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ABSTRACT

Diffusion-based methods are widely used for image-to-image translation tasks
such as object addition/removal, colorization, and prompt-based editing. In per-
sonalized editing applications, accurately preserving a person’s identity is critical
to maintain subject-specific attributes. Existing methods either use adapter net-
works, which struggle to retain the facial details, structure & pose of the subject,
or rely on full fine-tuning of large foundation models, which is computationally
expensive and requires large high-quality annotated datasets. To overcome these
limitations, we propose a novel unsupervised dataset preparation pipeline that en-
ables scalable dataset generation and a novel identity-preserving loss function that
ensures fine-grained identity preservation in the generated images. Despite us-
ing a significantly lighter foundation model and fine-tuning only a fraction of its
weights, our method achieves performance comparable to state-of-the-art meth-
ods. Furthermore, it has robust generalization to out-of-training prompts and gen-
eralizes to multi-person images despite training only on single-person images.

1 INTRODUCTION

Recent advances in large text-to-image diffusion models, such as DALL-E (Ramesh et al. 2021}
2022)), Imagen (Saharia et al.| 2022} |Baldridge et al., [2024)), and Stable Diffusion (Rombach et al.,
2022; |Podell et al.| 2023} [Esser et al.| [2024), have transformed image generation by enabling the
synthesis of highly detailed and photorealistic images using natural language text prompts. An
active area of research in this domain is personalized image generation and editing, which adapts
the generated outputs to specific subjects or styles based on input text prompts. It has applications
in Al-driven content creation, virtual advertising and social media content generation.

A critical challenge in personalized image editing is preserving fine-grained identity details (e.g.,
facial details and clothing) and full pose of foreground subjects during prompt-based image relight-
ing. Identity preservation is highly sensitive to lighting direction and colour, which can affect the
perceived identity (Adini et al., [1997; Braje et al., |1998; |Varkarakis et al., [2021). Manipulating
illumination while retaining fine-grained identity is an extremely difficult task.

We address this challenge across two distinct scenarios: 1) studio photography effects, where text
prompts guide the model to generate window grill shadows and pantone effects (Fig. [Ib); and 2)
virtual backgrounds, where the subject is integrated into a scene generated from text prompts, with
lighting of the scene faithfully reflected on the subject (Fig.[Tp).

Existing methods for prompt-based personalized image editing use either inference-time training
with few sample images (Ruiz et al., [2023} |Gal et al., 2022} |Parihar et al., 2024;|Shi et al., 2024a) or
adapter networks designed to provide greater control over style and identity (Zhang et al., 2023} Mou
et al., [2024; [Ye et al., [2023). Some approaches combine multiple adapters with multiple reference
images (Wang et al.| [2024; [Li et al.| 2024). However, these methods fail to capture fine-grained
identity and pose, and largely fail on multi-person images. Zhang et al.| (2025) fine-tune the full
foundation model for robust identity preservation, but struggle to generate dramatic facial shadows.

We propose a novel method for prompt-based image relighting addressing these limitations. We
design a novel unsupervised dataset preparation pipeline that generates diverse pairwise training
images from only a few input samples. Additionally, we propose a novel identity loss, applied along
with content losses, to ensure accurate identity preservation even when trained on imperfect training
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Figure 1: (a) Overview of the architecture for prompt-based image relighting. (b) Generated results
from our model for four different prompts. Top row: Input images. Bottom row: Generated images.

data. We train a lightweight Low-Rank Adaptation (LoRA) adapter that controls
the subject identity in the generated image (Fig.[Ih). Our method achieves comparable performance
to state-of-the-art (SOTA) models despite using a much lighter foundation model and training only
a fraction of parameters. Our contributions are:

* An unsupervised dataset preparation pipeline that generates large-scale pairwise training
images from limited input image samples

* Identity and content losses that enable accurate learning of identity and facial shadows,
even when trained on an imperfect dataset

* A training strategy that enables generalization to multi-person images despite training only
on single-person images (Fig. [Tp).

2 RELATED WORK

2.1 TEXT-TO-IMAGE GENERATION

Large text-to-image diffusion models (Ramesh et al. 2021} 2022; [Rombach et al.| 2022} [Saharial
let al.l 2022} Nichol et al} 2021}, [Baldridge et al., 2024) generate high-quality, photorealistic images
by training on large-scale datasets of captioned images (Schuhmann et al.,[2022). These models are
scaled to higher resolutions using two distinct approaches: 1) cascaded diffusion (Ramesh et al.,
[2022}, 2021}, [Saharia et al.} [2022)), where a low-resolution image is generated and then upscaled to
higher resolutions or 2) latent space training (Rombach et all, [2022)), where diffusion models are
trained in the compressed latent space, significantly reducing computational costs. Recent methods
replace UNet backbone with Diffusion Transformers (DiT) [Peebles & Xie| (2023) to improve image
fidelity and prompt adherence (Labs| 2024} [Chen et al., 2023} [Esser et al.,[2024).

