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Abstract

Hierarchically gated linear RNN (HGRN, Qin et al. 2023c) has demonstrated
competitive training speed and performance in language modeling while
offering efficient inference. However, the recurrent state size of HGRN
remains relatively small, limiting its expressiveness. To address this issue,
we introduce a simple outer product-based state expansion mechanism,
which significantly enlarges the recurrent state size without introducing any
additional parameters. This enhancement also provides a linear attention
interpretation for HGRN2, enabling hardware-efficient training. Our exten-
sive experiments verify the advantage of HGRN2 over HGRN consistently
across different settings and comptetive to other recurrent models.

1 Introduction

Large language models (LLMs) have achieved significant empirical success in recent years.
However, serving Transformer-based LLMs is costly due to the expensive KV cache man-
agement. Recurrent neural networks (RNNs), on the other hand, offer linear inference
complexity with constant state size, making them ideal for serving. Consequently, there
is substantial interest in studying parallelizable linear recurrent models, such as linear
RNNs (Peng et al., 2023; Orvieto et al., 2023; Qin et al., 2023c; De et al., 2024), linear attention
(Sun et al., 2023; Qin et al., 2023b; Yang et al., 2023; 2024; Arora et al., 2024), and state space
models (Gu et al., 2022a; Smith et al., 2023; Gu & Dao, 2023; Dao & Gu, 2024).

RNNs have a fixed recurrent state size to encode all historical information. Therefore, it
is important for RNNs to (i) utilize the fixed-sized states effectively and (ii) increase the
recurrent state size to enhance memory capacity. Recent improvements in linear RNNs
follow this approach, incorporating techniques such as data-dependent decays and state
expansion.

Data-dependent decays (also known as forget gates) are crucial for RNNs (van der West-
huizen & Lasenby, 2018), allowing them to selectively retain useful information while
erasing irrelevant information. This enables the fixed-size recurrent state to store only
important information more efficiently. HGRN (Qin et al., 2023c) first emphasized the
importance of data-dependent decays for linear RNNs. Many recent linear recurrent models,
such as Mamba (Gu & Dao, 2023), Gated Linear Attention (GLA, Yang et al. 2023), Griffin
(De et al., 2024), and RWKV-6 (Peng et al., 2024), also employ data-dependent decays.

However, HGRN did not increase the recurrent state size, which is greatly restricted by
limited memory capacity. This limitation prevents it from achieving LLaMa-like (Touvron
et al., 2023a;b) language modeling performance, as noted in Qin et al. (2024). Recent state-
of-the-art linear recurrent models, such as Mamba, GLA, and RWKV-6, have addressed this
issue by employing state-expansion techniques. These techniques significantly increase the
recurrent state size and thereby enhance memory capacity, which has been shown to be
crucial for language modeling performance and directly correlated with retrieval ability
(Arora et al., 2024).

∗ Corresponding author. Email: zhongyiran@gmail.com. † Equal contributions.
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In this work, we propose HGRN2, which aims to increase the recurrent state size for HGRN
while retaining both parameter and training efficiency. We first explore structured matrices
to expand the state size directly in a parameter-efficient manner. Empirically, we found
that this approach improves language modeling performance but still encounters training
inefficiencies, which limit the scaling of the recurrent state size. Inspired by linear attention,
we then explore using a non-parametric outer product-based state expansion mechanism.
This approach allows for efficient scaling of the recurrent state size during training without
introducing additional parameters. Due to the matrix multiply form of linear attention,
we can leverage the hardware-efficient linear attention training algorithm described in
Yang et al. (2023); Qin et al. (2024) for large-scale experiments. As a result, HGRN2 can be
regarded as an improved parameterization of GLA.

We extensively evaluate HGRN2 across various tasks, demonstrating that it consistently
outperforms HGRN1 in multiple domains. In language modeling, we show HGRN2 to be
highly competitive compared to other subquadratic efficient models.

2 Background
2.1 Gated linear RNN
Given input x ∈ RN×d, where the sequence length is N and the model dimension is d, a
minimalist gated linear recurrent layer (Martin & Cundy, 2018) transforms the input x into
hidden states h ∈ RN×d and the output y ∈ RN×d, as defined below:

gt = σ (Uxt + bu) ,
it = τ (Vxt + bv) ,
ot = σ (Wxt + bw) ,
ht = gt ⊙ ht−1 + (1 − gt)⊙ it,
yt = ht ⊙ ot,

(1)

where ⊙ denotes element-wise product; σ is the sigmoid function, and τ is a nonlinear
activation function (we choose to use SiLU); it is the input vector; gt and ot are the forget
gate and output gate, respectively. The input gate is tied to the forget gate as 1 − gt, a
common approach used in many gated RNNs such as GRU (Chung et al., 2014).

2.2 HGRN (Qin et al., 2023c)
Compared to Eq. 1, HGRN makes two adjustments: (i) complex-valued recurrence and (ii)
forget gates with monotonically increased lower bound values from bottom layers to upper
layers.

