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ABSTRACT

Expressive text-to-speech aims to generate high-quality samples with rich and
diverse prosody, which is hampered by two major challenges: 1) considering the
one-to-many mapping problem, prosodic attributes in highly dynamic voices are
difficult to capture and model without intonation; 2) the TTS model should learn a
diverse latent space and prevent producing dull samples with a collapsed prosodic
distribution. This paper proposes Prosody-TTS, a two-stage TTS pipeline that
improves prosody modeling and sampling by introducing several components: 1)
a self-supervised learning model to derive the prosodic representation without
relying on text transcriptions or local prosody attributes, which ensures the model
covers diverse speaking voices, preventing sub-optimal solutions and distribution
collapse; and 2) a latent diffusion model to sample and produce diverse patterns
within the learned prosodic space, which prevents TTS models from generating the
dull samples with mean distribution. Prosody-TTS achieves high-fidelity speech
synthesis with rich and diverse prosodies. Experiments results demonstrate that
it surpasses the state-of-the-art models in terms of audio quality and prosody
naturalness. The downstream evaluation and ablation studies further demonstrate
the effectiveness of each design.1

1 INTRODUCTION

Text-to-speech (TTS) (Wang et al., 2017; Ren et al., 2019; Kim et al., 2020; Popov et al., 2021)
aims to generate human-like audios using text and auxiliary conditions, which attracts broad interest
in the machine learning community. TTS models have been extended to more complex scenarios,
requiring more natural and expressive voice generation with improved prosody modeling (Min et al.,
2021; Chen et al., 2021; Li et al., 2021). A growing number of applications, such as personalized
voice assistants and game commentary, have been actively developed and deployed to real-world
applications.

Expressive text-to-speech aims to generate samples with natural, rich, and diverse prosodic attributes,
which is challenged by two major obstacles: 1) Emotions or styles (prosody patterns) (Qian et al.,
2021; Wang et al., 2018) in human speech are often very sparse, which are difficult to capture and
model without supervision signals (i.e., detailed rich transcriptions) in natural voices; 2) machine
learning models (Li et al., 2018; Wang et al., 2022) usually learn a mean distribution over input data,
resulting a dull prediction with prosody learners which fails to produce desired prosodic styles in
the generated speech. Although recent studies (Choi et al., 2021; Kim et al., 2021; Ren et al., 2022)
have proposed several ways to enhance prosody modeling for high-fidelity TTS, there still exist some
challenges and issues in their methods:

• Prosody capturing and modeling. Researchers leverage several designs to capture and model
prosodic attributes: 1) Local prosody features. Popular works such as (Ren et al., 2020; Choi
et al., 2021) introduce the idea of predicting pitch and energy explicitly, however, those signal
processing-based prosodic attributes have inevitable errors, which make the optimization of TTS
models difficult, resulting in degraded TTS performance. 2) Variational latent representations.

1Audio samples are available at https://Prosody-TTS.github.io/.
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A series of works (Sun et al., 2020; Kenter et al., 2019; Liu et al., 2022) utilize conditional
variational auto-encoder to model prosody in a latent space, where global, local, or hierarchical
features are sampled from a prior distribution. Nevertheless, they generally request paired data
with transcriptions, which constrained the learned representation to the paired TTS data.

• Prosody producing and sampling. Most works (Wang et al., 2017; Min et al., 2021; Yang et al.,
2021a) utilize L1 or L2 losses for reconstruction and assume that representations follow a unimodal
distribution. However, the highly multimodal prosodic distribution cannot be well modeled by
these simple objectives, which causes blurry and over-smoothing predictions in latent space.

To address the above challenges for expressive text-to-speech, we propose Prosody-TTS, a two-stage
TTS pipeline that improves prosody modeling and sampling by introducing several novel designs:

• Self-supervised prosody pre-training. To handle different acoustic conditions for expressive
speech, we propose prosody masked autoencoders (Prosody-MAE), a transformer-based model
that captures prosody patterns (e.g., local rises and falls of the pitch and stress). It is trained in
a self-supervised manner with only the audio modality, which ensures the model covers diverse
speech corpora and explicit better generalization.

• Generative diffusion modeling in latent space A latent diffusion model is explored to bridge
TTS inputs (i.e., textual input and target speaker) and the prosody representation. Specifically,
we formulate the generative process (i.e., Prosody-TTS) with multiple conditional diffusion steps.
Therefore, we expect our model to exhibit better diversity and prevent generating dull samples with
a mean prosodic distribution.

Experimental results on LJSpeech and LibriTTS benchmarks demonstrate that our proposed Prosody-
TTS generates high-fidelity speech with rich and diverse prosodic attributes. Both subjective and
objective evaluation metrics demonstrate that Prosody-TTS surpasses the state-of-the-art models in
terms of audio quality and naturalness. The downstream evaluations and ablation studies further
justify the effectiveness of each module that we propose.

2 RELATED WORKS

2.1 PROSODY MODELING IN TEXT-TO-SPEECH

Prosody modeling has been studied for decades in the TTS community. The idea of pitch and
energy prediction (Łańcucki, 2021; Ren et al., 2020) represents a popular way to address the one-
to-many mapping challenges. Wang et al. (2019) utilize the VQ-VAE framework to learn a latent
representation for the F0 contour of each linguistic unit and adopt a second-stage model which
maps from linguistic features to the latent features. Choi et al. (2021) further use a new set of
analysis features, i.e., the wav2vec and Yingram feature for self-supervised training. However, these
signal processing-based prosodic attributes have inevitable errors, which make the optimization of
TTS models difficult and result in degraded TTS performance. Instead of relying on local prosody
attributes, VITS (Kim et al., 2021) and its derivative (Casanova et al., 2022) utilize a posterior encoder
to capture the prosody features and sample them from an enhanced conditional prior distribution.
As these methods request a paired corpus with transcriptions during training, they constrain the
learned representation to the paired TTS data and explicit poor generalization (Wang et al., 2022).
ProsoSpeech (Ren et al., 2022) introduces a prosody encoder to disentangle the prosody to latent
vectors, while the requirement of a pre-trained TTS model hurts model generalization. In this work,
we propose to effectively learn the prosodic distribution given speech samples without relying on
pre-trained TTS models or text transcriptions.

