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Abstract

Machine Reading Comprehension (MRC)001
poses a significant challenge in the field of Nat-002
ural Language Processing (NLP). While main-003
stream MRC methods predominantly leverage004
extractive strategies using encoder-only mod-005
els such as BERT, generative approaches face006
the issue of out-of-control generation – a crit-007
ical problem where answers generated are of-008
ten incorrect, irrelevant, or unfaithful to the009
source text. To address these limitations in gen-010
erative models for extractive MRC, we intro-011
duce the Question-Attended Span Extraction012
(QASE) module. Integrated during the fine-013
tuning phase of pre-trained generative language014
models (PLMs), QASE significantly enhances015
their performance, allowing them to surpass016
the extractive capabilities of advanced Large017
Language Models (LLMs) such as GPT-4 in018
few-shot settings. Notably, these gains in per-019
formance do not come with an increase in com-020
putational demands. The efficacy of the QASE021
module has been rigorously tested across vari-022
ous datasets, consistently achieving or even sur-023
passing state-of-the-art (SOTA) results, thereby024
bridging the gap between generative and extrac-025
tive models in extractive MRC tasks. Our code026
is available at this anonymous repo link.027

1 Introduction028

Extractive Machine Reading Comprehension029

(MRC), also referred to as text-grounded question030

answering (QA) (Wang et al., 2022), involves pre-031

senting a model with a text passage and a question,032

requiring it to formulate an answer based solely033

on the given text. This can be achieved either by034

identifying a specific span within the text or by gen-035

erating a concise answer. Extractive MRC poses a036

significant challenge within the domain of Natural037

Language Processing (NLP). Predominant strate-038

gies for addressing extractive MRC employ extrac-039

tive methods, which typically extract pertinent text040

snippets from a broader context in response to a041

Figure 1: Out-of-control generation issue in generative-
based methods.

query (Wang et al., 2018; Yan et al., 2019; Chen 042

et al., 2020). However, the most precise answers 043

in practical settings often span multiple text pas- 044

sages or necessitate inferential reasoning that ex- 045

tends beyond the surface-level content (Li et al., 046

2021). Therefore, there is a compelling necessity 047

to integrate generative models alongside extractive 048

approaches to enhance the robustness, versatility, 049

and comprehensiveness of solutions in this field. 050

Yet, generative models often fall short in extrac- 051

tive MRC tasks due to a phenomenon known as 052

out-of-control generation (Li et al., 2021), which 053

encompasses two primary issues, as illustrated in 054

Figure 1: (a) ill-formed generations that include 055

incomplete or redundant phrases, and (b) factual 056

inconsistencies that diverge from the intended in- 057

formation. Our research aim to bridge the per- 058

formance gap between generative and extractive 059

models in extractive MRC tasks by tackling the 060

out-of-control generation issue. We introduce the 061

lightweight Question-Attended Span Extraction 062

(QASE) module. This module is integrated during 063

the fine-tuning of various open-source generative 064

pre-trained language models (PLMs) across mul- 065

tiple MRC datasets to enhance the reliability and 066

accuracy of the generated answers. 067

Our key contributions are outlined as follows: 068
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1. We develop the QASE module to enhance the069