2.2 IMAGE EDITING

Image editing methods have evolved from latent space manipulations in GANs (Shen et al., 2020

Patashnik et al.,[2021}|Gal et al.}2022) to diffusion-based methods that offer greater flexibility. Some

methods achieve image-to-image translation via iterative denoising (Meng et al.| [2021; [Lugmayr
et al., 2022)), while others control editing through cross-attentions (Hertz et al.,[2022; Mokady et al.}

2023)). Recent methods explore fine-tuning the full diffusion model on image-prompt pairs (Brooks

et al., 2023} [Zhang et all, 2025} 2023)) and plug-and-play adapter networks (Zhang
et al., 2023; [Mou et al.| 2024} |Ye et al., [2023) using edges, segmentation, and pose maps. Some

methods allow point-based interactive control for geometric manipulations (Pan et al), [2023;
2024b). Most prior work struggle to preserve the foreground identity and generate images
having dramatic shadows on the face.

2.3 PERSONALIZATION AND IDENTITY PRESERVATION

Personalization techniques adapt the outputs of diffusion models to user-specific identity, style, or
effects. Some methods fine-tune the model at inference on a few images (Ruiz et al.,2023) or embed
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subject-specific tokens to control identity (Gal et al.,[2022; Kumari et al.| 2023)). Other approaches
either train adapter networks (Zhang et al., [2023; Mou et al., |[2024; |Ye et al., 2023} L1 et al.| 2024;
Ruiz et al.,2024) or use training-free methods (Wang et al.,|2024; Chen et al., 2023) for personalized
editing. However, most of these methods fail to preserve fine-grained identity and pose, and they do
not generalize to multi-person images. Alternatively, some methods use background environment
maps as inputs and focus on accurate shadow generation with identity preservation (Ren et al.
2024; |Chaturvedi et al., |2025; [Kocsis et al, 2024). In contrast, our method does not require any
environment maps or inference time fine-tuning, and it generalizes well to multi-person images
while preserving the foreground identity and pose.

3 NOVEL DATASET PIPELINE

Prompt-based image relighting requires input-target image pairs that fully preserve the foreground
subject’s identity and pose while introducing diverse, photorealistic relighting effects. Publicly
available datasets lack such pairwise images, and manually capturing them is both expensive and
time-consuming. Thus, we designed a novel unsupervised dataset generation pipeline using the
InstantID (Wang et al.,|2024) model, which we modified for improved image fidelity.
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Figure 2: Architecture used for the unsupervised training dataset generation pipeline. We modified
the original InstantID pipeline by adding a canny ControlNet.

Initially, we utilized InstantID’s pipeline to generate the training dataset (indicated in yellow in
Fig.[2). This model takes an input image and a text prompt as inputs and generates an edited output
image based on the text prompt. While InstantID tries to preserve the identity, it often generates
images with smoothed facial details, altered jawlines and face structures, and changes in the pose,
clothing and orientation of the foreground subject (Fig. Bp). Additionally, the style, colour, and
design of accessories such as glasses and jackets are significantly different in the generated image.

To mitigate these issues, we integrated a pre-trained ControlNet model (Zhang et al., |2023)) into
our pipeline (Fig. [2), which takes a dense canny edge map as input. This constraint significantly
improves the pose and orientation of the foreground subject in the generated images (Fig. 3h). Ad-
ditionally, we applied a wavelet transform-based guided filter (He et al.,[2012) to refine fine-grained
facial details, such as wrinkles and scars in the generated images (Fig. [3p). Although skin details
improved, the generated images had inconsistencies in facial structure, expression, clothing, and
accessories, leading to identity mismatches between the input and generated images.

