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Abstract

Developing a general purpose model that can
tackle many different Natural Language Under-
standing (NLU) tasks without requiring man-
ually annotated data has become an ambitious
yet desirable goal for the NLP research com-
munity. A simple and prominent approach for
zero-shot text classification is to train a model
on a generic language understanding task such
as Natural Language Inference (NLI), and per-
form inference on NLU classification tasks us-
ing instructions or candidate templates. Those
methods jointly encode the input document and
the instruction into a single sequence leverag-
ing self-attention layers and the next-sentence-
prediction (NSP) pre-training task.

We hypothesize that this joint encoding limits
the capabilities of large pre-trained encoders
while being sub-optimal in many practical ap-
plications. To tackle those issues, we propose a
novel approach that separates the encoding of
the input document and use it as a ground ref-
erence to enhance the encoding of the instruc-
tion through cross-attention using an encoder-
decoder architecture. We further propose a sim-
ple transformation on traditional NLI datasets
that focuses on the learning of these Cross-
Attention layers using contrasted data. Finally,
we show that this approach do not need a full-
sized decoder for best performance. Our exper-
iments show that the proposed approach out-
performs similar approaches by a large margin
and sometimes achieves comparable results to
fully fine-tuned methods.

1 Introduction

Natural language understanding (NLU) is a major
research topic in natural language processing that
has various practical applications. NLU is a broad
task, with the goal of comprehending and deter-
mining the meaning behind a given text. Many
NLU tasks, such as sentiment analysis, emotion
recognition, or topic detection, involve assigning a

semantic label (e.g. sentiment, emotion, or topic) to
an input sentence. The conventional approach for
building classification models is to use supervised
learning with a large quantity of annotated training
data. However, the construction of such dataset
requires much time for collecting, curating, and
annotation. Pre-trained language models provide
us a partial solution to this problem, however, the
training process still takes much time and requires
large amount of resources (Vaswani et al., 2017;
Devlin et al., 2018; Liu et al., 2019). In addition
to that, the resulting model can only handle a sin-
gle task. Therefore, we need separate models for
each task, increasing the overall cost. As a result, it
is desirable to create unified classification models
that can perform multiple NLU classification tasks
without requiring specific training datasets for each
task.

As a solution for the above problem, several stud-
ies proposed to fine-tune large pre-trained model
on generic classification tasks, such as Natural Lan-
guage Inference. Natural language inference (NLI)
is the task of determining whether a hypothesis is
true (ENTAILMENT), false (CONTRADICTION), or un-
determined (NEUTRAL) given a premise. We can
see that by treating the input text of NLU tasks
as the premise and the class labels as the hypoth-
esis, we can use models trained on NLI to per-
form Zero-Shot NLU classification tasks. Yin et al.
(2019) investigated the utilization of NLI datasets
as the source training task of Zero-Shot models and
showed promising results on 3 closed-set classifica-
tion tasks. However, the majority of current studies
consider the input document and the instruction
text as a single sequence which is unpractical for
real-world applications.

In this work, we propose to leverage cross-
attention for zero-shot NLU classification tasks
using contrasted NLI with instruction training. The
proposed method uses an encoder-decoder architec-
ture to process the instruction text separately from
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The text expresses sadness

instruction: [The premise is neutral or
contradicts the hypothesis / The
premise entails the hypothesis]

premise: | like baseball
hypothesis: | like sports

Training: Contrasted NLI with Instructions

T The text expresses fear
Encoder

The text expresses joy

text: | am happy

Inference: Zero-Shot NLU classification

Figure 1: Overview of the proposed method. Cross-Attention layers in the Decoder are learnt using a Contrasted
NLI with Instruction dataset (left). Zero-Shot NLU inference (right) uses similar input and output shapes than

during training.

the input text document. The main contributions of
this work are as follows:

1. We propose to use encoder-decoder architec-
tures for zero-shot text classification to encode
the input document and the class instruction
text separately allowing us to leverage cross-
attention layers

2. We demonstrate that training on a contrasted
NLI dataset with natural language instructions
is an effective source training task for the pro-
posed architecture as well as for encoder-only
architectures

3. We show through experiments that a small
number of decoder layers outperform larger
networks while having similar size to encoder-
only methods

4. We conduct extensive experiments on a wide
variety of tasks to confirm the effectiveness
of the proposed method and find that the pro-
posed method beats previous Zero-Shot meth-
ods by a large margin and achieves similar
results to Few-Shot and Fine-Tuning methods.

