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Abstract

Developing a general purpose model that can001
tackle many different Natural Language Under-002
standing (NLU) tasks without requiring man-003
ually annotated data has become an ambitious004
yet desirable goal for the NLP research com-005
munity. A simple and prominent approach for006
zero-shot text classification is to train a model007
on a generic language understanding task such008
as Natural Language Inference (NLI), and per-009
form inference on NLU classification tasks us-010
ing instructions or candidate templates. Those011
methods jointly encode the input document and012
the instruction into a single sequence leverag-013
ing self-attention layers and the next-sentence-014
prediction (NSP) pre-training task.015

We hypothesize that this joint encoding limits016
the capabilities of large pre-trained encoders017
while being sub-optimal in many practical ap-018
plications. To tackle those issues, we propose a019
novel approach that separates the encoding of020
the input document and use it as a ground ref-021
erence to enhance the encoding of the instruc-022
tion through cross-attention using an encoder-023
decoder architecture. We further propose a sim-024
ple transformation on traditional NLI datasets025
that focuses on the learning of these Cross-026
Attention layers using contrasted data. Finally,027
we show that this approach do not need a full-028
sized decoder for best performance. Our exper-029
iments show that the proposed approach out-030
performs similar approaches by a large margin031
and sometimes achieves comparable results to032
fully fine-tuned methods.033

1 Introduction034

Natural language understanding (NLU) is a major035

research topic in natural language processing that036

has various practical applications. NLU is a broad037

task, with the goal of comprehending and deter-038

mining the meaning behind a given text. Many039

NLU tasks, such as sentiment analysis, emotion040

recognition, or topic detection, involve assigning a041

semantic label (e.g. sentiment, emotion, or topic) to 042

an input sentence. The conventional approach for 043

building classification models is to use supervised 044

learning with a large quantity of annotated training 045

data. However, the construction of such dataset 046

requires much time for collecting, curating, and 047

annotation. Pre-trained language models provide 048

us a partial solution to this problem, however, the 049

training process still takes much time and requires 050

large amount of resources (Vaswani et al., 2017; 051

Devlin et al., 2018; Liu et al., 2019). In addition 052

to that, the resulting model can only handle a sin- 053

gle task. Therefore, we need separate models for 054

each task, increasing the overall cost. As a result, it 055

is desirable to create unified classification models 056

that can perform multiple NLU classification tasks 057

without requiring specific training datasets for each 058

task. 059

As a solution for the above problem, several stud- 060

ies proposed to fine-tune large pre-trained model 061

on generic classification tasks, such as Natural Lan- 062

guage Inference. Natural language inference (NLI) 063

is the task of determining whether a hypothesis is 064

true (ENTAILMENT), false (CONTRADICTION), or un- 065

determined (NEUTRAL) given a premise. We can 066

see that by treating the input text of NLU tasks 067

as the premise and the class labels as the hypoth- 068

esis, we can use models trained on NLI to per- 069

form Zero-Shot NLU classification tasks. Yin et al. 070

(2019) investigated the utilization of NLI datasets 071

as the source training task of Zero-Shot models and 072

showed promising results on 3 closed-set classifica- 073

tion tasks. However, the majority of current studies 074

consider the input document and the instruction 075

text as a single sequence which is unpractical for 076

real-world applications. 077

In this work, we propose to leverage cross- 078

attention for zero-shot NLU classification tasks 079

using contrasted NLI with instruction training. The 080

proposed method uses an encoder-decoder architec- 081

ture to process the instruction text separately from 082
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Figure 1: Overview of the proposed method. Cross-Attention layers in the Decoder are learnt using a Contrasted
NLI with Instruction dataset (left). Zero-Shot NLU inference (right) uses similar input and output shapes than
during training.

