
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ROTATED RUNTIME SMOOTH: TRAINING-FREE ACTI-
VATION SMOOTHER FOR ACCURATE INT4 INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have demonstrated promising capabilities upon scaling
up parameters. However, serving large language models incurs substantial com-
putation and memory movement costs due to their large scale. Quantization
methods have been employed to reduce service costs and latency. Nevertheless,
outliers in activations hinder the development of INT4 weight-activation quantiza-
tion. Existing approaches separate outliers and normal values into two matrices
or migrate outliers from activations to weights, suffering from high latency or
accuracy degradation. Based on observing activations from large language models,
outliers can be classified into channel-wise and spike outliers. In this work, we
propose Rotated Runtime Smooth (RRS), a plug-and-play activation smoother
for quantization, consisting of Runtime Smooth and the Rotation operation. Run-
time Smooth (RS) is introduced to eliminate channel-wise outliers by smoothing
activations with channel-wise maximums during runtime. The Rotation opera-
tion can narrow the gap between spike outliers and normal values, alleviating
the effect of victims caused by channel-wise smoothing. The proposed method
outperforms the state-of-the-art method in the LLaMA and Qwen families and im-
proves WikiText-2 perplexity from 57.33 to 6.66 for INT4 inference. Anonymous
repository: https://anonymous.4open.science/r/Rotated_Runtime_Smooth-58C4

1 INTRODUCTION

Large language models have demonstrated promising capabilities as parameters are scaled up.
However, serving large language models is plagued by the high cost of computation and memory
movement due to their scale. Consequently, many quantization methods are applied to reduce size
and gain throughput improvement. From the service perspective, quantization can be categorized as
weight-only quantization and weight-activation quantization. The former can focus on compressing
the model’s weights and saving costs related to memory movement, which is suitable for the memory-
bound decoding stage. The latter quantizes both weight and activation to low bits and utilizes low-bit
matrix multiplication kernels to achieve speedup. However, the existence of outliers in activation
stretches the quantization range, compressing the effective bits for normal values and thus hindering
the development of low-bit weight-activation quantization.

To address outliers, previous works such as (Kim et al., 2023; Dettmers et al., 2022) separate outlier
and normal values into two matrices. However, the implementation is not hardware-compatible
and fails to expedite inference. To achieve acceleration and maintain accuracy under A8W8 quan-
tization, SmoothQuant (Xiao et al., 2023) transfers appropriate outliers from activation to weight
offline through channel-wise smoothing scales. Nevertheless, the offline smoothing scales would
be ineffective when facing unmatched input, and the outlier sharing scheme makes weight difficult
to quantify. The aforementioned reason impedes the implementation of SmoothQuant for A4W4
quantization. QuaRot (Ashkboos et al., 2024) utilizes the property that rotation can suppress outliers;
hence, pairwise rotate the activation and weight with equivalent output. The rotated activation and
weight tend to spread outliers internally, leading to effectiveness smoothness for A4W4 quantization.
However, rotation cannot guarantee a smoother matrix, and a rotated matrix may still exhibit the
shape of channel-wise outliers, as depicted in Figure 2. Therefore, deriving a more robust, accurate,
and training-free scheme for INT4 inference remains an open challenge.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(a) Unmatched Scale

𝑠! =
max 𝑋_𝑐𝑎𝑙𝑖𝑏
max |𝑊|

/W = diag(s!)W

/X = Xdiag(s!)"#

X W

Channel-wise outlier

Abs Max

A
bs

 M
ax

(c) More ‘Victim’ caused by Smooth

/X = Xdiag(s)"#

/W = diag(s)W

Spike outlier

X W

Abs Max

A
bs

 M
ax

(b) Outliers migrated to weight

/X = Xdiag(s)"#

/W = diag(s)W

𝑠 =
max 𝑋
max |𝑊| 𝑠 =

max 𝑋
max |𝑊|

O
ri
gi
n

Sm
oo
th
in
g

X W

Channel-wise outlier

Abs Max

A
bs

 M
ax

Victim

Figure 1: Challenges of SmoothQuant faced with outliers. (a) The scale s′, which does not match
the channel-wise maximums of activations, is ineffective for smoothing purposes. (b) The migration
scheme makes it difficult to quantize the smoothed activation/weight down to 4 bits. (c) Normal
values are pruned as victims after smoothing due to the spike outlier. Note that only calibration but
no quantization is involved in the above process.

Based on the observation, outliers could be categorized into channel-wise outliers and spike outliers,
as shown in Figure 1. To handle channel-wise outliers, we propose Runtime Smooth. Firstly,
weights and activations are reordered to gather outliers and normal values. Subsequently, we group up
activations and smooth activations by dividing group-wise maximums. The later quantized smoothed
activation, weight, and group-wise maximums are inputs for the fused GEMM kernel. The entire
process incurs minimal overhead compared to the original A4W4 pipeline. However, the existence
of spike outliers causes the effect of victims after channel-wise smoothing, as shown in Figure 1.
To address both channel-wise outliers and spike outliers, we propose Rotated Runtime Smooth,
where we rotate weights and activations following (Ashkboos et al., 2024) and apply Runtime Smooth
on rotated activations. The spike outlier is spread along with its token, leading to a smoother token
with consistent values. The consistent values are comparatively larger than the normal values, thereby
serving as smoothing scales for Runtime Smooth. The genesis of victims is abnormal smoothing
scales, and the consistent smoothing scales across channels prevent the existence of victims.

To evaluate the proposed method, we conducted experiments on LLaMA families, Qwen families,
Mistral, etc. We validate the performance on the WikiText-2 perplexity and Common Sense QA
benchmarks. On LLaMA3-70B, Rotated Runtime Smooth can gain perplexity improvement from
57.33 to 6.66 under A4W4 quantization compared with the state-of-the-art. We summarize our
contributions as follows:

• We comprehensively revisited the activation smoothing method for LLM quantization,
concluding the reasons for success or failure under A4W4 quantization.

• We propose Runtime Smooth, a plug-and-play component that eliminates channel-wise
outliers of activation in runtime without migrating outliers to weights, bringing negligible
overhead for INT4 matrix multiplication.