2 Related Research

The problem of zero-shot learning for NLP tasks
was first investigated in a pioneer study by Chang
et al. (2008). Their idea was to map the input text
and the labels into the same space of representation
using explicit semantic analysis (Gabrilovich et al.,
2007), then choose the label with the highest simi-
larity score. Following the same approach, subse-

quent studies employed different methods to learn
text representations and applied them for zero-shot
NLP classification tasks (Song and Roth, 2014; Li
et al., 2016; Veeranna et al., 2016; Yogatama et al.,
2017; Rios and Kavuluru, 2018; Xia et al., 2018;
Levy et al., 2017).

The emergence of LLMs revolutionized the
progress in zero-shot learning for NLP, and since
then, it has been an active research field in ar-
tificial intelligence (Brown et al., 2020; Schick
and Schiitze, 2021a,b; Gao et al., 2021; Li and
Liang, 2021; Beltagy et al., 2022). There are var-
ious studies that investigated zero-shot learning
for NLU, and they can be divided into two main
sub-categories: methods based on transfer learn-
ing (transferring knowledge from another task) and
methods based on data augmentation (creating arti-
ficial training data).

2.1 Transfer learning

One of the pioneering and simple method uses NLI
to tackle zero-shot text classification is (Yin et al.,
2019). Their main idea is to use the label itself
(with a template) or to use a textual description of
the label. For example, the label SPORT, can be
converted to a sentence using the following tem-
plate: The text is about ..., or, could be described
as "an active diversion requiring physical exertion
and competition". Motivated by the success of this
research, Zhong et al. (2021a) extended that idea
by combining data from more than 40 NLU classifi-
cation tasks and converted them to a unified YES/NO
question answering dataset. The authors reported



strong zero-shot text classification accuracy across
a variety of NLU tasks. Our approach is influenced
by these works, but, rather than focusing on us-
ing multiple data sources, we focus on leveraging
cross-attention layers in encoder-decoder models.

More recent approach leverage generative large
language models (LLMs) such as GPT3, demon-
strating strong capabilities in few-shot learning by
scaling the number of parameters (Brown et al.,
2020; Holtzman et al., 2021). Using prompts
and in-context learning, few-shot text generation
achieves very good results and keeps getting better
(OpenAl, 2023).

Various studies attempted to alleviate the size
and compute needed for those LLMs while retain-
ing zero-shot performances on text classification
tasks (Shi et al., 2022; Min et al., 2022; Hong et al.,
2023; Li and Liang, 2021; Zhong et al., 2021b;
Lester et al., 2021).

2.2 Data augmentation

Data augmentation is a technique that is commonly
used when data is not highly available. It is ex-
tremely used in the fields of Computer Vision and
Audio Processing but also in NLP (Feng et al.,
2021). With the advances of generative LLMs, ac-
cess to generated text data is relatively easy. When
it comes to learning new task without available
labeled data, recent methods either generate train-
ing data from label-descriptive prompts (Gao et al.,
2021), use external unlabelled data to aggregate
and stabilize results (Hong et al., 2023), or, use the
vocabulary of the internal model as a data source to
aggregate results (Zhao et al., 2023). Even though
zero-shot learning methods inspired by data aug-
mentation approaches achieve strong results, they
still require to fully fine-tune the model on the syn-
thetic datasets, which can be very time-consuming
and not optimal at inference time.

3 Proposed approach

Out proposed method uses NLI as a source training
task to perform classification on unseen tasks. In
a similary way to what Yin et al. (2019) proposed,
new tasks are mapped to an NLI format (premise
and hypothesis) where the premise is the document
to classify and the hypothesis an instruction (also
called candidate label) representing the class in
which the document can be classified. The format
we used for the evaluated tasks are detailed in Ta-
ble 1. To handle multiple sentences classification

tasks, we use the markers (text1, text2,...). Since
Yin et al. (2019) did not provide any templates for
multiple sentences classification tasks, we made
them ourselves using the same idea.