For (i), similar to the findings in Gu & Dao (2023) and De et al. (2024), we empirically found
that complex-valued recurrence is not necessary, as shown in Table 1. The reason why
HGRN found it useful is due to state expansion: the complex-valued recurrent state is twice
the size of that in the real-valued recurrent state. If we directly expand the real-valued
recurrent state size from d to 2d, the language modeling performance on the Wikitext-103
corpus is even better. Therefore, we only consider the real-valued recurrence thereafter.

Table 1: Comparison of real HGRN and complex HGRN. We found that real HGRN with
twice the state size performs better than complex HGRN in Wiki103 language modeling.

Method State size PPL(val) PPL(test) Params (M)

Complex HGRN1 2d 24.14 24.82 46.25
Real HGRN1 d 25.34 26.12 46.24
Real HGRN1 2d 24.04 24.64 45.46

For (ii), suppose the total number of layers is L. HGRN introduces a data-independent
learnable matrix Γ ∈ RL×d, where Γi represents the lowest values of the forget gate for the
i-th layer at all time steps. HGRN argues that this lower bound should be monotonically
increasing from bottom to top, encouraging the bottom layers to model short-term local
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dependencies and the upper layers to model long-term dependencies. To enforce this
monotonicity, HGRN uses the cumulative softmax operator cumax (Shen et al., 2018):

β := cumax(Γ) = cumsum(softmax(Γ, dim = 0), dim = 0) ∈ RL×d, βi = [β]i ∈ Rd.

To prevent the lower bound from reaching one in the highest layer, HGRN subtracts all β

values by β0, making the lower bound for the first layer zero. After obtaining the lower
bound values, the forget gate gt learns the residuals instead, resulting in the new forget gate
ft:

fi
t = βi + (1 − βi)⊙ gi

t,

hi
t = fi

t ⊙ hi
t−1 + (1 − fi

t)⊙ ii
t,

(2)

where the superscript indicates the layer index. This additive lower bound approach has
been shown to mitigate the issue of saturated gates (Gu et al., 2020).

3 Method

3.1 Explorations of state expansion methods

The goal of this work is to scale the size of the HGRN recurrent state from d to nd, where n
is the state expansion ratio. However, if we use the original parameterization in Eq. 1, the
matrices U, V, W will have dimensions d × nd, which becomes very parameter inefficient
when n is large. Ideally, the number of parameters should be around d2, as in the original
case for each projection. To achieve this, we first consider using structured matrices (e.g.,
low-rank matrices) to replace the dense projection matrix Rd → Rnd, as described in Table
2.

Table 2: Parameter Efficient State Expansion (PESE) methods using Einstein Summation
notation. Blue represents the input, Black represents data-independent weights, and Red
represents the output. We list the Einstein Summation for low-rank (LR), group linear
transformation (GLT), group linear transformation with interaction (GLTI), Khatri-Rao
product (KRP), and Kronecker product (KP).

Method Equation Parameter #

Naive d, d nd → nd nd2

LR d, d r, r nd → nd dr(n + 1) ≈ d2

GLT d = (n e) → n e
n e, n e d → n d d2

GLTI d = (n e) → n e
n e, n e d, n n → nd d2 + n2

KRP d, n d → nd nd

KP d, d d, n → nd d2 + n

After obtaining the expanded g, i, o, we feed them into element-wise gated linear recurrent
layers as in Eq. 1 and Eq. 2, resulting in the output vector yt ∈ Rn×d. To project the
expanded dimension back to the original dimension, we simply sum over the dimension
corresponding to n.

The results are shown in Table 3. We found that state expansion generally improves
performance, with the low-rank matrix performing the best among these candidates.
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Table 3: PESE Ablation. Abla-
tion studies on various parameter-
efficient methods, as described in Ta-
ble 2. Each model was trained on 10
billion tokens from the Pile dataset.

Method n PPL Params (M)

Xfmr - 5.16 380
Xfmr++ - 4.62 386
HGRN1 1 5.10 379
LR 4 4.76 385

8 4.77 386
GLT 4 5.06 386
GLTI 4 4.83 386
KRP 4 5.08 386
KP 4 5.06 386

HGRN2 4 4.79 385
8 4.73 385

128 4.62 385

However, these methods face training inefficiency
issues, as they require conducting element-wise lin-
ear recurrence in high dimensions (i.e., nd). Since
these element-wise operations cannot leverage tensor
cores (a fast matrix multiplication unit on GPUs), the
dramatically increasing FLOPs and I/O costs signifi-
cantly slow down training when n is large. We notice
that this is similar to the case in Mamba1, which re-
quires a relatively small expansion ratio (i.e., n = 16)
and a custom I/O-efficient CUDA implementation
to achieve a reasonably fast running speed.

In the next subsection, we explore an alternative strat-
egy that does not replace the dense projection ma-
trices with structured ones but instead changes the
element-wise gating operations in Eq.1 to other ma-
trix/vector operations similar to those used in linear
attention. This approach allows for more efficient
training.

3.2 HGRN2
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Figure 1: Network Structure of HGRN2. Each HGRN2 layer includes a token mixer layer,
HGRU2, and a channel mixer, GLU. HGRU2 employs recurrent computation as described
in Eq. 3, where it is the input state, gt is the forget gate, ot is the output gate, and βi is the
lower bound for layer i.