quality and factual accuracy of answers gen-070

erated by fine-tuned generative PLMs, achiev-071

ing performance on par with state-of-the-art072

(SOTA) extractive methods and surpassing073

that of advanced Large Language Models074

(LLMs) such as GPT-4 in few-shot settings.075

2. QASE enhances model performance without076

imposing significant additional computational077

demands, offering a cost-effective solution.078

2 Related Work079

Extractive MRC Recent MRC research predom-080

inantly focuses on extractive question answering081

using encoder-only PLMs like BERT and XLM-082

Roberta, predicting the start and end positions of083

answers directly from the context (Ohsugi et al.,084

2019; Lan et al., 2019; Bachina et al., 2021; Chen085

et al., 2022). For multi-span answers, Segal et al.086

(2020) treat this as a sequence tagging task, while087

others (Hu et al., 2019; Lee et al., 2023; Zhang088

et al., 2023) use hybrid approaches to enhance per-089

formance on complex MRC problems. Beyond090

extractive methods, there is growing interest in ap-091

plying generative language models for extractive092

MRC (Yang et al., 2020; Li et al., 2021; Jiang et al.,093

2022; Su et al., 2022), which generate answers by094

reformulating information across the context.095

Retrieval-augmented text generation (RAG)096

RAG augments the input of PLMs with in-domain097

(Gu et al., 2018; Weston et al., 2018; Saha and Sri-098

hari, 2023) or external knowledge (Su et al., 2021;099

Xiao et al., 2021) to control the quality and factual100

consistency of generated content. It has become a101

new text generation paradigm in many NLP tasks102

(Li et al., 2022b), such as dialogue response gen-103

eration (Wu et al., 2021; Liu et al., 2023b) and104

machine translation (He et al., 2021; Zhu et al.,105

2023). However, RAG is typically utilized in sce-106

narios where document retrieval is necessary to107

reduce input context window (Chen et al., 2024;108

Ram et al., 2023), whereas selective MRC often109

requires accessing information beyond the immedi-110

ate context. Our approach diverges from RAG as it111

directly fine-tunes the weights of the PLMs rather112

than altering the input to the PLMs with additional113

information.114

Controllable Text Generation Significant115

progress has been made in controllable text116

generation. Gururangan et al. (2020) fine-tune117

language models on domain-adaptive text to 118

customize generated content attributes. Other 119

methods include reinforcement learning (Li 120

et al., 2024), contrastive learning (Zheng et al., 121

2023), and control codes for fine-tuning PLMs 122

(Keskar et al., 2019). Some approaches modify the 123

probability distribution of PLMs, such as Liu et al. 124

(2021) using two smaller “expert” models, and 125

Yang and Klein (2021) conditioning generation 126

with a “future discriminator.” Huang et al. (2023) 127

explore multi-aspect text generation with trainable 128

gates for enhanced control. Our proposed module, 129

QASE, represents a novel adaptation of controlled 130

text generation tailored to the specific challenges of 131

MRC, with a focus on the precision and relevance 132

of generated answers. Unlike methods that modify 133

the overall generative process through complex 134

architectural alterations or additional learning 135

mechanisms, QASE directly utilizes the question 136

and context to guide inferences. 137

3 Method 138

This section presents our proposed QASE module 139

and the multi-task fine-tuning strategy we employ. 140

3.1 Question-Attended Span Extraction 141

To guide text generation, we employ the QASE 142

module, a question-attended span extraction tool, 143

during the fine-tuning of generative PLMs. QASE 144

directs model focus to potential answer spans 145

within the original text. We frame span extraction 146

as a sequence tagging task using the Inside-Outside 147

(IO) tagging schema. In this schema, each token 148

is labeled as ‘inside’ (I) if it falls within a relevant 149

span, or ‘outside’ (O) otherwise. This approach 150

effectively handles both single- and multi-span ex- 151

tractions and has shown to perform on par with 152

or better than the well-known BIO format (Huang 153

et al., 2015), as demonstrated by Segal et al. (2020). 154

The model architecture is depicted in Figure 2. 155

Initially, a context and question pair along with an 156

instruction are tokenized and input into the PLM. 157

The resultant hidden states from the PLM are then 158

transformed through projection layers to generate 159

embeddings zi = ReLU(Wprojvi + bproj), where 160

vi ∈ Rd represents the hidden state of the ith token 161

from the PLM output. 162

To capture the relationship of context tokens to 163

specific questions, we utilize a multi-head attention 164

mechanism (MHA). Each attention head targets 165

different aspects of the context in relation to the 166

question, treating question embeddings as queries 167
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Figure 2: Architecture of the QASE-enhanced model. Here, z∗Q represents the averaged embedding of question
tokens, expanded to match the length of zC .

and context embeddings as keys and values. Specif-168

ically, for each question-context pair, we compute a169

mean question embedding by averaging the embed-170

dings of question tokens, which is then expanded171

to align with the length of the context sequence.172

This expanded question embedding, z∗Q, serves as173

the query in the MHA, with the context embedding,174

zC , acting as both key and value. This mechanism175

allows the derived representation of each token in176

the context to encapsulate its relevance in relation177

to the posed question.178

In conclusion, the QASE module processes the
projected embeddings zC and z∗Q through the MHA
mechanism, followed by a linear and a softmax
layer to calculate the probability that each context
token belongs to an answer span:

pCi = softmax(Wlin·MHA(z∗Qi
, zCi , zCi)+blin)

This probability is represented by pCi for the ith

context token. To measure the accuracy of span
prediction, we compute sequence tagging loss em-
ploying cross-entropy loss:

LQASE = − 1

N

N∑
i=1

1∑
j=0

yijlog(pCij )

where j ∈ 0, 1 designates the classes O and I, and179

yij is a binary indicator of whether the ith token is180

labeled as class j.181

3.2 Fine-Tuning and Inference182

We fine-tune the PLMs employing a multi-task
learning strategy that concurrently optimizes both
the language modeling loss and the sequence tag-
ging loss:

L = LLML + βLQASE

where β is a hyper-parameter that determines the 183

weight assigned to the span extraction task. This 184

dual-objective approach substantially improves 185

the PLMs’ capability to generate contextually 186

grounded and relevant answers. During the infer- 187

ence phase, only the generation component of the 188

finely-tuned model is utilized. 189

4 Experiments 190

This section presents the experimental framework, 191

detailing the datasets used, experimental setup, 192

comprehensive quantitative results of model perfor- 193

mance, ablation studies, analysis of model factual 194

consistency, and qualitative case studies. 195

4.1 Datasets and Metrics 196

We utilize three extractive MRC benchmark 197

datasets: 198

(1) SQuAD (Rajpurkar et al., 2016): A bench- 199

mark dataset consisting of 100K+ questions 200

with single-span answers. We use SQuAD 201

v1.1. Since the official evaluation on v1.1 has 202

long been ended, we report our results on the 203

official v1.1 development set. 204

(2) MultiSpanQA (Li et al., 2022a): This 205

dataset consists of over 6.5k question-answer 206

pairs. Unlike most existing single-span an- 207

swer MRC datasets, MultiSpanQA focuses on 208

multi-span answers. 209

(3) Quoref (Dasigi et al., 2019): A benchmark 210

dataset containing more than 24K questions, 211

with most answers being single-span and 212

∼10% being multi-span. 213

Following the conventions of the datasets’ offi- 214

cial leaderboards (listed in A.1), we employ exact 215

match (EM) and partial match (Overlap) F1 scores 216
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as metrics on MultiSpanQA, and exact match per-217

centage and macro-averaged F1 score on SQuAD218

and Quoref.219

4.2 Experimental Setup220

To assess the efficacy of the QASE module inde-221

pendent of any specific language models, we con-222

duct experiments with multiple open-source LLMs.223

Our tests include both decoder-only LLMs, such as224

Llama 2 (Touvron et al., 2023) and Alpaca (Taori225

et al., 2023), and an encoder-decoder model family,226

Flan-T5 (Chung et al., 2022). For Llama 2 and227

Alpaca, we employ the pre-trained 7B version and228

fine-tune it using LoRA (Hu et al., 2021) combined229

with instruction-tuning (instruction templates are230

detailed in A.4). For the Flan-T5 family, we fine-231

tune the small, base, and large versions. Detailed232

information about the trainable parameters for each233

model is provided in Table 1.234

Trainable Parameters
no QASE QASE ∆params

Llama2/Alpaca
with LoRA 4.2M 7.3M 3.1M

Flan-T5-Small 77.0M 78.2M 1.3M
Flan-T5-Base 247.6M 248.9M 1.4M

Flan-T5-Large 783.2M 784.7M 1.5M

Table 1: Trainable parameters of experimented models.

