to the base model.

5.1 Experimental Setup
Models and Baselines. Our experiments are divided into two main parts: closed-source models and
open-source models. For the closed-source setting, we follow prior work and evaluate the effectiveness
of VTS-V using GPT-4o, comparing it with four strong baselines: (i) Zero-shot reasoning on GPT-4o;
(ii) Chain-of-Thought (CoT) reasoning on GPT-4o; (iii) Visual prompting framework: Set-of-Mark
(SoM), and Visual Sketchpad; and (iv): Tool-using framework: MMFactory.

For the open-source setting, we fine-tune three vision-language model: Qwen2-VL-7B-Instruct [25],
Qwen2.5-VL-7B-Instruct[1], and LLaMA3.2-Vision-Instruct-11B on our VTS-SFT dataset. We
evaluate the performance of VTS-V both before and after fine-tuning to assess its impact. Our verifier
model is trained on Qwen2.5-VL-7B-Instruct using our VTS-DPO dataset. All SFT experiments
are conducted using LLaMA Factory under unified settings, and DPO training is carried out with
TRL. Detailed training configurations are provided in Appendix B.

Evaluation Tasks. We evaluate on four representative vision-language reasoning benchmarks:
BLINK [6], V ∗Bench [27], MMStar [3], and MathVista [18]. These benchmarks span a diverse set
of capabilities, including multi-image perception and reasoning (BLINK), fine-grained understanding
of small visual objects (VBench), broad general knowledge QA (MMStar), and visual mathematical
reasoning (MathVista). Following [11] and [5], we conduct our main experiments on 13 tasks from
BLINK, a challenging and diverse benchmark designed to evaluate fine-grained visual reasoning.
These tasks span visual and semantic correspondence, spatial understanding, multi-view reasoning,
depth and reflectance estimation, counting, object localization, pattern alignment (e.g., jigsaw), art
style comparison, functional and semantic matching, visual similarity, and forensic image detection.
Further evaluation details are provided in the Appendix.

5.2 End-to-End Experiments
VTS-V improves performance of closed-source models. As shown in Table 1, our VTS-V
framework brings robust and consistent improvements to GPT-4o on the BLINK benchmark. The
significant performance gain, achieved without fine-tuning, demonstrates the inherent effectiveness
of our verifier-guided visual token scaling method for enhancing visual reasoning. Specifically, the
average performance increases from 62.25% to 69.15% (+6.90), outperforming all other prompting-
based and tool-augmented variants. Compared with GPT-4o + MMFactory, VTS-V yields a slight but
meaningful gain of +0.25. It shows larger improvements over GPT-4o + CoT (+3.30), GPT-4o + SoM
(+9.02), and GPT-4o + Sketchpad (+2.37). The largest gains are observed on complex compositional
tasks, such as Counting (+18.33), Functionally-Correlated (+12.91), and Visually-Correlated (+7.56),
indicating that VTS-V strengthens reasoning over fine-grained and structured visual information.

VTS-V enhances open-source models fine-tuned on our dataset. Open-source models also
benefit significantly from our framework. When these models are first fine-tuned on our VTS-SFT
dataset and then evaluated using VTS-V, consistent gains are observed. For example, Qwen2VL-7B
improves from 48.01% to 52.19% (+4.18), showing gains in Multi-view (+3.44), Local (+2.48), and

8

Jigsaw (+4.08). Similarly, Qwen2.5VL-7B improves from 49.07% to 56.65% (+7.58), with boosts
in Depth (+5.65), Spatial (+2.79), and Visual Correlation (+14.32). LLaMA3.2-11B, despite being
a larger model, shows an improvement from 47.98% to 50.32% (+2.34), especially on tasks like
Semantic Correlation (+8.89) and Functional Correlation (+3.12). These results demonstrate that
VTS-V generalizes well to open-source architectures and consistently improves performance across
vision reasoning categories.

Fine-tuning on VTS-SFT datasets enhances models’ tool-using abilities. We find that apply-
ing VTS-V directly to open-source models without supervised fine-tuning can harm performance.
For instance, applying VTS-V to Qwen2VL-7B drops performance from 48.01% to 38.54%, and
LLaMA3.2-11B fails to output any valid tool-use actions. This behavior contrasts with GPT-4o,
which can reliably follow verifier guidance even without additional training. These results suggest
that base open-source models do not possess the necessary behavior patterns to interact properly with
verifier signals or external tools. However, after supervised fine-tuning on our VTS-SFT dataset,
these models not only recover but surpass their original performance. Post-finetuning, Qwen2VL-7B
improves to 52.19%, Qwen2.5VL-7B rises to 56.65%, and LLaMA3.2-11B reaches 50.32%. More
importantly, they now produce valid tool-use actions, indicating successful alignment with verifier
guidance. This confirms that the VTS-SFT dataset is critical for enabling reliable tool interaction in
open-source VLMs.

Trained Model V*Bench MMStar MathVista

Qwen2.5VL-7B 73.30 55.00 67.50
Qwen2.5VL-7B + VTS-V 67.54 55.93 52.60
Qwen2.5VL-7B (Ours) + VTS-V 75.13 57.93 66.50

Qwen2VL-7B 66.49 53.93 58.20
Qwen2VL-7B + VTS-V 50.80 44.29 37.50
Qwen2VL-7B (Ours) + VTS-V 66.67 55.26 60.30

LLaMA-3.2-11B 54.45 50.57 32.20
LLaMA-3.2-11B + VTS-V – – –
LLaMA-3.2-11B (Ours) + VTS-V 60.21 50.71 48.10

Table 2: Model performance on general bench-
marks. Evaluation on V*Bench, MMStar, and Math-
Vista. Dashes indicate missing results.

VTS-V generalizes to diverse bench-
marks. To assess generalization, we eval-
uate models on V*Bench[27], MMStar[3],
and MathVista[18] (Table 2). Without fine-
tuning, applying VTS-V can degrade per-
formance—for instance, Qwen2.5VL-7B
drops from 73.30 to 67.54 on VBench.
After full training (VTS-SFT + VTS-V),
performance improves across all models:
Qwen2.5VL-7B reaches 75.13, Qwen2VL-
7B recovers to 66.67, and LLaMA3.2-11B
rises to 60.21. The results for GPT-4o on
these benchmarks can be found in Table 5.