• We propose Rotated Runtime Smooth to overcome the spike outliers and enhance the
robustness for channel-wise outliers. A comprehensive evaluation validates the effectiveness
of the proposed methods, which gain thorough improvement on various models for INT4
inference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

SoftMax

Relu

W!"# R

Random
Llama-2-7B
Qwen1.5-7B

Llama-2-13B
Llama-3-70B
Llama-3.1-70B

50

3.3

…

Probability to generate more outliers
after rotation (%)

W$!%& R

𝑊 R
Rotated and
Quantized weights

Activation
Quantization

Rotated
Activation

Origin
Activation

(a) Framework of rotation-based method

(b) Statistic analysis about Rotation

(c) Rotated activations can be sub-smooth

W'R() W*R() W+R()

W,-./R() W01R()

Rotate

Figure 2: Review of the rotation-based method. (a) illustrates a simple implementation of the rotation-based
method. The output from projector is not changed since Y = (XR)(R−1WT) = XWT . (b) explains the
success of the rotation-based method on LLMs, where activations have high confidentiality to be smoothed after
rotation compared with a random matrix. (c) illustrates that activation with channel-wise outliers still maintains
sub-smooth after rotation, leaving space for further smoothing

2 PRELIMINARIES

2.1 QUANTIZATION

Quantization converts high-precision matrices into discrete elements with scaling factors, achieving a
lower bit per element. The process of quantization can be expressed as XINT = ⌊X

α ⌉, α = max(|X|)
2N−1−1

,
where X represents the floating-point tensor and α is the scaling factor. The existence of outliers
stretches the scaling factor and leaves few effective bits for normal values. Dividing the matrix into
groups for quantization can mitigate the effect of outliers. In previous literature, the per-tensor
quantization considers the entire matrix as a group; the per-channel quantization assigns different
scaling factors to each row, and the sub-channel quantization divides rows into fine-grained groups.
Although fine-grained grouping can alleviate accuracy degradation, more scaling factors entail
additional computation and storage costs. In this work, we adopt the per-channel scheme following
(Xiao et al., 2023; Ashkboos et al., 2024; Liu et al., 2024) for INT4 quantization.

2.2 CHANNEL-WISE SMOOTHING METHOD

Under the assumption that outliers persist in fixed channels of activations, SmoothQuant migrates
the outliers by dividing the smoothing scale s ∈ RK , where k denotes channel dimension. For
ensuring equivalence of output, s would be multiplied to weight; the process can be described
as Y = (Xdiag(s)−1)(diag(s)WT) = X̂ŴT . The smoothing scales are computed as sj =
max(|Xj |)α/max(|Wj |)1−α, j = 1, 2, . . . ,K, to fairly share the outliers between weights and
activations. Since weights are mostly quantized offline (Frantar et al., 2022), directly multiplying s
during runtime would undermine the quantization property. Therefore, s is pre-computed using a
calibration set and merged into weights before quantization.

Although SmoothQuant is effective under the A8W8 scheme, it fails for INT4 inference in three
respects, as shown in Figure 1. Firstly, the smoothing scales depending on the calibration set are
prone to being unmatched with online activations; hence, they cannot smooth outliers. Secondly, the
outlier channels of activation are not eliminated but partially migrated to weights, thus leading to
failure in low-bit quantization. Thirdly, outliers are not always channel-wise consistent, where spike
outliers exist, and normal values are pruned as ‘victim’ after smoothing.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Spike Outliers and Effect of Victim: Spike outliers stretch the smoothing scale. The normal values
divided by abnormal smoothing scales are minimal compared to other elements in the quantization
group; hence, they become ‘victims’. The existence of the victims leads to quantization error.

2.3 ROTATION-BASED METHOD

A rotation matrix is an orthogonal matrix R satisfied RRT = I and det(R) = 1. Quip (Tseng
et al., 2024) showed that multiplying a weight matrix on the left and right by an orthogonal matrix
can theoretically alleviate outliers, making matrices easier to quantize. QuaRot (Ashkboos et al.,
2024), employs a similar technique by multiplying weight or activations by only one rotation matrix,
maintaining an equivalent output as depicted in Figure 2 (a). However, multiplying one rotation
matrix could not theoretically guarantee a smoother weight or activation. To explain the success of the
rotation-based method, we computed the probability that the activation of different models becomes
less smooth after rotation, as illustrated in Figure 2 (b). Following previous works, we measure
the smoothness as µ = abs

(
max

(
t
))
/RMS(t), where t denotes one token in activation, and RMS

denotes root mean square. Rotating activation from LLMs consistently exhibits a low probability of
being less smooth compared with rotating a random matrix. However, having a chance to be less
smooth is a potential trouble. The appendix provides a detailed explanation of probability calculation.
On the other hand, activations with channel-wise outliers can be viewed as a collection of vectors
with the same direction. From the rotation property, the rotated activation might be sub-smooth, as
shown in Figure 2 (c), leaving space for better smoothing.

3 METHODOLOGY

In this section, we introduce Runtime Smooth to eliminate channel-wise outliers (3.1) and how to
implement it efficiently with kernel fusion (3.2). To comprehensively eliminate outliers, we propose
Rotated Runtime Smooth, which addresses the effect of the victim and sub-smoothness of rotated
activation 3.3.

3.1 RUNTIME SMOOTH

9e2
PPL

A4W4

8e2
7e2

18.2

Origin A4W4

SmoothQuant

SmoothQuant
+ Runtime Scale

Runtime Smooth

3e2

A4W16

4e2

10.9 10.9

Figure 3: Preliminary ablation study

Challenges for the smoothing-based method under
INT4 inference are discussed in Section 2.2. One
intuitive way to mitigate this challenge is to obtain
smoothing scale s in runtime and not merge s into
weights. The process can be formulated as:

sj = max(|Xj |), j = 1, 2, ...,K (1)

X = Quantize(Xdiag(s)−1),W = Quantize(W),
(2)

Y =

K∑
j=1

Xj ·Wj
T · sj , (3)

where s ∈ R1×K denotes the runtime smoothing scale, X ∈ RN×K denotes activations, W ∈
RM×K denotes weights, Xj ∈ RN×1 denotes one column of activation. We conducted an ablation
study with LLaMA3-8B and the WikiText-2 dataset to understand better the effect of unmatched
scale and outlier shared scheme. As shown in Figure 3, merely applying the runtime smoothing
scale could not make A4W4 feasible, whereas Runtime Smooth does, echoing the importance of not
migrating outliers to weights. To avoid the effect of quantization error from weight, we further apply
the A4W16 setting. The perplexity improvement, from 4e2 to 10.9, validates the effectiveness of
adopting the runtime scale.