However, InstantID largely maintained consistent identity across various prompts for a given input
image (Fig.[3). Exploiting this property, we trained the model to learn mappings between InstantID
generated i images (Fig. Bk), rather than directly mapplng the original input image to the InstantID
generated image (Fig. [3p). For each original input image, we generated InstantID outputs for 67
diverse prompts (obtained from|Zhang et al.[(2025)). We created a pairwise dataset such that 60 of
these outputs served as inputs and remaining 7 served as the ground truth (more details about the
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Figure 3: (a) Results from the dataset generation pipeline on two input images for two different
prompts. First row: Original input image. Second row: Results from original InstantID pipeline.
Third row: Results from our modified InstantID pipeline (Fig.[2). Fourth row: Results after applying
guided filter on the images from the third row. (b) Standard approach trains the model to map the
original input image to the target image. (c) Our proposed dataset generation strategy creates input-
target training pairs from InstantID generated images. Each target image is paired with multiple
generated images used as input (indicated with red and green arrows).

prompts are provided in appendix [A). This approach ensured identity consistency between input-
target pairs, thus enabling the model to learn the identity information. For each ground truth image,
we generated 60 input images having diverse lighting conditions and variations, thus improving the
generalization capabilities of the model. For each original input image, we created 420 input-target
training pairs. Using only 1,024 single-person original input images from the publicly available
SFHQ-T2I dataset (Beniaguev, [2024]), our pipeline produced 430,080 training pairs, with 90% used
for training and 10% for validation. This unsupervised framework enables efficient scaling of the
training dataset by varying the number of supported prompts and original input images.

4 METHOD

4.1 PRELIMINARIES

Foundation models used for image generation can be broadly categorized into: 1) text-to-image
(T2I) diffusion models and 2) image-to-image diffusion models. The former generates images con-
ditioned only on a text prompt, while the latter generates images conditioned on both a text prompt
and an input image. A widely used family of foundation models is Stable Diffusion model (Rom-
bach et al.,|2022), which applies diffusion in a compressed latent space. Training this model involves
two steps: (a) training a Variational AutoEncoder (VAE) (Kingma & Welling, |2013)) to encode the
images into latent representations, and (b) training a diffusion model in this latent space, conditioned
on the text prompt.

Adapter networks enable generalization of foundation models to downstream tasks by integrating
modular networks without modifying the base foundation model. ControlNet (Zhang et al.l [2023))
duplicates the UNet for precise control. T2I adapter (Mou et al., 2024) downsamples the input
image once and fuses it with the UNet at multiple scales. IP adapter combines text and image
features through a decoupled cross-attention for flexible image and style editing (Ye et al.| [2023)).
LoRA (Hu et al.l 2021)) learns low-rank matrices to update the model weights, enabling parameter-
efficient fine-tuning with zero additional latency. These adapters support modular composition of
models and preserve the base foundation model weights.
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4.2 MODEL ARCHITECTURE

We use an image-to-image diffusion model with a LoRA adapter for prompt-based image relighting.
Our approach adapts the text-to-image Koala foundation model (Lee et al.,[2024)) for image-to-image
editing through a two-stage process: pre-training for image-conditioned generation, followed by
fine-tuning for the relighting task.

The pre-training stage has two main goals: (1) adapting the text-to-image model for image-to-image
editing, and (2) providing a good weight initialization for the fine-tuning stage. Inspired by the
InstructPix2Pix model (Brooks et al., [2023), we concatenate the input latents with five additional
channels and process the resulting 9-channel input through a trainable convolutional layer (conv_in).
This layer projects the 9-channel input into the UNet feature space without re-training the full UNet.
During pre-training, the model is optimized for input-to-input mapping, where the input image is
passed to the model and it is trained to reconstruct the input image itself, conditioned on the prompt
associated with the image. This enables the model to learn image-conditioned generation and en-
sures that the trained conv_in layer weights provide a good initialization for the fine-tuning stage.
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Figure 4: (a) Network architecture for pre-training stage, where the text-to-image model is adapted
for image-to-image editing. Only the conv_in layer is trained at this stage. (b) Network architecture
for fine-tuning the model for prompt-based image relighting. Only the LoRA adapter is trained at
this stage.

The architecture used for pre-training is shown in Fig. fp. The input image is first encoded into a
4-channel latent by the VAE encoder (blue in Fig. #h) and then concatenated with five channels of
zeros (black in Fig. ). The resulting 9-channel input is passed through the conv_in layelﬂ (green
in Fig. @), and then processed by the UNet, which predicts the noise at each timestep. The clean
4-channel latent is then estimated using the diffusion noise schedule and passed through the VAE
decoder to reconstruct the input image. Only the conv_in layer is trained during this stage, while all
other modules are frozen.

In the fine-tuning stage (Fig.[dp), the channels of zeros are replaced with a foreground segmentation
mask and a 4-channel latent representing either the noised ground truth during training or the noised
prediction during inference (green and orange in Fig. @b). This 9-channel input is passed through
the conv_in layer and the UNet to predict the noise at each timestep. Unlike pre-training, the model
now estimates the clean 4-channel ground-truth (target) latent, which is reconstructed by the VAE
decoder to the target image during training or the predicted image at inference. In this stage, only the
LoRA adapters are trained on input—prompt—target triplets, while all other modules remain frozen.

