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Abstract

While large language models (LLMs) show considerable promise across various
fields, they have notable limitations in handling multi-document question answer-
ing (Multi-doc QA) tasks. The first challenge is long-range dependency modeling,
where LLMs struggle to focus on key information in long texts, which weakens
important semantic connections. Second, most LLMs suffer from the “lost-in-the-
middle” issue, where they have difficulty processing information in the middle
of long inputs. Current solutions either truncate global dependencies or demand
costly finetuning, ultimately lacking a universal and simple solution for these
challenges. To resolve these limitations, we propose Dual-Stage Adaptive Sharpen-
ing (DSAS) containing two modules. (i) The Contextual Gate Weighting (CGW)
module alleviates “lost-in-the-middle” by assessing paragraph relevance through
layer-wise attention tracking and position-aware weighting. (ii) The Reciprocal
Attention Suppression (RAS) module enhances focus on critical paragraphs by
suppressing information exchange between key and irrelevant texts, thus mitigating
the limitations in long-range dependency modeling. Extensive experiments on
four benchmarks demonstrate DSAS’s efficacy across mainstream LLMs (Llama,
Qwen, Mistral, and Deepseek), with an average F1-score improvement of 4.2% in
Multi-doc QA tasks on Llama-3.1-8B-Instruct and Qwen2.5-14B-Instruct. Abla-
tion studies confirm the essential contributions of both the CGW and RAS modules.
In addition, detailed discussions in the Appendix further validate the robustness
and scalability of DSAS.

1 Introduction

Transformer-based [34] large language models (LLMs) have demonstrated remarkable performance,
which have extensively promoted various complex natural language processing applications [9, 25, 30,
21, 37]. Building on the progress, recent advancements have shifted research focus toward enhancing
LLMs’ long-context processing capabilities [23], giving rise to LLMs that significantly expand
context windows from 4K tokens to 128K or even 1M tokens, e.g., Llama-3.1-8B-Instruct [10] and
Gemini-1.5 [31]. These LLMs have unlocked unprecedented potential for complex tasks requiring
cross-document reasoning, such as legal case analysis [8] and multi-source academic synthesis [7].
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Paragraph 1: Blind Shaft is a 2003 film about a pair of brutal 

con artists operating in the illegal coal mines of present-day 

northern China. The film was written and directed by Li Yang, 

and is based on Chinese writer Liu Qingbang's short novel 

"Shen MuSacred Wood".

……

……
Paragraph i: The Mask of Fu Manchu is a 1932 pre-Code 

adventure film directed by Charles Brabin. It was written by 

Irene Kuhn, Edgar Allan Woolf and John Willard based on the 

1932 novel of the same name by Sax Rohmer. Starring Boris 

Karloff as Fu Manchu, and featuring Myrna Loy as his 

depraved daughter, the movie revolves around Fu Manchu's 

quest for the golden sword and mask of Genghis Khan. Lewis 

Stone plays his nemesis. Dr. Petrie is absent from this film.

……

……
Question: Which film came out first, Blind Shaft or The Mask 

Of Fu Manchu?

Figure 1: In Multi-doc QA tasks, directly processing long inputs comprising numerous paragraphs
with LLMs presents two major challenges: long-range dependency modeling and “lost-in-the-middle”,
resulting in degraded answer quality. DSAS acts as a plug-in that enhances LLMs through a dual-
stage process: (i) reinforcing information flow between supporting passages and both the question
and target, and (ii) suppressing interactions between supporting and negative paragraphs.

However, simply concatenating multiple documents into these long contexts often results in degraded
performance due to attention dilution [27], a phenomenon where critical inter-document dependencies
are overshadowed by irrelevant tokens. While solutions like StreamingLLM [40] and Selective Self-
attention [44] are introduced, they either truncate global dependencies or lack generalizability, leaving
the core challenge of context-aware attention prioritization unresolved.

As shown in Figure 1, the aforementioned attention dilution phenomenon reveals two critical lim-
itations in multi-document question answering (Multi-doc QA) scenarios: (i) Limited long-range
dependency modeling: Despite claims of 128K-token support, RULER [15] reveals that LLMs
often struggle with real-world tasks requiring combinatorial reasoning. While recent efforts (e.g.,
StreamingLLM [40], LM-Infinite [13]) explore attention mechanism optimization to address the
challenge, they sacrifice global token interactions, compromising Multi-doc QA performance. (ii)
Persistent “lost-in-the-middle” issue: Nelson et al. [24] demonstrate that LLMs perform poorly when
key information appears in the middle of long inputs. Current solutions like LongAlign [2] using
a hybrid strategy (combining long-instruction examples with short data) require additional training
using curated datasets, making them less adaptable to mainstream LLMs. These challenges highlight
the critical need for universal, plug-and-play modules that enhance Multi-doc QA capabilities without
architectural constraints or task-specific fine-tuning.

Recent studies [35, 43, 17] demonstrate that attention-driven information flow analysis provides
critical insights into model reasoning patterns. Inspired by this insight, we adapt the methodology to
Multi-doc QA tasks. To address these issues, we introduce Dual-Stage Adaptive Sharpening (DSAS)
as shown in Figure 1, a training-free attention optimization mechanism comprising two modules:
Contextual Gate Weighting (CGW) and Reciprocal Attention Suppression (RAS). Specifically, our
method works as follows: CGW tracks attention scores across selected model layers and calculates a
contextual gate weight for each paragraph. Additionally, CGW introduces a position-aware weighting
mechanism to enhance focus on information in the middle. Then RAS identifies critical paragraphs
and attenuates information exchange between critical paragraphs and irrelevant content. DSAS
requires no architectural changes or extra finetuning, serving as a universal plug-in for Transformer-
based LLMs to strengthen Multi-doc QA capabilities.

Our contributions are as follows: (i) We systematically investigate the information flows on several
LLMs in Multi-doc QA through paragraph disparity level and answer quality level analysis. (ii) Based
on the findings, we propose DSAS, a training-free universal plug-in for Transformer-based LLMs,
which enhances focus on critical information through CGW and RAS, while suppressing irrelevant
content. (iii) Extensive experiments on four public benchmark datasets demonstrate the effectiveness
of DSAS for various LLMs including Llama, Qwen, Mistral and Deepseek, achieving an average
F1-score improvement of up to 4.2% on Llama-3.1-8B-Instruct [10] and Qwen2.5-14B-Instruct [28].
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Figure 2: Layer-wise information flows of HotpotQA, 2WikiMultiHopQA and MuSiQue tested on
Llama-3.1-8B-Instruct. ps and pn denote supporting paragraphs and negative paragraphs, respectively.
The results of Qwen2.5-7B-Instruct are shown in Appendix A.2.