The modification from HGRN1 to HGRN2 is simple yet effective. For the input gate, HGRN2
replaces the element-wise product with the outer product for state expansion. Consequently,
ht ∈ Rd×d, and HGRN2 first diagonalizes the forget gate vector and uses the matrix dot
product to update the hidden state. For the output gate, HGRN2 replaces the element-wise
product with matrix-vector multiplication to project the expanded state back to the original
dimension. The recurrent equation of HGRN2 is as follows:

ht = ht−1 · Diag{ft}+ it ⊗ (1 − ft) ∈ Rd×d,

yt = ht · ot ∈ Rd,
(3)

where Diag denotes the diagonalization of vectors, · represents the matrix dot product, and
⊗ indicates the outer product.

1Though Mamba has an attention mechanism (Ali et al., 2024) similar to that in linear attention, the
attention computation cannot be expressed as a matrix multiplication like linear attention, and thus
does not facilitate tensor core-based GPU acceleration, as well acknowledged in Mamba2 (Dao & Gu,
2024).
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Figure 2: Expand Ratio (Head Dimension) Ablation. We tested the relationship between
PPL (Perplexity) and the expand ratio on the Wikitext-103 (Merity et al., 2017) dataset (left)
and a subset of the Pile (Gao et al., 2020) dataset (right).

Multihead Variant. The complexity of recurrence increases dramatically from O(BNd)
to O(BNd2) due to state expansion. To address this, we introduce a multihead variant of
HGRN (similar to that in linear attention) such that the complexity is reduced to O(BNd2/H)
for the number of heads H, effectively making the state size d2/H, i.e., the expansion ratio
n = dh = d/H.2 We conducted an ablation study on the expansion ratio (or head dimension)
n = d

H , as shown in Figure 2. The results show that state expansion significantly improves
language modeling performance. However, when the head dimension (i.e., state expansion
ratio) exceeds 128, the performance gain diminishes. To balance computational cost and
performance, we chose dh = 128 for the main experiments.

Comparison to GLA. It is important to note that the recurrence form in HGRN2 is identical
to that of GLA (Yang et al., 2023), except for the specific parameterization. We list the
correspondences between the two parameterizations in Table 4. As shown, the output gate
in HGRN2 corresponds to the query in GLA, while the output gate in GLA is omitted in
HGRN2. The key vector in GLA corresponds to the input gate in HGRN2, which is tied to
the forget gate, thereby saving parameters.

Table 4: The correspondence between HGRN2 and GLA is as follows.

HGRN2 GLA

o (output gate) q (query vector)
1 − f (input gate) k (key vector)
i (input vector) v (value vector)
f (forget gate) α (forget gate)

− o (output gate)

Hardware-Efficient Training. Due to its computational structure’s similarity to GLA, we
can directly leverage their chunkwise algorithm and highly optimized kernels for hardware-
efficient large-scale training. For more details, we refer readers to their paper.

Concluding Remarks. Although HGRN2 shares many similarities with GLA, we believe
that HGRN2 offers a unique perspective distinct from linear attention, originating from
the approach of gated linear RNNs. For instance, it may not be immediately clear from the
perspective of linear attention why key vectors should be constrained within the range of (0,
1) or why the key vector and forget gate value should sum to one. However, these concepts
become quite intuitive when starting from the gated linear RNN framework and exploring
state expansion.

2See Bolya et al. (2022) for more detailed complexity analysis.
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4 Experiments

4.1 MQAR

Setting. Multi-Query Associative Recall (MQAR) (Arora et al., 2023) is an enhanced
version of the synthetic induction head dataset (Fu et al., 2023), designed to test the in-context
associative recall ability of subquadratic models. Arora et al. (2023) found strong correlations
between MQAR accuracy and language modeling performance. Our experimental setting
strictly follows the original paper3. Our hyperparameter sweep included the following
ranges: expansion ratio ∈ {64, 128} and learning rate ∈ {1e − 5, 5e − 5, 1e − 4, 5e − 4, 1e −
3, 5e − 3, 1e − 2}.

Result. As shown in Fig. 3, HGRN2 significantly outperforms HGRN1 across various
model dimensions, demonstrating the benefits of state expansion in improving memory
capacity and, consequently, in-context recall ability.

64 128 256 512
Model dimension

0.00
0.25
0.50
0.75
1.00

Ac
cu

ra
cy

Sequence Length: 64

64 128 256 512
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Figure 3: Results on MQAR, where the x-axis represents the model dimension and the y-axis
represents accuracy. The task becomes more challenging as the sequence length increases.
HGRN2 outperforms HGRN1 in all scenarios.

4.2 Language modeling

4.2.1 Wikitext-103

Table 5: Results on Wikitext-103.