We use a LoRA adapter for its efficiency and flexibility. It enables fast training as only a few low-
rank matrices are updated, and it is agnostic to the base network architecture. It has negligible
computational or storage cost at inference once the adapter weights are merged with the base model.

4.3 IDENTITY-PRESERVING PROMPT STRUCTURE

We use an identity-specific placeholder in the text prompts, following the prior work on image-to-
image editing (Ruiz et al., [2023} |Gal et al., 2022). The placeholder is selected such that it does not
exist in the tokenizer’s vocabulary, signaling to the model that it represents a special token. During

"This layer is integrated as the first layer of the UNet and is therefore shown as part of the UNet in Fig. El
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training, we use the placeholder “a <c>” in the prompts, allowing the model to associate it with
identity-specific visual features.

Most prior methods encode identity by fusing visual features into the text embeddings (Ruiz et al.,
2023} |Gal et al., [2022) or by using additional networks (Li et al., 2024; [Wang et al.| 2024} Ruiz
et al.l [2024). In contrast, our method uses only the placeholder prompt to encode the identity.
During training, the novel loss functions guide the model to associate the placeholder token with the
foreground subject’s identity. As shown in Fig. [6h, using only the placeholder “a <c>” in the text
prompt during inference generates images with accurate identity preservation. This indicates that the
placeholder prompt effectively guides the model to learn and preserve identity-specific information.

To ensure the prompts remain semantically meaningful, we integrate the placeholder naturally with
the descriptions of the relighting effects. For example, prompts for generating window grill shadow
or a sunset lighting effects are: ”a photo of a <c> with dramatic window grill shadow on the face”
and a <c> at a beautiful sunset at the beach, dramatic lighting, highly detailed, 4K”.

4.4 TRAINING LOSSES

We used four losses to train the LoRA adapter: 1) identity loss, 2) foreground content loss, 3)
background content loss and 4) noise loss.

Let I € RT>XWx3 and E(I) € RE*H*W’ denote the input RGB image and its latent embedding
output by the VAE encoder. Similarly, let T € R7*W >3 and E(T) € RE*H "W’ denote the target

RGB image and its latent embedding output by the VAE encoder. Let M € [0, 1]"*#" W' denote
the foreground segmentation mask of input image I, resized to the latent embedding resolution.

At diffusion timestep ¢, let 2; be the noised VAE latent at time ¢, eg(x¢, t) be the UNet’s predicted
noise at time ¢ and [ be the noise scheduler. The cumulative noise coefficient, &;, is defined as
o = szl(l — Bs). The denoised latent at timestep ¢ = 0 is computed as

N Ty — \/I*C_Ktﬁg(l't,t)

Ty = N )

Identity loss. We compute a novel identity loss (Liq) to ensure the foreground subject’s identity is
accurately preserved in the generated image.

- 7o - 35 M ® o) - (Mo E(I
L = 1= Cosim (. 3§™") =1 - B 1 e o)

1 Zo 2|25 || M © &oll2]| M © E(I)]2
where C'osSim computes the cosine similarity between the masked predicted image latents and
masked input image latents. © refers to element-wise multiplication.

Typically, losses are computed between the model’s prediction and the ground truth. However,
since we do not have paired training images with precise matching identity, we compute the identity
loss between the input latent and the predicted latent. This encourages the model to preserve the
foreground subject’s identity in the generated image.

Foreground content loss. To accurately capture lighting details on the foreground subject, we
compute a foreground content loss (L) defined as the smooth L1 loss between the masked predicted

image latents and ground truth latents (Z/**°" = M © E(T))

~ ~ (target)\2 fRpe ~ (target)
To— T 2 if |29 — <1
ﬁ@:¥o O/ i a — ) )

~ (target)
T |

|Zo — — 0.5 otherwise

Background content loss. We compute the background content loss (L) to ensure that the
generated backgrounds are accurate and photorealistic. It is defined as the L1 loss between the
background regions of the predicted and ground truth latents.

Log = (1= M) @ o — (1— M) ® E(T) )

Since the foundation model primarily contributes to background generation, this loss encourages the
model to generate photorealistic outputs even when it lacks knowledge of photographic effects.
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Noise loss. We compute noise loss (Lyeise) to guide the weight updates of the LoRA adapter during
training. It is defined as

Enoise = Ezo,e,t HE - 69(5Et, t’ C)”; (5)

where z; is the noised VAE latent obtained by adding Gaussian noise (¢ ~ A(0, I')) corresponding
to timestep ¢ to the clean image latent x. ¢ is conditioning context (text embeddings) and ey (¢, t, ¢)
is the predicted noise by the diffusion UNet.