2 Information Flow Analysis on Multi-doc QA

Identifying key factors for effective Multi-doc QA reasoning is essential. To achieve this, we conduct
a systematic analysis of LLMs’ inference processes across three core components: input paragraphs
(p), question (q), and target (t). A critical step lies in selecting suitable methods to study the semantic
interactions among these components. Attention score analysis [29], a method widely used to examine
information flow, is adapted here to investigate how LLMs integrate cross-document information.

2.1 Preliminaries

Let AS
h,l, A

W
h,l denote the attention score matrix and the attention weight matrix of the h-th head in

the l-th layer, respectively. We obtain the layer-specific matrices AS
l and AW

l by summing across all
attention heads. Here, AW

l (i, j) represents the information flow from the j-th to the i-th token.

To analyze interactions among three key components: (i) paragraphs (p1, . . . , pC): Each paragraph
pm spans input token indices {pms ,pms + 1,. . . ,pme }, where pms and pme denote the start/end positions
and C is the total paragraph count; (ii) question q; and (iii) target t: the answer generation position
(i.e., the final token in the input), we propose two metrics. Ipm,q and Ipm,t are the Top-K significance
of the information flow from the m-th paragraph pm to q and pm to t, respectively:

Ipm,q =
1

Q

∑
Top-K

∑
i∈q

AW
l (i, j)|j ∈ pm


 , (1)

Ipm,t =
∑

Top-K
({

AW
l (t, j)|j ∈ pm

})
,m ∈ {1, . . . , C}, (2)

where Q denote the token length of the question. Ipm,q and Ipm,t serve as information flow indicators
to analyze the inference process for LLMs. The larger their values are, the more the generated results
pay attention to the corresponding paragraphs.

Experimental Settings. We choose Llama-3.1-8B-Instruct [10] and Qwen2.5-7B-Instruct [28] as our
primary models for investigation, due to their moderate model size and strong instruction following
ability. For datasets, since LongBench [3] lacks supporting facts (labels for supporting paragraphs),
we use HotpotQA [41], 2WikiMultiHopQA [14] and MuSiQue [33]. We sample 1000 examples from
the training set for evaluation. Templates for constructing inputs are provided in Appendix A.1.

2.2 Paragraph Disparity Level Analysis

Most LLMs adopt a multi-layer Transformer architecture, with each decoder block processing
semantic information differently during inference. We intend to check layer-wise information flows
of Ipm,q and Ipm,t. Figure 2 visualizes layer-wise attention weight values. These values serve as a
quantified metric to display how the different paragraphs contribute to the generated answer from
the paragraph disparity perspective: Information flows from distinct paragraphs diverge only slightly
in the shallow layers of the LLM, which suggests that the LLM first establishes basic semantic
understanding to support deeper processing. As layers deepen, a clear divergence emerges between
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Ips,q and Ipn,q , demonstrating the LLM progressively distinguishes task-relevant paragraphs through
its layer-wise semantic processing, enabling rational attention allocation. Ultimately, in the deep
layers of the LLM, LLM recognizes and utilizes key paragraphs for answer generation.

Our analysis uncovers a two-stage reasoning pattern: (i) Information initially converges on the
question, with supporting paragraphs exhibiting stronger information flows than negative paragraphs,
confirming the model’s ability to prioritize semantically relevant content. (ii) Subsequently, the infor-
mation from supporting paragraphs aggregates to the target, where the LLM strategically leverages
critical paragraphs to formulate answers. These observations highlight the inherent interpretability of
LLMs, proving their capabilities to integrate task-specific information during inference.

2.3 Answer Quality Level Analysis
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Results in HotpotQA Results in 2WikiMultiHopQA Results in MuSiQue

Figure 3: Comparison between mean values of the good and
bad instances from the 1000 samples of Llama-3.1-8B. The
results of Qwen2.5-7B are shown in Appendix A.3.

We define a reasoning process as
GOOD if its output exactly matches the
reference answer, and BAD if it con-
tains no word-level overlap with the
reference answer (see Appendix A.4
for more details). To investigate the
divergence between good and bad rea-
soning patterns, we aggregate infor-
mation flow values across all model
layers and conduct a comparative anal-
ysis of two distinct groups: Ips,q

and Ips,t from supporting paragraphs,
along with Ipn,q and Ipn,t from negative paragraphs. As shown in Figure 3, good reasoning exhibits
higher values of Ips,q and Ips,t, and lower values of Ipn,q and Ipn,t. The MuSiQue dataset reveals the
largest gaps between good and bad reasonings across all four metrics, which is probably attributable
to its multi-hop reasoning complexity.

Notably, even in bad reasoning instances, Ips,q and Ips,t for supporting paragraphs consistently
exceed those of Ipn,q and Ipn,t for negative paragraphs. This observation indicates that LLMs
possess inherent discrimination capabilities between supporting and negative paragraphs regardless
of reasoning quality, though the information flows of supporting paragraphs remain insufficient for
optimal answer generation. Our framework addresses this core issue by introducing a quantitative
information flow analysis that measures Ip,q and Ip,t for each paragraph. This analysis enables the
selective and precise amplification of relevant semantic information, as detailed in Section 3.

3 Methodology

To explore the Multi-doc QA capabilities of LLMs, we analyze the attention score matrix in each layer
and identify the key paragraphs through the information flows. Building on the above findings, we
propose Dual-Stage Adaptive Sharpening (DSAS), which consists of two key modules. In Section 3.1,
we introduce Contextual Gate Weighting (CGW), which identifies key paragraphs and strengthens
the attention of the question and target position toward these texts. Section 3.2 describes Reciprocal
Attention Suppression (RAS), which aims to suppress interactions between key paragraphs and
irrelevant information. At a high level, we strategically integrate CGW and RAS modules into the
computation of multi-head attention to implement DSAS:

AS
h,l =

QWQ
h,l(KWK

h,l)
T

√
dk

, AS
l = Stack(AS

1,l, . . . , A
S
H,l),

AS
h,l = RAS(CGW(AS

h,l, A
S
l )),

AW
h,l = Softmax(AS

h,l, dim = −1),

Oh,l = AW
h,l(VWV

h,l), Ol = Concat(O1,l, . . . , OH,l)W
O
l ,

(3)

where WQ
h,l,W

K
h,l,W

V
h,l are projection matrices of the h-th head in the l-th layer, WO

l is the output
projection matrix. We STACK tensors along the first dim and CONCAT them along the last dim. The
framework of DSAS is shown in Figure 4. To avoid ambiguity, descriptions of key symbols appearing
in the following text are provided in Table 5 in Appendix B.
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Figure 4: Illustration of Dual-Stage Adaptive Sharpening (DSAS), including Contextual Gate Weight-
ing (CGW) and Reciprocal Attention Suppression (RAS).