Model PPL (val) PPL (test) Params (M)

Transformer 24.40 24.78 44.65
FLASH 25.92 26.70 42.17
1+elu 27.44 28.05 44.65
Performer 62.50 63.16 44.65
cosFormer 26.53 27.06 44.65
Syn(D) 31.31 32.43 46.75
Syn(R) 33.68 34.78 44.65
gMLP 28.08 29.13 47.83
S4 38.34 39.66 45.69
DSS 39.39 41.07 45.73
GSS 29.61 30.74 43.84
RWKV-4 24.31 25.07 46.23
LRU 29.86 31.12 46.24
TNN 23.98 24.67 48.68
Mamba 22.58 23.19 44.39
HGRN1 24.14 24.82 46.25
HGRN2 23.10 23.73 44.66

Setting. For the Wikitext-103 experiment, we
followed the configuration of HGRN1 to vali-
date the performance of 44M models against
a wide range of subquadratic models: FLASH
(Hua et al., 2022), 1+elu (Katharopoulos et al.,
2020), Performer (Choromanski et al., 2021), cos-
Former (Qin et al., 2022b), Syn(D), Syn(R) (Tay
et al., 2021a), gMLP (Liu et al., 2021), S4 (Gu et al.,
2022a), DSS (Gupta & Berant, 2022), RWKV-v4
(Peng et al., 2023), LRU (Orvieto et al., 2023),
HGRN1 (Qin et al., 2023c), TNN (Qin et al.,
2023a), and Mamba (Gu & Dao, 2023). All re-
ported results are from our own runs under the
same settings.

Result. Table 5 shows the results. HGRN2 clearly outperforms HGRN1 but slightly
underperforms Mamba.

4.2.2 Slimpajama

We conducted language modeling experiments with 1.3B and 2.7B parameters on the
Slimpajama dataset (Soboleva et al., 2023), using the FLASHLINEARATTENTION (Yang &
Zhang, 2024) codebase for training. 4 The results, shown in Table 6, demonstrate that

3https://github.com/HazyResearch/zoology
4Model checkpoints are available at https://huggingface.co/fla-hub.
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HGRN2 consistently outperforms other competitive linear recurrent models across three
model scales. This suggests that HGRN2 provides a superior parameterization compared to
GLA, as both models share an identical recurrent structure.

Table 6: Slimpajama language modeling results.

Lamb. Wiki. ARCe ARCc Hella. Lamb. PIQA Wino. Avg
ppl↓ ppl↓ acc accn accn acc acc acc

1.3B parameters with 100B training tokens
Transformer++ 15.3 17.1 54.1 27.1 49.3 47.0 70.3 54.9 50.5
Mamba 16.5 18.2 57.3 26.6 48.1 43.4 69.5 53.7 49.8
RetNet 15.4 17.3 57.4 27.9 50.3 44.6 71.7 51.8 50.6
GLA 15.4 17.6 55.4 27.7 49.0 46.4 69.9 54.0 50.4
HGRN2 11.8 16.9 58.1 28.1 51.8 49.4 71.4 52.3 51.9

2.7B parameters with 100B training tokens
Transformer++ 10.7 15.2 59.8 27.5 54.2 52.3 72.7 56.2 53.8
Mamba 13.6 15.9 60.7 29.8 53.9 46.4 72.8 53.9 52.9
RetNet 11.9 15.8 59.6 28.1 54.0 49.6 72.3 53.8 52.9
GLA 12.4 15.5 59.2 29.9 54.0 50.4 71.7 55.7 53.5
HGRN2 8.8 14.6 60.8 30.3 58.7 55.4 73.0 54.2 55.4

4.2.3 The Pile

We also conducted experiments on the Pile dataset. First, we trained 150M, 350M, and 1B
HGRN1 and HGRN2 models for 100B tokens, and the results are shown in Table 7. We
observe that HGRN2 consistently outperforms HGRN1.

Table 7: Comparison between HGRN1 and HGRN2 on Commonsense Reasoning Tasks.

Model Bn Params Bn Tokens PIQA Hella. Wino. ARC-e ARC-c OBQA AVG

HGRN1 0.15 100 65.02 33.33 50.20 46.68 23.81 28.60 41.27
HGRN2 0.15 100 66.43 35.44 51.70 46.63 24.32 28.40 42.15

HGRN1 0.35 100 66.70 38.12 51.70 49.20 25.26 30.60 43.60
HGRN2 0.39 100 69.97 46.16 52.72 53.58 23.98 32.40 46.47

HGRN1 1 100 70.89 48.02 51.62 55.64 27.90 31.60 47.61
HGRN2 1 100 74.16 54.85 56.12 58.71 27.22 34.00 50.84

Next, we scaled the token horizon to 300B and trained strong baseline models, Mamba and
LLaMA, under the same settings for comparison. We also compared them against several
open-sourced language models, such as OPT (Zhang et al., 2022), Pythia (Biderman et al.,
2023), BLOOM (Scao et al., 2022), and RWKV-4 (Peng et al., 2023). We found that HGRN2
performs competitively with Mamba, LLaMA, and other open-sourced LLMs.

To evaluate long-context abilities, we conducted tests on SCROLLs (Shaham et al., 2022)
and found that HGRN2 exhibits better scaling behavior compared to Mamba, indicating
stronger long-context capabilities, potentially due to its larger recurrent state size. However,
we also observed that the 7B HGRN2 model is still not as strong as the LLaMA model,
suggesting that the scaling behavior of linear models for long-context modeling remains an
area for further study.