The total loss used to train the LoRA adapter is
Liotal = a1 Liq + 052£fg + a3£bg + a4 Lnoise (6)
where oy = 1, ag = 10, ag = 0.2 and oy = 0.5 were determined empirically.

All losses are computed in the latent space rather than the image space, as this offers several ad-
vantages. The latent space is smoother and encodes rich semantic information, enabling the model
to effectively learn both identity and lighting transformations while maintaining training stability.
Additionally, computing losses in latent space improves computational efficiency by avoiding full
image reconstruction at each training iteration, thereby reducing the impact of potential artifacts
introduced by the VAE decoder.

4.5 TRAINING DETAILS

In the pre-training stage, the model is trained on 121,600 image-caption pairs from the publicly
available SFHQ dataset (Beniaguev, 2024). Given both the input image and its corresponding text
prompt, the model is trained to reconstruct the input image itself using only the noise loss (Eq [3).
As shown in Fig. [dh, only the conv_in layer is trained, while all other modules remain frozen. The
initial learning rate of 1 x 10~ is decayed using a cosine annealing scheduler. The model is trained
for 200, 000 iterations with a batch size of 8, using the AdamW optimizer (Loshchilov & Hutter,
2017) with L2 regularization of 0.01. The model was trained at a resolution of 1024 x 1024 pixels.

The model is fine-tuned on a training dataset generated using our novel unsupervised data generation
pipeline described in Section[3] As shown in Fig.[dp, only the LoRA adapter was trained, while the
remaining modules are frozen. We attach a rank 32 LoRA adapter to all convolution and attention
layers of the UNet and train only these adapters while keeping the UNet layers frozen. The training
loss is optimized using the AdamW optimizer with L2 regularization of 0.01. The initial learning
rate of 8 x 1075 is decayed using a cosine annealing scheduler. The model is trained for 100, 000
iterations with a batch size of 8. Fine-tuning is also performed at a resolution of 1024 x 1024 pixels.
Foreground segmentation masks are estimated using a pre-trained Mask R-CNN model (He et al.,
2017) and resized to 128 x 128 pixels to segment the foreground regions in the image latents. All
training and inference are performed on a single H100 GPU.

5 RESULTS

We evaluate our model on a challenging test dataset of 550 images, consisting of 400 images from
the SFHQ-T2I dataset (Beniaguevl 2024) and 150 images from the celeb-FFHQ dataset (Karras
et al.}[2020). All test images were different from those used in training and validation. Both datasets
consisted of single-person upper-body or face images generated using various T2I models. The test
dataset covered a wide range of variations such as ethnicity, age groups, facial features (hair, struc-
tures), clothing styles and facial accessories (ear rings, caps, glasses). Each model was evaluated
across 15 prompts, seven of which were used for training. Full details of the prompts are provided

in appendix [A]

The model performance was evaluated using three metrics: (a) CLIP score, which measures the se-
mantic alignment between the text prompt and generated image; (b) Face ID score, which measures
the dissimilarity in the face region between the input and generated images, and (c) Clothing score,
which measures the dissimilarity in the clothing (non-face) regions between the input and generated
images. More details about the metrics are provided in appendix

We compare the performance of our model against two SOTA prompt-based image relighting meth-
ods: InstantID (Wang et al.,[2024)) and IC Light (Zhang et al.,[2025)). To ensure a fair comparison, we
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Total # parameters | # trainable parameters | Inference time .
(in Bpillions) (in Billfions) (in seconds) CLIP score 1| Face ID score |, | Clothing score |,
InstantID 6.30 1.67 10.3 0.29 +0.03 | 0.31 +£0.03 0.33 +0.02
IC Light 12.0 11.42 18.1 0.31 :0.02 | 0.20 &= 0.02 0.11 +=0.03
Proposed 1.47 0.043 6.3 0.29+0.02 | 0.20 +0.03 0.11 + 0.02

Table 1: Quantitative comparison of our model with prior work on our test dataset.

exclude methods that require fine-tuning at inference (Ruiz et al., 2023} 2024}, [Parihar et al.,[2024),

rely on multiple reference images to learn the identity (Li et al., |2024)) or use environment maps as
additional inputs (Ren et al, 2024} [Chaturvedi et al.| 2025} Kocsis et al.,2024). As shown in Table[T]
our model significantly outperforms InstantID, which used both ControlNet and IP-Adapter for iden-
tity preservation. Our method is comparable to IC Light, which fully fine-tunes the flux foundation
model for image relighting. In contrast, our method uses a significantly smaller foundation model
and trains only a lightweight LoRA adapter (43 million parameters, ~ 4% of the diffusion UNet).
The CLIP score of our model is slightly lower than IC Light because the background is primarily
generated by the foundation model and we use a much lighter foundation model.