3.1 Stage 1: Contextual Gate Weighting (CGW)

For each selected layer, we compute the combined information flows of each paragraph using the
attention score matrix AS

l . Specifically, we extract the attention sub-matrix corresponding to the
positions of each paragraph, question and target as follows:

M ∈ R2Q×pm

= [AS
l (q, p

m)]︸ ︷︷ ︸
Question Matrix

∥ [AS
l (t, p

m) ↑(Q)]︸ ︷︷ ︸
Target Matrix

, (4)

where Q, pm denote the token length of the question and the m-th paragraph, respectively, and ↑(Q)

represents the expand operation to match the question length. The combined information flow for the
m-th paragraph is then calculated by averaging the column-wise Top-K values of M :

ICombm =
1

K

∑
Top-K

[
2Q∑
i=1

Mi,j

]pm

j=1

,m ∈ {1, . . . , C}. (5)

We then compute vm through Z-normalization and sigmoid scaling:

vm = 0.5 · σ
(
ICombm − µI

σI

)
+ 0.5,m ∈ {1, . . . , C} (6)

where σ(·) is the sigmoid function and µI , σI are the mean and the standard deviation of IComb.
The minimum value of vm is set to 0.5 to prevent overlooking the paragraphs excessively. In
addition, to mitigate the “lost-in-the-middle” issue, we introduce position-aware weighting that
assigns greater weights to central key paragraphs. Hsieh et al. [16] attribute this limitation to the
inherent U-shaped attention bias in LLMs, which places more emphasis on content at the beginning
and end of the sequence. We correct this bias through the probability density function (PDF) of a
Gaussian distribution, which is defined as follows:

f(x) =
1

σp

√
2π

· exp
(
− (x− µp)

2

2σ2
p

)
, F (x) =

∫ x

−∞
f(t) dt (7)

where µp, σp are the mean and the standard deviation of the input token indices {0, 1, . . . , L− 1}
(i.e., µp equals 0.5 · (L− 1), σp equals

√
L2−1
12 ), and F (x) is the cumulative distribution function

(CDF) of a Gaussian distribution. Then the positional value γm for the m-th paragraph is computed
based on the token indices {pms ,pms + 1,. . . ,pme } within the segment:

z1 =
pms − µp

σp
, z2 =

pme − µp

σp
, (8)

γm =
F (z2)− F (z1)

z2 − z1
, (9)
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where z1, z2 denote the normalized value of pms and pme , respectively. Next, we rank paragraphs by
vm, compute position-aware weights for the top 50% paragraphs, and assign a value of 1 to the rest,
aiming to prevent the model from attracting excessive attention to non-critical middle paragraphs.
The position-aware weight gm is calculated as follows:

gm =

{ (
0.5C+1

rankm

)γm

, if rankm ≤ 0.5C,

1, otherwise.
(10)

The final contextual gate weight wm is derived as:

w
′

m = vm · gmα, (11)

wm = (1− β)
w

′

m − min(w
′

i)

max(w′
i)− min(w′

i)
+ β, i ∈ {1, . . . , C} (12)

where hyperparameters α and β balance positional and content relevance and determine the minimum
value of wm, respectively. The attention score matrix AS

h,l is dynamically adjusted by applying con-
textual gate weights of each paragraph, thereby refining the model’s focus based on their importance:

AS
h,l(i, j) = wm ·AS

h,l(i, j), if i ∈ {q, t}, j ∈ {pms , pms + 1, . . . , pme } (13)

3.2 Stage 2: Reciprocal Attention Suppression (RAS)

The CGW module computes contextual gate weights for each paragraph to evaluate their relevance to
answer generation, enabling clear distinction between critical and irrelevant paragraphs. The RAS
module aims to suppress interactions between non-critical and key paragraphs. To achieve this, we
classify paragraphs using a threshold-based method: paragraphs with contextual gate weights higher
than the mean value of all wm are identified as key paragraphs, while those below the threshold are
labeled as irrelevant paragraphs. The key and irrelevant paragraphs are denoted as Pkey,l and Pirr,l in
the l-th layer. Next, reciprocal attention suppression is applied between these categories. This process
adjusts the attention score matrix AS

h,l by suppressing values between key and irrelevant paragraphs.
The reciprocal suppression is bidirectional, affecting both interactions between Pkey,l and Pirr,l to
break cross-paragraph interference. Formally, the suppression is implemented as:

AS
h,l(i, j) = min(wm1

, wm2
) ·AS

h,l(i, j),

if j < i, i ∈ {pm1
s , pm1

s +1, . . . , pm1
e }, and j ∈ {pm2

s , pm2
s +1, . . . , pm2

e },
where (m1 ∈ Pkey,l, m2 ∈ Pirr,l) or (m2 ∈ Pkey,l, m1 ∈ Pirr,l).

(14)

4 Experiments

This section assesses DSAS, a plug-and-play attention mechanism designed to enhance Multi-doc
QA performance across diverse models and downstream tasks. Our experiments are structured
as follows: Section 4.1 details the implementation of DSAS, covering datasets, metrics, models
and hyperparameter settings. In Section 4.2, we show that DSAS achieves improvements on all
Multi-doc QA benchmarks, including HotpotQA [41], 2WikiMultiHopQA [14], MuSiQue [33], and
LongBench [3], without requiring any additional training. Section 4.3 presents ablation studies to
examine the effectiveness of DSAS under different variants and hyperparameters. Section 4.4 further
explores the robustness of DSAS.

4.1 Implementation

Datasets & Metrics. We evaluate our method on three classic Multi-doc QA benchmarks and a
long-context dataset. Following previous works, we utilize the validation splits of HotpotQA [41],
2WikiMultiHopQA [14], and MuSiQue [33] to test our effectiveness, as they provide reference
answers. To further assess generalization, we extend experiments to LongBench’s [3] corresponding
subsets on Multi-doc QA tasks. Referring to HotpotQA and LongBench, we consider the F1-score as
the evaluation metric for these datasets. The metrics details are shown in Appendix A.4.

Baselines & Models. PINE [38] analyzes attention patterns to re-assign input paragraph positions.
Given its similar operation and target to DSAS, we include PINE as a baseline for comparison, along-
side a vanilla LLM baseline that performs inference without altering the original pipeline. We select
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Table 1: Comparsion results on HotpotQA, 2WikiMultiHopQA, MuSiQue and LongBench bench-
marks. 2WikiMQA denotes 2WikiMultiHopQA. The evaluation for all tasks is assessed through the
F1-score (%).