To test the retrieval ability of our trained 3B models, we ran the easy mode of the Needle
in a Haystack Test. 5 LLaMA almost achieves perfect retrieval performance for evaluation

5In this mode (Shen, 2024; Shen et al., 2024), both the question and answer (QA pair) are embedded
within a lengthy text, challenging the model to locate and respond to the query. This mode is
particularly suitable for base models without instruction tuning. In contrast, the standard mode only
places the answer within the long context, requiring the model to understand the question and find
the relevant answer.
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Table 8: Comparison between HGRN2 and other open-sourced language models, alongside
strong baseline models (LLaMA and Mamba re-trained under the same settings), on Com-
monsense Reasoning Tasks. † indicates our own trained model.

Model Bn Params Bn Token PIQA Hella. Wino. ARC-e ARC-c OBQA AVG

OPT 0.35 300 64.58 36.69 52.49 44.02 23.89 28.20 41.65
Pythia 0.40 300 67.08 40.52 53.59 51.81 24.15 29.40 44.43
BLOOM 0.56 350 64.09 46.97 52.80 47.35 29.38 28.20 42.23
RWKV-4 0.43 - 67.52 39.00 51.14 52.86 25.17 32.40 45.00
Llama† 0.4 350 67.19 38.75 52.19 49.24 23.72 30.00 43.51
Mamba† 0.4 300 67.90 40.74 52.72 53.07 24.74 31.20 45.06
HGRN2† 0.4 300 67.74 40.32 51.78 54.21 24.83 31.20 45.01

GPT-Neo 1.3 300 71.11 48.93 54.93 56.19 25.85 33.60 48.44
OPT 1.3 300 71.71 53.70 59.35 57.24 29.69 33.20 50.82
Pythia 1.4 300 70.67 47.18 53.51 56.99 26.88 31.40 47.77
BLOOM 1.3 350 71.42 49.83 51.47 55.63 29.40 44.50 47.27
RWKV-4 1.5 - 72.36 52.48 54.62 60.48 29.44 34.00 50.56
Llama† 1.0 300 69.97 47.04 52.72 57.07 26.18 32.60 47.93
Mamba† 1.0 300 71.27 50.15 56.35 58.71 29.27 31.20 49.45
HGRN2† 1.0 300 71.65 49.52 54.38 60.27 28.07 33.40 49.55

OPT 2.7 300 73.83 60.60 61.01 60.77 31.31 35.20 53.79
Pythia 2.8 300 74.10 59.31 59.91 64.14 33.02 35.60 54.35
BLOOM 3.0 350 70.57 54.53 58.49 59.43 30.38 32.20 50.77
RWKV-4 3.0 - 72.42 58.75 57.30 62.92 35.15 36.20 53.79
Llama† 3.0 350 73.18 57.88 59.59 63.93 33.51 35.40 53.93
Mamba† 3.0 300 74.92 61.68 59.19 65.33 31.45 35.60 55.31
HGRN2† 3.0 300 74.10 61.48 58.64 65.61 34.47 35.60 54.98

Llama† 7.0 300 75.19 64.39 61.88 67.55 35.41 35.00 56.57
HGRN2† 7.0 300 76.50 66.96 61.40 69.02 36.86 38.00 58.12

Table 9: Performance Comparison on SCROLLS. R-1/2/L stand for parameter size, tokens,
and rouge-1/rouge-2/rouge-l, respectively.

Model Params Token GovRep SumScr QMSum Qspr Nrtv QALT CNLI Avg ↑
Bn Bn R-1/2/L R-1/2/L R-1/2/L F1 F1 EM EM

Llama 0.4 300 8.2/3.5/6.2 11.3/1.6/8.7 10.7/2.1/9.4 17.8 15.4 28.0 13.9 10.5
Mamba 0.4 300 8.2/2.4/6.2 11.2/1.8/8.9 9.3/1.6/8.4 14.9 11.6 25.8 19.4 10.0
HGRN2 0.4 300 15.3/3.5/10.9 7.4/0.8/6.2 8.3/1.2/7.4 12.4 10.9 26.4 31.5 10.9

Llama 1.0 300 12.9/3.1/9.4 9.5/0.8/7.7 10.9/2.2/9.4 22.8 16.0 28.4 9.9 11.0
Mamba 1.0 300 15.2/4.2/10.6 12.3/1.6/9.4 13.9/3.1/11.7 18.3 14.7 26.7 9.1 11.6
HGRN2 1.0 300 14.9/4.2/10.5 11.4/1.4/9.2 10.9/2.3/9.7 16.2 15.1 27.8 10.6 11.1

Llama 3.0 300 11.2/4.9/8.1 11.9/1.9/9.3 16.1/4.3/12.9 28.6 20.8 30.4 20.2 13.9
Mamba 3.0 300 21.5/6.6/13.9 13.2/2.0/10.1 15.0/3.2/12.3 22.1 17.9 28.8 24.0 14.7
HGRN2 3.0 300 21.7/6.6/14.1 14.6/2.1/10.8 12.5/2.7/10.6 25.4 18.8 28.9 31.9 15.4

Llama 7.0 300 17.4/7.3/11.4 12.9/1.8/10.0 14.6/3.7/11.8 32.4 22.3 33.8 10.0 14.6
HGRN2 7.0 300 14.9/5.2/10.2 15.4/2.4/11.1 14.3/3.0/11.8 27.1 19.6 30.1 10.0 13.5

lengths no greater than the training length. As shown in Figure 4, HGRN2 and Mamba still
face difficulties in retrieval tasks; however, HGRN2 outperforms Mamba due to its larger
state size, enabled by linear attention-styled state expansion.