5.3 Ablation Study and Discussion
We compare GPT-4o + VTS-V with
a text-only chain-of-thought base-
line (GPT-4o + CoT). VTS-V achieves 69.15% average accuracy, surpassing CoT’s 64.96%
by +4.19 points. The gains are especially strong on tasks needing structured visual
reasoning, such as Counting (+10.90), Functionally-Correlated (+10.98), and Visually-
Correlated (+1.76). These results highlight that scaling visual reasoning via verifier-
guided tool use is more effective than relying solely on extended textual reasoning.

Qwen2.5VL Qwen2VL Llama3.2vision

Full 54.44 37.21 38.60
w/o verifier 47.09 33.14 36.63
w/o VTS-V 40.70 19.77 31.98

Table 3: Ablation results: accuracy drops when remov-
ing verifier or VTS-V.

Verifier improves reasoning quality.
Ablation results in Table 3 clearly demon-
strate the effectiveness of the verifier mod-
ule. When the verifier is removed (“w/o
verifier”), accuracy consistently drops
across all models—Qwen2.5VL sees a de-
cline from 54.44 to 47.09, Qwen2VL from
37.21 to 33.14, and Llama3.2vision from
38.60 to 36.63. This indicates that the ver-
ifier plays a crucial role in improving rea-
soning by filtering out suboptimal answer paths and enhancing decision quality. These improvements
are even more pronounced compared to removing the whole VTS and verifier, which leads to further
substantial accuracy drops.

6 Conclusions and Limitations
This paper presents a new framework, Visual Token Scaling with Verification (VTS-V), to enhance
multi-step visual reasoning by iteratively selecting visual actions and verifying their utility at each

9

step. By framing the process as a Markov Decision Process and integrating a verifier trained via
step-wise Direct Preference Optimization, the approach enables models to progressively refine their
understanding of complex visual inputs. VTS-V achieves strong performance across a range of
challenging visual reasoning benchmarks, outperforming existing baselines.

Limitations. The framework can be adapted to support a broader set of visual tools and more diverse
reasoning formats. Enhancing the verifier’s adaptability across tasks and integrating it more tightly
with downstream applications may further improve robustness. We believe VTS-V offers a flexible
foundation for future research in compositional and tool-augmented visual reasoning.

References
[1] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie

Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

[2] Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023.

[3] Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,
Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? arXiv preprint
arXiv:2403.20330, 2024.

[4] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

[5] Wan-Cyuan Fan, Tanzila Rahman, and Leonid Sigal. Mmfactory: A universal solution search engine for
vision-language tasks. arXiv preprint arXiv:2412.18072, 2024.

[6] Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A Smith,
Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but not perceive. In
European Conference on Computer Vision, pp. 148–166. Springer, 2025.

[7] Jarvis Guo, Tuney Zheng, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Yizhi Li, Graham Neubig, Wenhu
Chen, and Xiang Yue. Mammoth-vl: Eliciting multimodal reasoning with instruction tuning at scale. arXiv
preprint arXiv:2412.05237, 2024.

[8] Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14953–14962, 2023.

[9] Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh Agarwal.
V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457, 2024.

[10] Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal language models.
Advances in Neural Information Processing Systems, 37:139348–139379, 2024.

[11] Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ranjay
Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and programmatic reasoning into vision-
language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9590–9601, 2024.

[12] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Vinayak Bhalerao, Christopher Buckley, Jason Phang,
Samuel R Bowman, and Ethan Perez. Pretraining language models with human preferences. In International
Conference on Machine Learning, pp. 17506–17533. PMLR, 2023.

[13] Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li, and Yang Liu. Scaffolding coordinates to promote
vision-language coordination in large multi-modal models. arXiv preprint arXiv:2402.12058, 2024.

[14] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang,
Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint arXiv:2408.03326, 2024.

[15] Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315–5333, 2023.

[16] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth International
Conference on Learning Representations.

10

[17] Yixin Liu, Avi Singh, C Daniel Freeman, John D Co-Reyes, and Peter J Liu. Improving large language
model fine-tuning for solving math problems. arXiv preprint arXiv:2310.10047, 2023.

[18] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei
Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models
in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

[19] Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang. Let’s
reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint arXiv:2310.10080,
2023.

[20] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36, 2024.

[21] Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng
Li. Visual cot: Unleashing chain-of-thought reasoning in multi-modal language models. arXiv preprint
arXiv:2403.16999, 2024.

[22] Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11888–11898,
2023.

[23] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide shut?
exploring the visual shortcomings of multimodal llms. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9568–9578, 2024.

[24] Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. Math-
shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv preprint arXiv:2312.08935,
2023.

[25] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any resolution.
arXiv preprint arXiv:2409.12191, 2024.

[26] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

[27] Penghao Wu and Saining Xie. V∗: Guided visual search as a core mechanism in multimodal llms. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13084–13094, 2024.

[28] Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn iterative
preference learning. arXiv preprint arXiv:2409.02392, 2024.

[29] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark prompting
unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441, 2023.

[30] Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng, and Yuandong Tian. Rlcd: Reinforcement
learning from contrastive distillation for lm alignment. In The Twelfth International Conference on Learning
Representations.

[31] Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal reasoning and action.
arXiv preprint arXiv:2303.11381, 2023.

[32] Tong Zhang. Mathematical analysis of machine learning algorithms. Cambridge University Press, 2023.

[33] Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang, Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and
Yujiu Yang. Solving math word problems via cooperative reasoning induced language models. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
4471–4485, 2023.

[34] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano,
and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593,
2019.

11

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our motivation, contribution, and scope are clearly described in both the
abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Justification: We describe our limitations in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

12

Justification: Our proof is in Appendix. A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes all necessary details for reproducing the main experimental
results in Section5.1 and B. This includes a thorough description of the model architecture,
training procedures (e.g., optimizer settings, batch size, learning rate schedules, number of
training epochs), dataset splits, and evaluation metrics in . We also provide hyperparameter
settings and implementation details that influence performance. To further support repro-
ducibility, we will release the source code and datasets for training and evaluation upon
publication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

13

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and data are in supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present our experimental setting and details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Since our work focus on inference of language models, the results are provided
as evaluation scores on validation/test set. And we have explained how they are calculated
in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We show the experiments compute resources in B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and strictly followed it in this
work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

15

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use one public datasets and strictly follow their usage license. Besides, we
cite their original paper to express our gratitude for their work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

16

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper does not release new assets.
Guidelines: We includes the anonymized URL as well as details about dataset and code in
supplementary material.