Models Methods HotpotQA 2WikiMQA MuSiQue LongBench Average
HotpotQA 2WikiMQA MuSiQue

Llama-3.2-3B
Vanilla 39.1 39.4 20.8 41.9 34.1 12.7 31.3
PINE 39.0 39.6 21.3 42.4 35.3 12.5 31.6
DSAS 40.6 (+1.5) 39.7 (+0.3) 21.2 (+0.4) 42.7 (+0.8) 35.9 (+1.8) 13.2 (+0.5) 32.2 (+0.9)

Mistral-7B
Vanilla 32.0 19.0 24.3 39.3 16.6 22.2 25.6
PINE 32.4 19.5 24.6 40.2 16.9 24.1 26.3
DSAS 33.8 (+1.8) 20.2 (+1.2) 26.8 (+2.5) 41.9 (+2.6) 16.6 (+0) 25.3 (+3.1) 27.4 (+1.8)

Qwen2.5-7B
Vanilla 42.3 46.0 30.5 55.1 50.3 28.1 42.1
PINE 44.5 47.2 31.4 57.3 52.3 30.4 43.9
DSAS 46.1 (+3.8) 49.9 (+3.9) 35.0 (+4.5) 57.7 (+2.6) 52.7 (+2.4) 33.4 (+5.3) 45.8 (+3.7)

DeepSeek-R1-8B
Vanilla 37.2 22.9 26.8 45.1 20.3 24.8 29.5
PINE 36.8 22.6 26.5 45.2 20.1 23.9 29.2
DSAS 39.0 (+1.8) 23.4 (+0.5) 28.0 (+1.2) 47.2 (+2.1) 21.2 (+0.8) 26.7 (+1.9) 30.9 (+1.4)

Llama-3.1-8B
Vanilla 43.6 47.3 34.6 53.3 42.6 25.4 41.1
PINE 46.6 49.2 37.0 54.4 46.9 30.6 44.1
DSAS 47.1 (+3.5) 50.8 (+3.5) 39.2 (+4.6) 56.5 (+3.2) 47.3 (+4.7) 32.0 (+6.6) 45.5 (+4.2)

Qwen2.5-14B
Vanilla 48.2 55.3 38.0 57.6 53.1 32.8 47.5
PINE 50.4 57.0 41.8 59.8 56.4 36.7 50.4
DSAS 51.8 (+3.6) 58.2 (+2.9) 43.8 (+5.8) 60.9 (+3.3) 56.1 (+3.0) 39.3 (+6.5) 51.7 (+4.2)

Qwen2.5-32B
Vanilla 48.8 60.7 42.3 58.6 48.2 35.0 48.9
PINE 50.8 61.0 44.5 58.1 47.9 36.4 49.8
DSAS 50.8 (+2.0) 62.2 (+1.5) 45.4 (+3.1) 59.5 (+0.9) 50.5 (+2.3) 39.9 (+4.9) 51.4 (+2.5)

six popular LLMs, including Llama-3.2-3B-Instruct [10], Mistral-7B-Instruct-v0.2 [1], Qwen2.5-
7B-Instruct [28], DeepSeek-R1-Distill-Llama-8B [11], Llama-3.1-8B-Instruct [10], Qwen2.5-14B-
Instruct [28], and Qwen2.5-32B-Instruct [28], since they are popular Transformer-based decoder-only
LLMs, which are convenient for exploiting and analyzing inside architectures. All models are
deployed with the “bfloat16” data format due to the balance between efficiency and performance.
We set the generation mode to greedy-decoding for all methods with deterministic sampling pa-
rameters: do_sample=False, temperature=0, top_p=1, max_new_tokens=32 (follow the setting in
LongBench [3]). This setting minimizes the impact of irrelevant confounders during inference,
thereby ensuring that identical models and inputs always produce the same answers to fixed questions.
All experiments are implemented using PyTorch 2.2.1, and executed on the CPU of two 32-core
Intel(R) Xeon(R) @ 2.80GHz and GPU of 8× NVIDIA A800. The codebase is compatible with
Python 3.12, and computations were accelerated using CUDA 12.1.

Hyperparameters. The hyperparameters in Equations 5, 11, and 12 are set to K = 10, α = 1, and β
= 0.7 for all benchmarks and LLMs. DSAS is applied to the final 50% layers of all LLMs.

4.2 Main Results

Table 1 presents the main experimental results, revealing three principal insights: (i) Simply replacing
the original attention module with our DSAS enhances LLMs’ performance across all Multi-doc
QA benchmarks without requiring additional training, achieving average F1-score gains between
0.9% and 4.2%. Llama-3.1-8B and Qwen2.5-14B achieve the most significant improvements,
particularly on LongBench tasks. These results demonstrate that DSAS acts as a catalyst to enhance
Multi-doc QA performance across diverse model architectures and task configurations. In contrast,
although PINE [38] achieves performance gains under certain configurations, its improvements are not
consistently observed. (ii) Performance improvements hold consistently across model scales ranging
from 3B to 32B parameters, with medium-sized LLMs generally exhibiting greater performance gains
(e.g., maximum improvement of Llama-3.1-8B and Qwen2.5-14B, followed by Qwen2.5-7B). We
attribute the pattern to two main reasons. (a) Medium-sized LLMs (e.g., Llama-3.1-8B, Qwen2.5-14B)
demonstrate adequate semantic understanding yet remain vulnerable to input noise, especially in long-
context scenarios. DSAS overcomes this by analyzing information flows to precisely identify critical
paragraphs and amplify model focus. In contrast, smaller models (e.g., Llama-3.2-3B) lack sufficient
comprehension capacity, while larger models (e.g., Qwen2.5-32B) approach the task performance
ceiling, leaving little room for further gains. (b) Medium-sized LLMs exhibit greater vulnerability to
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Table 2: Ablation study of DSAS on HotpotQA, 2WikiMultiHopQA, MuSiQue and LongBench
benchmarks. 2WikiMQA denotes 2WikiMultiHopQA. p-a denotes position-aware weight gm in
Equation (10). The evaluation for all tasks is assessed through the F1-score (%).