the input text document. The main contributions of083

this work are as follows:084

1. We propose to use encoder-decoder architec-085

tures for zero-shot text classification to encode086

the input document and the class instruction087

text separately allowing us to leverage cross-088

attention layers089

2. We demonstrate that training on a contrasted090

NLI dataset with natural language instructions091

is an effective source training task for the pro-092

posed architecture as well as for encoder-only093

architectures094

3. We show through experiments that a small095

number of decoder layers outperform larger096

networks while having similar size to encoder-097

only methods098

4. We conduct extensive experiments on a wide099

variety of tasks to confirm the effectiveness100

of the proposed method and find that the pro-101

posed method beats previous Zero-Shot meth-102

ods by a large margin and achieves similar103

results to Few-Shot and Fine-Tuning methods.104

2 Related Research105

The problem of zero-shot learning for NLP tasks106

was first investigated in a pioneer study by Chang107

et al. (2008). Their idea was to map the input text108

and the labels into the same space of representation109

using explicit semantic analysis (Gabrilovich et al.,110

2007), then choose the label with the highest simi-111

larity score. Following the same approach, subse-112

quent studies employed different methods to learn 113

text representations and applied them for zero-shot 114

NLP classification tasks (Song and Roth, 2014; Li 115

et al., 2016; Veeranna et al., 2016; Yogatama et al., 116

2017; Rios and Kavuluru, 2018; Xia et al., 2018; 117

Levy et al., 2017). 118

The emergence of LLMs revolutionized the 119

progress in zero-shot learning for NLP, and since 120

then, it has been an active research field in ar- 121

tificial intelligence (Brown et al., 2020; Schick 122

and Schütze, 2021a,b; Gao et al., 2021; Li and 123

Liang, 2021; Beltagy et al., 2022). There are var- 124

ious studies that investigated zero-shot learning 125

for NLU, and they can be divided into two main 126

sub-categories: methods based on transfer learn- 127

ing (transferring knowledge from another task) and 128

methods based on data augmentation (creating arti- 129

ficial training data). 130

2.1 Transfer learning 131

One of the pioneering and simple method uses NLI 132

to tackle zero-shot text classification is (Yin et al., 133

2019). Their main idea is to use the label itself 134

(with a template) or to use a textual description of 135

the label. For example, the label SPORT, can be 136

converted to a sentence using the following tem- 137

plate: The text is about ..., or, could be described 138

as "an active diversion requiring physical exertion 139

and competition". Motivated by the success of this 140

research, Zhong et al. (2021a) extended that idea 141

by combining data from more than 40 NLU classifi- 142

cation tasks and converted them to a unified YES/NO 143

question answering dataset. The authors reported 144
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strong zero-shot text classification accuracy across145