Figure 5: Qualitative comparison against prior methods on single-person and multi-person images.
Row-1: Input image; Row-2: InstantID (Wang et al. [2024); Row-3: IC-Light (Zhang et al.| 2025);
Row-4: Proposed model. Columns are different effects (left to right): pantone, neon bokeh, window
grill shadow, ocean sunset, mountain sunset, night sky, golden hour. The first three columns are part
of the training prompts, while the remaining are out-of-training prompts.

Qualitative results in Fig. [5 further support the quantitative results in Table[I] Our model preserves
identity significantly better than InstantID and generates images with noticeably more dramatic
shadows than IC Light, while still preserving fine-grained identity details. Our results maintain
the pose, orientation, expression, clothing style, and accessories of the foreground subject across
diverse prompts, even though the model was trained on imperfect training datzﬂ We attribute this
to the identity loss, £;q, which ensures faithful reconstruction of the identity-specific features in the
generated images. More qualitative results are provided in the appendix [C]

InstantID is limited to editing only the largest detected face in an input image, making it unsuitable
for multi-person images. To enable a fair comparison on multi-person images, we use the modified
canny ControlNet pipeline (Fig.[2) to generate the predicted images for Instantlljﬂ Recall that, this

The model is trained on image pairs generated using the modified InstantID pipeline, where the foreground
subject’s identity is not identical between the input and target images.

3Since this pipeline differs from the architecture of InstantID (Wang et al., 2024), we only compare the
qualitative results.
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pipeline was used to create our training dataset. As shown in Fig. [5] our model achieves better
identity and pose preservation on multi-person images than the outputs from the modified InstantID
pipeline. It also generates more dramatic facial shadows compared to IC Light. Notably, even though
our training dataset was generated using the modified InstantID pipeline Fig. 2] our model gener-
ates more realistic images with improved identity preservation. This highlights the effectiveness of
our loss functions and training strategy. Furthermore, despite being trained only on single-person
images, our model generalizes effectively to multi-person images, indicating that the LoRA adapter
has learned identity-preserving representations.

(b)

Figure 6: (a) Results from our model using the placeholder prompt at inference. The foreground
subject identity is accurately preserved in the generated image, while the background is random
since no cue is given in the prompt. (b) Generalization of our model to out-of-training prompts. The
foreground identity is similar to the input image (first column) and consistent across prompts.

To further evaluate the identity-preserving capabilities of the LoRA adapter, we infer the model
using only the placeholder prompt “a <c>" along with the input image. As shown in Fig. [6h, the
model accurately preserves fine-grained foreground identity details, indicating that the placeholder
token effectively encodes identity features. Unlike prior methods that embed visual features into text
embeddings (Ruiz et al.}[2023;2024; |Li et al.| 2024; [Wang et al.|[2024), our method does not require
any additional visual features for identity preservation. Moreover, our model also generalizes well
to out-of-training prompts, as shown in Fig.[6p. It preserves the foreground identity while generating
appropriate lighting effects. This suggests that identity is primarily learned by the LoRA adapter,
while the foundation model handles background generation and prompt-based variations.

6 LIMITATIONS AND FUTURE WORK

A limitation of our current method is the lack of fine-grained control over lighting parameters such
as position and direction via the text prompt. While the foundation model can generate backgrounds
with plausible lighting, our method does not support prompt-conditioned control of the lighting
parameters across diverse variations. A promising future direction is to incorporate explicit prompt-
based control over the lighting parameters, allowing for more precise control of the illumination
and shadows. Another extension is to disentangle identity and lighting representations, enabling
independent control of the identity and photorealism in the generated images.

7 CONCLUSION

We presented a novel system for fine-grained identity preservation in prompt-based image relight-
ing. We proposed a novel unsupervised dataset generation pipeline that creates a large-scale pair-
wise training dataset from a few input images. Our approach adapts the Koala foundation model
for image-to-image editing and trains a lightweight LoRA adapter with novel identity and content
losses. We use a placeholder prompt “a <c>” to encode the identity information, and show that
these tokens are sufficient for accurate identity preservation. Both qualitative and quantitative re-
sults show that our method achieve performance comparable with prior work, despite being trained
on a significantly smaller foundation model and updating only a small fraction of its parameters.
Furthermore, our model generalizes to multi-person images and out-of-training prompts. The pro-
posed framework can be used to adapt other text-to-image foundation models for identity-preserving
prompt-based image relighting.
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A  PROMPT DETAILS

As discussed in Section 5 of the main paper, we evaluated the model on 15 prompts, out of which
only 7 were used for training the model. We evaluated the model on 8 out-of-training prompts to
assess the generalization capabilities. The lighting effects and their corresponding prompts are listed
below. The first 7 prompts were used for training the model.

