
Under review as a conference paper at ICLR 2024

SPI-GAN: DENOISING DIFFUSION GANS WITH
STRAIGHT-PATH INTERPOLATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-based generative models (SGMs) show the state-of-the-art sampling quality
and diversity. However, their training/sampling complexity is notoriously high due
to the highly complicated forward/reverse processes, so learning a simpler pro-
cess is gathering much attention currently. We present an enhanced GAN-based
denoising method, called SPI-GAN, using our proposed straight-path interpola-
tion definition. To this end, we propose a GAN architecture i) denoising through
the straight-path and ii) characterized by a continuous mapping neural network for
imitating the denoising path. This approach drastically reduces the sampling time
while achieving as high sampling quality and diversity as SGMs. As a result, SPI-
GAN is one of the best-balanced models among the sampling quality, diversity,
and time for CIFAR-10, CelebA-HQ-256, and LSUN-Church-256.

1 INTRODUCTION

Generative models are one of the most popular research topics for deep learning. Many different
models have been proposed, ranging from variational autoencoders (Kingma & Welling, 2013) and
generative adversarial networks (Goodfellow et al., 2014) to recent denoising diffusion models (Ho
et al., 2020; Song & Ermon, 2019; Song et al., 2021c). The representative denoising diffusion models
score matching with Langevin dynamics (Song & Ermon, 2019) and denoising diffusion probabilis-
tic modeling (Ho et al., 2020) progressively corrupt original data and revert the corruption process
to build a generative model. Recently, Song et al. (2021c) proposed a stochastic differential equation
(SDE)-based mechanism that embraces all those models and coined the term, score-based generative
models (SGMs).

Each generative model has different characteristics in terms of the generative task trilemma: i) sam-
pling quality, ii) sampling diversity, and iii) sampling time. Generative adversarial networks (GANs)
generate samples with high quality but low diversity. Conversely, variational autoencoders (VAEs)
generate a variety of samples, but its sampling quality is lacking. SGMs outperform GANs and VAEs
in terms of sampling quality/diversity. However, sampling with SGMs takes a lot of time.

Resolving the trilemma of generative models is an important recent research topic. In particular,
reducing the complexity of SGMs is gathering much attention. There exist two different directions
for this: i) learning a simpler process than the complicated forward/reverse process of SGMs (Nichol
& Dhariwal, 2021; Das et al., 2023), and ii) letting GANs imitate 1 SGMs (Xiao et al., 2021; Wang
et al., 2022). Our method can be considered a hybrid of them. Inspired by the previous studies, we
propose a GAN-base hybrid method that approximates the straight-path interpolation. Our method
imitates a denoising process following the straight-path interpolation guided by ux0 + (1 − u)xT ,
where 0 ≤ u ≤ 1 (cf. Figure 1 (d)). Therefore, we call our method straight-path interpolation GAN
(SPI-GAN).

One may consider that SPI-GAN is similar to Denoising Diffusion GAN (DD-GAN) and Diffusion-
GAN (cf. Figure 1 (b-d)). DD-GAN (Xiao et al., 2021) effectively reduces the number of denoising
steps by letting its GAN approximate the shortcuts. In Diffusion-GAN (Wang et al., 2022), image

1Let x0 be a clean original sample and xT be a noisy sample that follows a Gaussian prior under the context
of SGMs. These imitation methods learn a denoising process following the reverse SDE path by training their
conditional generators to read xt and output xt−j . Typically, a large j > 0 is preferred to reduce the denoising
step (see Section 2 for a detailed explanation).

1

Under review as a conference paper at ICLR 2024

Forward SDE (Brownian Motion)

Reverse SDE

(a) The SDE-based work-
flow of SGMs. The reverse
SDE is a generation pro-
cess.

Time-dependent
Discriminator

(b) Approximating the re-
verse SDE (T steps in to-
tal) with K shortcuts by
DD-GAN, e.g., K = 3 in
this example.

Non-time-dependent
Discriminator

Forward SDE (Brownian Motion)

(c) Augmentation follow-
ing the forward SDE of
Diffusion-GAN.

Time-dependent
Discriminator

(d) Our proposed denois-
ing method, SPI-GAN,
with straight-path interpo-
lations.