In the following section, we detail our main con-
tributions over previous similar works: about the us-
age of cross-attention layers and encoder-decoders
architectures for zero-shot text classification tasks
in Section 3.1, and about the contrasted NLI with
instruction dataset used as the source training task
in Section 3.2. Figure 1 shows an overview of the
proposed method.

3.1 Leveraging encoder-decoders for text
classification

Previous similar works (Yin et al., 2019; Min et al.,
2022; Zhong et al., 2021a) use large pre-trained
encoders to perform classification by leveraging
the next sentence prediction (NSP) and/or mask
language modeling (MLM) tasks learnt during the
pre-training phase. Because, their inputs must fol-
low the pre-training format, for zero-shot text clas-
sification, it is set as the concatenation of the input
text with the candidate label into a single sequence.

On the other hand, we propose to split the encod-
ing of the input text from the encoding of the candi-
date label and model their interaction using cross-
attention layers. Not concatenating the input text
with the candidate label has obvious practical ad-
vantages, especially when the number of candidate
classes is high. However, we could think that those
advantages come with a certain performance draw-
back. The proposed approach shows that cross-
attention outperforms concatenation methods while
having more practical advantages.

One of the reason we thought of doing this is
the analogy with how humans execute textual tasks
(specifically sentence classification tasks). The first
step is usually to screen the input document (to
understand it deeply) and then, resolve the task that
involves the information present in that document
(understand the instruction/question using the pre-
processed information).

In other words, we believe that for zero-shot text
classification, the cross-attention layer allows to
guide the instruction, grounded by the input doc-
ument like for translation or summarization tasks
for generative models.

Formally, let S = {si,....,sy} and P =
{p1,...,pm} be a sequence of N and M tokens
respectively. S represents a document and P the
instruction (or prompt). We first map each to-



Method / Task Input Instruction
Yin et al. (2019) premise hypothesis
Zhong et al. (2021a) context question

NLI premise: ... hypothesis: ...
Textual Entailment  textl: ... text2: ...
Paraphrase textl: ... text2: ...
Sentiment Analysis  text: ...

Emotion Detection  text: ...

Topic classification  text: ...

The premise {entails, contradicts, neutral} the hypothesis
The textl {entails, do not entails} the text2

The textl and the text2 are {paraphrase, not paraphrase}
The text expresses a sentiment of {positive, negative}
The text expresses an emotion of {joy, fear, ...}

The text is about {topicl, topic2, topic3, ...}

Table 1: Templates used for the evaluated tasks. The input corresponds to the input text sentences and the instruction
a textual expression of the candidate class. Yin et al. (2019) used a NLI format which inspired our method. Zhong
et al. (2021a) used a QA format following Khashabi et al. (2020).

ken s; into a contextualized, h-dimensional vec-
tor S = {s1,....sn} = {Encoder(si,...,sn)}
We feed this contextualized sequence S along
with the sequence P into the decoder (composed
of cross-attention layers) and obtain a contextu-
alized sequence P conditioned on S as follows:
P = {p,...,py} = Decoder(S;P). S is fed
as the key/value sequence to each of the cross-
attention layers and P as the query sequence. The
sequence P conditioned on S is then mapped
to a I-dimensional vector using a simple fully-
connected layer: C' = Linear(mean(P)) using
the mean — pooling operation. A sigmoid opera-
tion, along with a binary cross entropy loss function
is applied for learning.

3.2 Contrasted NLI with instruction

Yin et al. (2019) first used Natural Language Infer-
ence (NLI) as the source training task for zero-shot
text classification. This approach is very simple in
practice and shows strong results. However, Ma
et al. (2021) demonstrates that models pre-trained
on the next sentence prediction (NSP) task like
BERT (Devlin et al., 2018) are already good zero-
shot classifiers and thus, fine-tuning on NLI does
not show that much improvements. We believe
that there are two reasons for this: the dataset size,
and the gap between the source NLI training task
and the target zero-shot text classification inference
task. While some previous works focus on collect-
ing more data from different sources to better gen-
eralize on zero-shot tasks, our proposed approach
focus on reducing the training and inference gap
without additional training data.