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

17

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We utilize LLMs as one of the key components for generating the instruction
data, and we have provided ALL the prompts used in our experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

Appendices

A Proofs 20

A.1 Verifier Obtaining . 20

A.2 Proof of Lemma 3.1 . 22

A.3 Practical Algorithm for VTS . 22

A.4 Proof of Theorem 3.2 . 22

B Experimental Details 24

C Examples 25

C.1 VTS-DPO Dataset Examples . 25

C.2 VTS-SFT Dataset Examples . 28

C.3 Benchmark Examples . 31

D Broader Impact 33

E Inference-Time Overhead Analysis 33

F Extended Evaluation on Broader Benchmarks 35

F.1 Experimental Setup . 35

F.2 Results and Analysis . 35

G Analysis of Performance Differences Between GPT-4o and Open-Source Models 35

H Visual Token Scaling Analysis with Optimal-Stopping Verifier 36

I Robustness and Generalization Analysis of the Verifier 36

J Separate Reasoner and Verifier 37

K Interpretability of Reasoning Traces 37

L Ablation Study on the Reasoner Module 38

M Comparison with Dynamic Visual Attention Methods 38

N Novelty Analysis and Comparison with Prior Work 39

19

A Proofs

In this section, we provide the detailed proof that is omitted in the main paper.

A.1 Verifier Obtaining

Given the base model Vϕ0 and preference pairs
(
s1, τ

w, τ l
)
, the key idea of multi-step DPO (Rafailov

et al. [20]; Xiong et al. [28]) is to assume that r∗ has a specific structure under which the new prefer-
ence model VϕSDPO and verifier r∗ can be obtained by jointly solving the following KL-regularized
planning problem and the maximum likelihood estimation of the Bradley-Terry model.

ϕSDPO ∈ argminϕEHτ
E
s1∼D,{th∼Vϕ(·|sh)}Hτ+1

h=1
,{ah∼Vϕ(·|th),oh=fa

h
(th)}Hτ

h=1

[
− r∗(τ)+

η

Hτ+1∑
h=1

DKL (Vϕ (· | sh) ||Vϕ0
(· | sh))− η

Hτ∑
h=1

DKL (Vϕ (· | th) ||Vϕ0
(· | th))

]
,

(8)

ϕSDPO ∈ argminϕ − E(s1,τw,τ l)

[
P
(
τw ≻ τ l

)]
= argminϕ − E(s1,τw,τ l)

[
σ
(
r∗ (τw)− r∗

(
τ l
))]

.

(9)

Firstly, the next proposition shows that problem (8) can be solved directly when r∗ lies in a specific
family of one-parameter functions,.

Proposition A.1. If r∗(τ) = rϕ′(τ) = η
∑Hτ+1

h=1 log
Vϕ′ (th|sh)
Vϕ0(th|sh)

+ η
∑Hτ

h=1 log
Vϕ′ (ah|th)
Vϕ0(ah|th)

+ Q(s1)

for some ϕ′, where Q(·) is some fixed function that only depends on s1, then the optimal solution of
problem (8) is ϕ′.

Hence if r∗ takes the form rϕ′ , by Proposition A.1 and equation (8), we have r∗ = rϕDPO . Then to
further obtain ϕSDPO, we can plug rϕ′(τ) in equation (9) and optimize over ϕ′, i.e.,

ϕSDPO ∈argminϕ′ − E(s1,τw,τ l)

[
σ
(
r∗ϕ′ (τw)− r∗ϕ′

(
τ l
))]

=argminϕ′ − E(s1,τw,τ l)

[
log σ

(
η

(
Hτw+1∑
h=1

log
Vϕ′
(
tτ

w

h | sτw

h

)
Vϕ0

(tτ
w

h | sτw

h)
+

Hτw∑
h=1

log
Vϕ′
(
aτ

w

h | tτw

h

)
Vϕ0

(aτ
w

h | tτw

h)

−
H

τl+1∑
h=1

log
Vϕ′

(
tτ

l

h | sτ
l

h

)
Vϕ0

(
tτ

l

h | sτ
l

h

) − H
τl∑

h=1

log
Vϕ′

(
aτ

l

h | tτ
l

h

)
Vϕ0

(
aτ

l

h | tτ
l

h

)
 .

(10)

Here we use superscript to indicate which trajectory path the reasoning steps lie in. Now we can use
the following empirical multi-step DPO loss

LSDPO (ϕ, ϕ0) = −
∑

(s1,τw,τ l)∈DDPO

log σ

(
η

(
Hτw+1∑
h=1

log
Vϕ′
(
tτ

w

h | sτw

h

)
Vϕ0 (t

τw

h | sτw

h)
+

Hτw∑
h=1

log
Vϕ′
(
aτ

w

h | tτw

h

)
Vϕ0 (a

τw

h | tτw

h)

−
H

τl+1∑
h=1

log
Vϕ′

(
tτ

l

h | sτ
l

h

)
Vϕ0

(
tτ

l

h | sτ
l

h

) − H
τl∑

h=1

log
Vϕ′

(
aτ

l

h | tτ
l

h

)
Vϕ0

(
aτ

l

h | tτ
l

h

)
 ,

(11)

and obtain the optimal ϕ̂SDPO ∈ argminϕLSDPO (ϕ, ϕ0) by gradient descent. Finally, we use rϕ̂SDPO
to

approximate the verifier r∗ = rϕSDPO .

20

Proof of Proposition A.1. The key idea is, given any s1 and Hτ , using backward induction to check
the optimality of ϕ′ for 1 ≤ h ≤ Hτ + 1. For any given sh, define the value function Qh (sh, ϕ) as

Qh (sh, ϕ) =E{th′∼Vϕ(·|sh′)}Hτ+1

h′=h
,
{
a
h′∼Vϕ(·|th′),oh′=fa

h′ (th′)
}Hτ

h′=h

[
−η

Hτ+1∑
h′=h

log
Vϕ′ (th′ | sh′)

Vϕ0
(th′ | sh′)

+ η

Hτ+1∑
h′=h

DKL (Vϕ (· | sh′) ||Vϕ0
(· | sh′))

+η1 {h ≤ Hτ}
Hτ∑

h′=h

(
− log

Vϕ′ (ah′ | th′)

Vϕ0
(ah′ | th′)

+DKL (Vϕ (· | th′) ||Vϕ0
(· | th′))

)]
− 1 {h = 1}Q(s1).