1.

window grill shadow : a photo of a <c> with dramatic window grill shadow on the face

2. pantone : a colorful portrait of a <c> in red and blue light, dramatic lighting

. neon bokeh : cinematic bokeh a <c>, bright city lights at night, film, bokeh, professional,

4k, highly detailed

. city night : a portrait of a <c> in middle of a city, night time, street, cars, dark tone,

dramatic lighting, highly detailed, 4k

. sunset silhouettes : a <c> outdoors during sunset, with the face partially silhouetted

against the warm orange and pink hues, creating soft but visible shadows

6. dark shadow : a dark portrait of a <c>, vantablack background, highly detailed, 4K

7. rainy day : a <c> in arainy city night, wet rain drops on a <c>, highly detailed, 4k

8. ocean sunset: a <c> at a beautiful sunset at the beach, dramatic lighting, highly detailed,

10.

11.

12.

13.

14.

15.

4K

. mountain sunset : a cinematic portrait of a <c> in backdrop of colourful mountains at

dramatic sunset, sunlight falling on the face of a <c>, dramatic lighting, amazing sky,
studio, 4k

golden hour : a cinematic portrait of a <c> at golden hour, light falling on the face of
a <c>, dramatic shadows, amazing sky, studio, 4k

night sky : a cinematic portrait of a <c> in the backdrop of a dramatic night sky with stars
and moon, dramatic shadow on the face, super realistic, highly detailed, 4k

garden : a cinematic portrait of a <c> in a garden with colourful flowers, golden hour,
dramatic shadow on the face, highly realistic, 4k

rural farm : a portrait of a <c> at dusk in rural farm, with soft shadows and a serene
natural setting, 4k, super realistic, high resolution

lightning flash : a portrait of a <c> outdoors with a sudden flash of lightning casting stark,
dramatic shadows and illuminating the face

desert sunrise : a portrait of a <c>, witnessing a desert sunset with a mirage-like glow,
surrounded by intricate sandy textures and warm tones, 4k, super realistic, high resolution

B EVALUATION METRICS

We evaluated the performance of our model using three metrics:

1.

CLIP score: Measures the semantic alignment between the text prompt and the generated
image. Let I be the input image and 7' be the text prompt. Let e; and er be the im-
age embeddings and text embeddings obtained using the CLIP image encoder and CLIP
text encoder (Radford et al.l [2021). The CLIP score is computed as the cosine similarity
between these embeddings

€r - er

CLIP score = ————
lex|l el

)
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2. Face ID score: Measures the cosine dissimilarity between the face regions of the input
image and generated image. The face region is detected using the Retina Face model (Deng
and face features are extracted using FaceNet model (Schroff et al, 2015). Let
fr and fp be the embeddings from FaceNet for the face regions in the input and generated
images, respectively. The face ID score is computed as

_ fi-fp
£l 1 £l

3. Clothing score: Measures the cosine dissimilarity between the clothing (non-face) regions
of the input image and generated image. The face region is subtracted from the foreground
segmentation mask and the resulting mask is passed to the VGG network
to extract the image features. Let ¢; and cp be the embeddings from
VGG network for the clothing regions in the input and generated images, respectively. The
clothing score is computed as

()

Face ID score = 1

Clothing score = 1 — _rer )
ezl llep|l

C RESULTS

Fig. [/| shows some more qualitative comparison of our model against two prior works: Instan-
tID and IC-Light (Zhang et al., 2025). Our model preserves the foreground sub-
ject’s identity and pose significantly better than InstantID and achieves more dramatic facial shadows
than IC Light, while fully preserving the foreground identity. Additionally, our model generalizes
effectively across different genders, ethnicities, facial structures, poses, and facial accessories.

Figure 7: Qualitative comparison against prior methods on different test images. Row-1: Input
image; Row-2: InstantID (Wang et al., [2024) results; Row-3: IC-Light (Zhang et al.l 2025)) results;
Row-4: Proposed model. Left to right are different effects: window grill, city night, pantone, city
night, rainy day, ocean sunset, forest canopy. The last two are out-of-training prompts, while the
rest are used in training the model.