2.2 SELF-SUPERVISED LEARNING IN SPEECH

Recently, self-supervised learning (SSL) has emerged as a popular solution to many speech processing
problems with a massive amount of unlabeled speech data. HuBERT (Hsu et al., 2021) is trained
with a masked prediction with masked continuous audio signals. SS-AST (Gong et al., 2022) is a
self-supervised learning method that operates over spectrogram patches. Baade et al. (2022) propose
a simple yet powerful improvement over the recent audio spectrogram transformer (SSAST) model.
Audio-MAE (Xu et al., 2022) is a simple extension of image-based Masked Autoencoders (MAE) (He
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et al., 2022) for SSL from audio spectrograms. While the majority of the SSL models in speech aim
to capture linguistic content and learn prosody-agnostic representation, we focus on learning prosodic
representation in expressive speech samples in contrast, which is relatively overlooked.

2.3 DIFFUSION PROBABILISTIC MODEL

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Song et al., 2020a) are likelihood-
based generative models that have recently succeeded in advancing the SOTA results in several
important domains, including image (Dhariwal & Nichol, 2021; Song et al., 2020a), audio (Huang
et al., 2022b; Liu et al., 2021), and 3D point cloud generation (Luo & Hu, 2021). In this work, we
investigate generative modeling for latent representations with a conditional diffusion model. The
latent diffusion model generates realistic results that match the ground-truth distribution and avoid
over-smoothing predictions.

3 PROSODY-TTS

In this section, we first overview the Prosody-TTS framework, following which we introduce several
critical designs including prosody masked autoencoder (Prosody-MAE), latent diffusion model, and
the vector quantization layer. Finally, we present the pre-training, training, and inference pipeline,
which supports high-fidelity speech synthesis with natural, rich, and diverse prosodic attributes.

3.1 OVERVIEW

We adopt one of the most popular non-autoregressive text-to-speech models FastSpeech 2 (Ren
et al., 2020) as the model backbone. As illustrated in Figure 1(b), to address the aforementioned
challenges of modeling prosody from expressive voices, we introduce a multi-stage pipeline with
several novel designs: 1) In the pre-training stage, the Prosody-MAE captures prosodic information
from large-scale unpaired speech data without relying on transcriptions or local prosody attributes.
The self-supervised training manner ensures Prosody-MAE covers diverse speaking styles; 2) In
training Prosody-TTS, the converged prosody encoder derives style representations for optimizing
the latent diffusion model (LDM), which bridges the TTS conditions (i.e., textual features and target
speaker) and prosody-MAE representations via forward/backward diffusion/denoising process; 3) In
inference time, the LDM samples diverse latent representations within the prosodic space through
reverse denoising, which is conditioned on textual information. It breaks the generation process into
several conditional diffusion steps, thus avoiding generating dull samples with the mean prosodic
distribution. We describe these designs in detail in the following subsections.

3.2 SELF-SUPERVISED PROSODY PRE-TRAINING

In this part, we propose Prosody-MAE, a self-supervised learning model that can effectively capture
and model prosodic style given speech samples without relying on text annotations. Autoencoders
(AE) (Kingma & Welling, 2013) which consist of an encoder and decoder have played an essential
role in learning distributed latent representations of sensory data. We select the autoencoder as the
backbone and design several techniques to learn prosodic representation in a self-supervised manner:

• Information flow. The Prosody-MAE enjoys a carefully-crafted information bottleneck design. By
introducing pre-trained speech encoders to restrict the information flow, the model could capture
the prosodic representation more efficiently by residual branch;

• Masking strategy. Instead of considering the time-align masking operation, the hierarchal masking
learns both the temporal and frequency structure. Thus, we expect the model to exhibit better
abilities in learning style attributes;

• Multi-task learning. The style (i.e., pitch and energy) classifications have been investigated as the
auxiliary objectives, which guarantees the model to discover discriminative prosodic representation.

3.2.1 INFORMATION FLOW

In this section, we decompose the speech into linguistic content, speaker, and prosody variations and
provide a brief primer on the carefully-crafted information flow.
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Figure 1: Pre-training, training and inference stage of Prosody-TTS. We use the sinusoidal-like
symbol to denote the positional encoding, and the publicly-available pre-trained blocks are printed in
black color.

Linguistic Encoder. Learning the linguistic content C from the speech signal is crucial to construct an
intelligible speech signal. We propose to obtain linguistic representation by 1) utilizing the commonly-
used 12th encoder layer in pre-trained XLSR-53 (Conneau et al., 2020), which is pre-trained on
56k hours of speech in 53 languages, to provide linguistic information; 2) adopting information
perturbation to disentangle acoustic information from noisy input. Since SSL features (Choi et al.,
2021) contain both linguistic and acoustic information, we perturb the speaker and prosody patterns in
audios by randomly shifting pitch and shaping energy values, ensuring it only provides the linguistic-
related (i.e., prosodic-agnostic) information. Detailed information on the perturbation functions has
been included in Appendix D.

