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Abstract

Nuclei segmentation is an important step in the task of medical image analysis. Nowadays,
deep learning techniques based on Convolutional Neural Networks (CNNs) have become
prevalent methods in nuclei segmentation. In this paper, we propose a network called
Multi-scale Split-Attention U-Net (MSAU-Net) for further improving the performance of
cell segmentation. MSAU-Net is based on U-Net architecture and the original blocks used to
down-sampling and up-sampling paths are replaced with Multi-scale Split-Attention blocks
for capturing independent semantic information of nuclei images. A public microscopy im-
age dataset from 2018 Data Science Bowl grand challenge is selected to train and evaluate
MSAU-Net. By running trained models on the test set, our model reaches average Inter-
section over Union (IoU) of 0.851, which is better than other prominent models, especially
4.8 percent higher than the original U-Net. For other evaluation metrics including accu-
racy, precision, recall and F1l-score, MSAU-Net shows better performance in the most of
indicators. The outstanding result reveals that our proposed model presents a promising
nuclei segmentation method for the microscopy image analysis.

Keywords: Nuclei Segmentation, Convolutional Neural Network, Multi-scale Split Atten-
tion.

1. Introduction

Automatic nuclei segmentation plays an essential role in the microscopy image analysis.
Traditional segmentation algorithms are based on edge detection, thresholding, morphol-
ogy, pixel energy or distances between each cell, such as watershed (Meyer, 1994), Otsu
(Otsu, 1979) and snake algorithm (Kass et al., 1988). Each method has different param-
eters which can be adjusted manually to adapt various requirements. However, achieving
cell segmentation using these methods needs to combine with other image processing tools
including grayscale or histogram equalization so that the final model often exists a number
of parameters which are difficult to be optimized (Riccio et al., 2018). In addition, deep
learning techniques based on Convolutional Neural Networks (CNNs) have led to a signifi-
cant breakthrough in the image classification and semantic segmentation. U-Net, proposed
by Ronneberger et al. (2015), removes the fully connected layer and adds more feature
channels in the up-sampling part so that the semantic information in the network can be
broadcasted to higher resolution layers. It indicates a promising performance in the cell
segmentation. Zhou et al. (2018) introduced a nested U-Net (Unet-++) for medical image
segmentation. The model adds a series of nested and skip pathways in original U-Net,
which enhances the ability of feature sharing between each sub-network. Jha et al. (2020)
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constructed a DoubleU-Net architecture that adds another U-Net at the bottom of U-Net
in order to obtain more semantic information from images. The model also applies Atrous
Spatial Pyramid Pooling (ASPP) to acquire contextual information. By experiments on a
nuclei image dataset, DoubleU-Net illustrates the better segmentation result than U-Net
and nested U-Net. However, the performance of these methods is affected by image ac-
quisition quality. For example, some of pathological images are blurred or contain noises.
Other situations include uneven illumination, low image contrast between foreground and
background, touching cells, large variations in nuclei sizes and shapes (Weigert et al., 2020).
Therefore, a more robust approach is urgently needed.

In this paper, we propose a U-shape deep neural network called Multi-scale Split-
Attention U-Net (MSAU-Net) for rapid and automatic segmentation of cells in microscopy
images. The network consists of two parts: encoder module and decoder module. Both
modules adopt channel-wise attention mechanism with multi-scale convolutions so that the
network can obtain multi-scale features from input images and enhance its receptive field.
Experimental analysis is conducted with a public dataset, which was acquired from the
Data Science Bowl grand challenge in 2018. The proposed MSAU-Net model demonstrates
an outstanding segmentation result in terms of the accuracy, precision, recall, F1-score and
Intersection over Union, which presents a potential cell segmentation tool for medical image
analysis.

2. Method

2.1. MSAU-Net Architecture

The first U-Net uses simply convolutional block as the encoder, so that it has limited ability
to extract semantic features from images. In order to capture more semantic information
and enhance the robustness of U-Net, we propose a novel MSAU-Net framework for nuclei
segmentation. The model replaces the original convolutional layer of U-Net with our pre-
sented Multi-scale Split-Attention block, which is inspired by Split-Attention block (Zhang
et al., 2020). The comparison between Split-Attention block and our proposed block is
illustrated in Figure 1.