Fig.[8|shows the outputs generated by our model for different prompts on the same input image. The
foreground subject’s identity is consistent across different prompts and closely matches with the
identity in input image, thus showcasing the generalization capabilities of our model across prompts
with diverse lighting and backgrounds.

As described in Section 3 of the main paper, we propose a novel scalable dataset generation pipeline
to create pairwise training images. Since InstantID fails to preserve the foreground subject’s identity
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Figure 8: Generalization of our model across different prompts for the same input image. The
foreground identity is consistent across prompts and similar to the input image. First column: Input
image. Other columns: Generated results.

Figure 9: Qualitative comparison of the model trained with and without the pairwise dataset strategy.
Top row: Input image. Middle row: Model trained directly on original input image and target pairs.
Bottom row: Model trained on the pairwise dataset composed of input-target pairs both generated
by InstantID.

and pose accurately, we created training pairs where the input and target images were generated by
InstantID (see Fig 3c in the main paper). To evaluate the benefits of this pairwise dataset creation
strategy, we compare a baseline model trained on original input-target image pairs with our model
trained using the pairwise dataset strategy. As shown in Fig. [J] the identity preservation in the
baseline model is significantly worse than our model trained using our pairwise dataset strategy.

As described in the main paper, we use the placeholder prompt “a <c>” during training to encode
the identity information. Fig.[T0| shows some more qualitative results generated using the place-
holder prompt along with the input image at inference. The model fully preserves the pose and
identity of the foreground subject, indicating that the placeholder prompt mainly learns the identity
details, while the foundation model generates the background content.
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Figure 10: Results from our model using only the placeholder prompt at inference. The foreground
subject identity is accurately represented in the generated image. The background is generated
randomly, since no cue is passed into the prompt. Top row: Input images. Bottom row: Generated
results.

To evaluate the effectiveness of our design choices, we performed several ablation studies. A key
benefit of our unsupervised dataset generation pipeline is its ability to efficiently scale the size of
training dataset using only a few original image samples. We evaluated the impact of varying the
number of original images used to generate the training dataset. Specifically, we randomly sample
subsets of the original input images and apply our novel dataset generation pipeline to create the
training dataset. As shown in Table[2] performance improves slightly with larger datasets but quickly
saturates as both 512 and 1024 samples achieve comparable results. This indicates that our pipeline
generates training data with sufficient diversity and variation, even from limited number of original
input images. All models were trained using the same hyperparameter configuration.

# original | # training | CLIP , | Face ID | | Clothing
samples | samples | score T score + score +
128 53,760 0.21 0.25 0.17
256 107,520 | 0.24 0.24 0.15
512 215,040 | 0.26 0.22 0.12
1024 430,080 | 0.29 0.20 0.11

Table 2: Performance of the model when trained on a dataset generated using fewer original input
images samples.

Next, we evaluate the impact of LoRA adapter rank on the model performance. Adapter with higher
ranks have more trainable parameters, which should enable the model to learn better identity and
lighting details. However, as shown in Table [3] performance improvement with higher ranks are
minimal. The performance of rank 32 LoRA is comparable with rank 64 and rank 128. The face
ID score and clothing score degrade at lower ranks and stabilize at higher ranks, indicating that
the LoRA adapter primarily contributes to learning foreground identity. The minimal benefits from
higher rank adapters highlights the benefits of our novel loss functions and training methodology.

# parameters | CLIP Face ID Clothin

Rank (irI: Millions) | score T score + score & +
16 21.7 0.26 0.30 0.18
32 434 0.29 0.20 0.11
64 86.9 0.29 0.20 0.11
128 173.7 0.30 0.19 0.11

Table 3: Performance comparison of our model for different ranks of the LoRA adapter.

Finally, we evaluate the contribution of each loss component in the training loss function (see Eq 6
in the main paper). The weight of each component is set to 0, while keeping the remaining weights
unchanged. As shown in Table [ setting oy = 0 reduces the accuracy of foreground identity
preservation, as reflected in a higher face ID score. Setting ais = 0 affects the dramatic lighting and
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shadow on the foreground, resulting in a lower CLIP score. Setting ag = 0 reduces the photorealism
of the generated backgrounds. The best performance is achieved when all components of the loss
function are optimally used.

Table 4: Performance comparison of the contribution of different components of the training loss

function.

. CLIP Face ID Clothin

Loss weight score T score : score £ +
a; =0 0.26 0.26 0.11
as =10 0.23 0.21 0.11
az =0 0.24 0.22 0.13
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