Speaker Encoder. Speaker S is perceived as the timbre characteristic of a voice. It has been reported
that (Choi et al., 2021) the features from the first layer of XLSR-53 perform as clusters representation
for each speaker.

Prosody Encoder. Prosody is an important part of the domain style, where different emotions or
styles have distinctive prosody patterns. In the multi-layer transformer prosody encoder, 1) speech is
first transformed and embedded into spectrogram patches, and 2) we add positional embeddings to
these features. 3) The encoders f : X 7→ P takes patches X as input and effectively capture prosodic
latent representations p1, . . . ,pT for T time-steps.

Transformer Decoder. The decoder has a series of transformer blocks, which is used only during pre-
training and discarded in the downstream text-to-speech. As illustrated in Figure 1(a), we constrain
the information flow by conducting the element-wise addition operation between the linguistic content
C, speaker S and the prosody P representations before passing through the transformer decoder.
Furthermore, we include the positional embeddings to all tokens in this full set.

3.2.2 MASKING STRATEGY

Masked reconstruction is largely inspired by the masked language model (MLM) task from BERT (De-
vlin et al., 2018) and MAE (He et al., 2022). During pre-training, some tokens in the input sentences
are masked by randomly replacing them with a learned masking token (mi illustrated in Figure 1(a)).
In practice, we mask by shuffling the input patches and keeping the first 1− p proportion of tokens.

After padding encoded patches with learnable embeddings to represent masked patches, it restores
the order of these patches in frequency and time and propagates through a decoder to reconstruct the
spectrogram. In summary, the hierarchal masking operation in the spectrogram helps learn both the
temporal and frequency structure, and we expect the model to exhibit better learning style attributes.

4



Under review as a conference paper at ICLR 2023

3.2.3 MULTI-TASK LEARNING

For training Prosody-MAE, we adopt discriminative and generative objectives with four linear layer
heads for our final output projection. Reconstruction loss Lg is calculated as a mean squared error
between the output of the linear reconstruction head and the input patches. Contrastive head (Gong
et al., 2022) intends to create an output vector vi similar to the masked input patch xi but dissimilar
to other masked inputs. Therefore we consider different masked inputs as negative samples and
implement the InfoNCE (Oord et al., 2018) as a criterion.

Ld = − 1

N

N∑
i=1

log

(
exp

(
vT
i xi

)∑N
j=1 exp (v

T
i xj)

)
(1)

To further enhance prosody learning in latent space, we investigate the frame-level style (i.e., pitch Lp,
energy Le) classification as the auxiliary tasks and employ the cross-entropy (Oord et al., 2018) as a
criterion, which guarantees the model to discover style representation. To formulate the classification
target, we respectively 1) quantize the fundamental frequency (f0) of each frame to 256 possible
values pi in log-scale; and 2) compute the L2-norm of the amplitude of each short-time Fourier
transform (STFT) and then quantize to 256 possible values ei uniformly.

3.3 GENERATIVE MODELING OF PROSODIC REPRESENTATIONS

To sample and interpolate latent representation within the learned prosodic space, we implement our
method over Latent Diffusion Models (LDMs) (Rombach et al., 2022; Gal et al., 2022), which is a
recently introduced class of Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) that
operate in the latent representation space. As illustrated in Figure 1(c), the proposed latent diffusion
model conditions on linguistic representation, breaking the generation process into several conditional
diffusion steps. The training loss is defined as the mean squared error in the noise ϵ ∼ N (0, I) space,
and efficient training is optimizing a random term of t with stochastic gradient descent:

Lθ =

∥∥∥∥ϵθ (αtx0 +
√

1− α2
tϵ

)
− ϵ

∥∥∥∥2
2

, ϵ ∼ N (0, I) (2)

To conclude, our approach ensures extremely faithful reconstructions and requires little regularization
of the latent space. The latent diffusion model can be efficiently trained by optimizing ELBO without
adversarial feedback, which generates realistic prosodic representation strongly matching the ground-
truth distribution and thus prevents collapsing with mean prosodic distribution.

3.4 VECTOR QUANTIZATION

It has been reported (Rombach et al., 2022) that due to the expressiveness of diffusion models, the
produced latent spaces could be highly variant and diverse. To avoid instability, we impose a vector
quantization (VQ) layer after the latent diffusion for regularization. Specifically, it receives prosodic
representations from different origins in training or inference stages: 1) When training the TTS model,
the VQ layer receives clean features derived from the prosody encoder in Prosody-MAE, instead of
noisy diffusion output. 2) During inference, the VQ layer receives prosodic representation via LDM’s
backward latent denoising, which bridges the TTS conditions and prosody features.

Denote the latent space e ∈ RK×D where K is the size of the discrete latent space (i.e., a K-
way categorical), and D is the dimensionality of each latent embedding vector ei. Note that there
are K embedding vectors ei ∈ RD, i ∈ 1, 2, . . . ,K. To make sure the representation sequence
commits to an embedding and its output does not grow, we add a commitment loss following previous
work (van den Oord et al., 2017):

Lc = ∥qp(x)− sg[e]∥22 , (3)

Where qp(x) is the output of the vector quantization block, and sg stands for stop gradient.

3.5 PRE-TRAINING, TRAINING AND INFERENCE PROCEDURES

3.5.1 PRE-TRAINING AND TRAINING

In the pre-training stage, we train the Prosody-MAE to learn the latent prosodic representation in a self-
supervised manner using the following loss objective: 1) reconstruction loss Lg: the mean squared
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error between the estimated and ground-truth sample; 2) contrastive loss Ld: the discriminative
gradient to pick the correct patch for each masked position from all patches being masked, and 3)
frame-level style (i.e., pitch, energy) classification loss Lp,Le: the cross entropy error between the
estimated and ground-truth values.