Figure 1: The comparison among four models: i) the original formulation of SGMs in (a), ii)
DD-GAN’s learning the shortcuts of the reverse SDE (based on the conditional generator x iT

K
=

G(x (i+1)T
K

, (i+1)T
K) in (b), iii) Diffusion-GAN’s augmentation method in (c) and iv) SPI-GAN’s

learning the straight path in (d). The red paths in (b), (c), and (d) are used as the discriminators’ input.
Note that we do not strictly follow the reverse SDE path but the straightly interpolated path. There-
fore, one can consider that SPI-GAN denoises xT to x0 following the straight path. The straight
path is much easier to learn than the highly non-linear backward SDE path (see Section 2 and Ap-
pendix B for a more detailed discussion).

augmentation is performed by injecting noisy images following the forward path of SGMs, and
the standard adversarial training is conducted for its GAN. However, our SPI-GAN is technically
different and more sophisticated in the following points:

• Our straight-path interpolation is as simple as Eq. 6, is much easier to learn. It is also
possible to derive its ordinary differential equation (ODE)-based formulation, which we
call the straight-path interpolation process in Eq. 10 in Appendix B.

• In DD-GAN, the generator learns K shortcuts through the reverse path of SGMs, whereas
SPI-GAN learns the straight-interpolation path.

• Diffusion-GAN’s discriminator is trained with the augmented noisy images without be-
ing conditioned on time — in other words, it is non-time-dependent. SPI-GAN’s time-
dependent discriminator learns the straight-path information, being conditioned on time.

• In order to learn a simple process, i.e., our straight-path interpolation, SPI-GAN uses a
special neural network architecture, characterized by a mapping network.

• After all these efforts, SPI-GAN is a GAN-based method that imitates the straight-path
interpolation. However, our mapping network is designed for this purpose, allowing SPI-
GAN to generate fake images directly without recursion.

DD-GAN, Diffusion-GAN, and SPI-GAN attempt to address the trilemma of the generative model
using GANs. Among those models, our proposed SPI-GAN, which learns a straight-path interpo-
lation, shows the best balance in terms of the overall sampling quality, diversity, and time in three
benchmark datasets: CIFAR-10, CelebA-HQ-256, and LSUN-Church-256.

2 RELATED WORK AND PRELIMINARIES

Neural ordinary differential equations (NODEs). Neural ordinary differential equations (Chen
et al., 2018) use the following equation to define the continuous evolving process of the hidden
vector h(u):

h(u) = h(0) +

∫ u

0

f(h(t), t;θf)dt, (1)

where the neural network f(h(t), t;θf) learns dh(t)
dt . To solve the integral problem, we typically rely

on various ODE solvers. The explicit Euler method is one of the simplest ODE solvers. The 4th order

2

Under review as a conference paper at ICLR 2024

Runge–Kutta (RK4) method is a more sophisticated ODE solver and the Dormand–Prince (Dormand
& Prince, 1980) method is an advanced adaptive step-size solver. The NODE-based continuous-time
models (Chen et al., 2018; Kidger et al., 2020) show good performance in processing sequential data.

Score-based generative models. In diffusion models, the diffusion process is adding noises to a
real image x0 ∼ q(x0) in T steps as follows:

q(x1:T |x0) =
∏
t≥1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

(2)

where βt is a pre-defined variance schedule and q(x0) is a data-generating distribution. The denois-
ing (reverse) process of diffusion models is as follows:

pθ(x0:T) = p(xT)
∏
t≥1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I),

(3)

which θ is denoising model’s parameter, and µθ(xt, t) and σ2
t are the mean and variance for the de-

noising model. Afterward, score-based generative models (SGMs) generalize the diffusion process
to continuous using SDE. SGMs use the following Itô SDE to define diffusive processes:

dx = f(x, t)dt+ g(t)dw, (4)

where w is the standard Wiener process (a.k.a, Brownian motion), f(x, t) and g(t) are defined in
Appendix A. Following the Eq. 4, we can derive an xt at time t ∈ [0, T]. As the value of t increases,
xt approaches to N (0, σ2I). The denoising process (reverse SDE) of SGMs is as follows:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw, (5)

where ∇x log pt(x) is the gradient of the log probability density function. In the denoising process
(i.e., the reverse SDE), a noisy sample at t = T is mapped to a clean sample at t = 0. To overcome
the slow sampling speed with a large T (e.g., CIFAR-10: T = 1000) in SGMs, several approaches
have been proposed, including i) learning an adaptive noise schedule (San-Roman et al., 2021),
ii) introducing non-Markovian diffusion processes (Song & Ermon, 2020; Kong & Ping, 2021),
iii) using faster SDE solvers for continuous-time models (Jolicoeur-Martineau et al., 2021a), iv)
knowledge distillation (Luhman & Luhman, 2021), v) learning a simple path (Nichol & Dhariwal,
2021; Das et al., 2023) and vi) letting GANs imitate SGMs (Xiao et al., 2021; Zheng et al., 2022;
Wang et al., 2022).