We determine the hyper-parameter β = 1 and235

the learning rate lr = 1e− 4 using results from a236

grid search. For the LoRA fine-tuning of the Llama237

2 and Alpaca models, we set a rank r = 8, α = 32,238

and a dropout rate of 0.05. The methodology for239

selecting these hyper-parameters is detailed in A.2.240

All models are trained on individual GPUs with241

batch sizes ranging from 2 to 4, adjusted according242

to each GPU’s VRAM capabilities. We employ243

four types of GPUs: A40, A10, A5500, and A100.244

Training continues for three epochs or until the245

models converge. Consistency is maintained across246

all variants of each base PLM in terms of GPU type,247

batch size, and training epochs.248

4.3 Does QASE Mitigate Ill-Formed249

Generation?250

To assess QASE in mitigating ill-formed genera-251

tion issue, we compare the performance of various252

PLMs fine-tuned with and without QASE, as de-253

tailed in Table 2. The conventional EM and par-254

tial match F1 scores effectively measure whether255

the generated answers match the gold answers in256

format on a token basis. Overall, models fine- 257

tuned with QASE consistently outperform those 258

without it when measured by overlap F1 score. 259

Specifically, for the SQuAD dataset, models with 260

QASE show an EM percentage increase of up to 261

33.8% and an F1 score improvement of up to 8.4% 262

compared to vanilla fine-tuned models. For Multi- 263

SpanQA, improvements include up to 1.6% in EM 264

F1 and up to 3.3% in overlap F1. Likewise, on 265

the Quoref dataset, enhancements of up to 19.2% 266

in EM percentage and up to 16.0% in F1 score 267

are observed. These results confirm that QASE 268

enables generative-based PLMs to produce more 269

accurate, contextually coherent, and higher-quality 270

answers in MRC tasks compared to vanilla fine- 271

tuning approaches. We also include discussions on 272

performance discrepancies across different datasets 273

and base PLMs in Appendix B.3. 274

For additional comparisons, we also evaluate 275

the fine-tuned PLMs against their zero-shot perfor- 276

mance, as outlined in Appendix A.3. Specifically, 277

on the SQuAD dataset, models using QASE per- 278

form up to 5.6 times better in EM and 3.0 times 279

better in F1 score compared to the zero-shot models. 280

On the MultiSpanQA dataset, the EM improves by 281

up to 124.4 times, and F1 score by up to 3.4 times. 282

Similarly, on the Quoref dataset, the EM improves 283

by up to 38.4 times, and F1 score by up to 11.2 284

times with QASE. It is important to note that these 285

substantial improvements stem from comparing 286

zero-shot models to those fine-tuned with QASE. 287

Nonetheless, the previously discussed results com- 288

paring fine-tuned models with and without QASE 289

have clearly illustrated its effectiveness. 290

4.3.1 QASE-Enhaced PLMs vs SOTA LLMs 291

and Extractive Approaches 292

Our top model, Flan-T5-LargeQASE , is further 293

benchmarked against leading models on each 294

dataset’s official leaderboard, alongside zero-shot 295

and few-shot GPT-3.5-Turbo and GPT-4. GPT- 296

3.5-Turbo stands as one of OpenAI’s most effi- 297

cient models in terms of capability and cost, while 298

GPT-4 shows superior reasoning abilities (Liu et al., 299

2023c). Studies indicate their superiority over tra- 300

ditional fine-tuning methods in most logical reason- 301

ing benchmarks (Liu et al., 2023a). The prompts 302

used to query the GPT variants in zero-shot and 303

few-shot scenarios are detailed in Appendix A.4. 304

On SQuAD, as showed in Table 3, Flan-T5- 305

LargeQASE surpasses human performance, equal- 306

ing the NLNet model from Microsoft Research 307
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Llama2 Alpaca Flan-T5-Small Flan-T5-Base Flan-T5-Large
SQuAD no QASE 36.68 | 47.06 27.88 | 43.95 77.33 | 85.51 82.09 | 89.56 83.16 | 90.71

(EM | F1) QASE 37.22 | 47.69 37.31 | 47.62 77.66 | 85.90 82.20 | 90.24 84.13 | 91.70
MultiSpanQA no QASE 50.93 | 68.14 52.73 | 69.10 59.13 | 76.49 64.66 | 81.41 67.41 | 83.09

(EM F1 | Overlap F1) QASE 51.75 | 70.39 52.20 | 70.01 59.08 | 77.10 64.87 | 81.50 66.92 | 84.22
Quoref no QASE 45.52 | 52.09 - 58.21 | 63.30 72.77 | 80.90 75.17 | 80.49

(EM | F1) QASE 54.28 | 60.44 - 60.70 | 66.88 75.17 | 81.18 76.19 | 82.13

Table 2: Performance (in %) of fine-tuned PLMs with or without QASE on each dataset.

EM F1 ↑
GPT-3.5-Turbo 36.944 65.637
GPT-4 39.347 69.158
GPT-3.5-Turbo2−shot 61.456 81.523
GPT-42−shot 74.096 88.216
Human Performance 82.304 91.221
BERT-Large (Devlin et al., 2019) 84.328 91.281
MSRA NLNet (ensemble) 85.954 91.677
Flan-T5-LargeQASE 84.125 91.701

Table 3: Flan-T5-LargeQASE and baselines on SQuAD.

Asia and the pre-trained BERT-Large (Devlin et al.,308

2019). Additionally, it surpasses two-shot GPT-4309

by 13.6% on EM and 4.0% on F1.310

EM F1 Overlap F1 ↑
GPT-3.5-Turbo2−shot 52.987 78.588
GPT-3.5-Turbo 59.766 81.866
GPT-4 64.027 82.731
LIQUID (Lee et al., 2023) 73.130 83.360
GPT-42−shot 65.399 83.546
Flan-T5-LargeQASE 66.918 84.221

Table 4: Performance of Flan-T5-LargeQASE and base-
lines on MultiSpanQA.

On MultiSpanQA, Table 4 shows that Flan-311

T5-LargeQASE outperforms LIQUID (Lee et al.,312

2023), which currently ranks #1 on the leaderboard,313

with respect to the overlap F1 score. Moreover, it314

surpasses zero-shot GPT-4 by 4.5% on the exact315

match F1 and 1.5% on the overlap F1, and two-shot316

GPT-4 by 2.3% on the exact match F1 and 0.8% on317

the overlap F1.318

EM F1 ↑
GPT-3.5-Turbo 50.22 59.51
GPT-3.5-Turbo2−shot 64.53 73.40
GPT-4 68.07 78.34
GPT-42−shot 74.36 80.15
CorefRoberta-Large (Ye et al., 2020) 75.80 82.81
Flan-T5-LargeQASE 76.19 82.13

Table 5: Performance of Flan-T5-LargeQASE and base-
lines on Quoref.