 
  

Figure 4: Easy mode Needle in a Haystack Test on 3B models: Mamba (left) and HGRN2
(right). The evaluation context length is 16K, and the models were trained on a sequence
length of 8K.
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4.3 Long Range Arena

Table 10: Results on LRA. † indicates the results reported by Alonso et al. (2024).

Model ListOps Text Retrieval Image Pathfinder Path-X AVG

Transformer 38.37 61.95 80.69 40.57 65.26 - 47.81
cosFormer 36.50 67.70 83.15 51.23 71.96 - 51.76
FLASH 38.70 64.10 86.10 47.40 70.25 - 51.09
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09
TNN 61.04 87.90 90.97 88.24 93.00 96.10 86.21
S5 62.15 89.31 91.40 88.00 95.33 98.56 87.46
Mega 63.14 90.43 91.25 90.44 96.01 97.98 88.21
SGConv 61.45 89.20 91.11 87.97 95.46 97.83 87.17
LRU 60.20 89.40 89.90 89.00 95.10 94.20 86.30
Mamba† 38.02 82.98 72.14 69.82 69.26 67.32 66.59
Griffin† 32.34 71.75 66.58 61.15 73.38 69.53 62.45

HGRN1 59.95 88.14 94.23 88.69 92.92 97.50 86.91
HGRN2 60.52 88.97 95.07 89.33 93.95 98.12 87.66

Setting. Long Range Arena (Tay et al., 2021b) is a benchmark designed to assess a model’s
ability to handle long-range dependencies. We used HGRN1’s configuration and compared
it with existing methods, as shown below.

Result. Table 10 shows the results. HGRN2 outperforms HGRN1, while Mamba and
Griffin failed to achieve high accuracy on this benchmark.

4.4 Image Modeling

Setting. For the image classification task, we followed the configuration of HGRN1 and
trained it on ImageNet-1k, comparing it with TNN and the vanilla transformer.

Result. Table 11 shows the results. HGRN2 outperforms HGRN1 with a similar parameter
size, while also demonstrating an advantage over previous TNN (Qin et al., 2023a) and
DeiT models (Touvron et al., 2021).

Table 11: Performances comparison of image classification on ImageNet-1k. HGRN2 per-
forms favorably compared to competing methods with similar parameter sizes.

DeiT-Tiny DeiT-Small
Model Top-1 Acc Params (M) Top-1 Acc Params (M)

DeiT 72.20 5.7 79.90 22.0
TNN 72.29 6.4 79.20 23.4
HGRN1 74.40 6.1 80.09 23.7

HGRN2 75.39 6.1 80.12 23.8

5 Related work

Linear recurrent models. Linear recurrent models mainly include linear RNNs, state-space
models, and linear attention. State-space models (SSMs) are gaining great attention since
the seminal work S4 (Gu et al., 2022a) and its more efficient diagonalized version (Gu et al.,
2022b). Despite excellent performance in the LRA benchmark, it has been shown to have
inferior performance in language modeling. Gating mechanisms have been shown to be
crucial in improving SSMs’ language modeling performance (Mehta et al., 2023; Wang et al.,
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2022; Gu & Dao, 2023). Gupta et al. (2022) build the connection between SSM and linear
RNN. Orvieto et al. (2023) proposes a linear RNN layer (i.e., LRU) inspired by SSMs. Peng
et al. (2023) successfully scale linear RNN models to billions of parameters for the first time.

For linear attention models, their language modeling performance has been underperform-
ing softmax attention for a long time. Several improvements have been proposed to bridge
the performance gap: (i) incorporating the forgetting mechanism (Peng et al., 2021; Schlag
et al., 2021; Sun et al., 2023; Qin et al., 2023b; Yang et al., 2023; Peng et al., 2024), (ii) using
local attention (Qin et al., 2022a; Zhang et al., 2023; Arora et al., 2024; Ren et al., 2024),
(iii) using higher-order polynomial feature map (Arora et al., 2024; Kacham et al., 2023) to
make the resulting attention distribution more sharp (Zhang et al., 2024), (iv) using more
expressive yet efficient recurrent update rule (Schlag et al., 2021; Yang et al., 2024; Liu et al.,
2024; Sun et al., 2024a).

Gated linear recurrence. Martin & Cundy (2018) first proposed a minimal gated linear
recurrent layer and showed how to use the parallel scan algorithm to train linear RNNs
in sequence-level parallel. Qin et al. (2023c) is largely based on this work with several
adaptations and highlights the importance of data-dependent decay. De et al. (2024) build
their model on LRU (Orvieto et al., 2023) and replace data-independent decays with data-
dependent ones. They further use sliding-window attention to boost the performance.
These models are limited in recurrent state size.