Learning a simple path. Deep generative models find mapping paths between data distributions
and Gaussian prior distributions. There exist various definitions of the best mapping path. For in-
stance, the Wasserstein distance calculates the distance between two distributions based on the opti-
mal transport theory, i.e., mapping a particle from a prior distribution to a particle from a target dis-
tribution following the optimal transport path leading to the least action (Moosmüller & Cloninger,
2020). On the contrary, SGMs resort to much more complicated paths for mapping particles from the
two distributions. Recently, learning a simpler path that shows faster training and sampling times,
instead of the reverse SDE path in SGMs, is gathering much attention (Nichol & Dhariwal, 2021;
Das et al., 2023). Das et al. (2023) suggested its own definition of the shortest mapping path in
terms of the Fisher metric. However, these methods fail to show comparable sampling quality to our
method since they are still in the infancy period of study.

For our proposed model, we resort to the shortest path in terms of the optimal transport path. To
have our own shortest path definition, we use the straight-path interpolation from a Gaussian prior
distribution to a target real image distribution. Wasserstein GANs (Arjovsky et al., 2017) implic-
itly learn optimal paths to minimize the Wasserstein distance whereas our model explicitly extracts
straight-paths from SGMs, i.e., the two ends of a path are still defined by the SDE path of SGMs,
and teaches them to the generator.

3

Under review as a conference paper at ICLR 2024

(Mapping network based on NODEs)(Initial embedding)

GeneratingTraining

This mapping network learns the continuous-time dynamics of

Forward
SDE

fake

real

Figure 2: The architecture of our proposed SPI-GAN. h(u) is a latent vector which generates an
interpolated image i(u) at time u. Therefore, i(1) is an original image and i(0) is a noisy image. We
perform this adversarial training every time u but generate images with u = 1. The constant noise c
and the layer-wise varying noise s enable the stochasticity of the generator. Each color represents a
computation step.

Letting GANs imitate SGMs. Among those enhancements of SGMs, letting GANs imitate SGMs
shows the best-balanced performance in terms of the generative task trilemma. Figure 1 (b) shows
the key idea of DD-GAN, which proposed to approximate the reverse SDE process withK shortcuts.
They internally utilize a GAN-based framework conditioned on time (step) t to learn the shortcuts. A
generator of DD-GAN receives noise images as input and denoises it. In other words, the generator
generates clean images through denoising K times from the noise images. To this end, DD-GAN
uses a conditional generator, and xt is used as a condition to generate xt−1. It repeats thisK times to
finally creates x0. For its adversarial learning, the generator can match pθ(xt−1|xt) and q(xt−1|xt).
Figure 1 (c) shows the overall method of Diffusion-GAN. In contrast to DD-GAN, Diffusion-GAN
directly generates clean images and its discriminator is trained after augmenting real images with
noisy images that follow the forward SDE from the generated images. The noisy images are used as
input to the discriminator to prevent mode-collapse in GANs.

3 PROPOSED METHOD

Our proposed method, SPI-GAN, learns how to denoise xT to x0 following the straight-path during
its training phase. After being trained, a latent vector z ∼ N (0, σ2I) is denoised to a fake image
directly without any recursion (see Sections 3.8 and 4.4).

3.1 OVERALL WORKFLOW

We first describe the overall workflow of our proposed method. Before describing it, the notations in
this paper are defined as follows: i) i(u) ∈ RC×H×W is an image with a channel C, a height H , and
a width W at interpolation point u. ii) î(u) ∈ RC×H×W is a generated fake image at interpolation
point u. iii) h(u) ∈ Rdim(h) is a latent vector at interpolation point u. iv) r(h(t), t;θr) ∈ Rdim(h) is
a neural network approximating the time derivative of h(t), denoted dh(t)

dt . Our proposed SPI-GAN
consists of four parts, each of which has a different color in Figure 2, as follows:

1. 1st part (blue): The first part, highlighted in blue in Figure 2, means that we calculate a
noisy image i(0) = xT from i(1) = x0 with the forward pass of the SGM. We note that
this can be done in O(1).

2. 2nd part (green): The second part maps a noisy vector i(0) into another latent vector h(u)
after solving the integral problem. We note that u is an interpolation point, which can be
in (0, 1]. The final integral time of the NODE layer denoted u with a red dotted circle,
determines which latent vector it will generate.