On Quoref, Table 5 shows that Flan-T5-319

LargeQASE is comparable to CorefRoberta-Large320

(Ye et al., 2020), which ranks #9 on the leaderboard, 321

with a 0.5% higher exact match. Furthermore, it 322

outperforms zero-shot GPT-4 by 11.9% on EM and 323

4.8% on F1, and two-shot GPT-4 by 2.5% on both 324

EM and F1. 325

All top-performing models on these datasets’ 326

leaderboards, equaling or exceeding Flan-T5- 327

LargeQASE , are encoder-only extractive models. 328

Therefore, these results demonstrate that QASE 329

shortens or closes the gap between generative and 330

extractive approaches, enhancing PLMs to match 331

the capabilities of SOTA extractive models and out- 332

perform leading LLMs on extractive MRC. 333

4.4 Does QASE Improve Factual Consistency? 334

While token-based EM and F1 scores measure the 335

structural quality of generated text, they do not re- 336

flect factual accuracy relative to the context. For 337

this we used Q2 (Honovich et al., 2021), an au- 338

tomatic metric for assessing factual consistency 339

in generated text, which uses question generation 340

and answering methods over token-based matching. 341

We compared fine-tuned Flan-T5-Large with and 342

without QASE in both single-span (SQuAD) and 343

multi-span (MultiSpanQA) answer settings. Ta- 344

ble 6 shows that QASE-enhanced models consis- 345

tently outperform the vanilla fine-tuned model. On 346

SQuAD, Q2 NLI score is improved by 1.0%, and 347

on MultiSpanQA, it is improved by 16.0%. 348

Flan-T5-Large Q2 F1 Q2 NLI

SQuAD no QASE 42.927 44.983
QASE 43.624 45.419

MultiSpanQA no QASE 32.889 31.433
QASE 34.732 36.452

Table 6: Q2 scores of fine-tuned Flan-T5-Large with or
without QASE on each dataset.

4.5 Computational Cost 349

To assess the computational cost associated with 350

QASE, Table 1 reveals that incorporating the QASE 351

module incurs only a slight increase in the num- 352

ber of trainable parameters in PLMs. The degree 353
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of this increase varies based on the hidden sizes354

of the models. Remarkably, for the largest model,355

Flan-T5-Large, the addition of QASE accounts for356

merely an extra 0.2% in parameters. This under-357

scores that QASE can substantially boost the perfor-358

mance of fine-tuned PLMs in MRC tasks without359

requiring significant additional computational re-360

sources.361

4.6 Ablation Studies362

We conduct ablation studies to assess the effective-363

ness of the QASE architecture and to determine364

the optimal prompting strategy. Specifically, we365

compare Flan-T5-LargeQASE with both the vanilla366

fine-tuned Flan-T5-LargeFT and the baseline Flan-367

T5-Largebaseline. As shown in Figure 3 in Ap-368

pendix A.5, the baseline span extraction module369

does not include the MHA component, rendering370

it a conventional architecture for fine-tuning pre-371

trained encoders on downstream sequence tagging372

tasks. For each configuration – Flan-T5-LargeFT ,373

Flan-T5-LargeQASE , and Flan-T5-Largebaseline –374

we explored both a question-first (qf ) and a context-375

first prompting strategy, with a detailed description376

of these strategies provided in Appendix A.5.377

Table 7 shows that the baseline-embedded model378

performs better with a question-first prompting379

strategy, as Flan-T5-Largebaselineqf surpasses Flan-380

T5-Largebaseline and Flan-T5-LargeFTqf
. Con-381

versely, the baseline span extraction module de-382

creases performance in context-first prompting,383

where Flan-T5-Largebaseline underperforms com-384

pared to Flan-T5-LargeFT . This suggests that385

adding an auxiliary span extraction module with-386

out careful design can negatively affect instruc-387

tion fine-tuning. Meanwhile, the QASE-enhanced388

model excels over both vanilla fine-tuned and389

baseline-embedded models in both prompting sce-390

narios, demonstrating its architectural superior-391

ity. Specifically, in context-first setting, Flan-392

T5-LargeQASE significantly outperforms Flan-T5-393

Largebaseline with a 4.3% higher F1.394

EM F1 ↑
Flan-T5-Largebaseline 79.877 87.918

Flan-T5-LargeFTqf 80.378 88.176
Flan-T5-Largebaselineqf 81.125 89.043
Flan-T5-LargeQASEqf 81.485 89.077

Flan-T5-LargeFT 83.159 90.712
Flan-T5-LargeQASE 84.125 91.701

Table 7: Performance of vanilla, baseline-, and QASE-
enhanced fine-tuned Flan-T5-Large on SQuAD.

4.7 Qualitative Case Studies 395

In addition to the Q2 statistical analysis in Section 396

4.4, we also perform qualitative case studies to 397

further demonstrate the effectiveness of QASE in 398

generating factual consistent answers. 399

Sample 1
Context: This was the first Super Bowl to feature a
quarterback on both teams who was the #1 pick in their
draft classes. Manning was the #1 selection of the 1998
NFL draft, while Newton was picked first in 2011. The
matchup also pits the top two picks of the 2011 draft
against each other: Newton for Carolina and Von Miller
for Denver. Manning and Newton also set the record for
the largest age difference between opposing Super Bowl
quarterbacks at 13 years and 48 days (Manning was 39,
Newton was 26).
Question: What was the age difference between Newton
and Manning in Super Bowl 50?
Gold Answer: 13 years and 48 days
Flan-T5-LargeQASE

Generation 13 years and 48 days

Flan-T5-LargeFT

Generation 26

Sample 2
Context: However, this definition is disputed by
Thoreau’s political philosophy, which contrasts the con-
science with the collective. The individual is the ultimate
arbiter of right and wrong. Beyond this, since only indi-
viduals act, only they can commit injustices. ... Thoreau
acknowledges that the government may represent the will
of the majority but it might also merely reflect the desires
of elite politicians. Even a good government is "liable to
be abused and perverted before the people can act through
it." Furthermore, even if a government did express the
voice of the people, this fact would not obligate the obe-
dience of individuals who dissent. The majority may be
powerful but it is not necessarily right. What, then, is the
appropriate relationship between the individual and the
government?
Question: What did Thoreau claim about the majority?
Gold Answer: not necessarily right
Flan-T5-LargeQASE

Generation it is not necessarily right

Flan-T5-LargeFT

Generation conscience vs. the collective

Table 8: Comparisons of model attention alignment
with question key aspects and relevant factual context
between Flan-T5-LargeQASE and Flan-T5-LargeFT .