In training Prosody-TTS, the final loss terms consist of the following parts: 1) duration prediction
loss Ldur: MSE between the predicted and the GT phoneme-level duration in log scale; 2) latent
diffusion loss Lldm and decoder diffusion loss Ldec: two diffusion losses between the estimated and
gaussian noise according to Equation 2; 3) commitment loss Lc: the objective to constrain vector
quantization layer according to Equation 3.

3.5.2 INFERENCE

As illustrated in Figure 1, Prosody-TTS generates expressive speech with natural, rich, and diverse
prosody in the following pipeline: 1) The text encoder encodes the phoneme sequence, and the
representations could be expanded according to the inference duration; 2) conditioning on linguistic
information, the latent diffusion model randomly samples a noise latent and iteratively denoises to
produce a new prosodic representation in latent space, and 3) the mel decoder converts randomly
samples noise latent and iteratively decodes to expressive mel-spectrogram predictions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 PRE-TRAINING PROSODY-MAE

In the pre-training stage, we utilize the commonly-used LibriSpeech (Panayotov et al., 2015) dataset
with labels discarded, which provides 960 hours of audiobook data in English, read by over 1,000
speakers. We convert the 16kHz waveforms into 128-dimensional log-Mel filterbank features with a
frame length of 25 ms and frame shift of 10 ms. The spectrogram is then split into 16×16 patches.

By default, we use an encoder with 6 layers and a decoder of 2 layers, both using 12 heads and a
width of 768. We train Prosody-MAE for up to 400k iterations on 8 NVIDIA V100 GPUs using
the publicly-available fairseq framework (Ott et al., 2019), and the pre-training takes about 5 days.
For downstream evaluation, we use the standard SUPERB (Yang et al., 2021b) training and testing
framework. More detailed information has been attached in Appendix B.

4.1.2 TRAINING PROSODY-TTS

Dataset. For a fair and reproducible comparison against other competing methods, we use the
benchmark LJSpeech dataset (Ito, 2017), which consists of 13,100 audio clips from a female speaker
for about 24 hours in total. For the multi-speaker scenario, we utilize the 300-hour LibriTTS
dataset derived from LibriSpeech. We convert the text sequence into the phoneme sequence with an
open-source grapheme-to-phoneme conversion tool (Sun et al., 2019) 2.

Following the common practice (Chen et al., 2021; Min et al., 2021), we conduct preprocessing on
the speech and text data: 1) convert the sampling rate of all speech data to 16kHz; 2) extract the
spectrogram with the FFT size of 1024, hop size of 256, and window size of 1024 samples; 3) convert
it to a mel-spectrogram with 80 frequency bins.

Model Configurations. Prosody-TTS consists of 4 feed-forward transformer blocks for the phoneme
encoder. We add a linear layer to transform the 768-dimension prosody latent representation from
Prosody-MAE to 256 dimensions. The default size of the codebook in the vector quantization layer is
set to 1000. The diffusion model comprises a 1x1 convolution layer and N convolution blocks with
residual connections to project the input hidden sequence with 256 channels. For any step t, we use
the cosine schedule βt = cos(0.5πt). More detailed information has been attached in Appendix A.

Training and Evaluation. We train Prosody-TTS for 200,000 steps using 4 NVIDIA V100 GPUs
with a batch size of 64 sentences. Adam optimizer is used with β1 = 0.9, β2 = 0.98, ϵ = 10−9. We

2https://github.com/Kyubyong/g2p
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Table 1: Performance (audio quality and prosody naturalness) comparison with other models.
We report the evaluation metrics including MOS(↑), FFE(↓), and MCD(↓). The mel-spectrograms are
converted to waveforms using Hifi-GAN (V1).

Method LJSpeech LibriTTS
MOS-P MOS-Q MCD FFE MOS-P MOS-Q MCD FFE

GT 4.36±0.05 4.39±0.06 / / 4.38±0.05 4.42±0.06 / /
GT(voc.) 4.31±0.06 4.25±0.06 1.67 0.08 4.35±0.04 4.22±0.05 1.52 0.06

FastSpeech 2 3.92±0.07 3.84±0.06 3.88 0.43 3.89±0.06 3.81±0.07 4.35 0.37
Meta-StyleSpeech 3.94±0.06 3.88±0.05 5.54 0.46 3.95±0.07 3.91±0.08 3.78 0.33
Glow-TTS 3.88±0.06 3.91±0.06 3.54 0.48 3.91±0.08 3.86±0.08 5.38 0.38
Grad-TTS 3.91±0.07 3.92±0.06 5.01 0.44 3.96±0.06 3.97±0.05 3.93 0.37
YourTTS 3.97±0.06 3.96±0.06 5.09 0.48 3.99±0.07 3.99±0.06 4.61 0.35

Prosody-TTS 4.10±0.06 4.03±0.05 3.52 0.35 4.12±0.07 4.09±0.06 3.39 0.29

utilize HiFi-GAN (Kong et al., 2020) as the vocoder to synthesize waveform from the mel-spectrogram
in our experiments. To evaluate the perceptual quality, we conduct crowd-sourced human evaluations
on the testing set via Amazon Mechanical Turk, which is reported with 95% confidence intervals (CI).
We analyze the MOS/CMOS in two aspects: prosody (naturalness of pitch, energy, and duration)
and audio quality (clarity, high-frequency and original timbre reconstruction), respectively scoring
MOS-P/CMOS-P and MOS-Q/CMOS-Q. For objective evaluation, we include MCD and FFE to
measure the audio and prosody quality. More details have been attached in Appendix E.