Models Variants HotpotQA 2WikiMQA MuSiQue LongBench Average
HotpotQA 2WikiMQA MuSiQue

Llama-3.2-3B

DSAS 40.6 39.7 21.2 42.7 35.9 13.2 32.2
w/o CGW 40.6 39.5 20.4 43.5 34.6 12.9 31.9
w/o RAS 39.7 39.0 21.7 42.9 34.6 11.4 31.6
w/o p-a 39.1 36.8 19.0 42.4 34.5 10.6 30.4

Qwen2.5-7B

DSAS 46.1 49.9 35.0 57.7 52.7 33.4 45.8
w/o CGW 45.5 48.2 33.8 56.6 50.3 31.1 44.3
w/o RAS 45.4 47.8 32.6 56.7 51.3 32.0 44.3
w/o p-a 44.7 50.5 33.2 56.2 49.6 30.6 44.1

Llama-3.1-8B

DSAS 47.1 50.8 39.2 56.5 47.3 32.0 45.5
w/o CGW 46.6 48.9 38.4 55.6 46.6 30.9 44.5
w/o RAS 45.7 49.0 38.7 54.9 46.8 31.4 44.4
w/o p-a 45.9 49.7 37.8 56.2 46.2 30.4 44.4

Qwen2.5-14B

DSAS 51.8 58.2 43.8 60.9 56.1 39.3 51.7
w/o CGW 49.5 57.2 40.8 58.6 55.3 38.2 50.0
w/o RAS 50.2 57.6 41.4 59.9 54.1 38.6 50.3
w/o p-a 51.3 58.9 43.1 61.2 55.6 39.2 51.6

the “lost-in-the-middle” phenomenon, while larger models are generally more robust to this issue.
Overall, DSAS effectively unlocks the latent capabilities of diverse LLMs on Multi-doc QA tasks,
regardless of their architecture or scale. (iii) The improvement varies across different benchmarks.
For medium-sized LLMs (parameters 7B, 8B, and 14B), greater improvements emerge on MuSiQue
(including its LongBench extensions) compared to other benchmarks. This discrepancy suggests that
DSAS particularly enhances LLMs’ performance on complex tasks, where their inherent Multi-doc
QA abilities can be better activated. The performance gap between HotpotQA and L-HotpotQA of
these LLMs may be attributed to two factors. (a) Ansong et al. [26] identify annotation inconsistencies
in HotpotQA that could result in unreliable assessments. (b) HotpotQA and L-HotpotQA only involve
two-hop reasoning tasks with relatively lower complexity which are easy for these LLMs.

4.3 Ablation Studies

In this section, we conduct ablation studies to evaluate the effectiveness of each component in DSAS.
Table 2 summarizes the performance of different variants on all tasks.

w/o CGW. Applying contextual gate weight wm only in RAS to regulate paragraph interactions
degrades all metrics. This indicates that enhancing information propagation from key paragraphs to
both the question and the target is essential for answer generation.

w/o RAS. Results reveal that removing wm during information aggregation lowers LLMs’ perfor-
mance, suggesting that the absence of RAS allows irrelevant content in Pirr,l to introduce noise into
the semantics of key paragraphs Pkey,l.

w/o p-a weight. Setting α = 0 in Equation (11) weakens resistance to the “lost-in-the-middle” issue,
confirming that adaptively weighting middle paragraphs through gm enhances answer quality on most
benchmarks. Notably, Qwen2.5-14B with this configuration achieves competitive results relative
to DSAS, indicating larger LLMs inherently mitigate “lost-in-the-middle” more effectively, which
aligns with the observations in LongPiBench [32]. Nevertheless, the position-aware weight generally
improves performance on all benchmarks and LLMs, mitigating “lost-in-the-middle” issue.

Hyperparameter Study. The parameter K in Equation (5) controls the number of tokens that the
question and target attend to within each paragraph. Lower K values risk insufficient contextual focus
on the paragraphs, while higher values may degrade performance due to interference from irrelevant
content. We evaluate K with 5,10,20 and observe that K = 10 achieves optimal performance of
Llama-3.1-8B, as shown in Figure 5 (a). Furthermore, we investigate the optimal number of insertion
layers n of DSAS. Section 2 shows minimal divergence in shallow layers. Most LLMs have layer
counts in multiples of four (e.g., 28, 32). We therefore position DSAS at three types of depths:
the final 25%, 50%, and 75% layers (n = 25%, 50%, 75%, respectively) of the LLM. Figure 5 (b)
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Figure 5: Llama-3.1-8B’s hyperparameter study of K, n, α, β on HotpotQA, 2WikiMultiHopQA,
MuSiQue, and LongBench benchmarks. The hyperparameter studies of Llama-3.2-3B, Qwen2.5-7B,
and Qwen2.5-14B are shown in Appendix C.

Table 3: Results of original and shuffled input orderings when applying DSAS.

Models Variants HotpotQA 2WikiMQA MuSiQue LongBench Average
HotpotQA 2WikiMQA MuSiQue

Qwen2.5-7B Original 46.1 49.9 35.0 57.7 52.7 33.4 45.8
Shuffled 46.1 49.7 35.4 57.6 53.0 33.3 45.9

Llama-3.1-8B Original 47.1 50.8 39.2 56.5 47.3 32.0 45.5
Shuffled 47.2 51.1 39.0 56.2 47.5 31.8 45.5

Qwen2.5-14B Original 51.8 58.2 43.8 60.9 56.1 39.3 51.7
Shuffled 51.7 58.3 43.8 60.9 56.0 39.3 51.7

demonstrates that best performance is achieved with DSAS at the final 50% layers position. This could
be because n = 25% inadequately improves information flows, while n = 75% causes misjudgment
of critical content due to the slight divergence among information flows of different paragraphs in
LLMs’ shallow layers. Finally, we discuss the most appropriate values for α in Equation (11) and β
in Equation (12), which are used to balance vm and gm and determine the minimum value of wm,
respectively. Figure 5 (c)(d) demonstrate α = 1 and β = 0.7 are the best choices.

4.4 Further Analysis on Different Subsets

Since DSAS enhances attention on centrally located critical paragraphs, thereby mitigating the LLMs’
inherent “lost-in-the-middle” issue. It is essential to evaluate its robustness to different input orders.
To this end, we conduct an experiment in which we randomize the ordering of paragraphs in all
test samples while deliberately increasing the probability of supporting paragraphs occurring at the
edges. This shuffled configuration intentionally weakens the attention of DSAS to these important
information. As shown in Table 3, results under both settings (using the fixed configuration K = 10,
n=50%, α = 1, and β = 0.7) reveal only minor performance fluctuations across ordering conditions.
This stability demonstrates the robustness of DSAS to input order, primarily benefitting from our
weighting strategy. Specifically, when evidence appears at the edges (where gm in Equation (10) is
reduced), DSAS attenuates the adjustments to the model’s native attention distribution. This design
intentionally leverages the model’s inherent capacity to identify and amplify information flows from
edge-positioned evidence, which aligns with the “U-shaped attention bias” phenomenon [16].