a variety of NLU tasks. Our approach is influenced146

by these works, but, rather than focusing on us-147

ing multiple data sources, we focus on leveraging148

cross-attention layers in encoder-decoder models.149

More recent approach leverage generative large150

language models (LLMs) such as GPT3, demon-151

strating strong capabilities in few-shot learning by152

scaling the number of parameters (Brown et al.,153

2020; Holtzman et al., 2021). Using prompts154

and in-context learning, few-shot text generation155

achieves very good results and keeps getting better156

(OpenAI, 2023).157

Various studies attempted to alleviate the size158

and compute needed for those LLMs while retain-159

ing zero-shot performances on text classification160

tasks (Shi et al., 2022; Min et al., 2022; Hong et al.,161

2023; Li and Liang, 2021; Zhong et al., 2021b;162

Lester et al., 2021).163

2.2 Data augmentation164

Data augmentation is a technique that is commonly165

used when data is not highly available. It is ex-166

tremely used in the fields of Computer Vision and167

Audio Processing but also in NLP (Feng et al.,168

2021). With the advances of generative LLMs, ac-169

cess to generated text data is relatively easy. When170

it comes to learning new task without available171

labeled data, recent methods either generate train-172

ing data from label-descriptive prompts (Gao et al.,173

2021), use external unlabelled data to aggregate174

and stabilize results (Hong et al., 2023), or, use the175

vocabulary of the internal model as a data source to176

aggregate results (Zhao et al., 2023). Even though177

zero-shot learning methods inspired by data aug-178

mentation approaches achieve strong results, they179

still require to fully fine-tune the model on the syn-180

thetic datasets, which can be very time-consuming181

and not optimal at inference time.182

3 Proposed approach183

Out proposed method uses NLI as a source training184

task to perform classification on unseen tasks. In185

a similary way to what Yin et al. (2019) proposed,186

new tasks are mapped to an NLI format (premise187

and hypothesis) where the premise is the document188

to classify and the hypothesis an instruction (also189

called candidate label) representing the class in190

which the document can be classified. The format191

we used for the evaluated tasks are detailed in Ta-192

ble 1. To handle multiple sentences classification193

tasks, we use the markers (text1, text2, ...). Since 194

Yin et al. (2019) did not provide any templates for 195

multiple sentences classification tasks, we made 196

them ourselves using the same idea. 197

In the following section, we detail our main con- 198

tributions over previous similar works: about the us- 199

age of cross-attention layers and encoder-decoders 200

architectures for zero-shot text classification tasks 201

in Section 3.1, and about the contrasted NLI with 202

instruction dataset used as the source training task 203

in Section 3.2. Figure 1 shows an overview of the 204

proposed method. 205

3.1 Leveraging encoder-decoders for text 206

classification 207

Previous similar works (Yin et al., 2019; Min et al., 208

2022; Zhong et al., 2021a) use large pre-trained 209

encoders to perform classification by leveraging 210

the next sentence prediction (NSP) and/or mask 211

language modeling (MLM) tasks learnt during the 212

pre-training phase. Because, their inputs must fol- 213

low the pre-training format, for zero-shot text clas- 214

sification, it is set as the concatenation of the input 215

text with the candidate label into a single sequence. 216

On the other hand, we propose to split the encod- 217

ing of the input text from the encoding of the candi- 218

date label and model their interaction using cross- 219

attention layers. Not concatenating the input text 220

with the candidate label has obvious practical ad- 221

vantages, especially when the number of candidate 222

classes is high. However, we could think that those 223

advantages come with a certain performance draw- 224

back. The proposed approach shows that cross- 225

attention outperforms concatenation methods while 226

having more practical advantages. 227

One of the reason we thought of doing this is 228

the analogy with how humans execute textual tasks 229

(specifically sentence classification tasks). The first 230

step is usually to screen the input document (to 231

understand it deeply) and then, resolve the task that 232

involves the information present in that document 233

(understand the instruction/question using the pre- 234

processed information). 235

In other words, we believe that for zero-shot text 236

classification, the cross-attention layer allows to 237

guide the instruction, grounded by the input doc- 238

ument like for translation or summarization tasks 239

for generative models. 240

Formally, let S = {s1, ..., sN} and P = 241

{p1, ..., pM} be a sequence of N and M tokens 242

respectively. S represents a document and P the 243

instruction (or prompt). We first map each to- 244
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Method / Task Input Instruction
Yin et al. (2019) premise hypothesis
Zhong et al. (2021a) context question
NLI premise: ... hypothesis: ... The premise {entails, contradicts, neutral} the hypothesis
Textual Entailment text1: ... text2: ... The text1 {entails, do not entails} the text2
Paraphrase text1: ... text2: ... The text1 and the text2 are {paraphrase, not paraphrase}
Sentiment Analysis text: ... The text expresses a sentiment of {positive, negative}
Emotion Detection text: ... The text expresses an emotion of {joy, fear, ...}
Topic classification text: ... The text is about {topic1, topic2, topic3, ...}

Table 1: Templates used for the evaluated tasks. The input corresponds to the input text sentences and the instruction
a textual expression of the candidate class. Yin et al. (2019) used a NLI format which inspired our method. Zhong
et al. (2021a) used a QA format following Khashabi et al. (2020).