3.2 RUNTIME SMOOTH WITH KERNEL FUSION

However, the naive implementation cannot integrated into the GEMM pipeline. A GEMM kernel
splits the input matrix into blocks by columns and conducts parallel block computation, where the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

0.25

Group Max with Group Size =2

ArgSort

(1) Reorder activations and weights

(2) Group-wise smooth

Weight

Activation

Activation Smoothed Activation

(3) Kernel fusion for Runtime Smooth

Runtime Scale

INT4

INT4

INT32
Block 1

Q_Y Y
to FP16

Q_W Q_Y

Q_X

Y

Runtime Scale

INT4

INT4

INT32
Block 0

Q_Y Y

Q_X

Q_W Q_Y
to FP16

Figure 4: Pipeline of Runtime Smooth. (1) Reorder activations and weight according to channel-wise maximums
of activation. Note that the reordering process would not change the final result since Y =

∑K
i=1 Xi@WT

i ,
and Y is irrelevant with the order of i. (2) Group up activations according to block size of matrix multiplication
computation. The maximums of the group are set to the runtime smoothing scale of the group. (3) In the matrix
multiplication pipeline, quantized smoothed activations and weights are segmented into blocks. The block size is
equivalent to the previous group size. Within a block, tiled smoothed activations are multiplied by tiled quantized
weights. The runtime smoothing scales are applied to the interim result.

(b) Spike outliers

Rotate

(a) Channel-wise outliers

Rotate

Figure 5: Analysis of rotated activations with different outliers. (a) Activation with channel-wise outliers
maintains channel-wise consistency after rotation, hence being sub-smooth for quantization. (b) One spike
outlier is spread on its token internal, where the smoothing scale is consistent without abnormal value, further
preventing ‘victim’.

inconsistent smoothing scale would make the block-wise computation complex. Intuitively, if the
smoothing scale is the same within a block, equation 1 can be deduced to Y = s ·

∑K
j=1 X̂j · Ŵj

T
.

The overhead would be minimized due to fewer multiplication operations. Roughly altering the
smoothing scales to be consistent would degrade the level of smoothness. Hence, we reorder the
activations and weights according to the magnitude of smoothing scales, validated as hardware-
friendly with negligible cost (Lin et al., 2024b). The reordered activations group up the outliers and
normal values. The group size is configured to be identical to the block size. The maximum value of
an activation group is set as the smoothing scale for the corresponding computation block.

As shown in Figure 4, the pipeline of GEMM fused with Runtime Smooth can be described as 1.
Reorder the activation and weight according to channel-wise maximums of activation; 2. Group
up the activation and set the group-wise maximum as smoothing scales; 3. Calculate the matrix
multiplication of the tiled block and multiply the runtime scale on the dequantized result, followed by
a reduction operation. It is worth noting that, compared with the A4W4 baseline, the extra runtime
scale multiplication only brings negligible overhead, which will be discussed in Section 4.5.

3.3 ROTATED RUNTIME SMOOTH

In this section, we propose Rotated Runtime Smooth (RRS) to comprehensively eliminate outliers,
including both channel-wise and spike outliers. Here, the activations are rotated and subsequently
applied Runtime Smooth.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

For activations with channel-wise outliers, it maintains the channel-wise consistency after rotation
due to the rotation property, as shown in Figure 5. Moreover, the rotated activations have a chance to
raise the level of outliers with a small probability. Compared with the pure rotation method, RRS
comprehensively smooths channel-wise, leading to low quantization error. Compared with Runtime
Smooth, RRS is more robust to activations with tiny spikes in the practical scenario.

As discussed in Section 2.2, the existence of spike outlier is the bottleneck of Runtime Smooth.
Figure 5 shows that the spike outliers are spread within tokens after rotation. Hence, the smoothing
scales are more consistent across channels, leaving fewer victims since all elements are divided by
such a consistent scale. The process can be described as:

R =
1√
K

[ci,j]K×K , t = [ε, · · · , ε, Oi, ε, · · · , ε],

trotation = t ·R =
1√
K

[ci,1Oi + ε, ci,2Oi + ε, · · · , ci,KOi + ε],

smooth_scale = max(|trotation|) ≈
1√
K

[|Oi| , |Oi| , · · · , |Oi|],

(4)

where the O denotes spike outliers and ε denotes normal values. ci,j ∈ {−1,+1} denotes the
elements in Hadamard rotation matrix. In a practical scenario, the normal values ε are relatively small
compared with spike outliers O; hence, they are omitted in the smoothing scale as shown in Equation
4. The genesis of victims is the abnormal smoothing scale; hence a more consistent smoothing scale
brought by RRS frees ‘victims’. Here, we only discuss the scenario where there is only one spike in
the token, and we conduct a comprehensive analysis of multiple spikes for real scenarios in Section
C.1.

We apply RRS to Linear Layers in Transformer blocks. We first offline rotate the weight matrix
and insert online rotation operation before output and down projectors following previous works
(Ashkboos et al., 2024). The rotated weights are quantized offline with GPTQ (Frantar et al., 2022).
During inference, we perform Runtime Smooth on the rotated activations of linear layers and apply
activation quantization subsequently.

4 EXPERIMENTS

4.1 SETTINGS

We conduct experiments on mainstream LLMs, including LLaMA families (Touvron et al., 2023b)
(LLaMA2-13B, LLaMA2-70B, LLaMA3-8B, LLaMA3-70B, LLaMA3.1-8B, LLaMA3.1-70B),
Qwen families (Yang et al., 2024) (Qwen1.5-7B, Qwen1.5-14B), Mistral (Jiang et al., 2023) and
Mixtral (Jiang et al., 2024). Activation quantization employs per-channel symmetric scheme with
round-to-nearest (RTN) strategy. KV cache quantization employs sub-channel symmetric scheme
with groupsize 128 and round-to-nearest (RTN) strategy. In most cases, weight quantization employs
per-channel symmetric scheme with GPTQ (Frantar et al., 2022) strategy, except for baseline ’RTN’.
We apply standard GPTQ settings by using 128 samples from WikiText-2 with a sequence length of
2048 as the calibration set. We evaluate the performance of the models on WikiText-2 perplexity and
zero-shot Common Sense QA benchmarks. The Common Sense QA benchmarks include ARC-e,
ARC-c (Clark et al., 2018), BoolQ (Clark et al., 2019), and OBQA (Mihaylov et al., 2018).

4.2 MAIN RESULT

Runtime Smooth emphasizes activation smoothing for INT4 inference. The plug-and-play Runtime
Smooth operators are employed before activation quantization. We conduct a comparison between
Runtime Smooth and SmoothQuant (Xiao et al., 2023), demonstrating promising improvement. For
instance LLaMA2-70B: 1e2 -> 6.95, LLaMA3-8B: 8e2 -> 10.47, Qwen1.5-7B: 3e2 ->13.32 under the
A4W4KV16 scheme, as shown in Table 1. For certain models like LLaMA3-70B and LLaMA3.1-70B,
both Runtime Smooth and SmoothQuant fail for the difficulty of weight quantization. To eliminate
the influence of quantization error from weights, we carry out experiments under A4W16KV16
settings. Under the activation-only quantization setting, Runtime Smooth consistently outperforms
SmoothQuant and achieves 40x improvement on LLaMA3-8B, validating the effectiveness of Runtime
Smooth. Here the group size of the smoothing scale is 1 to observe the upper bound performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Comparison on WikiText-2 perplexity. We evaluate models and methods on three quantization schemes:
A4W4KV4, A4W4KV16, and A4W16KV16. Results for SmoothQuant, GPTQ, and QuaRot were obtained by
re-implementation based on their publicly released codebase.