In addition, we further analyze how paragraph counts affect DSAS. Since the MuSiQue dataset
contains 2-4 supporting paragraphs per sample, we group results by supporting paragraph count and
report the comparative results in Table 4. We observe minimal performance gaps across the groups,
indicating that DSAS better captures relevant information flows to improve accuracy. To examine the
effect of total paragraph count, we select all samples from MuSiQue and construct inputs with 10, 20,
30, and 40 paragraphs. The 20-paragraph setting uses the original sample inputs; the 10-paragraph
setting randomly removes ten of the negative paragraphs; the 30-paragraph and 40-paragraph settings
add 10/20 paragraphs sampled from other examples. Table 4 shows that performance generally
declines as the total paragraph count increases. However, DSAS degrades more slowly, since it
suppresses information flow from negative paragraphs.
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Table 4: Results on different subsets of MuSiQue. #Sup, #T denote supporting paragraph count and
total paragraph count, respectively.

Models Variants #Sup=2 #Sup=3 #Sup=4 #T=10 #T=20 #T=30 #T=40

Qwen2.5-7B Vanilla 30.4 30.9 30.3 32.3 30.5 29.8 29.4
DSAS 35.0 35.2 34.7 36.7 35.0 34.8 34.3

Llama-3.1-8B Vanilla 35.8 32.9 33.6 35.4 34.6 33.8 32.0
DSAS 40.2 35.7 36.5 39.5 39.2 38.7 38.3

Qwen2.5-14B Vanilla 38.1 37.3 38.7 39.3 38.0 36.9 36.1
DSAS 44.0 43.3 44.3 44.7 43.8 43.5 42.9

5 Background and Related Works

Long-context Reasoning in LLMs. Recent advances in LLMs have spurred the development of
long-context models (e.g., Llama-3.1-8B-Instruct [10] and Qwen2.5-7B-Instruct [28], claiming 128k-
token capacities). However, mainstream capacity benchmarks like Needle-in-a-Haystack (NIAH) [19]
mainly assess simple retrieval tasks, insufficiently reflecting complex real-world applications such as
Multi-doc QA requiring cross-document information aggregation and multi-step reasoning. Current
methods to enhance LLMs’ long-context reasoning abilities follow two directions: (i) Positional
encoding extensions (e.g., PI [6], CLEX [4], and CREAM [39]) effectively expand context windows
by adjusting position embeddings, but demand extra training resources and struggle to integrate with
existing LLMs with inherently large context windows. (ii) Attention mechanism optimizations reduce
computational costs and support longer inputs with minimal additional training. However, most
approaches prioritize efficiency over actual reasoning improvements. Both strategies leave significant
gaps in enhancing LLMs’ reasoning abilities within their designated context windows.

Attention mechanism. The Transformer [34] architecture LLMs currently face two challenges:
quadratic computational and memory scaling with input length and the “lost-in-the-middle” [24]
phenomenon. To overcome these constraints, recent studies are proposed to optimize the standard
attention framework, including StreamingLLM [40], LM-Infinite [13], H2O [45], PINE [38], and
SSC [42]. StreamingLLM and LM-Infinite optimize memory usage by retaining initial tokens and
recent tokens for next-token prediction, balancing efficiency and performance. H2O preserves recent
tokens while dynamically selecting critical tokens (termed heavy hitters) to balance local relevance
and global importance. PINE employs bidirectional inter-segment attention and re-assigns paragraph
positions. SSC scales hidden states to enable more balanced attention distribution across different
segments. Collectively, current approaches either truncate long contexts to reduce computational and
memory demands (e.g., StreamingLLM, LM-Infinite, H2O) or overlook the long-range modeling
among paragraphs (e.g., PINE, SSC). Therefore, we propose DSAS, a training-free framework
that adaptively optimizes attention matrices. Other approaches (e.g., prompt compression [18],
retrieval-augmented generation [20], memory tree [5]) require external models or higher computation.

6 Conclusion

In this work, we address the critical challenges of limited long-range modeling and persistent “lost-
in-the-middle” issue in Multi-doc QA for LLMs. Through a systematic analysis of information flow
patterns from the paragraph disparity level and the answer quality level, our study reveals layer-wise
aggregation patterns in distinct information flows and differences between good and bad reasoning
instances. To resolve these issues, we propose Dual-Stage Adaptive Sharpening (DSAS), a training-
free, plug-and-play mechanism that adaptively sharpens attention focus through two synergistic
components: Contextual Gate Weighting (CGW) and Reciprocal Attention Suppression (RAS).

This work highlights the unexploited potential of attention optimization for LLMs. By adaptively
sharpening attention score matrices, DSAS offers a practical solution for real-world applications
requiring cross-document reasoning. Future directions include extending DSAS to diverse long-
context scenarios, exploring its integration with retrieval-augmented generation frameworks (e.g.,
RAG [20], GraphRAG [9]), and investigating related LLM applications (i.e., backdoor attacks [12],
data distillation [22], graph reasoning [36]). Our findings underscore the importance of optimal
attention optimization in unlocking the full capabilities of modern LLMs for complex tasks.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the core contributions of the paper:
(1) systematic analysis of information flow in LLMs for Multi-doc QA tasks. (2) proposal
of Dual-Stage Adaptive Sharpening (DSAS), a training-free plug-and-play framework with
two modules: Contextual Gate Weighting (CGW) for alleviating “lost-in-the-middle” and
Reciprocal Attention Suppression (RAS) for long-range dependency modeling optimization.
(3) extensive experiments demonstrating DSAS’s universality across diverse LLMs (average
4.2% F1-score improvement on Llama-3.1-8B-Instruct and Qwen2.5-14B-Instruct). These
align with the analysis (Section 2), methodology (Section 3) and experimental results
(Section 4).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix G explicitly discuss limitations, including DSAS’s limited appli-
cability to other long-context tasks and its high memory and computational costs when
handling extremely lengthy inputs.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our framework’s theoretical foundation about LLMs’ information flow patterns
is detailed in Section 2. Figures 2, 3 provide quantitative evidence of LLMs’ information
flow patterns.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive experimental details necessary for re-
producibility. Section 2 describes the experimental configuration for information flow
analysis on the Multi-doc QA tasks, including dataset specifications and model implemen-
tations. Supplementary details such as prompt templates are provided in Appendix A.1.
In Section 4.1, datasets (HotpotQA, 2WikiMultiHopQA, MuSiQue, LongBench), model
architectures (Llama, Qwen, Mistral, Deepseek variants), and hyperparameter settings (K,
n, α, β) are explicitly defined. Furthermore, the implementations of “bfloat16” deployment
and greedy-decoding are used to ensure consistency.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Datasets (HotpotQA, 2WikiMultiHopQA, MuSiQue and LongBench) are
publicly available with citations provided in Section 2 and Section 4.1. License information
for all datasets is included in references.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 2 and Section 4.1 describe datasets, models, hyperparameter settings
(K, n, α, β), and experimental environments. Appendix A.1 and Appendix A.4 illustrate
experimental templates and assessment method, respectively.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The information flow analysis in Section 2 are conducted with 1000 test
instances per task. To ensure the universality of our DSAS, we incorporate multiple LLMs
(Llama, Qwen, etc.) in our experiments in Section 4. Appendix D provides additional
analysis of error cases.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware specifications, including GPU type and memory, are detailed
in Section 4.1. Additionally, the computational complexity of our method is discussed in
Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work focuses on attention optimization for Multi-doc QA tasks without
ethical risks. All datasets are publicly available for academic use, adhering to their original
licenses.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper focuses on methodological contributions for attention optimization
mechanism in the Multi-doc QA tasks. Broader impacts (e.g., misuse potential) are minimal
as the work is foundational.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work uses publicly available LLMs (Llama, Qwen, etc.) and benchmark
datasets (HotpotQA, 2WikiMultiHopQA, etc.). The paper does not introduce new pretrained
language models, image generators, or scraped datasets that pose inherent misuse risks. All
experiments involve standard academic datasets and LLMs cited in Section 4.1, posing no
special safety risks requiring safeguards.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets (HotpotQA, 2WikiMultiHopQA, etc.) and LLMs (Llama, Qwen,
etc.) are cited with original references (Section 4.1). Publicly available datasets and LLMs
are used under their respective licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets, models, or codebases are released. The paper focuses
on attention optimization methodology for enhanced Multi-QA performance on existing
benchmarks (HotpotQA, 2WikiMultiHopQA, etc.). Experimental implementations will be
shared post-acceptance following anonymity guidelines.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: All experiments use publicly available Multi-doc QA datasets. No human
subjects, crowdsourced data, or participant compensation are involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects, biological data, or sensitive per-
sonal information. The research exclusively analyzes anonymized text data from academic
benchmarks, exempt from IRB oversight per institutional guidelines.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper proposes DSAS, which operates as a plug-and-play attention
optimization mechanism applied to existing Transformer-based LLMs for enhanced Multi-
doc QA performance. The LLMs are the basis of the methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Information Flow Analysis on Multi-doc QA