3. 3rd part (red): The third part is a generative step to generate a fake image î(u) from
h(u), c, s — the constant noise c and the layer-wise varying noise s are adopted from
StyleGAN2 (Karras et al., 2020b). Our generator does not require u as input, which means
that h(u) internally has the temporal information. In other words, the latent space, where
we sample h(u), is a common space across u ∈ (0, 1].

4

Under review as a conference paper at ICLR 2024

Figure 3: Process of generating sample from
continuous latent vector.

Figure 4: Difference between reverse SDE
and interpolation.

4. 4th part (yellow): The fourth part is to distinguish between real and fake images (condi-
tioned on u). Our discriminator discriminates not only clean images but also interpolated
images. In other words, we maintain only one discriminator regardless of u.

5. After training with u ∈ (0, 1], our generator is able to generate fake images i(1) directly.

3.2 DIFFUSION THROUGH THE FORWARD SDE

In the first part highlighted in blue, σ2 can be different for i(0) ∼ N (0, σ2I) depending on the type
of the forward SDE. The type of SDE we consider is in Appendix A. Unlike the reverse SDE, which
requires step-by-step computation, the forward SDE can be calculated with one-time computation
for a target time t (Song et al., 2021c). Therefore, it takes O(1) in the first part. We note that
i(0) = xT and i(1) = x0 are the two ends of the straight-path interpolation which will be described
shortly.

3.3 STRAIGHT-PATH INTERPOLATION

SPI-GAN has advantages over SGMs since it learns a much simpler process than the SDE-based
path of SGMs. Our straight-path interpolation (SPI) is defined as follows:

i(u) = ux0 + (1− u)xT , (6)

where u ∈ (0, 1] is an intermediate point and therefore, i(1) = x0 and i(0) = xT . We use a
straight-path between i(1) and i(0) to learn the shortest path with the minimum Wasserstein dis-
tance. Therefore, Our straight-path interpolation process is simpler and thus more suitable for neural
networks to learn. During our training process, we randomly sample u every iteration rather than
using fixed intermediate points. This random sampling method has advantages over utilizing fixed
points for u (cf. Section 4.3).

3.4 MAPPING NETWORK

The mapping network, which generates a latent vector h(u), is the most important component in our
model. The mapping network consists of an initial embedding network, denoted o, that generates
the initial hidden representation h(0) from i(0), and a NODE-based mapping network. The role of
network o is to reduce the size of the input to the mapping network for decreasing sampling time.
In addition, the NODE-based mapping network generates the latent vector for a target interpolation
point u, whose initial value problem (IVP) is defined as follows:

h
(
u) = h(0) +

∫ u

0

r(h(t), t;θr)dt, (7)

where dh(t)
dt = r(h(t), t;θr), and r has multiple fully-connected layers in our implementation. In

general, h(0) is a lower-dimensional representation of the input. One more important point is that
we maintain a single latent space for all u and therefore, h(u) has the information of the image to
generate at a target interpolation time u. For instance, Figure 3 shows that a noisy image is generated
from h(0) but a clean image from h(1). As a matter of fact, NODEs are homeomorphic mappings
over time and we exploit this characteristics to achieve our goal. We refer to Appendix C for the
detailed explanation.

5

Under review as a conference paper at ICLR 2024

Algorithm 1 How to sampling SPI-GAN
Input: Noisy vectors zl ∼ N (0, σ2I)

1: Sample a set of noisy vectors {zl}Nl=1

2: Calculate {hl(1)}Nl=1 via the mapping network which processes {zl}Nl=1
by solving Eq. 7 after setting u = 1

3: Generate a fake image {̂il(1)}Nl=1 with the generator
4: return fake image {̂il(1)}Nl=1

In addition, the straight-path interpolation achieves a better balance in converting a noisy image to
its corresponding clean image compared to the reverse path as shown in Figure 4. This conversion is
the shortest path in terms of Wasserstein distance (Moosmüller & Cloninger, 2020). In addition, this
balanced conversion enables SPI-GAN learn a balanced mapping between latent vectors and images
as well.

3.5 GENERATOR

We customize the generator architecture of StyleGAN2 (Karras et al., 2020b) for our purposes. Our
generator takes c, s as input and mimics the stochastic property of SGMs. However, the biggest
difference from StyleGAN2 is that our generator is trained by the continuous-time mapping network
which generates latent vectors at various interpolation points while maintaining one latent space
across them. This is the key point in our model design to generate the interpolated image î(u) with
various u settings.