The Split Attention block involves two components: feature group and split attention
operations. Although more cardinal and split groups can improve the ability of feature ex-
traction for the network, the number of parameters of the network will also grow rapidly. To
reduce the number of parameters with larger groups, our network only retains one cardinal
group. A set of transformations {F, F»,...F,} is applied into every group. Each transfor-
mation is a 1 x 1 convolution followed by k x k convolution, which is defined as:

k=2r+1, rel,2,.N (1)

These multi-scale convolutions can extract features with different scales from input images.
The middle representation of each group is E; = F;(X), i€ {1,2,...r}. In addition, the
cardinal group is represented as:

E=)U;, EeRTWxC (2)
j=1
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Figure 1: Comparing our block (right) with Split-Attention block (left)

Where H, W and C are the sizes of output features. The global average pooling is able to
collect the global context information of embedded channel-wise statistics through spatial
dimensions. The information in the c-th spatial dimension is calculated as:

1 H W
_ - .. C
5= ey 2 2 Felid) SR 3)

The channel-wise soft attention is used to aggregate a weighted combination of cardinal
group representation, where each channel of the feature map is generated using a weighted
fusion over splits. Then the c-th channel is defined as:

Vi=a;(c) E; (4)
Where a;(c) indicates a (soft) assignment weight provided by:

an(@(S)
o

n
a;

> 5=1 exp(G5(9)) (5)
e r=1

1+exp(GS(S))
According to the globally contextual information S, G; controls the weight of every split
group for the k-th channel, which is calculated by two fully connected layers with ReLLU
activation. All of channels will be concatenated as:

V = Concat{V!, V2 ...V} (6)

As a result, a shortcut connection is used to produce the final output of the Multi-scale
Split-Attention block: Y = V + X, if the input feature map shares the same shape with the
output feature map. When applying a transformation 7, such as the stride convolution,
on the shortcut connection, the output of the block is: Y = V + 7(X). The full MSAU-
Net model has been provided in Figure 2. The left side of MSAU-Net is referred to as
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Figure 2: Presentation of our designed MSAU-Net model

encoder and the right side as decoder. The Split-Attention blocks are used to extract
complex features from the input image. A 2 x 2 max pooling with stride 2 is executed after
each block for down-sampling. After performing down-sampling 4 times, MSAU-Net will
start decoding these features. Every feature representation learned from each block of the
encoder is copied into the corresponding block of decoder and then concatenates them with
the output of up-sampling layer. The bilinear interpolation algorithm uses all nearby pixels
to calculate the value of unknown pixel and is applied on the up-sampling layer to recover
the original size of image gradually. The fused feature representation after concatenation is
propagated by skip connection. On the other hand, a 1 x 1 convolution is used to transfer
every 16-channel feature map to the required number of predicted classes in the final layer.

2.2. Loss Function

In deep learning, loss function quantifies the difference between the result of prediction and
label. Cross-Entropy (CE) loss is a common loss function used for training deep neural
networks. However, it cannot perform well in the imbalanced data (Jadon, 2020). To avoid
this issue, we train the model using a combined loss function using Logarithmic Dice Loss
and Focal Loss (Pan et al., 2019), which is calculated as:

2X gy +s
Yu+dy+s

where § = {9;}, 9; € [0,1] is the prediction value for the i-th pixel, y = {y;}, v € 0,1
is the corresponding ground truth point, and s is a smoothing scalar. We set s as 1 to
ensure that the function is defined in edge case scenarios such as g;=1y, = 0. v is used
to adjust the reduction rate. « value is optimised by F1l-score. It determines the weight
of Logarithmic Dice Loss and Focal Loss. The aim of Logarithmic Dice Loss can enhance
the penalty for the lower prediction of the dice coefficient. It has been demonstrated to
improve the performance of the model over cross entropy loss in semantic segmentation

Loss (§.y) = a x (— log (1 )) £ (1—a) xlog(@) x (1—§)  (7)



MICCAI COMPAY 2021

tasks (Novikov et al., 2018). On the other hand, Focal Loss (Lin et al., 2017) improves the
weight of fuzzy foreground so that some of cells in the microscopy image can be segmented
easily. The combined loss function considers the benefits of both Logarithmic Dice Loss
and Focal Loss functions.