ken si into a contextualized, h-dimensional vec-245

tor S = {s1, ..., sN} = {Encoder(s1, ..., sN )}.246

We feed this contextualized sequence S along247

with the sequence P into the decoder (composed248

of cross-attention layers) and obtain a contextu-249

alized sequence P conditioned on S as follows:250

P = {p1, ...,pM} = Decoder(S;P ). S is fed251

as the key/value sequence to each of the cross-252

attention layers and P as the query sequence. The253

sequence P conditioned on S is then mapped254

to a 1-dimensional vector using a simple fully-255

connected layer: C = Linear(mean(P)) using256

the mean− pooling operation. A sigmoid opera-257

tion, along with a binary cross entropy loss function258

is applied for learning.259

3.2 Contrasted NLI with instruction260

Yin et al. (2019) first used Natural Language Infer-261

ence (NLI) as the source training task for zero-shot262

text classification. This approach is very simple in263

practice and shows strong results. However, Ma264

et al. (2021) demonstrates that models pre-trained265

on the next sentence prediction (NSP) task like266

BERT (Devlin et al., 2018) are already good zero-267

shot classifiers and thus, fine-tuning on NLI does268

not show that much improvements. We believe269

that there are two reasons for this: the dataset size,270

and the gap between the source NLI training task271

and the target zero-shot text classification inference272

task. While some previous works focus on collect-273

ing more data from different sources to better gen-274

eralize on zero-shot tasks, our proposed approach275

focus on reducing the training and inference gap276

without additional training data.277

We propose to modify the NLI task into an278

instruction-based NLI task where a new simple279

instruction column is added to the dataset. This280

new column is based on the label of the original281

dataset. As a result, we obtain a dataset having a 282

similar format than the target zero-shot text classi- 283

fication task: the (premise, hypothesis) set can be 284

used as the input document and the instruction as 285

the candidate label. 286

To further tune the decoder towards learning the 287

interaction between the input document and instruc- 288

tion, we use the idea of contrastive learning where 289

each sample has one or more negative counterpart. 290

Applying this, the resulting dataset is a contrasted 291

NLI with instruction dataset that can be used for 292

training models for zero-shot text classification. 293

Furthermore, the resulting dataset is at least 2 times 294

bigger than the original dataset (2 times for 1 nega- 295

tive instruction, 3 times for 2 negative instructions, 296

...). 297

The objective of this new dataset is not to clas- 298

sify a pair of text (premise, hypothesis) into eiter 299

ENTAILMENT, CONTRADICTION or NEUTRAL classes 300

but to match an input text document with an instruc- 301

tion. This objective is closer than the former to the 302

Zero-Shot Text Classification task. An example of 303

contrasted instructions are shown in Figure 2. 304

For datasets with 2 classes, building negative 305

instructions is really simple and does not require 306

any expertise knowledge (NLI can be converted 307

to a binary task by merging the CONTRADICTION 308

and NEUTRAL class to a NON-ENTAILMENT class). 309

The proposed method can also be applied to any 310

2 classes dataset (not necessarily NLI). Building 311

other contrasted instructions datasets is left for fu- 312

ture work. 313

4 Evaluation 314

The proposed method is evaluated on a variety 315

of NLU tasks in the zero-shot setting. We report 316

evaluation results on the GLUE benchmark (Wang 317

et al., 2018) and on closed-set classification tasks 318
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Figure 2: Two examples in the contrasted NLI with
instruction dataset. Each example has a positive instruc-
tion (blue) with label 1 and a negative instruction (red)
with label 0.