Then our goal is to show that

ϕ′ ∈ argminϕEHτ
Es1∼DQ1(s1, ϕ). (12)

Observe that by the construction, Qh(·, ϕ) satisfies the following recurrence formula

Qh (sh, ϕ)

=Eth∼Vϕ(·|sh),ah∼Vϕ(·|th),oh=fa
h+1

(th)
Qh+1

(
sh+1, ϕ

)
− 1 {h = 1}Q(s1)

+ ηEth∼Vϕ(·|sh),ah∼Vϕ(·|th),oh=fa
h+1

(th)

[
− log

Vϕ′ (th | sh)
Vϕ0

(th | sh)
+DKL (Vϕ (· | sh) ||Vϕ0

(· | sh))
]

(13)

+ η1 {h ≤ Hτ}Eth∼Vϕ(·|sh),ah∼Vϕ(·|th),oh=fa
h+1

(th)

[
− log

Vϕ′ (ah | th)
Vϕ0

(ah | th)
+DKL (Vϕ (· | th) ||Vϕ0 (· | th))

]
.

(14)

We now use backward induction to show that for any fixed sh, 1 ≤ h ≤ Hτ + 1, ϕ′ ∈
argminϕQh (sh, ϕ).

(a). For h = Hτ + 1,

QHτ+1 (sHτ+1, ϕ) = E
t
Hτ+1

∼Vϕ
(
·|s

Hτ+1

)
[
−η log

Vϕ′
(
tHτ+1 | sHτ+1

)
Vϕ0

(
tHτ+1 | sHτ+1

) + ηDKL (Vϕ (· | sHτ+1) ||Vϕ0 (· | sHτ+1))

]
.

By directly using Lemma A.2, we can conclude that QHτ+1

(
sHτ+1, ϕ

)
≥ 0, where the equality

holds when Vϕ
(
· | sHτ+1

)
= Vϕ′

(
· | sHτ+1

)
. Hence ϕ′ ∈ argminϕQHτ+1

(
sHτ+1, ϕ

)
.

(b). Assume for h = h′, 2 ≤ h′ ≤ Hτ + 1, ϕ′ ∈ argminϕQh′ (sh′ , ϕ). Then for h = h′ − 1,

ϕ′ ∈ argminϕEt
h′−1

∼Vϕ
(
·|s

h′−1

)
,a

h′−1
∼Vϕ

(
·|t

h′−1

)
,o

h′−1
=fa

h′

(
t
h′−1

)Qh′ (sh′ , ϕ) .

To show ϕ′ ∈ argminϕQh′−1

(
sh′−1, ϕ

)
, by the definition of Qh′−1

(
sh′−1, ϕ

)
, one only needs to

show that both term (13) and term (14) obtain the minimum at ϕ′ when substituting h to h′ − 1. This
can be checked by using conditional expectation and Lemma A.2.

Hence by combining (a) and (b), we have ϕ′ ∈ argminϕQ1(s1, ϕ), which implies equation (12), as
desired.

Lemma A.2 (Proposition 7.16 and Theorem 15.3 of Zhang [32]). Let U(·) be a given function and
p0(·) be a given density function. Then the solution of

argminp(·)Ex∼p(·) [−U(x) + ηDKL (p(·)||p0(·))]

is given by

p∗(x) =
1

C
p0(x) exp

(
U(x)

η

)
,

where C = logEx∼p0(·) exp
(

U(x)
η

)
. p∗(·) is known as the Gibbs distribution.

21

A.2 Proof of Lemma 3.1

Proof of Lemma 3.1. This is directly obtained from the definition of rϕ̂SDPO
.

A.3 Practical Algorithm for VTS

Algorithm 1 Visual Reasoning with Visual Token Scaling and Verification
Require Training dataset Dtrain, initial reasoner Rθ0 and base model Vϕ0 .
Input: A new test question-image pair s1 ∼ D.
Output: Reasoning trajectory τ .
1: Reasoning Sequence Generation: Initialize reasoning trajectory τ ← {s1}.
2: Set step counter h← 1.
3: while True do
4: Planning: Generate step planning th ∼ Rθ̂SFT

(· | sh).
5: Action: Select action ah ∼ Rθ̂SFT

(· | th).
6: Observation: Return oh = fah

(th).
7: Update State: sh+1 ← (sh, th, ah, oh).
8: Append (th, ah, oh) to reasoning trajectory τ .
9: Verification: Compute reward difference ∆r = rϕ̂SDPO

(sh+1)− rϕ̂SDPO
(sh).

10: if ∆r < ϵ then
11: Break loop.
12: end if
13: h← h+ 1.
14: end while
15: Generate the final result tHτ(ϕ̂SDPO)+1 ∼ Rθ̂SFT

(
·
∣∣∣ sHτ(ϕ̂SDPO)+1

)
, where Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
is the total reasoning step.

16: Return final trajectory τ = sHτ(ϕ̂SDPO)+1 ∪
{
tHτ(ϕ̂SDPO)+1

}
.

A.4 Proof of Theorem 3.2

Before we proceed with the main proof, we provide some relevant definitions and conclusions at the
beginning.
Definition A.3 (Martingale, supermartingale, and submartingale). Let Fn be a filtration, i.e., an
increasing sequence of σ-fields. A sequence Xn is said to be adapted to Fn if Xn ∈ Fn for all n. If
Xn is a sequence with

1. E|Xn| <∞,

2. Xn is adapted to Fn,

3. E [Xn+1 | Fn] = Xn for all n,

then Xn is said to be a martingale (with respect to Fn). If in the last definition, = is replaced by ≤ or
≥, then Xn is said to be a supermartingale or submartingale, respectively.
Definition A.4 (Stopping time). A random variable N is said to be a stopping time if {N = n} ∈ Fn

for all n <∞, i.e., the decision to stop at time n must be measurable with respect to the information
known at that time.
Theorem A.5 (Martingale convergence theorem, Theorem 4.2.11 of Durrett [4]). If Xn is a sub-
martingale with sup EX+

n <∞, then as n→∞, Xn converges a.s. to a limit X with E|X| <∞.
Theorem A.6 (Formal version of Theorem 3.2).

1. Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
is a stopping time.