A.1 Experimental Templates

Consistent with LongBench [3], the templates for HotpotQA [41], 2WikiMultiHopQA [14], and
MuSiQue [33] remain the same. Each data instance includes a question and its context, with task
instructions positioned at both the start and end of the prompt to enhance model comprehension. This
template is maintained consistently throughout our experiments in Section 4.

Answer the question based on the given paragraphs. Only give me the answer and do not output
any other words.
The following are given paragraphs.
{context}
Answer the question based on the given paragraphs. Only give me the answer and do not output
any other words.
Question: {question}
Answer:

A.2 Paragraph Disparity Level Analysis on Qwen

Qwen2.5-7B consists of 28 stacked decoder layers. Analytical results on Figure 6 demonstrate similar
conclusions to Llama-3.1-8B, with minimal information flow variations in shallow layers, followed
by emerging divergences between Ips,q and Ipn,q , and finally gaps between Ipn,q and Ipn,t. Notably,
Qwen2.5-7B exhibits a slower progression of these divergences compared to Llama-3.1-8B, with the
HotpotQA and the MuSiQue datasets particularly showing no significant information flow variations
across the first 50% of the model’s layers.
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Figure 6: Layer-wise information flows of HotpotQA, 2WikiMultiHopQA and MuSiQue tested on
Qwen2.5-7B. ps and pn denote supporting paragraphs and negative paragraphs, respectively.

A.3 Answer Quality Level Analysis on Qwen

Similar to observations in Llama-3.1-8B, significant differences in information flow patterns emerge
between good and bad reasoning instances, a consistent phenomenon observed in LLMs that forms
the basis of DSAS framework.
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Figure 7: Comparison between mean values of the good and bad instances from the 1000 samples of
Qwen2.5-7B.
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A.4 Answer Quality Assessment

The evaluation method employed in these Multi-doc QA benchmarks adopts the answer quality
assessment approach from HotpotQA. Specifically, for each data instance, both the reference answer
and response first undergo normalization, including lowercase conversion of all textual content,
elimination of non-essential articles (i.e., a/an/the), and redundant whitespace. Then precision and
F1-score are computed between the normalized reference answer and response through exact lexical
matching. This assessment ensures comparability across different benchmarks. We classify samples
achieving a perfect F1-score (equal to 1) as GOOD reasoning cases, and assign those with zero
precision (equal to 0) to the BAD reasoning instances. The assessment method remains the same for
experiments at Section 4.

B Symbol Explanation

Table 5: Symbols and Descriptions.

Symbol Description

AS
h,l the attention score matrix of the h-th head in the l-th layer

AW
h,l the attention weight matrix of the h-th head in the l-th layer

Icombm the combined information flow for the m-th paragraph
µI , σI the mean and the standard deviation of Icomb

vm the normalized value of Icombm

µp, σp the mean and the standard deviation of sequence {0, 1, . . . , L− 1}
γm the positional value of the m-th paragraph
gm the position-aware weight of the m-th paragraph
w

′

m, wm the temporary and the final contextual gate weight of the m-th paragraph
K the number of tokens selected to compute Icombm

n the proportion of layers inserting DSAS
α, β hyperparameters for computing wm

C Full Hyperparameter Study

The results presented in Figures 8, 9, 10 indicate that DSAS maintains consistent improvement across
diverse LLMs under the hyperparameter configuration in Section 4.1 (red regions in the radar charts).
Furthermore, we observe that the robustness of DSAS to hyperparameter variations strengthens with
LLMs’ scale expansion (3B, 7B, 14B), with Qwen2.5-14B particularly showing notable and stable
performance improvements across all benchmarks under different hyperparameter settings. We believe
that this phenomenon correlates with LLMs’ scales and their intrinsic capabilities. Additionally,
some hyperparameter configurations of DSAS may marginally degrade performance below baseline
for Llama-3.2-3B, which further validates that our method achieves maximum performance gains
specifically for middle-sized LLMs (7B, 8B, 14B).
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Figure 8: Hyperparameter study of K, n, α, β on HotpotQA, 2WikiMultiHopQA, MuSiQue, and
LongBench benchmarks of Llama-3.2-3B.
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Figure 9: Hyperparameter study of K, n, α, β on HotpotQA, 2WikiMultiHopQA, MuSiQue, and
LongBench benchmarks of Qwen2.5-7B.
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Figure 10: Hyperparameter study of K, n, α, β on HotpotQA, 2WikiMultiHopQA, MuSiQue, and
LongBench benchmarks of Qwen2.5-14B.