3.6 DISCRIMINATOR

The discriminator of SPI-GAN is time-dependent, unlike the discriminator of traditional GANs. It
takes î(u) and the embedding of u as input and learns to classify images from various interpola-
tion points. As a result, it i) learns the data distribution which changes following the straight-path
interpolation, and ii) solves the mode-collapse problem that traditional GANs have, since our dis-
criminator sees various clean and noisy images. DD-GAN and Diffusion-GAN also use this strategy
to overcome the mode-collapse problem. They give noise images following the reverse (forward)
SDE path as input to the discriminator. As shown in Figure 4, however, the straight-path interpo-
lation method maintains a better balance between noisy and clean images than the case where we
sample following the SDE path. Therefore, our discriminator learns a more balanced set of noisy and
clean images than that of DD-GAN and Diffusion-GAN. We refer to the Appendix for the detailed
network structures.

3.7 TRAINING ALGORITHM

Our training algorithm is in Appendix Algorithm 2. In each iteration, we first create a mini-batch of
N real images, denoted {xl0}Nl=1. Using the forward SDE, we derive a mini-batch ofN noisy images,
denoted {xlT }Nl=1. We then sample u, where u ∈ (0, 1]. After that, our mapping network generates
a set of latent vectors, denoted {hl(u)}Nl=1. Our generator then produces a set of fake images from
the generated latent vectors. After that, we follow the standard adversarial training sequence. Our
objective function to train our proposed model is in the Appendix.

3.8 HOW TO GENERATE

In order to generate samples with SPI-GAN, we need only h(1) from the mapping network. Unlike
other auto-regressive denoising models that require multiple steps when generating samples, e.g.,
DD-GAN (cf. Figure 1 (b)), SPI-GAN learns the denoising path using a NODE-based mapping
network. After sampling z ∼ N (0, σ2I), we feed them into the mapping network to derive h(1) —
we solve the initial value problem in the Eq. 7 from 0 to 1 — and our generator generates a fake
image î(1). In other words, it is possible to generate latent vector h(1) directly in our case, which is
later used to generate a fake sample î(1) (sampling algorithm is in Algorithm 1).

6

Under review as a conference paper at ICLR 2024

Table 1: Results of the unconditional generation on CIFAR-10.

Model IS ↑ FID ↓ Recall↑ NFE↓
SPI-GAN (ours) 10.2 3.01 0.66 1
Diffusion-GAN (StyleGAN2) (Wang et al., 2022) 9.94 3.19 0.58 1
Denoising Diffusion GAN (DD-GAN), K = 4 (Xiao et al., 2021) 9.63 3.75 0.57 4
Score SDE (VP) (Song et al., 2021c) 9.68 2.41 0.59 2000
DDPM (Ho et al., 2020) 9.46 3.21 0.57 1000
NCSN (Song & Ermon, 2019) 8.87 25.3 - 1000
Adversarial DSM (Jolicoeur-Martineau et al., 2021b) - 6.10 - 1000
Likelihood SDE (Song et al., 2021b) - 2.87 - -
Score SDE (VE) (Song et al., 2021c) 9.89 2.20 0.59 2000
Probability Flow (VP) (Song et al., 2021c) 9.83 3.08 0.57 140
LSGM (Vahdat et al., 2021) 9.87 2.10 0.61 147
DDIM, T=50 (Song et al., 2021a) 8.78 4.67 0.53 50
FastDDPM, T=50 (Kong & Ping, 2021) 8.98 3.41 0.56 50
Recovery EBM (Gao et al., 2021) 8.30 9.58 - 180
Improved DDPM (Nichol & Dhariwal, 2021) - 2.90 - 4000
VDM (Kingma et al., 2021) - 4.00 - 1000
UDM (Kim et al., 2021) 10.1 2.33 - 2000
D3PMs (Austin et al., 2021) 8.56 7.34 - 1000
Gotta Go Fast (Jolicoeur-Martineau et al., 2021a) - 2.44 - 180
DDPM Distillation (Luhman & Luhman, 2021) 8.36 9.36 0.51 1
StyleGAN2 w/o ADA (Karras et al., 2020b) 9.18 8.32 0.41 1
StyleGAN2 w/ ADA (Karras et al., 2020a) 9.83 2.92 0.49 1
StyleGAN2 w/ Diffaug (Zhao et al., 2020) 9.40 5.79 0.42 1