as previous works. Evaluated tasks include: textual319

entailment, sentence paraphrases, topic classifica-320

tion, sentiment analysis, emotion classification, and321

more.322

4.1 Evaluation datasets323

GLUE The General Language Understanding Eval-324

uation (GLUE benchmark) by Wang et al. (2018)325

is a collection of resources for training, evaluating,326

and analyzing natural language understanding sys-327

tems. The STSB task is removed from the bench-328

mark as it is a regression task. For MRPC and329

QQP, we report F1, for CoLA Matthews correla-330

tion and for all other tasks accuracy. Values are in331

percentages (scale by 100) as standard practices.332

Topic Classification We use the large-scale "The333

Yahoo! Answers topic classification" dataset from334

Yin et al. (2019) and the AGNews dataset from335

Zhang et al. (2015). Yahoo has a total of 10 classes336

and AGNews has 4.337

Sentiment Analysis We use 3 well-known senti-338

ment analysis datasets: Movie Review (MV), Cus-339

tomers Review (CR) and Rotten Tomatoes (RT).340

For these 3 datasets, we use the data provided by341

Min et al. (2022).342

Emotion Classification We use the Unify Emo-343

tion dataset provided by Yin et al. (2019). It con-344

sists of 9 emotions and a "no emotion" label.345

Datasets details (size, classes, domains, ...) are346

given in Appendix A.347

4.2 Baselines348

NLI 0SHOT-TC Yin et al. (2019) first proposed349

NLI as the source training task for Zero-Shot Text350

Classification. It is a simple method with robust 351

results. 352

T5 Text-To-Text Transfer Transformers (Raffel 353

et al., 2020) is a family of models that has strong 354

performance on a variety of NLP tasks thanks to its 355

unified text-to-text architecture. Its large scale pre- 356

training and ability for multi-task learning makes it 357

a popular choice for text-to-text tasks. We use the 358

large version if not specified. 359

LM-BFF Gao et al. (2021) propose a prompt- 360

based few-shot tuning method along with an auto- 361

matic prompt generation technique. With only few 362

examples, they consistently improve over a prompt- 363

based zero-shot baseline by better leveraging the 364

MLM pre-training task. Although their method use 365

few training data, it shows how well current models 366

perform when a small portion of data is available. 367

MetaQA Zhong et al. (2021a) aggregates 43 dif- 368

ferent dataset in a question-answering (QA) format 369

and fine-tunes a zero-shot classifier. It outperforms 370

UnifiedQA (Khashabi et al., 2020), a model trained 371

with less QA dataset variety. 372

NPM Min et al. (2022) fills in the [MASK] token 373

solely from retrieving a token from a text corpus us- 374

ing a non-parametric masked language model and 375

combine with contrastive training, achieving de- 376

cent performance on Zero-Shot Text Classification 377

tasks. 378

Retrieval ST5 Hong et al. (2023) encodes 379

prompted label candidates with a sentence encoder 380

and assign it to the input text embedding with the 381

highest similarity. It uses an external 10k corpus to 382

compensate for poor prompt label candidates. 383

4.3 Implementation details 384

The proposed method (encoder-decoder) uses the 385

pre-trained T5-large model as it proposes an en- 386

coder as well as cross-attention layers in the de- 387

coder. For the proposed encoder-only method, we 388

use the pre-trained RoBERTa-large model and con- 389

catenate the input document with the instruction 390

as done in previous works. The contrasted NLI 391

with instruction dataset is instantiated from the 392

SNLI (Bowman et al., 2015) dataset. NEUTRAL 393

and CONTRADICTION classes are merged together 394

to form a new NON-ENTAILMENT class. The final 395

Contrasted NLI with Instruction dataset has a size 396

of 1.1M/20k/20k for the train/dev/test split which 397

is double the size of the original SNLI dataset 398

(550k/10k/10k). More details on hyper-parameters 399

are shown in Appendix B. The reported results for 400

the proposed method are averaged on 5 runs for 401
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MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 WNLI CoLA AVG
(acc) (acc) (f1) (acc) (f1) (acc) (acc) (acc) (Matt.)

Zero-Shot
Majority 35.4 35.2 81.2 50.5 0.0 52.7 50.9 56.3 0.0 40.2
Prompt-based ZS 50.8 51.7 61.9 50.8 49.7 51.3 83.6 49.5 2.0 50.1
NLI SHOT-TC 54.4 55.1 70.1 50.0 25.2 65.7 85.0 42.2 -3.7 49.3
Contrast-Enc (ours) 58.5 58.3 72.9 51.9 59.9 79.5 81.5 58.6 -1.2 57.8
Contrast-EncDec (ours) 64.0 64.3 82.2 67.9 70.3 87.8 92.5 65.9 11.3 67.4

Few-Shot and FT
LM-BFF (FS@16) 70.7 72.0 77.8 69.2 69.8 68.7 92.6 79.7 18.7 68.8
T5 (FT) 89.9 89.6 92.4 94.8 73.9 87.2 96.3 85.6 61.2 85.6

Table 2: GLUE results. Prompt-based ZS and LM-BFF are from Gao et al. (2021). NLI 0SHOT-TC is using Yin
et al. (2019). T5 is from Raffel et al. (2020). For our methods, Contrast-Enc uses RoBERTa while Contrast-EncDec
uses T5. Approaches are grouped into those not using training examples (Zero-Shot) and those using training
examples (Few-Shot and Fine-Tuning). The greatest values for Zero-Shot models are in bold, and the overall
greatest values are underlined.