D Error Analysis

We conduct an error analysis of DSAS with a focus on attention weight interactions among paragraphs
(supporting and negative paragraphs), questions, and target. Following the experimental setup
in Section 2, we randomly selected 1,000 samples for confusion matrix visualization between
components. The analysis is conducted on the HotpotQA dataset due to its standardized structure of
fixed 10-paragraph inputs (including 2 supporting paragraphs), which facilitates stable observation of
interaction patterns.
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Figure 11: Confusion matrices on HotpotQA. (a) LLM, (b) LLM+DSAS. sp1, sp2 represent two
supporting paragraphs. np1, np2, . . ., np8 represent eight negative paragraphs. q and t denote question
and target, respectively. The results are conducted on Llama-3.1-8B-Instruct.
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Technically, we first average attention weights across all layers to obtain a global attention matrix. For
pairwise component analysis (e.g., between two paragraphs), we extract corresponding sub-matrix
based on token index ranges. All component pairs are analyzed following this method. Similar to
Equation 5, we average the column-wise Top-K values for each sub-matrix. Finally we normalize all
confusion values to 0-1. This approach effectively captures salient attention patterns while minimizing
noise interference. Figure 11 presents heatmap comparisons of reasoning processes using LLM and
LLM+DSAS. The results demonstrate that LLM+DSAS not only strengthens the focus of questions
and targets on relevant support paragraphs, but also enhances information interactions between these
supporting paragraphs. Additionally, it effectively suppresses unnecessary interactions between
supporting paragraphs and irrelevant negative paragraphs.

E Complexity Analysis

Table 6 presents the complexity of DSAS. Here, L denotes the input token count, Q denotes the
question token count, and C is the number of paragraphs. As illustrated in Equation 3, After
computing the query, key, value matrices (Q, K, V ) and attention scores AS

h,l through traditional
attention mechanisms, we refine AS

h,l using the CGW and RAS modules. The updated scores are
normalized via softmax to derive attention weights, which are then used to generate the final attention
output. The core innovation of DSAS lies in computing contextual gate weight for dynamically
weighting each paragraph. The time complexity scales linearly with L and Q, contributing only a
minor fraction of the total computation compared to the quadratic O(L2) complexity of standard
attention mechanisms. Furthermore, the space complexity grows linearly with C alone. These
characteristics ensure that DSAS maintains high efficiency in practice.

Table 6: Complexity analysis of DSAS.
Time Complexity O(LQ)
Space Complexity O(C)

F Scalability

Evaluating the scalability of DSAS beyond multi-document QA presents an interesting research
direction. To this end, we apply DSAS to several long-context tasks from LongBench [3], including
summarization (GovReport, QMSum, MultiNews) and code completion (LCC, RepoBench-P). The
success of our information flow analysis largely relies on identifying anchors, which aggregate
critical information from redundant contexts to guide answer generation. While in Multi-doc QA,
the question and target naturally serve as anchors, extending DSAS to broader long-context tasks
requires defining appropriate anchors for each scenario. After reviewing the prompt templates, we
select the final instruction sentence or the query and the final sentence as anchors for aggregating
information flows (e.g., “Now, write a one-page summary of the report.\n Summary:” for GovReport;
“Next line of code:” for LCC).

Table 7: Comparison results on summarization and code completion tasks with hyperparameter
configuration “K=10, n=50%, α=1, β=0.7”. The evaluation metrics for L-GovReport, L-QMSum,
L-MultiNews and L-LCC, L-RBP are Rouge-L score and Edit Sim, respectively. RBP denotes
RepoBench-P.

Models Variants L-GovReport L-QMSum L-MultiNews L-LCC L-RBP Average

Qwen2.5-7B Vanilla 33.6 22.4 23.7 53.7 48.2 36.3
DSAS 37.0 25.1 26.2 56.3 51.5 39.2

Llama-3.1-8B Vanilla 34.9 24.8 27.1 58.1 50.8 39.1
DSAS 37.4 26.6 29.3 60.0 52.5 41.2

Qwen2.5-14B Vanilla 38.4 28.2 31.8 63.9 55.6 43.6
DSAS 41.0 30.4 34.6 66.7 58.9 46.3
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Since DSAS operates on paragraph-level segments, which Multi-doc QA inherently provides, we
employ fixed-length token segmentation for the other tasks. Specifically, we use 500-token segments
for GovReport, QMSum, and RepoBench-P, and 200-token segments for MultiNews and LCC,
ensuring a medium number (5-40) of paragraphs per example. The comparison results are presented
in Table 7. Based on our experimental results, we make two key observations: (i) DSAS consistently
enhances performance across all five tasks under three medium-sized model architectures; and (ii)
these improvements generalize to diverse tasks (summarization and code completion), demonstrating
that DSAS is effective beyond multi-doc QA.

The prompt templates used for these tasks align with those in the LongBench [3] benchmark. The
sentences in red in the following template boxes serve as anchors.

The template for L-GovReport is shown below:

You are given a report by a government agency. Write a one-page summary of the report.
Report:
{context}
Now, write a one-page summary of the report.
Summary:

The template for L-QMSum is shown below:

You are given a meeting transcript and a query containing a question or instruction. Answer the
query in one or more sentences.
Transcript:
{context}
Now, answer the query based on the above meeting transcript in one or more sentences.
Query: {input}
Answer:

The template for L-MultiNews is shown below:

You are given several news passages. Write a one-page summary of all news.
News:
{context}
Now, write a one-page summary of all the news.
Summary:

The template for L-LCC is shown below:

Please complete the code given below.
{context}
Next line of code:

The template for L-RepoBench-P is shown below:

Please complete the code given below.
{context}{input}
Next line of code:

G Limitations

While DSAS acts as a plug-and-play attention mechanism and consistently improves performance
in Multi-doc QA tasks, our work has two primary limitations that warrant discussion. (1) The
scalability of DSAS warrants further investigation. While our experiments on summarization and
code completion tasks demonstrate consistent performance gains, the current fixed-token-count
chunking strategy remains relatively simple. Future work could explore more refined and semantically-
aware chunking methods for these tasks, which may further enhance information flow between key
semantic segments and the generated answer. (2) Although DSAS enhances performance within
standard LLM context windows, it inherits the fundamental computational and memory limitations
of conventional Transformer [34] architectures, with quadratic complexity in both memory usage and
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computational cost. Consequently, our approach does not address the scalability challenges associated
with processing extremely long documents (e.g., those exceeding 100K tokens), where memory and
computational demands become prohibitive. Future investigations could consider integrating sparse
attention strategies or memory-efficient architectures to mitigate these constraints.

These limitations highlight important directions for future research while not diminishing the ef-
fectiveness of DSAS. The existing framework establishes a reliable base for advancing attention
optimization in long-context processing.
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