We propose to modify the NLI task into an
instruction-based NLI task where a new simple
instruction column is added to the dataset. This
new column is based on the label of the original

dataset. As a result, we obtain a dataset having a
similar format than the target zero-shot text classi-
fication task: the (premise, hypothesis) set can be
used as the input document and the instruction as
the candidate label.

To further tune the decoder towards learning the
interaction between the input document and instruc-
tion, we use the idea of contrastive learning where
each sample has one or more negative counterpart.
Applying this, the resulting dataset is a contrasted
NLI with instruction dataset that can be used for
training models for zero-shot text classification.
Furthermore, the resulting dataset is at least 2 times
bigger than the original dataset (2 times for 1 nega-
tive instruction, 3 times for 2 negative instructions,
).

The objective of this new dataset is not to clas-
sify a pair of text (premise, hypothesis) into eiter
ENTAILMENT, CONTRADICTION or NEUTRAL classes
but to match an input text document with an instruc-
tion. This objective is closer than the former to the
Zero-Shot Text Classification task. An example of
contrasted instructions are shown in Figure 2.

For datasets with 2 classes, building negative
instructions is really simple and does not require
any expertise knowledge (NLI can be converted
to a binary task by merging the CONTRADICTION
and NEUTRAL class to a NON-ENTAILMENT class).
The proposed method can also be applied to any
2 classes dataset (not necessarily NLI). Building
other contrasted instructions datasets is left for fu-
ture work.

4 Evaluation

The proposed method is evaluated on a variety
of NLU tasks in the zero-shot setting. We report
evaluation results on the GLUE benchmark (Wang
et al., 2018) and on closed-set classification tasks



Entailment input:
premise: Two women are embracing while holding to go packages.
hypothesis: Two woman are holding packages.

Instruction

The meaning of the claim is logically inferred from the meaning of the premise

The meaning of the claim either contradicts the meaning of the premise, is unrelated
to it, or does not provide sufficient information to infer the meaning of the premise

Non-entailment input:

premise: Aman in a blue shirt standing in front of a garage-like structure painted
with geometric designs.

hypothesis: Aman is wearing a black shirt.

Instruction

The meaning of the claim is logically inferred from the meaning of the premise

The meaning of the claim either contradicts the meaning of the premise, is unrelated
to it, or does not provide sufficient information to infer the meaning of the premise

Figure 2: Two examples in the contrasted NLI with
instruction dataset. Each example has a positive instruc-
tion (blue) with label 1 and a negative instruction (red)
with label 0.

as previous works. Evaluated tasks include: textual
entailment, sentence paraphrases, topic classifica-
tion, sentiment analysis, emotion classification, and
more.

4.1 Evaluation datasets

GLUE The General Language Understanding Eval-
vation (GLUE benchmark) by Wang et al. (2018)
is a collection of resources for training, evaluating,
and analyzing natural language understanding sys-
tems. The STSB task is removed from the bench-
mark as it is a regression task. For MRPC and
QQP, we report F1, for CoLA Matthews correla-
tion and for all other tasks accuracy. Values are in
percentages (scale by 100) as standard practices.

Topic Classification We use the large-scale "The
Yahoo! Answers topic classification" dataset from
Yin et al. (2019) and the AGNews dataset from
Zhang et al. (2015). Yahoo has a total of 10 classes
and AGNews has 4.

Sentiment Analysis We use 3 well-known senti-
ment analysis datasets: Movie Review (MV), Cus-
tomers Review (CR) and Rotten Tomatoes (RT).
For these 3 datasets, we use the data provided by
Min et al. (2022).

Emotion Classification We use the Unify Emo-
tion dataset provided by Yin et al. (2019). It con-
sists of 9 emotions and a "no emotion" label.

Datasets details (size, classes, domains, ...) are
given in Appendix A.

4.2 Baselines

NLI OSHOT-TC Yin et al. (2019) first proposed
NLI as the source training task for Zero-Shot Text

Classification. It is a simple method with robust
results.

TS5 Text-To-Text Transfer Transformers (Raffel
et al., 2020) is a family of models that has strong
performance on a variety of NLP tasks thanks to its
unified text-to-text architecture. Its large scale pre-
training and ability for multi-task learning makes it
a popular choice for text-to-text tasks. We use the
large version if not specified.