2. Assume the following two conditions hold.

(i) sup Eτh\{s1}∼Rθ̂SFT
(·|s1)r

+

ϕ̂SDPO
(τh) <∞ for any given s1 ∼ D,

22

(ii) for any sh+1, Rθ̂SFT
, Vϕ0 and Vϕ̂SDPO

satisfy that

DKL

(
Rθ̂SFT

(· | sh) ||Vϕ0
(· | sh)

)
≥ DKL

(
Rθ̂SFT

(· | sh) ||Vϕ̂SDPO
(· | sh)

)
,

and

DKL

(
Rθ̂SFT

(· | th) ||Vϕ0 (· | th)
)
≥ DKL

(
Rθ̂SFT

(· | th) ||Vϕ̂SDPO
(· | th)

)
.

Then Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
is finite with probability 1.

Remark A.7 (Discussion of the conditions in Theorem A.6). Condition (i) assumes that the verifier is
finite for paths generated by reasoner Rθ̂SFT

in expectation. This can easily achieved when the verifier
is finite.

Condition (ii) can be interpreted as assuming that the distance between Rθ̂SFT
and Vϕ0

is greater than
the distance between Rθ̂SFT

and Vϕ̂SDPO
. This assumption is reasonable, as both Rθ̂SFT

and Vϕ̂SDPO
align

with human preferences and therefore tend to be closer to each other.

Proof of Theorem A.6. 1. Let Fh be the smallest σ-field generated by sh+1, i.e., Fh =

σ
(
sh+1

)
. Observe that by the definition of the stopping rule as shown in equation (8),{

Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
= h

}
is determined by sh+1. Hence

{
Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
= h

}
∈ Fh,

which implies that Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
is a stopping time.

2. By the definition of rϕ̂SDPO
, we have

E
[
rϕ̂SDPO

(sh+1) | sh
]

=rϕ̂SDPO
(sh) + Eth∼Rθ̂SFT

(·|sh),ah∼Rθ̂SFT
(·|th),oh=fa

h
(th)

[
log

Vϕ̂SDPO
(th | sh)

Vϕ0
(th | sh)

+ log
Vϕ̂SDPO

(ah | th)
Vϕ0

(ah | th)

]
.

Observe that condition (ii) implies that

Eth∼Rθ̂SFT
(·|sh)

[
log

Vϕ̂SDPO
(th | sh)

Vϕ0 (th | sh)

]
=DKL

(
Rθ̂SFT

(· | sh) ||Vϕ0
(· | sh)

)
−DKL

(
Rθ̂SFT

(· | sh) ||Vϕ̂SDPO
(· | sh)

)
≥0,

and

Eah∼Rθ̂SFT
(·|th)

[
log

Vϕ̂SDPO
(ah | th)

Vϕ0
(ah | th)

]

=Eah∼Rθ̂SFT
(·|th)

[
log

Vϕ̂SDPO
(ah | th)

Rθ̂SFT
(ah | th)

]
+ Eah∼Rθ̂SFT

(·|th)

[
log

Rθ̂SFT
(ah | th)

Vϕ0
(ah | th)

]
=DKL

(
Rθ̂SFT

(· | th) ||Vϕ0
(· | th)

)
−DKL

(
Rθ̂SFT

(· | th) ||Vϕ̂SDPO
(· | th)

)
≥0,

hence E
[
rϕ̂SDPO

(sh+1) | sh
]
≥ rϕ̂SDPO

(sh), which indicates that rϕ̂SDPO
(sh) is a submartingale.

Then combining condition (i) and Martingale convergence theorem A.5, rϕ̂SDPO
(sh) converges a.s.

to a limit r̃(s1) as h → ∞. Hence for ϵ > 0, with probability 1, there exists a Hϵ(s1) such that∣∣rϕ̂SDPO
(sh+1) − rϕ̂SDPO

(sh)
∣∣ < ϵ when h > Hϵ(s1). Therefore, Hτ

(
ϕ̂SDPO, ϕ0; θ̂SFT

)
≤ Hϵ(s1)

with probability 1, as desired.

23

B Experimental Details

Table 4: Hyperparameters for training Qwen2-VL-7B-Instruct & Qwen2.5-VL-7B-Instruct &
LLaMA-3.2-11B-Vision-Instruct models

Hyperparameter Value

LoRA Rank 8
LoRA α 16
LoRA Dropout 0
LoRA Target all
GPU 8 × NVIDIA A800
Per Device Train Batch Size 1
Gradient Accumulation Steps 1
Warmup Ratio 0.03
Learning Rate 3e-5
Learning Rate Scheduler Cosine
Unfreeze Vision Tower False
Number Train Epoch 1
Max Gradient Norm 1.0
bf16 True
Cut Off Length 65536

24

C Examples

C.1 VTS-DPO Dataset Examples

Chosen

Reasoner

Final Result

Reasoner

Reasoner

Rejected

Final Result

Chosen

DPO EXAMPLES

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Figure 3: We present an example of the generated DPO data.

25

Chosen

Reasoner

Final Result

Reasoner

Reasoner

Rejected

Final Result

Chosen

DPO EXAMPLES

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Figure 4: We present additional examples of the generated DPO data.

26

Chosen

Reasoner

Final Result

Reasoner

Reasoner

Chosen

DPO EXAMPLES

Chosen

Reasoner

Final Result

Reasoner

Reasoner

Reasoner

Figure 5: We present additional examples of the generated DPO data.

27

C.2 VTS-SFT Dataset Examples

Reasoner

Reasoner

Reasoner

Reasoner

SFT EXAMPLES

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Figure 6: We present examples of the SFT data.

28

Reasoner

Reasoner

Reasoner

SFT EXAMPLES

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Figure 7: We present examples of the SFT data.

29

Reasoner

Reasoner

Reasoner

SFT EXAMPLES

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Figure 8: We present examples of the SFT data.

30

C.3 Benchmark Examples

BENCHMARK CASES

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Verifier

Verifier

Verifier

Verifier

Figure 9: We demonstrate examples of reasoning on benchmark data using VTS-V.

31

BENCHMARK CASES

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Verifier

Verifier
Verifier

Verifier

Reasoner

Verifier

Reasoner

Verifier

Figure 10: We demonstrate examples of reasoning on benchmark data using VTS-V.

32

BENCHMARK CASES

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Reasoner

Verifier

Verifier

Verifier

Verifier

Figure 11: We demonstrate examples of reasoning on benchmark data using VTS-V.