#Bits
Method

LLaMA LLaMA LLaMA LLaMA LLaMA LLaMA
Mixtral Mistral

Qwen Qwen

W-A-KV 2-13B 2-70B 3-8B 3.1-8B 3-70B 3.1-70B 1.5-7B 1.5-14B

16-16-16 FP16 5.00 3.30 6.13 6.24 2.80 2.81 3.84 5.94 7.95 7.44

16-4-16

RTN 5e3 Nan 4e2 2e2 3e4 1e4 8e2 7e2 6e3 2e4

SmoothQuant 97.04 Nan 5e2 2e2 74.23 48.59 88.68 47.92 2e2 1e2

RS 6.40 4.52 11.44 9.71 11.31 7.27 5.72 7.39 10.95 9.74

QuaRot 5.24 3.72 7.77 7.81 1e2 5.67 4.68 6.29 9.07 8.18

RRS 5.22 3.74 7.55 7.60 6.32 5.03 4.50 6.21 8.91 8.16

4-4-16

RTN 7e3 2e5 9e2 5e2 1e5 2e4 8e2 7e2 9e3 3e4

SmoothQuant 34.50 1e2 8e2 4e2 5e2 2e2 3e2 76.25 3e2 1e2

GPTQ 5e3 2e6 9e2 4e2 1e5 2e4 1e3 6e2 1e4 3e4

RS 8.79 6.95 10.47 10.39 7e3 1e4 7.37 8.16 13.32 10.38

QuaRot 5.39 3.85 8.38 8.38 57.33 6.26 4.80 6.38 9.34 8.32

RRS 5.36 3.86 8.11 8.12 6.66 5.56 4.63 6.31 9.17 8.29

4-4-4

RTN 7e3 2e5 1e3 6e2 1e5 2e4 9e2 7e2 1e4 2e4

SmoothQuant 56.60 1e2 1e3 6e2 5e2 3e2 2e2 78.39 3e2 2e2

GPTQ 5e3 1e6 1e3 5e2 1e5 2e4 1e3 6e2 1e4 3e4

RS 9.15 7.08 11.52 11.19 8e3 1e4 7.98 8.64 13.97 10.62

QuaRot 5.51 3.89 8.76 8.80 49.73 6.46 4.93 6.45 9.55 8.43

RRS 5.45 3.89 8.42 8.49 6.87 5.69 4.74 6.35 9.37 8.35

To further narrow the accuracy gap between INT4 inference and full precision inference, we propose
Rotated Runtime Smooth. Here, the group size of the smoothing scale is set to 128, which is identical
to the GEMM block size, enabling efficient implementation. Compared with the state-of-the-art,
QuaRot, Rotated Runtime Smooth consistently outperforms across different model sizes and model
families. In most instances, Rotated Runtime Smooth achieves a 0.1 - 0.3 improvement in WikiText-2
perplexity. It is noteworthy that on LLaMA3-70B, Rotated Runtime Smooth reduces perplexity
from 57.33 to 6.66 under the A4W4KV16 setting and from 49.76 to 6.87 under the A4W4KV4
setting. Notably, 57.33 and 49.76 are abnormal results. Hence, we analyze outliers from rotated
LLaMA3-70B and LLaMA3.1-70B. The distribution of outliers is similar for the two models. More
details are provided in Section C.2. This indicates that models have different sensitivities to outliers.
Further suppressing the outliers can enhance robustness.

We also conduct a comparison between the proposed approaches and the state-of-the-art methods
on the zero-shot common sense QA task, as presented in Table 2. The Rotated Runtime Smooth
consistently surpasses the baseline by approximately 3% in terms of average accuracy improvement.
In certain cases, LLaMA3-8B and LLaMA3.1-8B, Runtime Smooth outperforms QuaRot. The latter
requires complex online Hadamard rotation as described in (Ashkboos et al., 2024). More results are
listed in the Appendix A

4.3 COMPARISON WITH TRAINING-BASED METHOD

SpinQuant (Liu et al., 2024) suggests that diverse Rotation matrices exhibit variations in their impact
of smoothing. Consequently, it substitutes the origin fix Rotation matrix with a trainable Rotation
matrix and trains the rotated network. The training process is time-consuming, taking 1.5 hours for a
7B model on one A100 GPU and 12 hours for 70B models on eight A100 GPUs. We re-implement
SpinQuant and compare it with our method as shown in Table 3. It is noteworthy that SpinQuant
applies asymmetric quantization to activation and KV cache. We experiment with our method under
the same settings. The result reveals that the training-based method degrades WikiText-2 perplexity
compared to the training-free method and still has room for improvement.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: 0-shot accuracy (%) on the Common Sense QA tasks. Each block is based on the same
foundation model specified in the row. We organize all results under different quantization schemes.

#Bits Model Method OBQA BoolQ ARC_E ARC_C Avg.
GPTQ 26.6 44.0 29.8 21.0 30.4
SmoothQuant 25.0 43.7 30.2 22.9 30.4
RS 42.4 65.6 72.2 46.3 56.6
QuaRot 39.2 70.7 68.6 41.5 55.0LLaMA-3-8B

RRS 42.4 73.6 71.1 44.8 58.0
GPTQ 26.2 44.7 30.3 23.9 31.3
SmoothQuant 26.2 46.42 30.9 24.5 32.0
RS 44.6 68.8 72.5 47.6 58.4
QuaRot 37.6 75.6 72.9 44.8 57.7LLaMA-3.1-8B

RRS 42.4 78.1 76.1 50.3 61.7
GPTQ 27.0 46.1 32.0 25.0 32.5
SmoothQuant 28.6 57.5 42.2 31.4 39.9
RS 35.2 80.2 72.4 51.1 59.7
QuaRot 44.4 83.1 71.9 54.4 63.4Mistral

RRS 43.4 85.1 74.4 55.4 64.6
GPTQ 28.2 42.9 25.9 26.5 30.9
SmoothQuant 28.2 54.0 32.3 26.7 35.3
RS 37.6 72.6 56.9 39.0 51.5
QuaRot 39.0 73.9 61.3 40.4 53.7