LM-BFF Gao et al. (2021) propose a prompt-
based few-shot tuning method along with an auto-
matic prompt generation technique. With only few
examples, they consistently improve over a prompt-
based zero-shot baseline by better leveraging the
MLM pre-training task. Although their method use
few training data, it shows how well current models
perform when a small portion of data is available.

MetaQA Zhong et al. (2021a) aggregates 43 dif-
ferent dataset in a question-answering (QA) format
and fine-tunes a zero-shot classifier. It outperforms
UnifiedQA (Khashabi et al., 2020), a model trained
with less QA dataset variety.

NPM Min et al. (2022) fills in the [MASK] token
solely from retrieving a token from a text corpus us-
ing a non-parametric masked language model and
combine with contrastive training, achieving de-
cent performance on Zero-Shot Text Classification
tasks.

Retrieval STS Hong et al. (2023) encodes
prompted label candidates with a sentence encoder
and assign it to the input text embedding with the
highest similarity. It uses an external 10k corpus to
compensate for poor prompt label candidates.

4.3 Implementation details

The proposed method (encoder-decoder) uses the
pre-trained T5-large model as it proposes an en-
coder as well as cross-attention layers in the de-
coder. For the proposed encoder-only method, we
use the pre-trained RoBERTa-large model and con-
catenate the input document with the instruction
as done in previous works. The contrasted NLI
with instruction dataset is instantiated from the
SNLI (Bowman et al., 2015) dataset. NEUTRAL
and CONTRADICTION classes are merged together
to form a new NON-ENTAILMENT class. The final
Contrasted NLI with Instruction dataset has a size
of 1.1M/20k/20k for the train/dev/test split which
is double the size of the original SNLI dataset
(550k/10k/10k). More details on hyper-parameters
are shown in Appendix B. The reported results for
the proposed method are averaged on 5 runs for



MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 WNLI CoLA AVG
(acc) (acc) 1) (acc) (f1)  (acc) (acc) (acc)  (Matt.)

Zero-Shot
Majority 354 35.2 81.2 50.5 0.0 527 509 56.3 0.0 40.2
Prompt-based ZS 50.8 51.7 61.9 50.8 49.7 513 83.6 49.5 2.0 50.1
NLI SHOT-TC 54.4 55.1 70.1 50.0 252 657 85.0 422 -3.7 49.3
Contrast-Enc (ours) 58.5 58.3 72.9 51.9 599 795 815 58.6 -1.2 57.8
Contrast-EncDec (ours) 64.0 64.3 82.2 67.9 703 878 925 65.9 11.3 67.4
Few-Shot and FT
LM-BFF (FS@16) 70.7 72.0 77.8 69.2 69.8 687 92.6 79.7 18.7 68.8
T5 (FT) 89.9 89.6 92.4 948 739 872 963 856 612 856

Table 2: GLUE results. Prompt-based ZS and LM-BFF are from Gao et al. (2021). NLI OSHOT-TC is using Yin
et al. (2019). T5 is from Raffel et al. (2020). For our methods, Contrast-Enc uses RoBERTa while Contrast-EncDec
uses T5. Approaches are grouped into those not using training examples (Zero-Shot) and those using training
examples (Few-Shot and Fine-Tuning). The greatest values for Zero-Shot models are in bold, and the overall

greatest values are underlined.

stability (see Appendix C for detailed results).

5 Results
5.1 GLUE Benchmark

The results for the GLUE benchmark are shown in
Table 2.

The proposed method using the encoder-decoder
model is on average +27 absolute points above the
majority baseline showing that obtain results are
not random. It is also almost on par with LM-BFF,
a few-shot method that uses K = 16 examples for
each class in each task showing that the source con-
trasted NLI training dataset generalizes well to un-
seen tasks. Our method even achieves better results
than a fully fine-tuned model on the RTE dataset
and achieves close results on QQP and SST2. Re-
sults on a variety of GLUE dataset shows the wide
effective range of the proposed method.

Compared to the previous most similar work by
Yin et al. (2019), the proposed method achieves
more than +18 absolute points improvements (a 36
% increase) while using the same source training
task (NLI). We are able to show drastic improve-
ments without collecting any additional data.