4.2 COMPARISION WITH OTHER MODELS

We compare the quality of generated audio samples with other systems, including 1) GT, the ground-
truth audio; 2) GT (voc.), we first convert the ground-truth audio into mel-spectrograms and then
convert them back to audio using HiFi-GAN (V1) (Kong et al., 2020); 3) FastSpeech 2 (Ren et al.,
2020): a model that predicts local prosody attributes; 4) Meta-StyleSpeech (Kim et al., 2020): the
finetuned multi-speaker model with meta-learning; 5) Glow-TTS (Kim et al., 2020): a flow-based
TTS model trained with monotonic alignment search; 6) Grad-TTS (Popov et al., 2021): a denoising
diffusion probabilistic models for speech synthesis. 7) YourTTS (Casanova et al., 2022): an expressive
model for zero-shot multi-speaker synthesis. The results are compiled and presented in Table 1, and
we have the following observations:

1) In terms of audio quality, Prosody-TTS achieves the highest perceptual quality with MOS-Q of 4.03
(LJSpeech) and 4.09 (LibriTTS). 2) For prosody naturalness, Prosody-TTS scores the highest overall
MOS-P with a gap of 0.21 (LJSpeech) and 0.23 (LibriTTS) compared to the ground truth audio. For
objective evaluation, Prosody-TTS also demonstrates the outperformed performance in MCD and
FFE, superior to all baseline models. Without relying on text transcriptions or local prosody ground
truth, our model is demonstrated to cover diverse speaking styles and avoid sub-optimal predictions.
For prosody diversity, we have attached objective evaluation in Appendix F. We include an additional
AXY evaluation in Appendix G and discuss computational cost in Appendix H

We further plot the mel-spectrograms and corresponding pitch tracks generated by the TTS systems in
Figure 2, and have the following observations: 1) Prosody-TTS can generate mel-spectrograms with
rich details in frequency bins between two adjacent harmonics, unvoiced frames, and high-frequency
parts, which results in more natural sounds. However, some baseline models fail to synthesize high-
fidelity mel-spectrograms; 2) Prosody-TTS demonstrates its ability to generate samples with diverse
prosodic styles. Informally, by breaking the generation process into several conditional diffusion
steps, generative diffusion models prevent TTS from learning the collapsed prosodic distribution.
In contrast, most baseline models learn a mean distribution over their input data, leading to less
expressive synthesis with dull samples, especially for long-form phrases.

4.3 DOWNSTREAM EVALUATION ON MODEL PROPERTIES

To demonstrate several critical designs in the SSL models, we introduce style-aware downstream
challenges including the frame-level pitch and energy recognition. In the fine-tuning phase, we
remove the decoder and only fine-tune the encoder on the commonly-used dataset IEMOCAP (Busso
et al., 2008) that contains about 12 hours of emotional speech. We use a fixed learning rate of 1e-4
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Figure 2: Visualizations of the generated mel-spectrograms. The corresponding text of generated
speech samples is “there was not a worse vagabond in Shrewsbury than old Barney the piper.”.

and max iteration of 10k and fine-tune on 4 V100 GPUs for 60 epochs using the SUPERB (Yang et al.,
2021b) framework. More detailed information on downstream fine-tuning is available in Appendix B.
The results are compiled and presented in Table 2, and we have the following observations:

Pretext task. We investigate the impact of different pretext tasks for pre-training the SSL model, and
find that the additional contrastive objective leads to better performance for all tasks. Furthermore,
the joint multi-task learning with frame-level style classification has witnessed a distinct promotion
of downstream accuracy, demonstrating the efficiency of the auxiliary tasks in enhancing prosody
modeling.

Information flow. We conduct ablation studies to demonstrate the effectiveness of the carefully-
crafted information flow in learning prosodic style attributes: 1) Dropping the linguistic and speaker
encoder has witnessed a distinct degradation of downstream performance, proving that through
restricting the information flow of speech variations, the Prosody-MAE encoder could disentangle
prosody variations; and 2) utilizing the raw wav2vec feature as a linguistic representation by removing
the information perturbation also decreases accuracy, demonstrating that the perturbation assists to
selectively provide only the linguistic (i.e., prosodic-agnostic) information.

Network architecture. Similar to the MAE paper demonstrated for the visual domain, increasing the
decoder depth only provides minor improvements if any, indicating that the decoder depth can be
small relative to the encoder.

Masking strategies. We compare different masking ratios for pre-training Prosody-MAE, and
observe that a high masking ratio (70% in our case) is optimal for audio spectrograms. Due to the
fact that audio spectrograms and images are continuous signals with significant redundancy, and thus
SSL models still could reconstruct results given most tokens dropped, which is consistent with the
masked autoencoders (He et al., 2022) in the visual domain.

Comparision with other state-of-the-art. We compare our proposed Prosody-MAE with prior state-
of-the-art SSL models, including: 1) wav2vec 2.0 (Baevski et al., 2020), 2) hubert (Hsu et al., 2021),
3) robust hubert (Huang et al., 2022a), and 4) mae-ast (Baade et al., 2022) and find that our proposed
Prosody-MAE achieves the best performance across all tasks compared to other systems. Specifically,
the majority of the speech SSL models focus on learning the linguistic content information, which try
to disentangle unwanted variations (e.g. acoustic variations) from the content. In contrast, we hope to
capture prosodic information from speech, and thus Prosody-MAE exhibits outperformed capability
in capturing style attributes.