3. Experiments
3.1. Dataset

Data Science Bowl, in 2018, launched a competition with a requirement to design an efficient
algorithm for automatic segmentation and detection of nuclei in microscopy images. There
are 670 nuclear images and corresponding pixel-level segmentation masks in the dataset
of 2018 Data Science Bowl grand challenges, where 600 cell images and their segmentation
masks are set as the training set and remaining 70 samples as the testing set. At the training
stage, we randomly select 85% samples of the training set to train the model and the rest
of 15% samples are used for validation.

3.2. Training Strategy

In this section, an algorithm that uses the proposed MSAU-Net architecture is designed to
achieve nuclei segmentation. We set 2 split groups within the cardinal group. The numbers
of kernel in the first five convolutional layers of the encoder were set to 16, 32, 64, 128 and
256, and remaining convolutional layers in the decoder were set to 128, 64, 32, 16 and 1.
The size of input images is 256 x 256 pixels. An Adam optimization technique (Kingma and
Ba, 2014) is used to minimize the loss function. The learning rate for training the model is
determined by a sequential search in a series of values 0.05,0.01,0.005,0.001,0.0005,0.0001
and choosing one that has the lowest validation loss. In order to guarantee the model can
be converged completely, the batch size and epochs are set to 8 and 200 in training. The
ToU value is calculated during the training and validation, which is used for monitoring the
performance of the model. For comparison, we also train U-Net, Unet++ and DoubleU-Net
models which are prominent methods in terms of nuclei segmentation. The loss function,
optimizer and training strategy of these models are also the same as MSAU-Net. In ad-
dition, all models will also be trained using cross-entropy loss function to compare with
the combined loss function. To prevent the model to be overfitting, data augmentation
approaches, such as horizontal flip and brightness transformations, are adopted in experi-
ments. All built models were implemented using PyTorch 1.5 deep learning library, Python
3.7 and NumPy 1.14. Training and validating models were performed on a Nvidia RTX2060
GPU, 16GB RAM and an Intel AMD Ryzen 3500X CPU.

3.3. Results and Discussion

For MSAU-Net, the learning curve using CE loss is presented in Figure 3. It can be observed
that our proposed model converges after approximately 60 epochs. At the end of training,
the best validation loss and IoU reached 0.0623 and 0.7850, respectively. Figure 4 indicates
the training result of MSAU-Net using the combined loss function. It can be demonstrated
that this model converges faster than the model trained with CE loss and the final validated
IoU is higher. For the comparison between the performance of MSAU-Net and other models
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Figure 3: Results of training (left side) and validation (right side) trained on MSAU-Net
with CE loss.

on the testing dataset, we calculate the average of accuracy, precision, recall, F1-score and
IoU to evaluate all models.
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Figure 4: Results of training (left side) and validation (right side) trained on MSAU-Net
with the combined loss.

Table 1: Comparison of model performance (CE) on test dataset in terms of the evaluation
metrics in mean and standard deviation

Method Accuracy Precision Recall F1l-score IoU
U-Net 0.934+0.071 0.952+0.084 0.838+0.110 0.885+0.081 0.803+0.120
Unet++ 0.94140.068 0.951£0.049 0.872+0.113 0.905£0.075 0.835+0.116

DoubleU-Net  0.94140.068 0.95740.039 0.865+0.131 0.903+0.089 0.833£0.129
MSAU-Net 0.94440.066 0.9384+0.069 0.8934+0.122 0.90740.104 0.84240.128
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Table 1 shows the comparison between each model trained with CE loss. In the test set,
MSAU-Net achieves higher scores in the most of indicators.