We also reported the proposed method using an
encoder-only model and it also outperforms pre-
vious works with the same encoding strategy (i.e.,
concatenation). It is on average +8 absolute points
(17% increase) over Yin et al. (2019). These re-
sults show that the contrasted NLI training has a
positive impact whether we are using encoder-only
or encoder-decoder as the architecture. On top of
this, separating the encoding of the input document

from the instruction has an even greater positive
impact on the results since encoder-decoder models
perform better than encoder-only.

5.2 Closed-set text classification

To further investigate the performance of the pro-
posed method, we evaluate our model on various
closed-set text classification tasks. The results are
shown in Table 3.

We first want to note that the results in Table 3
are quite sparse due to the fact that there are no
benchmarks for closed-set text classification. In
that setting, direct comparison is better than aver-
age comparison.

Evaluation shows that first, the proposed method
using an encoder-only model under performs the
baseline showing that using a contrasted NLI
dataset with instruction combined with concate-
nation does not help on the evaluated closed-set
text classification datasets. However, the proposed
method (encoder-decoder) outperforms, with a
large margin, every previous zero-shot methods
by Yin et al. (2019), Zhong et al. (2021a), and,
Hong et al. (2023) on every dataset. Hong et al.
(2023) is only not beaten on Yahoo which could
be explained by the large number of classes in this
dataset. When comparing with the most similar
work by Yin et al. (2019), evaluation is improved
from 67.4 to 73.3 (almost +7 absolute points, a
+8.7% increase).

The proposed method also significantly outper-
forms NPM (Min et al., 2022) that uses an external
10k size corpus during inference. It even beats
LM-BFF (Gao et al., 2021), a few-shot method.



AGNews Yahoo UnifyEmotion MR RT CR AVG
(acc) (acc) (f1) (acc) (acc) (acc)

Zero-Shot
Majority
NLI OSHOT-TC 74.6 53.3 27.0 785 805 90.7 674
MetaQA 82.0 54.3 28.5 - - -
Retrieval ST5 76.6 57.4 - 81.7 824 874 -
Contrast-Enc (ours) 70.8 46.0 26.6 757 743 852 63.1
Contrast-EncDec (ours) 87.7 55.0 29.9 86.7 873 92.0 733
Few-Shot and FT
NPM (corpus) 74.5 53.9 - 83.7 86.0 81.2 -
LM-BFF (FS@16) - - - 86.6 - 90.2 -
RoBERTa (FT) - - - 90.8 - 89.4 -

Table 3: Zero-Shot results on closed-set classification tasks. NLI 0SHOT-TC is using (Yin et al., 2019). MetaQA is
from (Zhong et al., 2021a), Retrieval ST5 from (Hong et al., 2023). NPM and RoBERTa are from (Min et al., 2022).
LM-BFF is from Gao et al. (2021). For our methods, Contrast-Enc uses ROBERTa while Contrast-EncDec uses
TS. Approaches are grouped into those not using training examples (Zero-Shot) and those using training examples
(Few-Shot and Fine-Tuning). The greatest values for Zero-Shot models are in bold, and the overall greatest values

are underlined.

5.3 Contrasted NLI with instruction

One of our core proposal is the contrasted NLI with
instruction dataset that is used to train our models.
As said in Section 3.2, the dataset is simply build
using already existing NLI datasets. To prove the
effectiveness of this dataset for our models, we
propose to compare 4 different settings including
the original dataset:

* 3-way: original dataset with ENTAILMENT,
NEUTRAL, and CONTRADICTION classes

* Binary: 3-way dataset where NEUTRAL and
CONTRADICTION classes are merged

e Instruct: binary dataset with the addition of
(positive) instructions

* Contrast: binary dataset with contrasted (pos-
itive and negative) instructions

Results on closed-set classification tasks are
shown in Figure 3

Results on the evaluated datasets show that: 2-
classes datasets (binary, instruct, contrast) are on
average better than 3-way. Adding instructions
(instruct, contrast) has a more significant positive
impact with +3 points for instruct and +6 points
for contrast compared to 3-way. We think that this
is thanks to the gap reduction between the training
and inference tasks.