Question Attended Alignment Table 8 show- 400

cases that Flan-T5-LargeQASE more accurately 401

identifies the key focus of the question and locates 402

the pertinent factual information within the context, 403

with the aid of the QASE module. For instance, in 404

Sample 1, Flan-T5-LargeQASE correctly interprets 405

the question as seeking the age difference between 406

Newton and Manning, rather than the age of either 407

individual, and accordingly provides the accurate 408
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answer. In contrast, Flan-T5-LargeFT mistakenly409

provides Newton’s age as the answer. Similarly, in410

Sample 2, Flan-T5-LargeQASE accurately discerns411

that the question pertains to Thoreau’s claim regard-412

ing the majority, generating in the correct answer,413

whereas Flan-T5-LargeFT misguidedly responds414

with Thoreau’s political philosophy.415

Multi-Span Answers Flan-T5-LargeQASE also416

shows a notable improvement in comprehending417

complex, lengthy sentences and synthesizing an-418

swers from information that is sparsely distributed419

across multiple spans requiring logical processing.420

This capability is particularly valuable when the421

answer to a question does not directly stem from a422

single phrase. Table 9 provides examples of such in-423

stances. In Sample 3, the model needs to recognize424

that ESPN Deportes is the exclusive broadcaster in425

Spanish and that CBS, although mentioned, does426

not offer Spanish-language broadcasting. Combin-427

ing these facts leads to the correct answer, that428

ESPN Deportes is the network that broadcast the429

game in Spanish. Flan-T5-LargeQASE accurately430

generates this answer, whereas Flan-T5-LargeFT431

incorrectly answers with "CBS", likely due to con-432

fusion caused by the complex sentence structures433

and dispersed information. Similarly, in Sample 4,434

Flan-T5-LargeQASE correctly identifies the ques-435

tion as seeking the name of the force related to436

a potential field between two locations. It suc-437

cessfully locates the relevant long sentence, decon-438

structs, and comprehends it to produce the correct439

answer, in contrast to Flan-T5-LargeFT , which in-440

correctly selects the first phrase mentioning "force".441

In Sample 5, the question asks for the class most442

commonly not ascribed to the graph isomorphism443

problem. The model needs to deduce from the con-444

text that "it is widely believed that the polynomial445

hierarchy does not collapse to any finite level", im-446

plying "graph isomorphism is not NP-complete".447

Once again, Flan-T5-LargeQASE arrives at the cor-448

rect conclusion, while Flan-T5-LargeFT does not.449

Real-World Knowledge While our primary eval-450

uation focuses on the model’s proficiency in de-451

riving answers from provided contexts, we also452

note that QASE enhances the model’s capacity to453

leverage real-world knowledge acquired during its454

pre-training phase. This improvement is attributed455

to QASE’s ability to better align the model’s fo-456

cus on parts of the context that are relevant to the457

questions asked. Table 10 presents an example458

of this phenomenon. In Sample 6, when asked459

Sample 3
Context: On December 28, 2015, ESPN Deportes an-
nounced that they had reached an agreement with CBS
and the NFL to be the exclusive Spanish-language broad-
caster of the game, marking the third dedicated Spanish-
language broadcast of the Super Bowl. Unlike NBC and
Fox, CBS does not have a Spanish-language outlet of its
own that could broadcast the game (though per league
policy, a separate Spanish play-by-play call was carried
on CBS’s second audio program channel for over-the-air
viewers). ...
Question: Which network broadcast the game in Span-
ish?
Gold Answer: ESPN Deportes
Flan-T5-LargeQASE

Generation ESPN Deportes

Flan-T5-LargeFT

Generation CBS

Sample 4
Context: A conservative force that acts on a closed sys-
tem has an associated mechanical work that allows energy
to convert only between kinetic or potential forms. This
means that for a closed system, the net mechanical en-
ergy is conserved whenever a conservative force acts on
the system. The force, therefore, is related directly to
the difference in potential energy between two different
locations in space, and can be considered to be an artifact
of the potential field in the same way that the direction
and amount of a flow of water can be considered to be an
artifact of the contour map of the elevation of an area.
Question: What is the force called regarding a potential
field between two locations?
Gold Answer: an artifact
Flan-T5-LargeQASE

Generation an artifact

Flan-T5-LargeFT

Generation conservative force

Sample 5
Context: The graph isomorphism problem is the compu-
tational problem of determining whether two finite graphs
are isomorphic. An important unsolved problem in com-
plexity theory is whether the graph isomorphism problem
is in P, NP-complete, or NP-intermediate. The answer is
not known, but it is believed that the problem is at least
not NP-complete. If graph isomorphism is NP-complete,
the polynomial time hierarchy collapses to its second
level. Since it is widely believed that the polynomial
hierarchy does not collapse to any finite level, it is be-
lieved that graph isomorphism is not NP-complete. The
best algorithm for this problem, due to Laszlo Babai and
Eugene Luks has run time 2O(

√
nlog(n)) for graphs

with n vertices.
Question: What class is most commonly not ascribed
to the graph isomorphism problem in spite of definitive
determination?
Gold Answer: NP-complete
Flan-T5-LargeQASE

Generation NP-complete

Flan-T5-LargeFT

Generation NP-intermediate

Table 9: Comparison of Flan-T5-LargeQASE and Flan-
T5-LargeFT in understanding complex sentence struc-
tures.
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about the California venue considered for the Su-460

per Bowl, Flan-T5-LargeQASE correctly associates461

the San Francisco Bay Area with California, thus462

producing the accurate answer. On the other hand,463

Flan-T5-LargeFT erroneously identifies a stadium464

in Miami as the answer. This example illustrates465

how QASE not only improves context-based an-466

swer generation but also the model’s application of467

pre-existing real-world knowledge to the questions468

posed.469

Sample 6
Context: The league eventually narrowed the bids to
three sites: New Orleans’ Mercedes-Benz Superdome,
Miami’s Sun Life Stadium, and the San Francisco Bay
Area’s Levi’s Stadium.
Question: Which California venue was one of three con-
sidered for Super Bowl 50?
Gold Answer: San Francisco Bay Area’s Levi’s Stadium
Flan-T5-LargeQASE

Generation San Francisco Bay Area’s
Levi’s Stadium

Flan-T5-LargeFT

Generation Sun Life Stadium

Table 10: Comparison of Flan-T5-LargeQASE and Flan-
T5-LargeFT in utilizing real-world knowledge.