4-4-16

Qwen1.5-7B

RRS 43.0 77.7 61.5 42.0 56.0
GPTQ 28.2 42.0 28.8 24.1 30.7
SmoothQuant 28.8 52.2 37.6 28.8 36.9
RS 43.2 65.7 67.2 41.5 54.4
QuaRot 38.6 70.6 66.7 40.4 54.1LLaMA-3-8B

RRS 42.4 73.5 68.7 44.7 57.3
GPTQ 28.0 43.6 29.0 23.3 31.0
SmoothQuant 28.0 45.1 30.0 22.7 31.4
RS 43.4 65.3 71.1 46.1 56.5
QuaRot 37.2 73.5 65.7 41.7 54.5LLaMA-3.1-8B

RRS 41.8 77.8 75.3 48.1 60.8
GPTQ 24.8 46.2 31.3 25.8 32.0
SmoothQuant 27.0 56.6 40.6 29.5 38.4
RS 36.6 81.0 72.4 50.3 60.1
QuaRot 43.2 83.0 72.8 52.5 62.9Mistral

RRS 45.6 84.3 73.2 54.6 64.4
GPTQ 30.0 42.8 26.2 26.5 31.4
SmoothQuant 28.0 53.1 30.2 25.1 34.1
RS 36.8 70.2 56.2 40.2 50.9
QuaRot 39.6 74.3 62.1 42.0 54.5

4-4-4

Qwen1.5-7B

RRS 40.4 76.6 61.8 42.5 55.3

Table 3: Comparison with the training-based method, SpinQuant, where the result was obtained by
re-implementation based on its publicly released codebase

Method LLaMA-2-7B LLaMA-2-13B LLaMA-3-8B LLaMA-3.1-8B
Spinquant 6.37 5.55 7.99 7.93
QuaRot 6.03 5.35 7.91 7.89
RRS 5.99 5.29 7.79 7.76

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 4: Ablation study of Group size of runtime smooth scale

Method Model 1 32 64 128 256 512
Mistral 6.29 6.28 6.30 6.31 6.31 6.33
Qwen1.5-7B 9.16 9.14 9.16 9.17 9.18 -RRS
LLaMA3.1-8B 8.09 8.09 8.10 8.12 8.18 8.29
Mistral 8.16 11.17 11.42 18.48 36.46 154.19
Qwen1.5-7B 13.32 15.67 18.08 22.83 41.55 -RS
LLaMA3.1-8B 10.39 13.51 20.74 51.63 214.88 2706.82

0 1000 2000 3000 4000
Batch size(#)

50

200

150

100

Ours

W4A4 Per-Channel

W4A4 Sub-Channel

0 1000 2000 3000 4000
Batch size(#)

Ours

W4A4 Per-Channel

W4A4 Sub-Channel

To
ps

250

200

150

300

100

50

0

Figure 6: Performance evaluation of different quantization approaches. We set up the evaluation
configuration aligned with the LLaMA-7b configuration and 1024 sequence length. Kernels are
evaluated by NVBench

4.4 ABLATION STUDY

We conduct an ablation study on the group size of runtime smoothing scale for Mistral, Qwen1.5-7B,
and LLaMA3.1-8B, as presented in 4. Runtime Smooth can effectively minimize the gap between
A4W4 and full precision through a subtle group strategy. However, the accuracy deteriorates as the
group size increases. Rotated Runtime Smooth employs the rotation technique to minimize the gap
between outliers and normal values, thereby being robust to the coarse group scheme and enabling
the implementation of the fused kernel. It should be noted that in Qwen1.5-7B, the size of the input
activation for Down_projector is 11008, which does not support a group size of 512.

4.5 EFFICIENCY EVALUATION

We evaluate the GEMM kernel fused with Runtime Smooth on NVBench (NVIDIA, 2024) with
RTX 4070 Ti, as shown in Figure 6. The group size of the smoothing scale is 128, the same as
the block size of the GEMM kernel. We implement Per-Channel A4W4 and Sub-Channel A4W4
as baselines. Compared with Per-Channel A4W4, Runtime Smooth fused Kernel brings limited
overhead, including the movement of the smoothing scale (shape of [1, K]) and a multiplication
between matrix and scalar. Sub-Channel A4W4 brings noticeable overhead, including the movement
of group-wise quantization scale (shape of [N, L] and [M, L]) and multiplication between matrices.
Hence, across different batch sizes and hidden dimensions, Runtime Smooth fused Kernel brings
negligible overhead compared with A4W4 Per-Channel quantization, which is also the setting of
QuaRot and SpinQuant.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

5 RELATED WORK

5.1 LARGE LANGUAGE MODELS

Pre-trained language models have achieved remarkable progress through scaling. Open-source large
language models (LLMs) can reach up to 405 billion parameters and offer promising few-shot/zero-
shot results. The mainstream LLMs (Yang et al., 2024; Touvron et al., 2023a; DeepSeek-AI et al.,
2024; Jiang et al., 2023) continuously provide models with large scales and enhanced capabilities.
However, serving large language models for inference becomes costly and challenging as the models
expand.

5.2 MODEL QUANTIZATION

Quantization represents an effective approach for reducing model size and expediting inference.
From a serving perspective, quantization can be classified into weight-only quantization and weight-
activation quantization. Weight-only quantization compression employs low-bit representations
for weight matrices, thereby saving memory movement in memory-bound scenarios, specifically
the decoding stage. GPTQ (Frantar et al., 2022) used 4-bit to quantize the weight based on the
approximate second-order information. AWQ (Lin et al., 2023) further advanced accuracy by
preserving salient weights. QFA (Yi et al., 2024) fine-tune a supernetwork encompassing multiple
mixed precision configurations and efficiently offer high-performance sub-networks for diverse
scenarios. QuiP (Chee et al., 2024; Tseng et al., 2024) successfully represents weights using 2 bits via
an adaptive rounding method. Weight-activation quantization can further accelerate computation by
leveraging a low-bit GEMM kernel suitable for compute-bound scenarios, namely the pre-filling stage.
Qserve (Lin et al., 2024b) further implement the A8W4KV4 and better accelerate. Among weight-
activation quantization methods, the existence of outliers presents the most formidable problem, as it
can result in substantial drops in accuracy.