D Broader Impact

Our work presents a foundational framework for enhancing visual reasoning via Visual Token Scaling
with Verification (VTS-V). While not tied to a specific deployment, the technology could pose risks
if misused. For instance, improved fine-grained image understanding may be applied in surveillance
or disinformation pipelines, raising concerns about privacy, fairness, and potential for malicious use.
To mitigate such risks, we recommend responsible release practices (e.g., usage restrictions, auditing
tools, or gated access) and encourage further research on bias and misuse detection. Though the
societal impact is limited at this stage, we acknowledge its importance as the technology evolves.

E Inference-Time Overhead Analysis

This section provides a detailed quantitative analysis of the inference-time overhead introduced by
our VTS-V framework, including latency, memory usage, and the number of intermediate tokens
generated during dynamic reasoning.

Our method employs iterative reasoning steps composed of two main components:

33

• Verifier calls: Require only prefill computation (forward pass over the input context to
generate stop/continue decisions)

• Reasoner calls: Involve autoregressive decoding to produce tool instructions

The iterative interaction follows this structured process:

context = input_prompt: Q (image, text_question)
while verifier(context) == ’continue’:

current_output = reasoner(context)
physical_feedback = tool_using_API(current_output)

We define the total inference latency as:

Latency =

H∑
i=1

(
Ci

Pt
+

Oi

Dt

)
(15)

Where:

• H: Total number of reasoning steps

• Ci: Number of input tokens at step i (verifier prefill)

• Oi: Number of generated tokens at step i (reasoner decode)

• Pt: Model’s prefill throughput (tokens/sec)

• Dt: Model’s decode throughput (tokens/sec)

For Qwen2.5-VL-7B-Instruct with VTS-V, we observe the following characteristics:

• Average steps (H): 3.1

• Average verifier prefill tokens: ∼10058.0 per step

• Average reasoner decode tokens: ∼95.3 per step

• Throughput on 80GB A800 GPUs (float16):

– Pt ≈ 18493.6 tokens/s
– Dt ≈ 231.8 tokens/s

The total latency is calculated as:

Total Latency ≈ 3.1×
(
10058.0

18493.6
+

95.3

231.8

)
≈ 2.96 seconds

Memory requirements for our framework include:

• With max_model_len=65536 and dtype=float16, models can be deployed within 32GB
through vLLM or SGLang on 80GB A800 GPUs

• All tool models (including GroundingDINO, Depth-Anything, etc.) collectively require
approximately 23 GB of additional memory during inference

We observe a clear tradeoff between reasoning depth and computational cost, which is justified
by significant accuracy gains (e.g., +7.58% average improvement on BLINK for Qwen2.5-VL-7B-
Instruct). To mitigate latency for practical deployment, our framework supports several optimization
strategies, such as parallel verifier batching, early stopping, and adaptive step truncation via ϵ-
threshold.

This analysis demonstrates that while our framework introduces additional computational overhead,
the resulting accuracy improvements justify this cost, and practical deployment is feasible with
appropriate optimizations.

34

F Extended Evaluation on Broader Benchmarks

This section presents extended evaluation results of our VTS-V framework on additional benchmarks,
providing a more comprehensive assessment of its generalization capabilities across diverse visual
reasoning tasks.

F.1 Experimental Setup

We conducted additional experiments evaluating GPT-4o augmented with our VTS-V framework on
three challenging benchmarks: V*Bench [27], MMStar [3], and MathVista [18]. For comparison, we
included the following baseline methods:

• GPT-4o: The base model without additional reasoning mechanisms
• GPT-4o + CoT: GPT-4o with Chain-of-Thought prompting [26]
• GPT-4o + Sketchpad: GPT-4o with Visual Sketchpad framework [11]

F.2 Results and Analysis

Table 5 summarizes the performance comparison across different benchmarks:

Table 5: Performance comparison of GPT-4o variants on broader benchmarks. Best results are in
bold.

Method V*Bench MMStar MathVista
GPT-4o 60.73 58.40 63.80
GPT-4o + CoT 60.73 56.47 66.50
GPT-4o + Sketchpad 71.20 60.33 59.40
GPT-4o + VTS-V (Ours) 73.82 65.80 65.90

Key observations from these extended evaluations:

• Our VTS-V framework achieves state-of-the-art performance on both V*Bench and MMStar
benchmarks, with absolute improvements of 13.09% and 7.40% over the baseline GPT-4o,
respectively. These results demonstrate the effectiveness of our verifier-guided visual token
scaling approach for complex visual reasoning tasks.

• On the MathVista benchmark, our method outperforms the base GPT-4o by 2.10% and
achieves competitive performance compared to GPT-4o + CoT, with only a 0.60% difference
from the top-performing method. This demonstrates the versatility of our approach across
mathematical reasoning in visual contexts.

• The consistent improvements across diverse benchmarks highlight the generalization capa-
bility of our framework, which effectively enhances visual reasoning without task-specific
adaptations.

G Analysis of Performance Differences Between GPT-4o and Open-Source
Models

This section analyzes the performance differences observed when applying VTS-V to GPT-4o versus
open-source models without fine-tuning. While GPT-4o shows consistent improvements with VTS-V
without additional training, open-source models like Qwen2-VL and LLaMA-3.2-Vision initially
experience performance degradation. This discrepancy stems from several key factors:

• Tool-Using Priors: GPT-4o has extensive exposure to tool-augmented workflows during
pretraining, enabling it to handle structured reasoning formats (e.g., Plan→ Action→ Tool
call) naturally. Open-source models lack this prior and struggle to generate valid tool-use
commands without fine-tuning.

• Instruction Following Robustness: GPT-4o’s alignment tuning (e.g., RLHF) allows it to
interpret multi-turn instructions and verifier signals effectively. Open-source models require
fine-tuning to learn how to respond to verifier guidance correctly.

35

• Empirical Recovery via Fine-Tuning: After supervised fine-tuning on our VTS-SFT
dataset, open-source models not only recover but exceed baseline performance (e.g.,
Qwen2VL-7B improves from 48.01% to 52.19%), demonstrating the dataset’s role in
enabling tool-use behaviors.

This analysis highlights the importance of our VTS-SFT dataset for adapting open-source models to
verifier-guided reasoning, while confirming the framework’s generality with state-of-the-art models
like GPT-4o.

H Visual Token Scaling Analysis with Optimal-Stopping Verifier

This section presents experimental results demonstrating the relationship between multi-step reasoning
performance and visual token scaling, highlighting our framework’s dynamic behavior and the
effectiveness of the optimal-stopping verifier.