4.4 ABLATION STUDIES

We conduct ablation studies to verify the effectiveness of several designs in Prosody-TTS, including
the latent diffusion model and vector quantization layer. The CMOS evaluation results have been
presented in Table 3, and we have the following observations: 1) Replacing the latent diffusion model
with the regression-based style predictor results in decreased prosody naturalness and expressiveness,
demonstrating that generative diffusion models avoid producing blurry and over-smoothing results.

8



Under review as a conference paper at ICLR 2023

Table 2: Ablations and model properties. We report the evaluation metrics including accuracy
(PA↑), mean absolute error (PM↓) in pitch recognition, and mean absolute error (EM↓) in energy
recognition to evaluate model properties. In table (b), we use IF and IP to denote the carefully-crafted
information flow design and the perturbation.

(a) Pretext Task

Objective PA PM EM

Generative 70.0 8.35 4.63
+ Contrastive 73.1 7.50 3.13
+ Contrastive + Auxiliary 75.2 7.22 1.76

(b) Information Flow

IF IP PA PM EM

%% 73.0 7.50 3.13
"% 74.9 7.76 6.26
"" 75.2 7.22 1.76

(c) Network Architecture

Layers PA PM EM

2 75.2 7.22 1.76
4 75.3 7.41 2.01
6 75.5 7.73 2.25
8 74.6 7.85 2.52

(d) Masking Strategies

Mask Ratio PA PM EM

80% 75.2 7.22 1.76
70% 75.2 7.11 1.65
60% 74.9 7.05 2.11
50% 74.6 7.34 2.82

(e) Comparision with other state-of-the-art

Model PA PM EM

wav2vec 2.0 70.7 7.34 3.21
HuBERT 69.9 8.00 5.63

Robust HuBERT 69.5 7.95 5.37
MAE-AST 73.1 8.17 5.43

Prosody-MAE 75.2 7.22 1.76

Table 3: Performance (audio quality and prosody naturalness) comparison for ablation study.

Model CMOS-P CMOS-Q

Prosody-MAE 0.00 0.00
w/o LDM -0.11 -0.04
w/o VQ -0.04 -0.08

Local Prosody -0.12 -0.02
Variational Inference -0.10 -0.03

2) Removing the vector quantization layer has witnessed a distinct degradation of audio quality,
verifying the significance of VQ compression layer in constraining latent spaces and preventing
arbitrarily high-variance out-of-distribution predictions.

We further compare different prosody modeling techniques in TTS models to check which demon-
strates better performance. The side-by-side subjective test indicates that raters prefer speech synthesis
with prosodic features derived from Prosody-MAE, for the reason that: 1) Local prosody ground
truth with inevitable errors cannot be accurately estimated, and 2) variational autoencoder requests
transcripted corpus for conditions, which constrains the distribution of learned representation to TTS
corpora. To conclude, Prosody-MAE significantly improves TTS model by effectively capturing the
prosodic style and producing latent in a diverse space, enabling high-fidelity speech synthesis with
natural and prosperous prosody.

5 CONCLUSION

In this work, we propose Prosody-TTS, an expressive text-to-speech model with self-supervised
prosody pre-training. To enhance high-quality synthesis with prosperous and diverse prosody, we
design a two-stage pipeline to model and control the prosody variations in speech: 1) Prosody-MAE
was pre-trained on large-scale unpaired speech datasets to capture prosodic information without
relying on text transcriptions or local ground truth. This ensured the model covered diverse speaking
voices and prevented sub-optimal and distribution collapse. 2) The latent diffusion model was further
adopted to produce diverse patterns within the learned prosody space. It broke the generation process
into several conditional diffusion steps, which prevented TTS models from generating the dull sample
with mean prosodic distribution. Experimental results demonstrated that Prosody-TTS promoted
prosody modeling and synthesized high-fidelity speech samples, achieving new state-of-the-art results
with outperformed audio quality and prosody expressiveness. For future work, we will further verify
the effectiveness of Prosody-TTS in more general scenarios such as multilingual prosody learning.
We envisage that our work could serve as a basis for future text-to-speech synthesis studies.
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Appendices
Prosody-TTS: Self-Supervised Prosody Pre-training with Latent

Diffusion For Text-to-Speech

A DETAILS OF MODELS

In this section, we describe hyper-parameters and details of several modules.

A.1 MODEL CONFIGURATIONS

We list the model hyper-parameters of Prosody-TTS in Table 4.

Hyperparameter Prosody-TTS

Text Encoder

Phoneme Embedding 192
Encoder Layers 4
Encoder Hidden 256

Encoder Conv1D Kernel 9
Encoder Conv1D Filter Size 1024

Encoder Attention Heads 2
Encoder Dropout 0.1

Duration Predictor
Duration Predictor Conv1D Kernel 3

Duration Predictor Conv1D Filter Size 256
Duration Predictor Dropout 0.5

Prosody Generator

VQ Codebook Size 1000
Latent Diffusion Residual Layers 30

Latent Diffusion Residual Channels 256
Latent Diffusion WaveNet Conv1d Kernel 3
Latent Diffusion WaveNet Conv1d Filter 512

Diffusion Decoder

Diffusion Embedding 256
Residual Layers 20

Residual Channels 256
WaveNet Conv1d Kernel 3
WaveNet Conv1d Filter 512

Total Number of Parameters 53M

Table 4: Hyperparameters of Prosody-TTS models.