5 Discussions470

In this section, we briefly address the weak perfor-471

mance of Flan-T5 zero-shot and Llama 2 on ex-472

tractive MRC tasks, despite their strong language473

understanding abilities. We note that a compre-474

hensive analysis is beyond our study’s scope. Our475

goal is to gain insights into further improving these476

PLMs’ effectiveness in extractive MRC.477

5.1 Flan-T5 Zero-Shot Performance478

Despite being trained on SQuAD during pre-479

training, Flan-T5 models demonstrate poor perfor-480

mance across datasets, including SQuAD. While a481

comprehensive analysis of Flan-T5’s performance482

is beyond the focus of our study, we briefly explore483

potential reasons for this underperformance to gain484

better insights. This underperformance may stem485

from their training on a wide range of tasks (1,836486

tasks), focusing on free-form generation, QA, and487

reasoning tasks, rather than being finely optimized488

for extractive QA tasks like MRC. Additionally,489

generative models like Flan-T5 and Llama 2 gen-490

erally struggle in MRC tasks, as discussed earlier.491

For extended discussions, refer to Appendix B.1.492

For fairness in our zero-shot experiments, we493

compare our prompt template with Google’s494

instruct-tuning prompts for Flan-T5 on the SQuAD495

v1 dataset. Our results, as illustrated in Table 14, 496

reveal that our prompt template achieves the high- 497

est F1 score. This implies that Flan-T5’s lower 498

zero-shot performance on MRC is expected. 499

5.2 Llama 2 Performance 500

We also observe that models based on Llama 2 501

and Alpaca consistently underperform compared to 502

those based on Flan-T5, across zero-shot and fine- 503

tuned scenarios, with or without QASE. This dis- 504

crepancy may arise from the significant difference 505

in the number of trainable parameters, as illustrated 506

in Table 1, during fine-tuning. Additionally, factors 507

such as differences in pre-training datasets and var- 508

ied adaptation to tasks due to structural disparities 509

can also contribute to this performance gap. While 510

acknowledging these factors, conducting a compre- 511

hensive comparison of different generative model 512

architectures in extractive MRC tasks exceeds the 513

scope of our study. For further discussion, please 514

refer to Appendix B.2. 515

6 Conclusion and Future Work 516

In this study, we address out-of-control generation 517

issue of generative PLMs in extractive MRC us- 518

ing QASE, a lightweight question-attended span 519

extraction module, during the fine-tuning of PLMs. 520

Our experiments show that QASE-enhanced PLMs 521

generate better-quality responses with improved 522

formality and factual consistency, matching SOTA 523

extractive models and outperforming few-shot GPT- 524

4 by a significant margin on all three extractive 525

MRC datasets, bridging the gap between genera- 526

tive and extractive models in extractive MRC tasks. 527

Importantly, QASE improves performance without 528

a significant increase in computational costs, bene- 529

fiting researchers with limited resources. 530

As the next step, we plan to conduct interpretabil- 531

ity analyses to examine the performance discrepan- 532

cies across different base PLMs and datasets. 533

In the future, we aim to evaluate our model 534

on generative MRC tasks, such as Nguyen et al. 535

(2016), to gauge its effectiveness in handling more 536

intricate scenarios. Additionally, a significant em- 537

phasis will be placed on assessing the model’s over- 538

all capability in answer generation, with a specific 539

focus on human perception. This involves incorpo- 540

rating human annotators alongside automatic met- 541

rics. Looking further ahead, we aspire to extend our 542

research to explore strategies for mitigating input- 543

and context-conflicting hallucinations in LLMs. 544
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Limitations545

Due to our limited computational resources, we546

have been able to perform our experiments on mod-547

els no larger than Flan-T5-Large. This same con-548

straint led us to only fine-tuning of Llama 2 and549

Alpaca with LoRA. We note that models based on550

Llama 2 and Alpaca generally underperform those551

based on Flan-T5. Apart from the inherent distinc-552

tions between decoder-only and encoder-decoder553

models, and their suitability for different tasks (as554

seen from the models’ zero-shot performance), a555

possible factor could be the number of trainable556

parameters during fine-tuning. Specifically, fine-557

tuning Llama 2 and Alpaca with LoRA results in558

only 4.2M trainable parameters, while even the559

smallest Flan-T5 model provides 77.0M trainable560

parameters, as shown in Table 1. We acknowl-561

edge that many researchers face similar computa-562

tional resource limitations. Therefore, our research563

should be very useful, proposing this lightweight564

module capable of enhancing smaller PLMs to out-565

perform leading LLMs on MRC tasks like these,566

achieving a balance of effectiveness and affordabil-567

ity.568

One foreseeable limitation of our work is the de-569

pendency of the fine-tuning process on answer span570

annotations, since QASE works as an auxiliary su-571

pervised span extraction module. This reliance on572

annotated data could potentially limit the model’s573

broader applicability. A prospective exciting fu-574

ture direction to address this limitation is to de-575

velop a semi- or unsupervised module that focuses576

on selecting relevant spans or rationales within a577

given context. By integrating this module with578

our current model, we could significantly improve579

its generalization capabilities, thereby making it580

more adaptable and effective across a wider range581

of scenarios.582

One popular method to enhance the formality of583

answers generated by LLMs is through prompt en-584

gineering, paired with few-shot or in-context learn-585

ing techniques. While these strategies offer great586

advantages, our ultimate goal is to create a system587

with broad domain generalization, one that mini-588

mizes the need for extensive, calibrated prompt en-589

gineering and sample selections for task adaptation.590

Although developing a robust prompt engineering591

framework or paradigm is an appealing direction,592

our current focus diverges from this path. As a593

long-term goal, we aim for a solution that handles594

diverse tasks with minimal task-specific tuning.595
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A Detailed Experiment Setup and Results 891

A.1 Dataset Leaderboard 892

Below are the official leaderboards all the datasets 893

we refer to: 894

SQuAD https://rajpurkar.github.io/
SQuAD-explorer/

MultiSpanQA https://multi-span.github.io/
Quoref https://leaderboard.allenai.org/

quoref/submissions/public

Table 11: Dataset official leaderboards.

A.2 Hyper-Parameter Selection 895

In this section, we outline the process for selecting 896

the hyper-parameter β and detail our approach to 897

LoRA fine-tuning. 898

For selecting β, we use a grid search method, 899

exploring values from 0.5 to 2 in increments of 900

0.1, on 30% of the MultiSpanQA training dataset. 901

This process leads to the determination that β = 1 902

empirically yield the best performance, hence it is 903

selected for use in our experiments. 904

To select the learning rate lr, we conduct a grid 905

search, testing values from {1e − 5, 5e − 5, 1e − 906

4, 5e − 4, 1e − 3} on 30% of the MultiSpanQA 907

training dataset. Empirically, the value 1e − 4 908

demonstrates the best performance and is there- 909

fore chosen for our experiments. This selection 910

is in agreement with the default lr value used in 911

Meta’s official Llama 2 fine-tuning recipe1. 912

In the case of LoRA fine-tuning, we follow the 913

established methodology as outlined by Hu et al. 914

(2021). This involves applying LoRA to Llama 915

2 and the pre-trained Alpaca models by freezing 916

their pre-trained weights and integrating trainable 917

rank decomposition matrices at every layer of their 918

Transformer structures, aimed at reducing the num- 919

ber of trainable parameters to enhance computa- 920

tional efficiency. We implement this using the 921

PEFT package2. The fine-tuning hyper-parameters 922

for LoRA are set according to the default settings 923

specified in Meta’s official Llama 2 fine-tuning 924

recipe3, which include a rank r = 8, α = 32, and 925

a dropout rate of 0.05. 926

1Link to the fine-tuning configuration of Meta’s official
Llama 2 recipe.