Table 2: Results on CelebA-HQ-256.
MODEL FID↓
SPI-GAN (OURS) 6.62
DD-GAN 7.64
SCORE SDE 7.23
LSGM 7.22
UDM 7.16
PGGAN (KARRAS ET AL., 2018) 8.03
ADV. LA (PIDHORSKYI ET AL., 2020) 19.2
VQ-GAN (ESSER ET AL., 2021B) 10.2
DC-AE (PARMAR ET AL., 2021) 15.8

Table 3: Results on LSUN-Church-256.
MODEL FID↓
SPI-GAN (OURS) 6.03
DIFFUSION-GAN (STYLEGAN2) 3.17
DD-GAN 5.25
DDPM 7.89
IMAGEBART (ESSER ET AL., 2021A) 7.32
GOTTA GO FAST 25.6
PGGAN 6.42
STYLEGAN2 3.86
CIPS (ANOKHIN ET AL., 2021) 2.92

4 EXPERIMENTS

We describe our experimental environments and results. In the Appendix, more detailed experimen-
tal settings including software/hardware and hyperparameters, for reproducibility. We also release
our model with trained checkpoints. More detailed experimental settings are in the Appendix.

4.1 EXPERIMENTAL ENVIRONMENTS

Diffusion types. Among various types, we conduct experiments based on the variance preserving
SDE (VP-SDE) for their high sampling quality and reliability, which makes σ2 = 1. That is, i(1)
and z follow a unit Gaussian distribution (see Appendix for more descriptions).

Datasets. We use CIFAR-10 (Krizhevsky et al., 2014), CelebA-HQ-256 (Karras et al., 2018), and
LSUN-Church-256 (Yu et al., 2015). CIFAR-10 has a resolution of 32x32 and is one of the most
widely used datasets. CelebA-HQ-256 and LSUN-Church-256 contain high-resolution images of
256x256. Each of them has many real-world images.

Evaluation metrics. We use 5 evaluation metrics to quantitatively evaluate fake images. The in-
ception score (Salimans et al., 2016) and the Fréchet inception distance (Heusel et al., 2017) are
traditional methods to evaluate the fidelity of fake samples. The improved recall (Kynkäänniemi
et al., 2019) reflects whether the variation of generated data matches the variation of training data.
Finally, the number of function evaluations (NFE) and wall-clock time (Time) are used to evaluate
the generation time for a batch size of 100 images.

4.2 MAIN RESULTS

In this subsection, we evaluate our proposed model quantitatively and qualitatively. For CIFAR-10,
we perform the unconditional image generation task for fair comparisons with existing models. The
quantitative evaluation results are shown in Table 1. Although our Fréchet inception distance (FID)
is 0.6 worse than that of the Score SDE (VP), it shows better scores in all other metrics. However,
our method has a better FID score than that of DD-GAN and Diffusion-GAN, which are the most

7

Under review as a conference paper at ICLR 2024

Figure 5: Qualitative results on CIFAR-10, CelebA-HQ-255, and LSUN-Church-256.

IS↑ FID↓0

5

10

15

20

8.58

20.8

10.1

3.06

10.2

3.01

SPI-GAN (Fixed u)
SPI-GAN (StyleGAN2)
SPI-GAN (Ours)

Figure 6: Ablation studies on CIFAR-10.

0 100000 200000 300000 400000
Step

0

50

100

FI
D

Figure 7: FID curves of the stochasticity with u
(blue) vs. the fixed u (orange).

related methods. Diffusion-GAN, which follows the reverse SDE path using GAN, is inferior to our
method for all those three quality metrics. LGSM also shows high quality for FID. However, its
inception score (IS) and improved recall (Recall) scores are worse than ours.

Even for high-resolution images, our model shows good performance. In particular, our method
shows the best FID score for CelebA-HQ-256 in Table 2, which shows the efficacy of our proposed
method. However, our method does not produce significant improvements for LSUN-Church-256 in
Table 3 — our method outperforms DD-GAN with more improved metrics in Table 4. The qualita-
tive results are in Figure 5. As shown, our method is able to generate visually high-quality images.
More detailed images are in the Appendix.

4.3 ABLATION STUDIES

In this subsection, we conduct experiments by i) fixing the intermediate points, and ii) changing the
mapping network, which are the two most important.

Fixed intermediate points. In our model, u is randomly sampled between 0 and 1 to learn a latent
vector’s path. However, we can fix u = 1

2 . That is, it does not learn about various u, but only trains
with a specific section. It can be seen that in Figure 6 and Figure 7, however, our original setting not
only shows better sampling quality than the fixed setting but also converges more rapidly.