A.2 DURATION PREDICTION

Rhythm is a major component of prosody. In practice, however, baseline models demonstrate
their superiority in generative modeling with inherited duration prediction (regression duration
predictor (Ren et al., 2020; Min et al., 2021; Popov et al., 2021) or stochastic duration predictor (Kim
et al., 2021; Casanova et al., 2022)).

Though the duration predictor can include textual and prosody-MAE features as joint input to improve
rhythm modeling, we inherit the original architecture from baselines and leave it unchanged for a fair
comparison. As such, we attribute the success of Prosody-TTS to better capturing and producing
natural prosody patterns (e.g., local rises and falls of the pitch and stress).

For a better understanding of rhythm in comprising prosody, we conduct an extensive experiment to
utilize the oracle duration derived by forced alignment in our backbone (FastSpeech 2) for comparison.
The MOS-P evaluation procedure stays consistent with the manuscript, where we explicitly instruct
the raters to “focus on the naturalness of the prosody and style and ignore the differences of content,
grammar, or audio quality.”.

As illustrated in Table 5, the optimized rhythm leads to the MOS-P gain with a score of 0.05 compared
to the original model, while Prosody-TTS still demonstrates the leading performance. The perfect
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Method MOS-P MCD FFE

Backbone 3.92±0.07 3.88 0.43
Backbone + GT duration 3.97±0.06 3.79 0.40
Prosody-TTS 4.10±0.06 3.52 0.35

Table 5: Performance (audio quality and prosody naturalness) comparison with other models.

duration may still suffer some issues in prosody patterns (e.g., local rises and falls of the pitch and
stress), indicating the necessity of explicitly adding a prosody branch for expressive text-to-speech.

A.3 DIFFUSION MECHANISM

x0 xt

⋯
xT

q(xt|xt−1)

Diffusion Denoising

xt−1

pθ(xt|xt−1)

⋯

Figure 3: Graph for Diffusion.

For the training prosody latent diffusion model, the clean prosodic representation derived by Prosody-
MAE passes through the vector quantification layer, which is also adopted to optimize the latent
diffusion model (LDM) via the forward diffusion process. In inference time, the LDM samples diverse
latent representations within the prosodic space through reverse backward denoising. According to
the spectrogram denoiser, sampling from the Gaussian prior distribution is regarded as a common
assumption. The diffusion decoder receives the textual hidden representation as a conditional signal
and iteratively denoises Gaussian noise to reconstruct the target distribution by reverse sampling.

B DETAILS OF PRE-TRAINING AND FINE-TUNING

We list the pre-training and fine-tuning settings in Table 6.

Settings Values

Pre-training

Optimizer Adam
Base Learning Rate 0.0001

Batch Size 900
Optimizer Momentum 0.9,0.98

Weight Decay 0.01
Warmup Updates 32000

Fine-tuning
Optimizer Adam

Base Learning Rate 0.0001
Batch Size 4

Table 6: Pre-training and fine-tuning settings.

C DIFFUSION PROBABILISTIC MODELS

Given i.i.d. samples {x0 ∈ RD} from an unknown data distribution pdata(x0). In this section, we
introduce the theory of diffusion probabilistic model (Ho et al., 2020; Lam et al., 2022; Song et al.,
2020a;b), and present diffusion and reverse process given by denoising diffusion probabilistic models
(DDPMs), which could be used to learn a model distribution pθ(x0) that approximates pdata(x0).
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Diffusion process Similar as previous work (Ho et al., 2020; Lam et al., 2022; Song et al., 2020a),
we define the data distribution as q(x0). The diffusion process is defined by a fixed Markov chain
from data x0 to the latent variable xT :

q(x1, · · · ,xT |x0) =

T∏
t=1

q(xt|xt−1), (4)

For a small positive constant βt, a small Gaussian noise is added from xt to the distribution of xt−1

under the function of q(xt|xt−1).

The whole process gradually converts data x0 to whitened latent xT according to the fixed noise
schedule β1, · · · , βT .

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) (5)

Efficient training is optimizing a random term of t with stochastic gradient descent:

Lθ =

∥∥∥∥ϵθ (αtx0 +
√
1− α2

t ϵ

)
− ϵ

∥∥∥∥2
2

, ϵ ∼ N (0, I) (6)

Reverse process Unlike the diffusion process, reverse process is to recover samples from Gaussian
noises. The reverse process is a Markov chain from xT to x0 parameterized by shared θ:

pθ(x0, · · · ,xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt), (7)

where each iteration eliminates the Gaussian noise added in the diffusion process:

p(xt|xt−1) := N (xt−1;µθ(xt, t), σθ(xt, t)
2I) (8)

D INFORMATION PERTURBATION

We apply the following functions (Qian et al., 2020; Choi et al., 2021) on acoustic features (i.e.,
pitch, and energy) to create acoustic-perturbed speech samples Ŝ, while the linguistic content remains
unchanged, including 1) formant shifting fs, 2) pitch randomization pr, and 3) random frequency
shaping using a parametric equalizer peq.

• For fs, a formant shifting ratio is sampled uniformly from Unif(1, 1.4). After sampling the ratio,
we again randomly decided whether to take the reciprocal of the sampled ratio or not.

• In pr, a pitch shift ratio and pitch range ratio are sampled uniformly from Unif(1, 2) and
Unif(1, 1.5), respectively. Again, we randomly decide whether to take the reciprocal of the
sampled ratios or not. For more details for formant shifting and pitch randomization, please refer
to Parselmouth https://github.com/YannickJadoul/Parselmouth.

• peq represents a serial composition of low-shelving, peaking, and high-shelving filters. We use one
low-shelving HLS, one high-shelving HHS, and eight peaking filters HPeak.