Gated recurrent models with matrix-valued recurrent state have been investigated in the
literature of Neural Turing Machine (NTM Graves et al. 2014) and linear Transformer
(Katharopoulos et al., 2020). In NTM, the number of memory slots can be regarded as the
state expansion ratio discussed in this work. NTM also included data-dependent decays
in the form of erase vectors. However, NTM is hard to parallelize and thus slow to train in
practice. The linear transformer is known to have the recurrent form (Katharopoulos et al.,
2020) and is known to be closely related to fast weight programming (FWP Schlag et al.
2021). Gated FWPs have been investigated since Schlag & Schmidhuber (2017); Zhang &
Zhou (2017), and have recently been revisited in Peng et al. (2021); Mao (2022); Yang et al.
(2023); Katsch (2023); Pramanik et al. (2023). In particular, Yang et al. (2023) proposed a
hardware-efficient training algorithm for these types of models.

More recently, Mamba2 (Dao & Gu, 2024), xLSTM (Beck et al., 2024), and Gated Retention
(Sun et al., 2024b) have shown that sharing data-dependent decays across different dimen-
sions within the same head is effective. This approach improves efficiency over GLA because
intra-chunk computations are more amenable to tensor core-based matrix multiplication
acceleration, at the cost of sacrificing the fine-grainedness of decays. In GLA/HGRN2, each
head dimension has its own decay rate, whereas in Mamba2/xLSTM/Gated Retention, all
dimensions share the decay under a single head. It is an interesting question to study how
much improvement fine-grained decay will bring.

6 Conclusion

In this work, we propose HGRN2, an enhancement of HGRN (Qin et al., 2023c) using
an outer product-based state expansion mechanism inspired by linear attention, enabling
efficient training. Experiments across multiple tasks validate the advantages of HGRN2
over HGRN1.
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Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 26670–26698. PMLR, 2023. URL https://proceedings.mlr.press/v202/
orvieto23a.html.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao,
Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran G. V., Xuzheng He, Haowen
Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau,
Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Xiangru Tang, Bolun Wang,
Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao,
Peng Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: reinventing rnns for the transformer era.
CoRR, abs/2305.13048, 2023. doi: 10.48550/ARXIV.2305.13048.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman,
Eugene Cheah, Teddy Ferdinan, Haowen Hou, Przemys l aw Kazienko, G Kranthiki-
ran, Jan Koco’n, Bartlomiej Koptyra, Satyapriya Krishna, Ronald McClelland, Niklas
Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song, Haoqin Tu, Stanislaw Wo’zniak,
Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Peng Zhou, Jian Zhu, and Ruijie Zhu.
Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence. ArXiv,
abs/2404.05892, 2024. URL https://api.semanticscholar.org/CorpusID:269010053.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng
Kong. Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Subhojeet Pramanik, Esraa Elelimy, Marlos C. Machado, and Adam White. Recurrent linear
transformers. CoRR, abs/2310.15719, 2023.

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and
Yiran Zhong. The devil in linear transformer. arXiv preprint arXiv:2210.10340, 2022a.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan,
Lingpeng Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022b.

Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai,
Lingpeng Kong, and Yiran Zhong. Toeplitz neural network for sequence modeling.
In The Eleventh International Conference on Learning Representations (ICLR), 2023a. URL
https://openreview.net/forum?id=IxmWsm4xrua.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei,
Baohong Lv, Fei Yuan, Xiao Luo, et al. Scaling transnormer to 175 billion parameters.
arXiv preprint arXiv:2307.14995, 2023b.

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for
sequence modeling. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023c. URL http://papers.nips.cc/paper_files/
paper/2023/hash/694be3548697e9cc8999d45e8d16fe1e-Abstract-Conference.html.

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Lightning
attention-2: A free lunch for handling unlimited sequence lengths in large language
models. 2024.

13

https://proceedings.mlr.press/v202/orvieto23a.html
https://proceedings.mlr.press/v202/orvieto23a.html
https://api.semanticscholar.org/CorpusID:269010053
https://openreview.net/forum?id=IxmWsm4xrua
http://papers.nips.cc/paper_files/paper/2023/hash/694be3548697e9cc8999d45e8d16fe1e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/694be3548697e9cc8999d45e8d16fe1e-Abstract-Conference.html


Published as a conference paper at COLM 2024

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Sim-
ple hybrid state space models for efficient unlimited context language modeling. ArXiv,
abs/2406.07522, 2024. URL https://api.semanticscholar.org/CorpusID:270380294.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili’c, Daniel Hesslow,
Roman Castagn’e, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan
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Kusa, Yanis Labrak, Yashasvi Bajaj, Y. Venkatraman, Yifan Xu, Ying Xu, Yu Xu, Zhee Xao
Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, and Thomas Wolf. Bloom: A
176b-parameter open-access multilingual language model. ArXiv, abs/2211.05100, 2022.
URL https://api.semanticscholar.org/CorpusID:253420279.

Imanol Schlag and Jürgen Schmidhuber. Gated fast weights for on-the-fly neural program
generation. 2017. URL https://api.semanticscholar.org/CorpusID:216094255.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast
weight programmers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 9355–9366. PMLR, 2021.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan
Xiong, Mor Geva, Jonathan Berant, and Omer Levy. SCROLLS: Standardized CompaRison
over long language sequences. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 12007–12021, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.823. URL https://
aclanthology.org/2022.emnlp-main.823.

Xuyang Shen. Llmtest needleinahaystack hfmodel: Support huggingface model to do simple
retrieval from llm models at various context lengths to measure accuracy, 2024. URL
https://github.com/XuyangShen/LLMTest_NeedleInAHaystack_HFModel.