2Link to the Hugging Face PEFT implementation.
3Link to the LoRA hyper-parameter configuration of

Meta’s official Llama 2 recipe.
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A.3 Full Experiment Results927

In addition to the highlighted results presented in928

Section 4, we also compare the fine-tuned PLMs929

to their corresponding base PLMs in zero-shot set-930

tings. The results, presented in Table 12, show931

that fine-tuning with QASE improves performance932

across all datasets. Specifically, on the SQuAD933

dataset, models using QASE perform up to 5.6934

times better in exact match and 3.0 times better in935

F1 score compared to the original models. On the936

MultiSpanQA dataset, the exact match improves937

by up to 124.4 times, and F1 score by up to 3.4938

times. Similarly, on the Quoref dataset, the exact939

match improves by up to 38.4 times, and F1 score940

by up to 11.2 times with QASE.941

A.4 Instruction Templates and Model942

Prompts943

Table 13 provides the instruction and prompt tem-944

plates used for fine-tuning the PLMs and for zero-945

shot and few-shot querying of PLMs and GPT946

variants across both single- and multi-span answer947

datasets. In few-shot prompting scenarios, exam-948

ples are randomly selected from the training set.949

A.5 Ablation Studies Details950

Figure 3 depicts the architecture of the model we951

use for the ablation studies, with a baseline span952

extraction module. The baseline span extraction953

module omits the MHA component, typifying a954

standard architecture for fine-tuning pre-trained955

encoders for downstream sequence tagging tasks.956

The baseline-embedded Flan-T5-Large models are957

fine-tuned with the same configurations as Flan-T5-958

LargeQASE including learning rate, weight decay,959

batch size, epoch number, and GPU type.960

Figure 3: Baseline-embedded model architecture.

We experiment with 2 prompting strategies for961

ablation studies:962

• Context-first prompting: The default963

prompting strategy we utilize for fine-tuning964

PLMs, both with and without QASE. In this 965

setting, the prompt is ordered as "<instruction 966

tokens> <context tokens> <question tokens>". 967

• Question-first prompting (qf ): Following 968

BERT’s standard fine-tuning procedures. In 969

this setting, the prompt is ordered as "<instruc- 970

tion tokens> <question tokens> <SEP> <con- 971

text tokens>". <SEP> is a special separator 972

token. 973

B Extended Discussion on Model 974

Performance 975

In this section, we engage in a detailed discus- 976

sion on the performance of the Flan-T5 family of 977

models and Llama 2 in MRC tasks. Our aim is 978

to gain insights into the reasons behind the mod- 979

est zero-shot performance of these large PLMs on 980

MRC tasks, despite their adeptness at handling 981

other complex NLP tasks such as dialogue gener- 982

ation and summarization. Although a comprehen- 983

sive analysis falls outside the scope of our current 984

study, exploring these performance nuances can 985

provide valuable perspectives on how to potentially 986

enhance the effectiveness of these PLMs on similar 987

tasks. 988

B.1 Discussion on Flan-T5 Zero-Shot 989

Performance 990

We observe that the zero-shot performance of Flan- 991

T5 models across all datasets, including SQuAD, 992

remains low as shown in Table 12, despite being 993

instruct-tuned on the SQuAD dataset during the 994

pre-training phase. This underperformance might 995

stem from the fact that Flan-T5 models, although 996

trained on the <SQuAD, Extractive QA> task, are 997

also trained on a broad spectrum of 1,836 tasks, 998

predominantly focusing on free-form generation, 999

QA, and reasoning tasks (Chung et al., 2022). Con- 1000

sequently, these models are not finely optimized 1001

for extractive QA tasks like MRC, especially un- 1002

der metrics like exact match and F1, particularly 1003

for the smaller to larger variants under study. The 1004

larger XL and XXL variants may exhibit better 1005

performance in these tasks. Furthermore, as dis- 1006

cussed in the previous sections, generative models, 1007

including Llama 2, Alpaca, and GPT variants, gen- 1008

erally show limited effectiveness in MRC tasks in 1009

zero-shot settings, underscored by their poorer per- 1010

formance despite having significantly larger model 1011

parameters compared to the Flan-T5 variants we 1012

experiment with. 1013
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MultiSpanQA SQuAD Quoref
EM F1 Overlap F1 EM F1 EM F1

Llama2 7.354 34.031 13.443 28.931 5.02 28.91
Llama2FT 50.934 68.140 36.679 47.055 45.52 52.09
Llama2QASE 51.748 70.389 37.219 47.686 54.28 60.44
Alpaca 15.201 42.759 18.259 33.871 - -
AlpacaFT 52.730 69.099 27.881 43.950 - -
AlpacaQASE 52.196 70.008 37.313 47.622 - -
Flan-T5-Small 0.475 22.539 13.878 28.710 1.58 5.96
Flan-T5-SmallFT 59.128 76.494 77.332 85.513 58.21 63.30
Flan-T5-SmallQASE 59.080 77.103 77.663 85.901 60.70 66.88
Flan-T5-Base 4.113 37.694 37.596 51.747 27.08 34.38
Flan-T5-BaseFT 64.659 81.408 82.090 89.558 72.77 80.90
Flan-T5-BaseQASE 64.874 81.498 82.204 90.240 75.17 81.18
Flan-T5-Large 13.907 51.501 16.149 37.691 15.96 24.10
Flan-T5-LargeFT 67.408 83.094 83.159 90.712 75.17 80.49
Flan-T5-LargeQASE 66.918 84.221 84.125 91.701 76.19 82.13

Table 12: Performance of zero-shot PLMs and fined-tuned PLMs with and without QASE.