5.3 OUTLIERS CHALLENGE

Outliers can expand the quantization range and compress the information intensity for normal values.
LLM.int8() (Dettmers et al., 2022) employs mixed INT8/FP16 decomposition to handle activation
outliers. Nevertheless, such an implementation results in significant latency overhead and can even
be slower than FP16 inference. Subsequent work (Yuan et al., 2023) rearranges the channels to
reduce the variance within one quantization group, further enhancing accuracy. Atom (Zhao et al.,
2024) integrates the reorder technique and mixed INT4/INT8 precision to maintain accuracy and
accelerate compared to the FP16 baseline. SmoothQuant (Xiao et al., 2023) exchanges outliers
between weights and activations to find an optimal point that shares appropriate outliers in weights
and activations, achieving A8W8 inference with minimal accuracy degradation. However, the outlier
sharing scheme may not be suitable for the extreme A4W4 setting. To further smooth outliers,
QuaRot (Ashkboos et al., 2024) pairwise rotates the activation and weight to suppress outliers and
maintain output equalization, enabling INT4 inference with well-smoothed activations. SpinQuant
(Liu et al., 2024) suggests substituting the origin fix Rotation matrix with a trainable Rotation matrix
could improve accuracy. DuQuant (Lin et al., 2024a) involves double rotation and achieves a more
smooth activation.

6 CONCLUSION

This work presents Rotated Runtime Smooth, a plug-and-play runtime activation smoother that
facilitates INT4 inference. In Rotated Runtime Smooth, Runtime Smooth effectively eliminates
channel-wise outliers. Additionally, rotation operations migrate the negative impact from spike
outliers. Rotated Runtime Smooth can be easily implemented with negligible overhead and is
generalized across various large language models (LLMs). Through comprehensive elimination
of channel-wise and spike outliers, Rotated Runtime Smooth achieves significant enhancement
compared to the prior channel-wise smoothing approach and outperforms state-of-the-art methods on
diverse models for INT4 inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B., Jaggi, M., Alistarh, D., Hoefler, T., and Hensman,
J. (2024). Quarot: Outlier-free 4-bit inference in rotated llms.

Chee, J., Cai, Y., Kuleshov, V., and Sa, C. D. (2024). Quip: 2-bit quantization of large language
models with guarantees.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins, M., and Toutanova, K. (2019). BoolQ:
Exploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., and Tafjord, O. (2018).
Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457.

DeepSeek-AI, Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C., Dengr, C., Ruan, C., Dai,
D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Luo, F., Hao, G., Chen, G., Li, G., Zhang,
H., Xu, H., Yang, H., Zhang, H., Ding, H., Xin, H., Gao, H., Li, H., Qu, H., Cai, J. L., Liang, J.,
Guo, J., Ni, J., Li, J., Chen, J., Yuan, J., Qiu, J., Song, J., Dong, K., Gao, K., Guan, K., Wang, L.,
Zhang, L., Xu, L., Xia, L., Zhao, L., Zhang, L., Li, M., Wang, M., Zhang, M., Zhang, M., Tang,
M., Li, M., Tian, N., Huang, P., Wang, P., Zhang, P., Zhu, Q., Chen, Q., Du, Q., Chen, R. J., Jin,
R. L., Ge, R., Pan, R., Xu, R., Chen, R., Li, S. S., Lu, S., Zhou, S., Chen, S., Wu, S., Ye, S., Ma, S.,
Wang, S., Zhou, S., Yu, S., Zhou, S., Zheng, S., Wang, T., Pei, T., Yuan, T., Sun, T., Xiao, W. L.,
Zeng, W., An, W., Liu, W., Liang, W., Gao, W., Zhang, W., Li, X. Q., Jin, X., Wang, X., Bi, X.,
Liu, X., Wang, X., Shen, X., Chen, X., Chen, X., Nie, X., Sun, X., Wang, X., Liu, X., Xie, X., Yu,
X., Song, X., Zhou, X., Yang, X., Lu, X., Su, X., Wu, Y., Li, Y. K., Wei, Y. X., Zhu, Y. X., Xu, Y.,
Huang, Y., Li, Y., Zhao, Y., Sun, Y., Li, Y., Wang, Y., Zheng, Y., Zhang, Y., Xiong, Y., Zhao, Y.,
He, Y., Tang, Y., Piao, Y., Dong, Y., Tan, Y., Liu, Y., Wang, Y., Guo, Y., Zhu, Y., Wang, Y., Zou, Y.,
Zha, Y., Ma, Y., Yan, Y., You, Y., Liu, Y., Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Huang, Z., Zhang, Z.,
Xie, Z., Hao, Z., Shao, Z., Wen, Z., Xu, Z., Zhang, Z., Li, Z., Wang, Z., Gu, Z., Li, Z., and Xie, Z.
(2024). Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L. (2022). Llm.int8(): 8-bit matrix multiplica-
tion for transformers at scale.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. (2022). Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., de las Casas, D., Bressand,
F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A., Stock, P., Scao, T. L.,
Lavril, T., Wang, T., Lacroix, T., and Sayed, W. E. (2023). Mistral 7b.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D. S., de las
Casas, D., Hanna, E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G., Lavaud, L. R., Saulnier,
L., Lachaux, M.-A., Stock, P., Subramanian, S., Yang, S., Antoniak, S., Scao, T. L., Gervet, T.,
Lavril, T., Wang, T., Lacroix, T., and Sayed, W. E. (2024). Mixtral of experts.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li, X., Shen, S., Mahoney, M. W., and Keutzer, K.
(2023). Squeezellm: Dense-and-sparse quantization. arXiv preprint arXiv:2306.07629.

Lin, H., Xu, H., Wu, Y., Cui, J., Zhang, Y., Mou, L., Song, L., Sun, Z., and Wei, Y. (2024a).
Duquant: Distributing outliers via dual transformation makes stronger quantized llms. arXiv
preprint arXiv:2406.01721.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and Han, S. (2023). Awq: Activation-aware weight
quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978.

Lin, Y., Tang, H., Yang, S., Zhang, Z., Xiao, G., Gan, C., and Han, S. (2024b). Qserve: W4a8kv4
quantization and system co-design for efficient llm serving.

Liu, Z., Zhao, C., Fedorov, I., Soran, B., Choudhary, D., Krishnamoorthi, R., Chandra, V., Tian, Y.,
and Blankevoort, T. (2024). Spinquant: Llm quantization with learned rotations.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. (2018). Can a suit of armor conduct electricity?
a new dataset for open book question answering. In EMNLP.

NVIDIA (2024). Nvbench: Nvidia’s benchmarking tool for gpus. Available online: https:
//github.com/NVIDIA/nvbench.