stability (see Appendix C for detailed results).402

5 Results403

5.1 GLUE Benchmark404

The results for the GLUE benchmark are shown in405

Table 2.406

The proposed method using the encoder-decoder407

model is on average +27 absolute points above the408

majority baseline showing that obtain results are409

not random. It is also almost on par with LM-BFF,410

a few-shot method that uses K = 16 examples for411

each class in each task showing that the source con-412

trasted NLI training dataset generalizes well to un-413

seen tasks. Our method even achieves better results414

than a fully fine-tuned model on the RTE dataset415

and achieves close results on QQP and SST2. Re-416

sults on a variety of GLUE dataset shows the wide417

effective range of the proposed method.418

Compared to the previous most similar work by419

Yin et al. (2019), the proposed method achieves420

more than +18 absolute points improvements (a 36421

% increase) while using the same source training422

task (NLI). We are able to show drastic improve-423

ments without collecting any additional data.424

We also reported the proposed method using an425

encoder-only model and it also outperforms pre-426

vious works with the same encoding strategy (i.e.,427

concatenation). It is on average +8 absolute points428

(17% increase) over Yin et al. (2019). These re-429

sults show that the contrasted NLI training has a430

positive impact whether we are using encoder-only431

or encoder-decoder as the architecture. On top of432

this, separating the encoding of the input document433

from the instruction has an even greater positive 434

impact on the results since encoder-decoder models 435

perform better than encoder-only. 436

5.2 Closed-set text classification 437

To further investigate the performance of the pro- 438

posed method, we evaluate our model on various 439

closed-set text classification tasks. The results are 440

shown in Table 3. 441

We first want to note that the results in Table 3 442

are quite sparse due to the fact that there are no 443

benchmarks for closed-set text classification. In 444

that setting, direct comparison is better than aver- 445

age comparison. 446

Evaluation shows that first, the proposed method 447

using an encoder-only model under performs the 448

baseline showing that using a contrasted NLI 449

dataset with instruction combined with concate- 450

nation does not help on the evaluated closed-set 451

text classification datasets. However, the proposed 452

method (encoder-decoder) outperforms, with a 453

large margin, every previous zero-shot methods 454

by Yin et al. (2019), Zhong et al. (2021a), and, 455

Hong et al. (2023) on every dataset. Hong et al. 456

(2023) is only not beaten on Yahoo which could 457

be explained by the large number of classes in this 458

dataset. When comparing with the most similar 459

work by Yin et al. (2019), evaluation is improved 460

from 67.4 to 73.3 (almost +7 absolute points, a 461

+8.7% increase). 462

The proposed method also significantly outper- 463

forms NPM (Min et al., 2022) that uses an external 464

10k size corpus during inference. It even beats 465

LM-BFF (Gao et al., 2021), a few-shot method. 466
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AGNews Yahoo UnifyEmotion MR RT CR AVG
(acc) (acc) (f1) (acc) (acc) (acc)

Zero-Shot
Majority
NLI 0SHOT-TC 74.6 53.3 27.0 78.5 80.5 90.7 67.4
MetaQA 82.0 54.3 28.5 - - -
Retrieval ST5 76.6 57.4 - 81.7 82.4 87.4 -
Contrast-Enc (ours) 70.8 46.0 26.6 75.7 74.3 85.2 63.1
Contrast-EncDec (ours) 87.7 55.0 29.9 86.7 87.3 92.0 73.3

Few-Shot and FT
NPM (corpus) 74.5 53.9 - 83.7 86.0 81.2 -
LM-BFF (FS@16) - - - 86.6 - 90.2 -
RoBERTa (FT) - - - 90.8 - 89.4 -

Table 3: Zero-Shot results on closed-set classification tasks. NLI 0SHOT-TC is using (Yin et al., 2019). MetaQA is
from (Zhong et al., 2021a), Retrieval ST5 from (Hong et al., 2023). NPM and RoBERTa are from (Min et al., 2022).
LM-BFF is from Gao et al. (2021). For our methods, Contrast-Enc uses RoBERTa while Contrast-EncDec uses
T5. Approaches are grouped into those not using training examples (Zero-Shot) and those using training examples
(Few-Shot and Fine-Tuning). The greatest values for Zero-Shot models are in bold, and the overall greatest values
are underlined.