Fine-tuning PLMs Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations.
- - -
Context: {context}
- - -
Question: {question}
- - -
Answer:

Zero-shot prompting PLMs and
GPT variants on single-span answer
dataset, SQuAD

Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations. [Format the response as follows: ["answer1", "answer2", ...].]∗

- - -
Context: {context}
- - -
Question: {question}
- - -
Answer:

Few-shot prompting PLMs and GPT
variants

Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations. [Format the response as follows: ["answer1", "answer2", ...].]∗

- - -
Example i
Context: {example context}
- - -
Question: {example question}
- - -
Answer: example answer

- - -
Context: {context}
- - -
Question: {question}
- - -
Answer:

Table 13: Templates for fine-tuning instructions and zero-shot and few-shot query prompts. ∗Text in square bracket
is only added for multi-span answer datasets, MultiSpanQA and Quoref.
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To ensure that our zero-shot experiment’s1014

prompts do not adversely affect Flan-T5’s perfor-1015

mance, we compare our prompt template, detailed1016

in Table 13, with those Google released for Flan-1017

T5’s instruct-tuning on the SQuAD v1 dataset4.1018

Our template, similar to Google’s, differs mainly1019

by including "with exact phrases and avoid explana-1020

tions." This difference could potentially affect per-1021

formance, yet our subsequent experiments demon-1022

strate otherwise.1023

We conduct a series of experiments to assess1024

the zero-shot performance of Flan-T5-Large on1025

SQuAD, using Google released templates for Flan-1026

T5 instruct-tuning. We select three templates of1027

varying complexities, as listed in Table 14. Our1028

results, detailed in Table 14, reveal that our tem-1029

plate achieves the highest F1 score. This indicates1030

the lower performance of zero-shot Flan-T5 on1031

SQuAD and similar MRC datasets is expected,1032

even with the original instruct-tuning templates.1033

It supports our hypothesis that, although Flan-T51034

is instruct-tuned on SQuAD, its primary strengths1035

are in broader generative question answering and1036

reasoning, rather than specific extractive QA tasks1037

such as MRC, particularly when evaluated by exact1038

match and F1 metrics.1039

SQuAD Performance
Prompt Template EM F1
Article: {context}
Question: {question}
Answer:

7.001 21.717

Answer a question
about this article.
Article: {context}
Question: {question}
Answer:

15.875 33.375

Here is a question
about this article:
Article: {context}
What is the answer
to this question:
Question: {question}
Answer:

16.764 35.304

Our Template
See Table 13 16.149 37.691

Table 14: Flan-T5-Large zero-shot performance on
SQuAD with different prompt templates.

B.2 Discussion on Llama 2 Performance1040

We observe that models based on Llama 2 and Al-1041

paca generally underperform compared to those1042

based on Flan-T5, in both zero-shot and fine-tuned1043

4Link to Flan-T5 instruct-tuning prompt templates.

scenarios, with or without QASE. This section 1044

delves into a detailed discussion of the potential 1045

reasons behind this trend. 1046

Firstly, the discrepancy in performance may 1047

stem from the inherent structural differences be- 1048

tween decoder-only models (Llama 2 and Alpaca) 1049

and encoder-decoder models (Flan-T5). Encoder- 1050

decoder models are better equipped for tasks that 1051

require extensive input processing, such as MRC, 1052

making them more apt for these tasks than decoder- 1053

only models, which are typically more suited to 1054

open-ended QA scenarios. This fundamental dis- 1055

tinction partially accounts for Flan-T5’s superior 1056

performance in context-based question answering 1057

across both zero-shot and fine-tuned settings. 1058

Additionally, the difference in the number of 1059

trainable parameters during fine-tuning might con- 1060

tribute to the observed performance gap. Table 1061

1 indicates that fine-tuning Llama 2 and Alpaca 1062

with LoRA leads to a significantly lower count of 1063

trainable parameters (4.2M) compared to even the 1064

smallest Flan-T5 model (77.0M). This disparity in 1065

trainable parameters is a crucial factor in explain- 1066

ing why fine-tuned Flan-T5 models, irrespective of 1067

the use of QASE, outperform Llama 2 and Alpaca 1068

models. 1069

While we address these factors, conducting a 1070

comprehensive comparison and analysis of differ- 1071

ent generative model architectures in MRC tasks 1072

exceeds the scope of our current study. Nonethe- 1073

less, we acknowledge that additional factors, such 1074

as the specific instruct-fine-tuning of Flan-T5 mod- 1075

els on MRC datasets like SQuAD, might also play 1076

a role in their enhanced performance over Llama 2 1077

and Alpaca. 1078

B.3 Discussion on Performance Discrepancy 1079

across Different Base PLMs and Datasets 1080

As shown in Table 15, we observe a significant per- 1081

formance improvement with QASE across different 1082

Llama2 Alpaca Flan-T5
Small

Flan-T5
Base

Flan-T5
Large

∆EM

SQuAD 1.47 33.82 0.43 0.13 1.17
MultiSpanQA 1.61 -1.01 -0.08 0.32 -0.73

Quoref 19.24 - 4.28 3.30 1.36

∆F1

SQuAD 1.34 8.35 0.46 0.76 1.09
MultiSpanQA 3.30 1.32 0.80 0.11 1.36

Quoref 16.03 - 5.66 0.35 2.04

Table 15: Performance improvement (in %) of fine-
tuned PLMs with QASE on each dataset.
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base PLMs and datasets. Specifically, dataset-wise,1083

a larger improvement is noted on Quoref compared1084

to other datasets. This is partially due to the rel-1085

atively weaker baseline performance on Quoref.1086

For example, a fine-tuned Flan-T5-Large model1087

without QASE achieves an F1 score of 90.71% on1088

SQuAD, 83.09% on MultiSpanQA, and 80.49% on1089

Quoref. Higher baseline scores indicate a strong1090

initial performance, making further improvements1091

more challenging and thus more meaningful. De-1092

spite the already high performance on the other two1093

datasets, particularly SQuAD, the incorporation of1094

QASE still results in noticeable improvements.1095

PLM-wise, we generally observe that the im-1096

provements on Llama2 and Alpaca are more sub-1097

stantial than those on the Flan-T5 base models,1098

with few exceptions on MultiSpanQA. This trend1099

can be partially attributed to the higher baseline1100

performance of Flan-T5 models on these datasets.1101

We discuss in Sections 5, B.1, and B.2 that factors1102

such as (1) differences in pre-training datasets, with1103

Flan-T5 models being fine-tuned on MRC tasks1104

like SQuAD, and (2) varied adaptation to tasks due1105

to structural disparities, can contribute to this per-1106

formance gap. Encoder-decoder models, such as1107

Flan-T5, are better equipped for tasks requiring ex-1108

tensive input processing, like MRC, making them1109

more suitable for these tasks than decoder-only1110

models, which are typically more suited to open-1111

ended QA scenarios. This fundamental distinction1112

partially accounts for Flan-T5’s superior perfor-1113

mance in context-based question answering across1114

both zero-shot and fine-tuned settings. While ac-1115

knowledging these factors, a comprehensive com-1116

parison of different generative model architectures1117

in MRC tasks exceeds the scope of our study.1118
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