Shazeer, N. (2020). Glu variants improve transformer.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., et al. (2023a). Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample, G. (2023b). Llama:
Open and efficient foundation language models.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and Sa, C. D. (2024). Quip: Even better llm quantization
with hadamard incoherence and lattice codebooks.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han, S. (2023). Smoothquant: Accurate
and efficient post-training quantization for large language models. In International Conference on
Machine Learning, pages 38087–38099. PMLR.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., Li, C., Li, C., Liu, D., Huang, F., Dong, G.,
Wei, H., Lin, H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., Ma, J., Yang, J., Xu, J., Zhou, J.,
Bai, J., He, J., Lin, J., Dang, K., Lu, K., Chen, K., Yang, K., Li, M., Xue, M., Ni, N., Zhang, P.,
Wang, P., Peng, R., Men, R., Gao, R., Lin, R., Wang, S., Bai, S., Tan, S., Zhu, T., Li, T., Liu, T., Ge,
W., Deng, X., Zhou, X., Ren, X., Zhang, X., Wei, X., Ren, X., Liu, X., Fan, Y., Yao, Y., Zhang, Y.,
Wan, Y., Chu, Y., Liu, Y., Cui, Z., Zhang, Z., Guo, Z., and Fan, Z. (2024). Qwen2 technical report.

Yi, K., Xu, Y., Chang, H., Tang, C., Meng, Y., Zhang, T., and Li, J. (2024). One quantllm for all:
Fine-tuning quantized llms once for efficient deployments.

Yuan, Z., Niu, L., Liu, J., Liu, W., Wang, X., Shang, Y., Sun, G., Wu, Q., Wu, J., and Wu, B. (2023).
Rptq: Reorder-based post-training quantization for large language models.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng, S., Ceze, L., Krishnamurthy, A., Chen, T., and
Kasikci, B. (2024). Atom: Low-bit quantization for efficient and accurate llm serving. Proceedings
of Machine Learning and Systems, 6:196–209.

12

https://github.com/NVIDIA/nvbench
https://github.com/NVIDIA/nvbench

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A SUPPLEMENTARY EXPERIMENT

A.1 MORE DOWNSTREAM TASK

In this section, we incorporate additional downstream tasks such as MMLU, GSM8k (Math), C-EVAL
(Chinese), and HumanEval (code), utilizing 7/8B models from Qwen2.5, Mistral, LLaMA 3, and
LLaMA 3.1. The results show that our method effectively smooths the activations and works with
out-of-distribution (OOD) data like math and code, making the improvements over the baselines not
so small.

Table 5: 0-shot accuracy (%) on GSM8k, MMLU, C-Eval with Qwen2.5-7B, Mistral, LLaMA-3-8B,
LLaMA-3.1-8B.

Model Method GSM8k_flex
(Math)

GSM8k_strict
(Math)

MMLU C-Eval
(Chinese)

Qwen2.5-7B RRS 70.96 62.85 63.00 66.6
Qwen2.5-7B QuaRot 62.77 52.99 62.15 66.1
Mistral RRS 37.30 36.69 56.65 40.6
Mistral QuaRot 31.15 30.62 55.16 39.3
LLaMA3-8B RRS 31.46 31.38 53.51 35.5
LLaMA3-8B QuaRot 24.71 24.56 50.85 31.3
LLaMA3.1-8B RRS 36.08 35.93 54.96 38.8
LLaMA3.1-8B QuaRot 28.50 28.27 51.64 34.1

Table 6: Evaluation on HumanEval with Qwen2.5-7B.

Model Method HumanEval (Code)
Qwen2.5-7B RRS 60.98
Qwen2.5-7B QuaRot 49.39

A.2 MORE BASELINES

We compare our method with two additional baselines: SpinQuant and DuQuant, as well as their
variants that incorporate Runtime Smooth (RS). The results show that our runtime smooth is well
generalizable and valid, demonstrating the importance of runtime smoothing for various data from
different domains.

Table 7: 0-shot accuracy (%) on the Common Sense QA tasks. Each block is based on the same
foundation model specified in the row. We organize all results under different quantization schemes.

Method GSM8k
Flex

GSM8k
Strict

MMLU ARC_C ARC_E BoolQ OBQA Avg.

RRS 31.4 31.3 53.5 44.8 71.1 73.6 42.4 57.9
DuQuant 24.4 24.0 49.4 45.8 68.7 71.3 42.2 57.0
DuQuant+RS 32.9 32.4 55.7 47.5 74.0 76.2 42.6 60.1
SpinQuant 22.9 22.6 48.4 43.2 67.3 72.7 38.8 55.5
SpinQuant+RS 23.1 23.2 52.2 45.1 70.6 73.6 39.4 57.1

B MEASUREMENT OF PROBABILITY

In this section, we explain how to obtain the result in Figure 2. We collect activations token-wise
for each module in the WikiText-2 test set for LLMs. In order to determine the probability of the
metric, we first compute the smooth measure µ = abs

(
max

(
t
)
/RMS(t), where t denotes one token

in activation, and RMS denotes root mean square. Then we rotate the activation with the default

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Hadamard matrix R and recalculate µ′ = abs
(
max

(
t′
))
/RMS(t′), t = t@R. Finally, we calculate

the probability of µ < µ′.

C OUTLIER

C.1 ACTIVATION WITH MULTIPLE SPIKE OUTLIERS

This section further analyzes how tokens with multiple outliers behave after rotation. The token with
multiple outliers is defined as:

t = [· · · , Oi1 , · · · , Oi2 , · · · , Oil , · · ·], (5)

where l denotes the number of outliers, {i1, i2, ...il} denotes the index of outliers. In this work, we
set the Hadamard matrix as the rotation matrix R = 1√

K
[si,j]K×K , where si,j ∈ {−1,+1}. The

rotated token can be described as:

trot = t ·R (6)

≈ 1√
K

[

l∑
d=1

sid,1Oid ,

l∑
d=1

sid,2Oid , · · · ,
l∑

d=1

sid,KOid]. (7)

The construction of trot can be viewed as contributions of outliers, where outliers are canceled out by
each other or stacked to enlarge. The effect of victims refers to the smoothness of normal tokens after
smoothing. The process is defined as:

x = [1, 1, 1, ..., 1], (8)

scale = [absmax

(
1,

1√
K

l∑
d=1

sid,1Oid

)
, · · · , absmax

(
1,

1√
K

l∑
d=1

sid,KOid

)
], (9)

where we assume normal tokens are filled up with 1. The effect of victims can be qualified with the
equation:

xsmooth = 1/scale,u = max(|xsmooth|)/RMS(|xsmooth|) (10)

To measure the effect of victims in the actual scenario, we first collect the activations from LLaMA3-
8B. For activations from the Down Projector, spike outliers are 1000x larger than the medium value,
as shown in Figure 7, where outliers in a channel-wise manner are not overly large.