Table 2: Comparison of model performance (combined loss) on test dataset in terms of the
evaluation metrics in mean and standard deviation

Method Accuracy Precision Recall F1-score IoU
U-Net 0.94240.068 0.925+0.077 0.9024+0.094 0.910£0.070 0.841+0.107
Unet++ 0.94240.068 0.948+0.068 0.884+0.105 0.911+0.072 0.844+0.111

DoubleU-Net  0.94340.066 0.939+0.058 0.893+0.094 0.913+0.094 0.846+0.102
MSAU-Net 0.94440.066 0.92740.066 0.91240.098 0.91640.063 0.85140.098

In Table 2, it can be indicated that all models can get benefits from the combined loss.
Where MSAU-Net achieves an average IoU of 0.851 which is better than other models,
especially 1% higher than U-Net. The average precision of MSAU-Net (0.927) is lower than
Unet++ (0.948) and DoubleU-Net (0.939), but MSAU-Net shows the highest average recall
among all models. Also, the average accuracy and F1-score of MSAU-Net are greater than
U-Net, Unet++ and DoubleU-Net. In addition, MSAU-Net spends 22s in inference, which
is almost the same as other models and indicates potential feasibility for the segmentation of
full-scale microscopy images. Overall, our proposed model shows better performance than
these previous models in the aspect of nuclei segmentation.

At the next stage, to visualise more detailed results of the segmentation between the
MSAU-Net and U-Net, we assess samples of segmentation results with different sizes of cells
from the test set. The comparison of the qualitative results between ground truth images,
U-Net and MSAU-Net is provided in Figure 5. From the first row of the image, it can be
claimed that both models have a satisfied segmentation result if there is a few of cells in
the microscopy image and these nuclei are easy to be discriminated from the background.
However, for more complex images, such as the third and final rows of the image, it can
be demonstrated that other models cannot completely solve nuclei images with different
shapes. Especially, U-Net has a very limited ability to detect unregular cells but MSAU-
Net can properly segment them from the background. As a result, the segmentation masks
produced by our proposed model performs well for recognising different sizes of nuclei in
the microscopy image.

MSAU-Net shows an enhanced performance in nuclei segmentation compared with the
classical U-Net. However, it still can be optimized in several aspects. Firstly, both encoder
and decoder of our proposed model adopts the same number of blocks as the traditional
U-Net. However, there is no evidence to prove that these blocks are able to extract enough
semantic information from cells. It is worth to explore MSAU-Net with deeper encoder
and decoder. Moreover, because convolutions with different sizes can extract multi-scale
semantic information from images, splitting more groups in the cardinal group probably can
improve the performance of MSAU-Net. For this reason, further experiments will explore
the impact of using different numbers of split groups in terms of the network performance.
On the other hand, in the decoder of MSAU-Net, each feature map after down-sampling
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Figure 5: Segmentation comparisons between MSAU-Net and other models.

feed into one layer of the decoder. However, it is hard to confirm if the defined feature can
certainly help decoder recover images. In order to improve the efficiency of the decoder,
further research can try to expand the receptive field of the decoder, which is able to receive
both low-level and high-level semantic information of the input image.

4. Conclusions

In this paper, we propose an enhanced version of U-Net called MSAU-Net for implementing
the microscopy image segmentation task. The MSAU-Net replaces the original convolutional
layers of U-Net with Multi-scale Split-Attention blocks that apply channel-wise attention
mechanism with multi-scale convolutions. The evaluation result shows that our presented
model demonstrates a higher segmentation performance than U-Net and other popular
models in terms of the accuracy, recall, F1-score and Intersection over Union. In the further
work, we will continue to optimize the number of parameters in the MSAU-Net architecture
in order to simplify the framework and reduce the time of training and evaluation. To
improve the performance of nuclei segmentation, more image data with various shapes need
to be collected in the future for capturing different characters of cells. At the same time,
we will continue the explore the usability of the MSAU-Net in different medical image
segmentation tasks, such as brain or lung segmentation from different modalities (MRI or
CT).
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