Xuyang Shen, Dong Li, Ruitao Leng, Zhen Qin, Weigao Sun, and Yiran Zhong. Scaling laws
for linear complexity language models, 2024. URL https://arxiv.org/abs/2406.16690.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron C. Courville. Ordered neurons:
Integrating tree structures into recurrent neural networks. ArXiv, abs/1810.09536, 2018.
URL https://api.semanticscholar.org/CorpusID:53034786.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space
layers for sequence modeling. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan
Dey. SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois,
Xinlei Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin.
Learning to (learn at test time): Rnns with expressive hidden states. 2024a. URL https:
//api.semanticscholar.org/CorpusID:271039606.

15

https://api.semanticscholar.org/CorpusID:253420279
https://api.semanticscholar.org/CorpusID:216094255
https://aclanthology.org/2022.emnlp-main.823
https://aclanthology.org/2022.emnlp-main.823
https://github.com/XuyangShen/LLMTest_NeedleInAHaystack_HFModel
https://arxiv.org/abs/2406.16690
https://api.semanticscholar.org/CorpusID:53034786
https://api.semanticscholar.org/CorpusID:271039606
https://api.semanticscholar.org/CorpusID:271039606


Published as a conference paper at COLM 2024

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
and Furu Wei. Retentive network: A successor to transformer for large language models.
arXiv preprint arXiv:2307.08621, 2023.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang,
Jianyong Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for
language models. ArXiv, abs/2405.05254, 2024b. URL https://api.semanticscholar.
org/CorpusID:269626143.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models, 2021a.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for
efficient transformers. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021b. URL https://openreview.
net/forum?id=qVyeW-grC2k.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles,
and Herve Jegou. Training data-efficient image transformers &amp; distillation through
attention. In International Conference on Machine Learning, volume 139, pp. 10347–10357,
July 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023b.

Jos van der Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate.
CoRR, abs/1804.04849, 2018.

Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M. Rush. Pretraining without
attention. CoRR, abs/2212.10544, 2022.

Songlin Yang and Yu Zhang. FLA: A Triton-Based Library for Hardware-Efficient Imple-
mentations of Linear Attention Mechanism, January 2024. URL https://github.com/
sustcsonglin/flash-linear-attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear
attention transformers with hardware-efficient training. CoRR, abs/2312.06635, 2023. doi:
10.48550/ARXIV.2312.06635. URL https://doi.org/10.48550/arXiv.2312.06635.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear
transformers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484,
2024.

Jun Zhang, Shuyang Jiang, Jiangtao Feng, Lin Zheng, and Lingpeng Kong. Linear attention
via orthogonal memory, 2023.

16

https://api.semanticscholar.org/CorpusID:269626143
https://api.semanticscholar.org/CorpusID:269626143
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention
https://doi.org/10.48550/arXiv.2312.06635


Published as a conference paper at COLM 2024

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog &
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A Appendix

A.1 Experiment Configurations

Table 12 provides detailed setups for both Auto-regressive Language Modeling (ALM)
and ImageNet (IM) experiments, focusing on the WikiText-103 and ImageNet-1k datasets,
respectively. The ALM experiments utilize Byte Pair Encoding (BPE) with a vocabulary size
of 50,265 and a sequence length of 512, featuring a total batch size of 128 and 50,000 updates.
The ImageNet experiments differentiate between 6 million and 23 million parameter models,
with total batch sizes of 1024 and 2048, both running for 300 epochs but with differing
warm-up periods. Optimization strategies vary between Adam for ALM and AdamW for
IM, with specific learning rate schedulers and hyperparameters tailored to each model’s
scale. Additional configurations outline variations in model complexity, ranging from 0.15
to 2.9 million parameters, adjusting layers, hidden dimensions, and GPUs used, aiming to
comprehensively explore model performance across scales and setups.

Table 12: Comprehensive Configurations of the Model and Training Procedures for
HGRN2 Experiments. ”Total batch size” means batch per gpu × update freq × num gpus;
”ALM” stands for Autoregressive Language Model; ”IM” stands for Image Modeling.

ALM IM(6M) IM(23M)
Dataset WikiText-103 ImageNet-1k ImageNet-1k
Tokenizer method BPE - -
Src Vocab size 50265 - -
Sequence length 512 - -
Total batch size 128 1024 2048
Number of updates/epochs 50k updates 300 epochs 300 epochs
Warmup steps/epochs 4k steps 20 epochs 10 epochs
Peak learning rate 5e-4 7.5e-4 7.5e-4
Learning rate scheduler Inverse sqrt Cosine Cosine
Optimizer Adam AdamW AdamW
Adam ϵ 1e-8 1e-8 1e-8
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Weight decay 0.1 0.05 0.1
Gradient clipping - 5.0 5.0

Table 13: Model Configurations

Params Layers Hidden Dim Exp. Ratio L. R. Batch Size SeqLen GPUs
0.15 15 768 128 3.00E-04 26 2048 8
0.385 26 1024 128 3.00E-04 15 2048 8

1 18 2048 128 3.00E-04 10 2048 16
2.9 36 2560 128 3.00E-04 36 2048 64
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