To analyze the effect of smoothing rotated spike outliers, we apply the Monte Carlo approach by
generating a token from the Gaussian distribution and inserting spike outliers according to statistics
of spike outliers, then rotating, smoothing, and calculating u as shown in Figure 8. Rotated tokens
with multiple outliers are up and down across channels due to the effect of offset and stack. On the
other hand, we can stack rotated tokens to obtain a consistent large scale across channels. As shown
in Figure 8, normal tokens after smoothing are mostly easy to quantify but contrary when two outlier
tokens are exhibited in one activation. The reason is that two tokens cannot cover the whole channel,
where more stacked tokens can lead to lower u. Notably, the case with only two outlier tokens is rare
but could potentially trouble Rotated Runtime Smooth.

C.2 ANALYSIS EXTENT OF OUTLIER REMOVAL FOR DIFFERENT METHOD

We conduct experiments on mainstream models with different outlier smoothing approaches to
analyze smoothness integrally rather than simulating with manual spike outliers. Specifically, we
collect activations with models evaluated by WikiText-2 and apply different smoothing approaches. To
measure the level of outliers; we set µ = absmax

(
t
)
/∥t∥2, where t denotes one token. Figure 9 shows

the specific impact of approaches on outliers on different LLM’s components. For QKV_Projector,
UP_Projector, and Gate_project, the activations are channel-wise consistent; hence, Runtime Smooth
outperforms rotation, where pure rotated activations are sub-smooth. For Down_Projector, the
intermediate activations contain spike outliers due to SwiGLU (Shazeer, 2020) functions; hence,
Runtime Smooth suffers from the effect of the victim and fails to smooth. Rotated Runtime Smooth
solves two kinds of outliers and consistently outperforms other approaches.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

100 500 1000
101

102

103
Layer 0

100 500 1000

102

103
Layer 1

100 500 1000

101

102

Layer 2

100 500 1000

101

102

Layer 3

100 500 1000

102

Layer 4

100 500 1000
101

102

Layer 5

100 500 1000

101

102

Layer 6

100 500 1000

101

102

Layer 7

100 500 1000
100

101

102

Layer 8

100 500 1000
100

101

Layer 9

100 500 1000
100

101

Layer 10

100 500 1000

101

102

Layer 11

100 500 1000
100

101

102

Layer 12

100 500 1000
100

101

102

Layer 13

100 500 1000
100

101

102

Layer 14

100 500 1000

101

102

103
Layer 15

100 500 1000
101

102

103
Layer 16

100 500 1000
100

101

102

Layer 17

100 500 1000

101

102

Layer 18

100 500 1000
100

101

102

103
Layer 19

100 500 1000

102

103

Layer 20

100 500 1000

102

103

Layer 21

100 500 1000
101

102

Layer 22

100 500 1000
101

102

Layer 23

100 500 1000
100

101

102

Layer 24

100 500 1000
100

101

102

Layer 25

100 500 1000
100

101

102

Layer 26

100 500 1000
100

101

102

Layer 27

100 500 1000
100

101

102

Layer 28

100 500 1000
100

101

102

Layer 29

100 500 1000

101

102

Layer 30

100 500 1000
100

101

102

Layer 31

Figure 7: Collecting the activations as input of Down Projector with the full precision LLaMA3-8B
model evaluating on WikiText-2 and counting the magnitude and number of spike outliers. The
magnitude is calculated by x/medium(t), where t is a token, and x is the element of the token. We
separately count the spike outliers with different magnitude intervals.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

1 5 10

10

20

30

Layer 0

1 5 10

10

20

30

40
Layer 1

1 5 10

10

20

Layer 2

1 5 10

10

20

30
Layer 3

1 5 10

10

20

Layer 4

1 5 10

10

20

Layer 5

1 5 10

10

20

Layer 6

1 5 10

5

10

15

20

25
Layer 7

1 5 10

10

20

Layer 8

1 5 10

5

10

15

Layer 9

1 5 10

5

10

15

Layer 10

1 5 10

5

10

15

20

Layer 11

1 5 10

5

10

15

20

25
Layer 12

1 5 10

5

10

15

Layer 13

1 5 10

5

10

15

20

Layer 14

1 5 10

10

20

Layer 15

1 5 10

10

20

30
Layer 16

1 5 10

5

10

15

20

Layer 17

1 5 10

5

10

15

20

Layer 18

1 5 10

10

20

30
Layer 19

1 5 10

10

20

30

Layer 20

1 5 10

10

20

30

Layer 21

1 5 10

10

20

30
Layer 22

1 5 10

10

20

Layer 23

1 5 10

10

20

Layer 24

1 5 10

10

20

Layer 25

1 5 10

10

20

Layer 26

1 5 10

5

10

15

20

25
Layer 27

1 5 10

5

10

15

20

25
Layer 28

1 5 10

5

10

15

20

25
Layer 29

1 5 10

10

20

Layer 30

1 5 10

5

10

15

20

Layer 31

Figure 8: Simulation for the effect of victims after smoothing with rotated spike outliers. The
magnitude and number of spike outliers are configured according to Figure 7. The X-axis denotes
the number of spike tokens in an activation. The Y-axis denotes u of the normal tokens divided by
smooth scales.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

X R RS RRS X R RS RRS X R RS RRS X R RS RRS

X R RS RRS X R RS RRS X R RS RRS X R RS RRS

X R RS RRS X R RS RRS X R RS RRS X R RS RRS

X R RS RRS X R RS RRS X R RS RRS X R RS RRS

X R RS RRS X R RS RRS X R RS RRS X R RS RRS

X R RS RRS X R RS RRS X R RS RRS X R RS RRS

X R RS RRS X R RS RRS X R RS RRS X R RS RRS

QKV_Projector Output_Projector Up_Proj or Gate_Proj Down_Projector

Qwen1.5-7B

Llama2-7B

Llama2-13B

Llama3-8B

Llama3.1-8B

Llama3-70B

Llama3.1-70B

4 < u < 8u < 4 8 < u

Figure 9: Statistic analysis of outlier removal with different smooth approaches. We collect the
activations with full precision models evaluating on WikiText-2. ’X’ denotes origin activations,
’R’ denotes rotated activations, ’RS’ denotes activations after Runtime Smooth, and ’RRS’ denotes
activations after Rotated Runtime Smooth.

17

	Introduction
	Preliminaries
	Quantization
	Channel-wise Smoothing Method
	Rotation-based Method

	Methodology
	Runtime Smooth
	Runtime Smooth with Kernel Fusion
	Rotated Runtime Smooth

	Experiments
	Settings
	Main Result
	Comparison with training-based Method
	Ablation Study
	Efficiency evaluation

	Related Work
	Large language models
	Model quantization
	Outliers Challenge

	Conclusion
	Supplementary experiment
	More Downstream task
	More Baselines

	Measurement of Probability
	Outlier
	Activation with multiple Spike outliers
	Analysis extent of outlier removal for different method