Continuous-time mapping network. Our NODE-based mapping network learns the straight-path
between x0 and x1 along u. In order to see the effect of our proposed continuous-time mapping net-
work, we applied the mapping network proposed by StyleGAN2 to our model. As a result, Figure 6
shows that the continuous-time mapping network that we proposed shows good overall performance.
In Appendix C, we show that our NODE-based mapping network is able learn appropriate denoising
process whereas the original mapping network of StyleGAN2 is not, which gives us more insights
that Figure 6.

4.4 ADDITIONAL STUDIES

We introduce additional studies evaluating sampling quality, sampling time, and interpolations.

Table 4: Improved quality metrics on LSUN-
Church-256.

Model Recall↑ Coverage↑
SPI-GAN (Ours) 0.28 0.65
Diffusion-GAN (StyleGAN2) 0.16 0.38
DD-GAN 0.16 0.58
CIPs 0.43 0.57

Improved metrics. FID is one of the most pop-
ular evaluation metrics to measure the similar-
ity between real and generated images. Gener-
ated images are sometimes evaluated for fidelity
and diversity using improved precision and re-
call (Kynkäänniemi et al., 2019). However, the re-
call does not accurately detect similarities between

8

Under review as a conference paper at ICLR 2024

Figure 8: Left: Generation by varying the latent vector from h(0) to h(1) given fixed z. Right:
Generation by interpolating z = (1− a)z′ + az′′, where 0 ≤ a ≤ 1.

two distributions and is not robust against outliers.
Therefore, we evaluate the generated images with the coverage (Naeem et al., 2020) which over-
comes the limitations of the recall. We compare our method with CIPs, which marks the best FID
score in LSUN-Church-256, and the results are in Table 4. Our SPI-GAN outperforms CIPs in terms
of coverage.

Table 5: The Generation time comparison

Model Time
SPI-GAN (Ours) 0.04
Diffusion-GAN (StyleGAN2) 0.04
DD-GAN 0.36
StyleGAN2 0.04

Sampling time analyses. Our model shows out-
standing performance in all evaluation metrics
compared to DD-GAN and Diffusion-GAN. In par-
ticular, SPI-GAN, unlike DD-GAN, does not in-
crease the sample generation time — in fact, our
method only affects the training time because we
train our method with u ∈ (0, 1]. However, we al-
ways use u = 1 for generating a clean image î(1).
Therefore, our method is fast in generating images after being trained, which is one good character-
istic of our method. We measure the wall-clock runtime 10 times for CIFAR-10 with a batch size of
100 using an A5000 GPU to evaluate the sampling time. We applied the same environment for fair
comparisons. As a result, our method’s sample generation time in Table 5 is almost the same as that
of StyleGAN2, which is one of the fastest methods. In summary, SPI-GAN not only increases the
quality of samples but also decreases the sampling time.

Generation by manipulating z and h. There are three manipulation parts in our model. The first
one is generated by changing the latent vector from h(0) to h(1), the second one is the interpolation
between two noisy vectors z′ and z′′ in Figure 8, and the last one is the interpolation between two
latent vectors h(1)′ to h(1)′′ in Appendix Figure 11. In Figure 8, the ideal generation is that noises
are gradually removed for an image, but similar images, not the same, are produced. However, the
denoising patterns can be observed well. In addition, Figure 8 shows the interpolation of the noise
vector (z). Interpolation of the latent vector (h(1)) is in Appendix Figure 11. One can observe that
generated images are gradually changed from a mode to another.

5 CONCLUSIONS AND DISCUSSIONS

Score-based generative models (SGMs) now show the state-of-the-art performance in image gen-
eration. However, the sampling time of SGMs is significantly longer than other generative models,
such as GANs, VAEs, and so on. Therefore, we presented the most balanced model by reducing the
sampling time, called SPI-GAN. Our method is a GAN-based approach that imitates the straight-
path interpolation. The straight denoising path is the most optimal path in terms of the Wasserstein
distance and is simple enough for the model to be easy to learn. Moreover, it can directly gener-
ate fake samples without any recursive computation (or step). Our method shows the best sampling
quality in various metrics and faster sampling time than other score-based methods. Our ablation and
additional studies show the effectiveness of our proposed model. One limitation is that our method
fails to achieve the best results for FID in LSUN-Church-256. However, our method’s coverage is
the highest for it. All in all, one can see that SPI-GAN is one of the most balanced methods among
the generative task trilemma’s criteria: sampling quality, diversity, and time.