The difference between instruct and contrast in
Figure 3 is interesting. We remark that on the MR,

RT, and CR datasets, the two methods are similar
while on the others, positive instructions only is
worse than without any instructions. Because the
latter often happens on datasets where even the
baseline produces good results, properties of these
datasets (sequence length, number of classes, ...)
could explain this trend. We also noticed that this
happened with sentiment analysis datasets so there
could be a link. Further evaluation could explain
this trend.

The proposed method (contrast) consistently
outperforms every other method on all evaluated
datasets with a large margin without showing a sim-
ilar trend than the former contrast dataset. Adding
contrasted instructions mitigates errors and does
not show saturation while being consistent.

5.4 Number of cross-attention layers

Leveraging cross-attention layers for zero-shot text
classification is one of our main proposal. Previ-
ous works focus only on using self-attention layers
in the encoder, by concatenating the input docu-
ment with the instruction (candidate label). Table 2
and Table 3 show the effectiveness of using cross-
attention layers (i.e., encoder-decoder) for this kind
of task. In this section, we propose to dive deeper
on the usage of these cross-attention layers by ex-
perimenting different decoder size (i.e., different
number of cross-attention layers). We experiment
1, 6, 12 and 24 cross-attention layers. Results are
shown in Table 4.
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Figure 3: Zero-Shot results on closed-set classification tasks with different training dataset using the proposed

model. The contrast dataset performs the best on average.

# Layers GLUE  Closed-Set A
(average) (average) (average)
1 67.4 73.3 0.0
67.5 73.2 0.0
12 67.0 73.1 -0.3
24 66.8 73.0 -0.5

Table 4: Effect of the number of cross-attention layers
(i.e., decoder size) on evaluated tasks. A represents the
average difference compared to the smallest model.

On average, increasing the number of cross-
attention layers does not result in higher perfor-
mances unlike other trends in NLP (CITE). We see
that having a small number of layers actually per-
forms better than having a high number of layers,
showing a saturation at around N = 6 layers.

To explain these number, we hypothesis that the
contrastive training strategy is able to train smaller
models with final good performance effectively. In-
deed, we believe that this comes from the negative
instruction examples in the training dataset. We be-
lieve that these examples force the cross-attention
layers to effectively learn the meaning of the in-
struction, grounded by the meaning of the input
document. During training, the same input docu-
ment is seen twice (for a single epoch) but with
different instructions. Thus, one of the input of the
cross-attention layer stays the same while the other
changes. This difference seems to be the key to ef-
fectively learn cross-attention layers in a contrasted
way.

Another reason that could explain these results
are the fact that the instructions are rather simple
English sentences compared to the input document,
so it would need less layers to learn its meaning.

This trend show that the add of a small decoder
(1 to 6 layers) show significant improvements while
adding only a few number of parameters compared
to the full encoder-decoder model. Compared to
encoder-only models, this results in a 4% increase
for a single layer jumping from 356M to 370M pa-
rameters while being way more effective as shown
in Table 2 and Table 3.

6 Conclusion

We propose to use cross-attention layers combined
with a contrasted NLI dataset for zero-shot text
classification. The proposed method allows the
separation of the encoding of the input document
and the candidate label at inference time unlike
previous methods that concatenate them to form
a single sequence. Evaluation on a large panel
of NLU task including the GLUE benchmark and
closed-set classification tasks demonstrates the ef-
fectiveness of our approach. Thanks to the nature
of the contrasted training, we also showed that the
proposed method do not need a large decoder to
achieve strong results, close to few-shot or fine-
tuning methods.

7 Limitations and Risks

The proposed method is still instruction (prompt)
dependent and does not propose any strategy to
improve them. Because the used instructions were



generally short, the effect of longer instructions has
not been evaluated and could be a topic for further
research. It goes the same with longer documents.
The evaluated datasets did not contain very long
documents (i.e., longer than 512 tokens) and thus
the robustness of the proposed method on longer
inputs documents is still left unexplored.

The proposed method uses a contrasted NLI
dataset that is twice the size of the original NLI
dataset. This means the training time for a single
epoch is also doubled with the same computation
resources. This can be seen as a drawback even
though training time is usually less important than
inference time.