5.3 Contrasted NLI with instruction467

One of our core proposal is the contrasted NLI with468

instruction dataset that is used to train our models.469

As said in Section 3.2, the dataset is simply build470

using already existing NLI datasets. To prove the471

effectiveness of this dataset for our models, we472

propose to compare 4 different settings including473

the original dataset:474

• 3-way: original dataset with ENTAILMENT,475

NEUTRAL, and CONTRADICTION classes476

• Binary: 3-way dataset where NEUTRAL and477

CONTRADICTION classes are merged478

• Instruct: binary dataset with the addition of479

(positive) instructions480

• Contrast: binary dataset with contrasted (pos-481

itive and negative) instructions482

Results on closed-set classification tasks are483

shown in Figure 3484

Results on the evaluated datasets show that: 2-485

classes datasets (binary, instruct, contrast) are on486

average better than 3-way. Adding instructions487

(instruct, contrast) has a more significant positive488

impact with +3 points for instruct and +6 points489

for contrast compared to 3-way. We think that this490

is thanks to the gap reduction between the training491

and inference tasks.492

The difference between instruct and contrast in493

Figure 3 is interesting. We remark that on the MR,494

RT, and CR datasets, the two methods are similar 495

while on the others, positive instructions only is 496

worse than without any instructions. Because the 497

latter often happens on datasets where even the 498

baseline produces good results, properties of these 499

datasets (sequence length, number of classes, ...) 500

could explain this trend. We also noticed that this 501

happened with sentiment analysis datasets so there 502

could be a link. Further evaluation could explain 503

this trend. 504

The proposed method (contrast) consistently 505

outperforms every other method on all evaluated 506

datasets with a large margin without showing a sim- 507

ilar trend than the former contrast dataset. Adding 508

contrasted instructions mitigates errors and does 509

not show saturation while being consistent. 510

5.4 Number of cross-attention layers 511

Leveraging cross-attention layers for zero-shot text 512

classification is one of our main proposal. Previ- 513

ous works focus only on using self-attention layers 514

in the encoder, by concatenating the input docu- 515

ment with the instruction (candidate label). Table 2 516

and Table 3 show the effectiveness of using cross- 517

attention layers (i.e., encoder-decoder) for this kind 518

of task. In this section, we propose to dive deeper 519

on the usage of these cross-attention layers by ex- 520

perimenting different decoder size (i.e., different 521

number of cross-attention layers). We experiment 522

1, 6, 12 and 24 cross-attention layers. Results are 523

shown in Table 4. 524
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Figure 3: Zero-Shot results on closed-set classification tasks with different training dataset using the proposed
model. The contrast dataset performs the best on average.

# Layers GLUE Closed-Set ∆
(average) (average) (average)

1 67.4 73.3 0.0
6 67.5 73.2 0.0
12 67.0 73.1 -0.3
24 66.8 73.0 -0.5

Table 4: Effect of the number of cross-attention layers
(i.e., decoder size) on evaluated tasks. ∆ represents the
average difference compared to the smallest model.

On average, increasing the number of cross-525

attention layers does not result in higher perfor-526

mances unlike other trends in NLP (CITE). We see527

that having a small number of layers actually per-528

forms better than having a high number of layers,529

showing a saturation at around N = 6 layers.530

To explain these number, we hypothesis that the531

contrastive training strategy is able to train smaller532

models with final good performance effectively. In-533

deed, we believe that this comes from the negative534

instruction examples in the training dataset. We be-535

lieve that these examples force the cross-attention536

layers to effectively learn the meaning of the in-537

struction, grounded by the meaning of the input538

document. During training, the same input docu-539

ment is seen twice (for a single epoch) but with540

different instructions. Thus, one of the input of the541

cross-attention layer stays the same while the other542

changes. This difference seems to be the key to ef-543

fectively learn cross-attention layers in a contrasted544

way.545

Another reason that could explain these results 546

are the fact that the instructions are rather simple 547

English sentences compared to the input document, 548

so it would need less layers to learn its meaning. 549

This trend show that the add of a small decoder 550

(1 to 6 layers) show significant improvements while 551

adding only a few number of parameters compared 552

to the full encoder-decoder model. Compared to 553

encoder-only models, this results in a 4% increase 554

for a single layer jumping from 356M to 370M pa- 555

rameters while being way more effective as shown 556

in Table 2 and Table 3. 557

6 Conclusion 558

We propose to use cross-attention layers combined 559

with a contrasted NLI dataset for zero-shot text 560

classification. The proposed method allows the 561

separation of the encoding of the input document 562

and the candidate label at inference time unlike 563

previous methods that concatenate them to form 564

a single sequence. Evaluation on a large panel 565

of NLU task including the GLUE benchmark and 566

closed-set classification tasks demonstrates the ef- 567

fectiveness of our approach. Thanks to the nature 568

of the contrasted training, we also showed that the 569

proposed method do not need a large decoder to 570

achieve strong results, close to few-shot or fine- 571

tuning methods. 572

7 Limitations and Risks 573

The proposed method is still instruction (prompt) 574

dependent and does not propose any strategy to 575

improve them. Because the used instructions were 576
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generally short, the effect of longer instructions has577