Table 6: Visual token scaling performance for GPT-4o on BLINK Counting task

Visual & Text Tokens Per Sample GPT-4o BLINK Counting Accuracy
550 49.17%
1100 58.33%
1650 67.50%*
2200 64.16%
2750 65.83%

Table 7: Visual token scaling performance for open-source models on BLINK subtasks

Visual & Text Tokens Qwen2.5-VL Fun.Corr. Qwen2-VL Depth LLaMA-3.2 Spatial
600 19.23% 56.45% 62.94%
1200 23.85% 60.48%* 65.03%
1800 25.38% 58.87% 69.23%*
2400 30.00%* 57.26% 67.83%
3000 26.15% 58.06% 67.13%

The tables illustrate the scaling relationship between reasoning accuracy and token usage across
different models. On average, GPT-4o generates approximately 50 text tokens per reasoning step,
while our trained open-source models generate around 100 text tokens per step, with both processing
approximately 100 visual tokens through dynamic image operations per step.

Key observations from the scaling analysis:

• Non-monotonic scaling: Accuracy improves with increased visual tokens initially, but may
decline with excessive reasoning steps, indicating diminishing returns.

• Verifier-guided optimal stopping: Our VTS-V verifier consistently identifies the best
stopping points (marked by *), balancing reasoning depth and computational efficiency.

• Robust performance: Accuracy remains substantially higher than under-reasoning base-
lines even beyond optimal steps, demonstrating the benefits of sufficient visual grounding.

These results validate our verifier’s ability to dynamically scale visual tokens while maintaining
optimal reasoning performance across different model architectures and task types.

I Robustness and Generalization Analysis of the Verifier

This section provides additional analysis of the verifier’s robustness and generalization capabilities,
addressing its performance on unseen domains and tasks beyond the training distribution.

The VTS-DPO dataset is constructed from the comprehensive LLaVA-OneVision (LLaVA-OV)
dataset, which spans over 80 distinct vision-language task types. Our curated DPO dataset comprises
301,028 preference pairs that cover a diverse range of visual reasoning domains, ensuring broad
coverage and representation.

36

Table 8: VTS-DPO dataset composition across different domains

Domain Category # Tasks # Examples
General VQA 25 135,804
Document/Chart/Screen 18 100,681
Math/Logical Reasoning 15 52,049
OCR/Text-grounded Tasks 6 12,494

The dataset encompasses diverse visual reasoning capabilities including document understanding,
scientific diagram interpretation, mathematical problem solving, chart question answering, optical
character recognition, and general commonsense visual question answering.

Importantly, all evaluation benchmarks used in our experiments (BLINK, V*Bench, MMStar, and
MathVista) are held-out from the training data, ensuring that the verifier is tested on completely
unseen reasoning tasks and domains. The consistent performance improvements observed across
these diverse benchmarks demonstrate the verifier’s strong generalization capabilities beyond its
training distribution.

The comprehensive coverage of VTS-DPO, combined with the held-out evaluation protocol, validates
the robustness of our verifier training approach and its applicability to novel visual reasoning
scenarios.

J Separate Reasoner and Verifier

This section explains our design decision to maintain separate reasoner and verifier components
rather than employing a single unified model. While a unified approach offers potential efficiency
benefits, our analysis demonstrates that a decoupled architecture provides superior performance for
multi-modal, tool-augmented reasoning tasks.

Reasoning and verification represent fundamentally distinct capabilities: the reasoner must generate
executable tool-using action plans conditioned on complex multi-modal contexts, while the verifier
must evaluate the overall quality and utility of reasoning steps. Empirical observations show that
when both responsibilities are assigned to a single model, performance typically deteriorates as the
model struggles to maintain both generative planning and discriminative evaluation capabilities.

Experimental results provide strong validation for the separated architecture. As shown in Table 9,
adding a standalone verifier module to GPT-4o yields substantial performance gains:

Table 9: Performance comparison of GPT-4o with and without separate verifier on BLINK benchmark

Model Avg Accuracy (BLINK)
GPT-4o 62.25%
GPT-4o + Verifier 69.15% (+6.90%)

These improvements are particularly pronounced on tasks requiring structured multi-step reasoning,
with gains of +18.33% on Counting and +12.91% on Functionally-Correlated tasks. Beyond per-
formance benefits, the separated architecture offers practical advantages including model-agnostic
verifier deployment across architectures (GPT-4o, Qwen, LLaMA), reduced fine-tuning costs, and
enhanced extensibility for new tasks and domains. This analysis confirms that the separated reasoner-
verifier design provides both performance benefits and practical advantages for complex visual
reasoning tasks.

K Interpretability of Reasoning Traces

This section clarifies our claim regarding the improved interpretability of reasoning traces generated
by our VTS-V framework. We define interpretability in this context as the explicit, grounded, and
stepwise nature of the reasoning process that makes the model’s decision-making transparent and
verifiable.

37

Traditional vision-language models perform latent, one-shot image encoding and generate answers
based on static visual token embeddings, offering limited insight into their reasoning process. In
contrast, our framework produces multi-turn reasoning traces composed of explicit tool-use steps,
where each turn includes:

• A verbalized subgoal or planning statement

• A specific tool invocation with parameters

• Visual feedback or observation from tool execution

These intermediate outputs are grounded in actual visual content through operations such as region
cropping, OCR text extraction, depth map generation, and spatial analysis. This structured output
format provides a transparent reasoning trajectory that allows both human users and automated
systems to inspect the decision process at each step.

Empirical evidence supports this improved interpretability. Across multiple benchmarks, our models
generate longer and more structured reasoning trajectories compared to vanilla baselines. For instance,
the average reasoning steps increase from approximately 1.5 (GPT-4o baseline) to 3.2 (our VTS-V
framework), with diverse tool usage patterns including grounding actions, depth analysis, OCR
operations, and region cropping.

Examples of these interpretable reasoning traces are visible in Figure 1 and Appendix C.3 of the
main paper, demonstrating how models produce dynamic reasoning involving tool selection and
verification-guided iteration. While future work could include manual evaluations of reasoning quality,
our current framework already provides verifiable, human-readable sub-decisions that represent a
significant advancement beyond traditional black-box VLM inference.

L Ablation Study on the Reasoner Module

This section presents an ablation study evaluating the specific contribution of the reasoner module
within our VTS-V framework. We compare two configurations: models using verifier guidance
without the trained reasoner (tool actions generated directly by the base model) versus our full VTS-V
framework with both trained reasoner and verifier components.