For multi-class classification problems, even
thought inference should be faster than previous
works, the decoder has to be run for every class
which can be unpractical if the number of class
is very high. Batch inference neglect this but at a
certain computational cost.

Finally, because LLMs are pre-trained on large
web corpus, we can not guarantee that some eval-
uated dataset were not present in the pre-training
dataset. In that sense, expected results can vary
depending on pre-training strategy. On top of this,
as the datasets used for training includes bias, using
different dataset may have a large impact on the
results.
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A Datasets

Table 5 shows the list of the datasets we used in our
Zero-Shot evaluation. In total, we used six datasets,
two of them are Topic Classification (AGNews and
Yahoo), three are Sentiment Analysis (Movie Re-
views, Rotten Tomatoes, and Customer Reviews),
and the last one is Emotion Classification (Unify
Emotion).

B Result with Standard deviation

Our models are trained for 1 epoch with a batch
size of 64 and maximum sequence length of 128.
AdamW optimizer (Loshchilov and Hutter, 2019)
is used with a constant learning rate of le-4. Ex-
periments are done on consumer GPUs for repro-
ducibility: we use a single NVIDIA GeForce RTX
3090 Ti (24Gb of VRAM) GPU with QLoRA
(R = 64, alpha = 16) (Dettmers et al., 2023) us-
ing HuggingFace’s transformers (Wolf et al., 2020)
and PEFT (Mangrulkar et al., 2022) libraries.

C Result with Standard deviation

Table 6 and Table 7 show the standard deviation
over 5 runs for our proposed models on the GLUE
and closed-set classification datasets.

D Fully Fine-tuned Results on GLUE

Table 8 shows results of ROBERTa and TS5 mod-
els when fine-tuned on each dataset of the GLUE
benchmark. Overall, ROBERTa leads to betters re-
sults in terms of number of parameters since its ar-
chitecture is made for sequence classification tasks.



Dataset name Task Size Classes Class names

AGNews Topic 7.6k 4 world, sports, business, sci-tech
Yahoo Topic 60k 10 Society & Culture, Science & Mathematics, Health, Edu-
cation & Reference, Computers & Internet, Sports, Busi-
ness & Finance, Entertainment & Music, Family & Rela-
tionships, Politics & Government

Movie Reviews Sentiment 2k 2 positive, negative

Rotten Tomatoes  Sentiment 2k 2 positive, negative

Customer Reviews Sentiment 2k 2 positive, negative
Unify Emotion Emotion  15.6k 10 fear, joy, sadness, shame, guilt, disgust, anger, surprise,

love, noemo

Table 5: Details for the datasets used for zero-shot evaluation

MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 WNLI CoLA AVG

(acc) (acc) f1) (acc) (f1) (acc) (acc) (acc)  (Matt.)
Contrast-Enc (ours) 0.4 0.5 6.6 1.5 3.5 1.8 1.7 4.1 2.4 0.8
Contrast-EncDec (ours) 3.1 3.6 0.2 3.9 0.8 0.8 0.5 3.8 4.4 1.2

Table 6: Standard deviation over 5 runs for our methods, Contrast-Enc uses RoBERTa while Contrast-EncDec uses
T5.

AGNews Yahoo UnifyEmotion MR RT CR AVG

(acc) (acc) (f1) (acc) (acc) (acc)
Contrast-Enc (ours) 4.4 4.2 1.4 2.8 2.9 3.8 2.0
Contrast-EncDec (ours) 0.5 0.9 0.6 0.8 0.5 0.3 0.3

Table 7: Standard deviation over 5 runs for our methods, Contrast-Enc uses RoBERTa while Contrast-EncDec uses
T5.

Model Params MNLI MNLI-mm MRPC QNLI QQP RTE SST-2 WNLI CoLA AVG

(acc) (acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)
RoBERTa  356M 90.2 90.2 90.9 947 922 86.6 964 91.3 68.0 88.9
TS 755M 89.9 89.6 89.9 94.8 899 872 963 85.6 61.2 87.2

Table 8: GLUE results for RoBERTa-large (356M) and T5-large (755M) model when fully fine-tuned on each task.
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