E EVALUATION

E.1 SUBJECTIVE EVALUATION

For MOS tests, the testers present and rate the samples, and each tester is asked to evaluate the
subjective naturalness on a 1-5 Likert scale. For CMOS, listeners are asked to compare pairs of audio
generated by systems A and B and indicate which of the two audio they prefer, and choose one of
the following scores: 0 indicating no difference, 1 indicating a small difference, 2 indicating a large
difference and 3 indicating a very large difference.
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For quality evaluation, we explicitly instruct the raters to “(focus on examining the audio quality
and naturalness, and ignore the differences of style (timbre, emotion and prosody).)”. For prosody
evaluation, we explicitly instruct the raters to “(focus on the naturalness of the prosody and style, and
ignore the differences of content, grammar, or audio quality.)”.

Our subjective evaluation tests are crowd-sourced and conducted by 25 native speakers via Amazon
Mechanical Turk. The screenshots of instructions for testers have been shown in Figure 4. We paid
$8 to participants hourly and totally spent about $800 on participant compensation. A small subset of
speech samples used in the test is available at https://Prosody-TTS.github.io/.

(a) Screenshot of MOS-P testing.

(b) Screenshot of MOS-Q testing.

(c) Screenshot of CMOS-P testing.

(d) Screenshot of CMOS-Q testing.

Figure 4: Screenshots of subjective evaluations.

E.2 OBJECTIVE EVALUATION

Mel-cepstral distortion (MCD) (Kubichek, 1993) measures the spectral distance between the synthe-
sized and reference mel-spectrum features.

F0 Frame Error (FFE) combines voicing decision error and F0 error metrics to capture F0 information.

Number of Statistically-Different Bins (NDB) and Jensen-Shannon divergence (JSD) (Richardson &
Weiss, 2018). They measure diversity by 1) clustering the training data into several clusters, and 2)
measuring how well the generated samples fit into those clusters.
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F PROSODY DIVERSITY

We employ two common metrics, including the number of Statistically-Different Bins (NDB) and
Jensen-Shannon divergence (JSD), to explore the diversity of generated mel-spectrograms. Specif-
ically, we 1) cluster the training data into several clusters, and 2) measure how well the generated
samples fit into those clusters. For easy comparison, the results are presented in the following table.

Method LJSpeech LibriTTS
NDB JS NDB JS

GT / / / /
GT(voc.) 19 0.02 41 0.01

FastSpeech 2 45 0.05 74 0.04
Meta-StyleSpeech 41 0.07 58 0.01
Glow-TTS 34 0.03 61 0.03
Grad-TTS 49 0.13 71 0.05
YourTTS 47 0.08 73 0.06

Prosody-TTS 30 0.03 52 0.01

Table 7: Diversity comparison with other models.

We can see that Prosody-TTS scores the superior NDB with scores of 30 (LJSpeech) and 52 (Lib-
riTTS), demonstrating that Prosody-TTS surpasses the baseline models in generating samples with
diverse prosody patterns (e.g., local rises and falls of the pitch and stress). Informally, by breaking
the generation process into several conditional diffusion steps, generative latent diffusion prevents
TTS from learning collapsed prosodic distribution. In contrast, most baseline models learn a mean
distribution over their input data which leads to dull speech synthesis with similar patterns.

G AXY EVALUATION

The evaluation of the TTS models is very challenging due to its subjective nature in the evaluation of
the perceptual quality of generated speech. To further demonstrate the superiority of Prosody-TTS,
we randomly choose 20 reference signals from the testing set and include an AXY test to assess the
prosody expressiveness and naturalness following previous literature (Skerry-Ryan et al., 2018).

For each sentence (A), the listeners are asked to choose a preferred one among the samples synthesized
by baseline models (X) and proposed Prosody-TTS (Y), from which AXY preference rates are
calculated. The scale ranges of 7-point are from “X is much closer" to “Both are about the same
distance" to “Y is much closer", and can naturally be mapped on the integers from -3 to 3. We present
results in the following tables:

Baseline 7-point score X Neutral Y

FastSpeech 2 1.13 ±0.19 21% 10% 69%
Meta-StyleSpeech 1.50±0.11 33% 12% 55%

Glow-TTS 1.11±0.11 13% 22% 65%
Grad-TTS 1.20±0.08 19 % 21% 60%
YourTTS 1.42±0.10 28% 13% 59%

The side-by-side subjective test indicates that raters prefer our model synthesis against baselines
in terms of prosody naturalness and expressiveness. Without relying on text transcriptions or local
prosody attributes, Prosody-TTS covers diverse speaking styles superior to all baseline models and
avoid sub-optimal predictions.
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H COMPUTATIONAL COST

As DDPMs (Ho et al., 2020) are gradient-based models, a guarantee of high sample quality typically
comes at the cost of hundreds to thousands of de-noising steps. Prosody-TTS adopts generative diffu-
sion models for high-quality synthesis, and thus it inherently requires multiple iterative refinement
for better results.

Though the denoising sampling could be accelerated by several techniques (e.g., scheduler
(DDIM (Song et al., 2020a)), or training diagram (Progressive Distill (Salimans & Ho, 2022))),
it is beyond our focus in this paper, and thus we leave it for future work.

I REPRODUCIBILITY STATEMENT

We will release our code in the future. The Prosody-MAE model that we build upon is publicly
available through the fairseq code repository (Ott et al., 2019). To aid reproducibility, we have
included a schematic overview of the algorithm in Figure 1, and hyperparameters in Appendix 4.
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