not been evaluated and could be a topic for further578

research. It goes the same with longer documents.579

The evaluated datasets did not contain very long580

documents (i.e., longer than 512 tokens) and thus581

the robustness of the proposed method on longer582

inputs documents is still left unexplored.583

The proposed method uses a contrasted NLI584

dataset that is twice the size of the original NLI585

dataset. This means the training time for a single586

epoch is also doubled with the same computation587

resources. This can be seen as a drawback even588

though training time is usually less important than589

inference time.590

For multi-class classification problems, even591

thought inference should be faster than previous592

works, the decoder has to be run for every class593

which can be unpractical if the number of class594

is very high. Batch inference neglect this but at a595

certain computational cost.596

Finally, because LLMs are pre-trained on large597

web corpus, we can not guarantee that some eval-598

uated dataset were not present in the pre-training599

dataset. In that sense, expected results can vary600

depending on pre-training strategy. On top of this,601

as the datasets used for training includes bias, using602

different dataset may have a large impact on the603

results.604
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A Datasets 806

Table 5 shows the list of the datasets we used in our 807

Zero-Shot evaluation. In total, we used six datasets, 808

two of them are Topic Classification (AGNews and 809

Yahoo), three are Sentiment Analysis (Movie Re- 810

views, Rotten Tomatoes, and Customer Reviews), 811

and the last one is Emotion Classification (Unify 812

Emotion). 813

B Result with Standard deviation 814

Our models are trained for 1 epoch with a batch 815

size of 64 and maximum sequence length of 128. 816

AdamW optimizer (Loshchilov and Hutter, 2019) 817

is used with a constant learning rate of 1e-4. Ex- 818

periments are done on consumer GPUs for repro- 819

ducibility: we use a single NVIDIA GeForce RTX 820

3090 Ti (24Gb of VRAM) GPU with QLoRA 821

(R = 64, alpha = 16) (Dettmers et al., 2023) us- 822

ing HuggingFace’s transformers (Wolf et al., 2020) 823

and PEFT (Mangrulkar et al., 2022) libraries. 824

C Result with Standard deviation 825

Table 6 and Table 7 show the standard deviation 826

over 5 runs for our proposed models on the GLUE 827

and closed-set classification datasets. 828

D Fully Fine-tuned Results on GLUE 829

Table 8 shows results of RoBERTa and T5 mod- 830

els when fine-tuned on each dataset of the GLUE 831

benchmark. Overall, RoBERTa leads to betters re- 832

sults in terms of number of parameters since its ar- 833

chitecture is made for sequence classification tasks. 834
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Dataset name Task Size Classes Class names

AGNews Topic 7.6k 4 world, sports, business, sci-tech
Yahoo Topic 60k 10 Society & Culture, Science & Mathematics, Health, Edu-

cation & Reference, Computers & Internet, Sports, Busi-
ness & Finance, Entertainment & Music, Family & Rela-
tionships, Politics & Government

Movie Reviews Sentiment 2k 2 positive, negative
Rotten Tomatoes Sentiment 2k 2 positive, negative

Customer Reviews Sentiment 2k 2 positive, negative

Unify Emotion Emotion 15.6k 10 fear, joy, sadness, shame, guilt, disgust, anger, surprise,
love, noemo

Table 5: Details for the datasets used for zero-shot evaluation

MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 WNLI CoLA AVG
(acc) (acc) (f1) (acc) (f1) (acc) (acc) (acc) (Matt.)

Contrast-Enc (ours) 0.4 0.5 6.6 1.5 3.5 1.8 1.7 4.1 2.4 0.8
Contrast-EncDec (ours) 3.1 3.6 0.2 3.9 0.8 0.8 0.5 3.8 4.4 1.2

Table 6: Standard deviation over 5 runs for our methods, Contrast-Enc uses RoBERTa while Contrast-EncDec uses
T5.

AGNews Yahoo UnifyEmotion MR RT CR AVG
(acc) (acc) (f1) (acc) (acc) (acc)

Contrast-Enc (ours) 4.4 4.2 1.4 2.8 2.9 3.8 2.0
Contrast-EncDec (ours) 0.5 0.9 0.6 0.8 0.5 0.3 0.3

Table 7: Standard deviation over 5 runs for our methods, Contrast-Enc uses RoBERTa while Contrast-EncDec uses
T5.

Model Params MNLI MNLI-mm MRPC QNLI QQP RTE SST-2 WNLI CoLA AVG
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

RoBERTa 356M 90.2 90.2 90.9 94.7 92.2 86.6 96.4 91.3 68.0 88.9
T5 755M 89.9 89.6 89.9 94.8 89.9 87.2 96.3 85.6 61.2 87.2

Table 8: GLUE results for RoBERTa-large (356M) and T5-large (755M) model when fully fine-tuned on each task.

12


	Introduction
	Related Research
	Transfer learning
	Data augmentation

	Proposed approach
	Leveraging encoder-decoders for text classification
	Contrasted NLI with instruction

	Evaluation
	Evaluation datasets
	Baselines
	Implementation details

	Results
	GLUE Benchmark
	Closed-set text classification
	Contrasted NLI with instruction
	Number of cross-attention layers

	Conclusion
	Limitations and Risks
	Datasets
	Result with Standard deviation
	Result with Standard deviation
	Fully Fine-tuned Results on GLUE