Table 10: Performance comparison with and without the reasoner module

Model Variant V*Bench MMStar MathVista
Qwen2.5VL-7B + Verifier (w/o Reasoner) 67.54 55.93 7.80
Qwen2.5VL-7B + VTS-V (w/ Reasoner) 75.13 57.93 23.52
Qwen2VL-7B + Verifier (w/o Reasoner) 50.80 44.29 20.24
Qwen2VL-7B + VTS-V (w/ Reasoner) 66.67 55.26 23.80

The results demonstrate that incorporating the trained reasoner significantly improves performance
across all benchmarks. Without the reasoner module, models struggle to perform reliable multi-step
reasoning, particularly on complex tasks like MathVista where performance degrades substantially.

The addition of the reasoner consistently produces large performance gains, with improvements of up
to +15.72 points on MathVista for Qwen2.5VL-7B and +15.87 points on V*Bench for Qwen2VL-7B.
These findings highlight the critical importance of the reasoner module in executing valid tool-use
actions and effectively following verifier guidance during multi-step reasoning processes.

M Comparison with Dynamic Visual Attention Methods

This section provides a comparative analysis between our VTS-V framework and prior work on
dynamic visual attention, highlighting key distinctions in methodology and capabilities.

Our framework introduces a general, verifier-guided inference-time reasoning process based on a
Markov Decision Process (MDP) formulation, enabling multi-step refinement of visual understanding
through a flexible set of visual tools. This approach differs fundamentally from existing methods in
several important aspects:

38

• LMEye: While LMEye allows large language models to request new visual evidence, it lacks
a structured action space and formal termination control. Our approach models perception
as MDP-driven tool selection with a multi-step DPO-trained verifier that dynamically
determines when to terminate reasoning.

• InstructBLIP: This method enhances initial visual encoding through instruction tuning but
performs single-pass perception. In contrast, our framework supports iterative, adaptive
reasoning during inference, allowing models to invoke diverse tools (OCR, zoom, grounding)
based on evolving contextual understanding.

• V*: Primarily designed for recursive visual search to locate objects in high-resolution
images, V* operates with a binary search objective. Our framework addresses a broader
range of tasks including mathematical reasoning, OCR, and chart understanding, with
termination based on verifier-guided reasoning quality rather than search completion.

Our core innovations distinguish VTS-V from these approaches:

1. Inference-time visual token scaling: Dynamically adjusts which image regions receive
detailed processing through tool invocation, rather than using fixed input-time processing.

2. MDP-based multi-step reasoning: Formally defines each state-action step to support
structured perception and tool-based decision-making with theoretical guarantees.

3. Verifier-guided termination: Employs a learned verifier trained via multi-step DPO to
provide step-wise feedback and enforce bounded reasoning (Lemma 3.2), improving both
efficiency and robustness.

These innovations position VTS-V as a more comprehensive and theoretically grounded approach to
dynamic visual reasoning compared to existing methods.

N Novelty Analysis and Comparison with Prior Work

In this section, we provide a detailed analysis of the novelty of our VTS-V framework and its
distinctions from related works. While our method shares some conceptual similarities with prior
research in iterative reasoning, reasoner-verifier separation, and tool use, it introduces several key
innovations that advance the state of the art in multi-step visual reasoning:

• MDP-based Reasoning Framework for Dynamic Visual Token Scaling: Unlike V* [27]
which primarily focuses on task-specific visual cropping, we formulate multi-step visual
reasoning as a Markov Decision Process over a diverse and extensible set of visual tools
(e.g., OCR, grounding, depth, segmentation). This formulation enables dynamic visual
token scaling—allowing the model to adaptively focus on different regions or modalities at
each reasoning step—across a wide range of tasks and model architectures.

• Step-wise Verifier with Theoretical Guarantees: While V-STaR [9] employs a verifier
to rank final answers, our verifier operates at each reasoning step, providing real-time
guidance and enabling early termination with theoretically bounded steps (Theorem 3.2).
This ensures both interpretability and computational efficiency, a feature not present in prior
verifier-based methods.

• First Dataset for Multi-Step Visual Tool Reasoning: Existing tool-use datasets (e.g.,
from Visual Program Distillation [11]) do not support multi-turn visual reasoning with rich
intermediate states. We introduce VTS-SFT and VTS-DPO, the first datasets designed for
fine-grained tool selection and verifier training over more than 80 diverse vision-language
tasks, enabling robust generalization and grounding.

• Generalization Without Fine-Tuning: Our framework generalizes effectively even to
closed-source models like GPT-4o without additional fine-tuning, improving performance
by +6.9% on the BLINK benchmark. This demonstrates the flexibility and model-agnostic
nature of our approach.

In summary, while our work builds upon prior art, it integrates these ideas into a unified, theoretically
sound, and empirically validated framework that supports multi-step, tool-augmented, verifier-guided
visual reasoning. We believe this represents a meaningful step forward in enabling fine-grained and
interpretable reasoning in multimodal systems.

39

	Introduction
	Related Work
	Visual Tokens Scaling with Verification
	Problem Formulation
	Visual Reasoning with Visual Token Scaling and Verification
	Reasoner and Verifier Training
	Inference Algorithm with Practical Efficiency and Theoretical Guarantees

	Visual Tokens Scaling Dataset Construction
	Visual Token Scaling Dataset Collection and Preprocessing
	VTS-SFT and VTS-DPO Dataset Construction

	Experiments
	Experimental Setup
	End-to-End Experiments
	Ablation Study and Discussion

	Conclusions and Limitations
	Proofs
	Verifier Obtaining
	Proof of Lemma 3.1
	Practical Algorithm for VTS
	Proof of Theorem 3.2

	Experimental Details
	Examples
	VTS-DPO Dataset Examples
	VTS-SFT Dataset Examples
	Benchmark Examples

	Broader Impact
	Inference-Time Overhead Analysis
	Extended Evaluation on Broader Benchmarks
	Experimental Setup
	Results and Analysis

	Analysis of Performance Differences Between GPT-4o and Open-Source Models
	Visual Token Scaling Analysis with Optimal-Stopping Verifier
	Robustness and Generalization Analysis of the Verifier
	Separate Reasoner and Verifier
	Interpretability of Reasoning Traces
	Ablation Study on the Reasoner Module
	Comparison with Dynamic Visual Attention Methods
	Novelty Analysis and Comparison with Prior Work