9

Under review as a conference paper at ICLR 2024

6 ETHICS STATEMENT

Generative models are growing rapidly. In particular, score-based generative models generate more
realistic images. In this situation, our proposed model can generate high-quality images quickly by
reducing inference time significantly compared to previous models. Although there are positive as-
pects to this research direction, there may be negative aspects such as malicious video generation and
image synthesis. Generative models are growing rapidly. In particular, score-based generative mod-
els generate more realistic images. In this situation, our proposed model can generate high-quality
images quickly by reducing inference time significantly compared to previous models. Although
there are positive aspects to this research direction, there may be negative aspects such as malicious
video generation and image synthesis.

7 REPRODUCIBILITY STATEMENT

For reproducibility, we attached the sources codes and trained checkpoints in our supplementary
materials. There are detailed descriptions for experimental environment settings, datasets, training
processes, evaluation and visualization processes in README.md. In Appendix, we also list all the
detailed neural network architectures and their hyperparameters.

REFERENCES

Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempitsky, and Denis Ko-
rzhenkov. Image generators with conditionally-independent pixel synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14278–14287, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. Advances in neural information processing systems, 31, 2018.

Ayan Das, Stathi Fotiadis, Anil Batra, Farhang Nabiei, FengTing Liao, Sattar Vakili, Da-shan
Shiu, and Alberto Bernacchia. Image generation with shortest path diffusion. arXiv preprint
arXiv:2306.00501, 2023.

J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of Computa-
tional and Applied Mathematics, 6(1):19 – 26, 1980.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In NeurIPS, 2019.

Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirectional
context with multinomial diffusion for autoregressive image synthesis. Advances in Neural Infor-
mation Processing Systems, 34, 2021a.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 12873–12883, 2021b.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-based
models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances
in neural information processing systems, 30, 2017.

10

Under review as a conference paper at ICLR 2024

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021a.

Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Rémi Tachet des Combes, and Ioannis
Mitliagkas. Adversarial score matching and improved sampling for image generation. arXiv
preprint arXiv:2009.05475, 2021b.

Minguk Kang, Joonghyuk Shin, and Jaesik Park. Studiogan: A taxonomy and benchmark of gans
for image synthesis. arXiv preprint arXiv:2206.09479, 2022.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2018.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in Neural Information Processing
Systems, 33:12104–12114, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020b.

Patrick Kidger, James Morrill, James Foster, and Terry J. Lyons. Neural controlled differential
equations for irregular time series. In NeurIPS, 2020.

Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Score matching
model for unbounded data score. arXiv preprint arXiv:2106.05527, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. arXiv
preprint arXiv:2107.00630, 2021.

Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html, 55(5), 2014.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
neural odes, 2020.

Caroline Moosmüller and Alexander Cloninger. Linear optimal transport embedding: Provable
wasserstein classification for certain rigid transformations and perturbations. arXiv preprint
arXiv:2008.09165, 2020.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In International Conference on Machine
Learning, pp. 7176–7185. PMLR, 2020.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

11

Under review as a conference paper at ICLR 2024

Gaurav Parmar, Dacheng Li, Kwonjoon Lee, and Zhuowen Tu. Dual contradistinctive generative au-
toencoder. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 823–832, 2021.

Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent autoencoders.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14104–14113, 2020.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion mod-
els. arXiv preprint arXiv:2104.02600, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. Advances in Neural Information Processing Systems, 34, 2021b.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2021c.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34, 2021.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
gan: Training gans with diffusion. arXiv preprint arXiv:2206.02262, 2022.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient gan training. Advances in Neural Information Processing Systems, 33:7559–7570,
2020.

Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion proba-
bilistic models. arXiv preprint arXiv:2202.09671, 2022.

12

Under review as a conference paper at ICLR 2024

APPENDIX

A STOCHASTIC DIFFERENTIAL EQUATION (SDE)

In (Song et al., 2021c), three types of SDE diffusion processes are presented. Depending on the type,
f(x, t) and g(t) are defined as follows:

f(x, t) =


0, if VE-SDE,
− 1

2β(t)x, if VP-SDE,
− 1

2β(t)x, if sub-VP-SDE,
(8)

g(t) =


√

d[σ2(t)]
dt , if VE-SDE,√

β(t), if VP-SDE,√
β(t)(1− e−2

∫ t
0
β(s) ds), if sub-VP-SDE,

(9)

where σ2(t) and β(t) are functions w.r.t. time t. Full derivatives of VE, VP and sub-VP SDE are
presented in (Song et al., 2021c, Appendix. B).

B EFFECTIVENESS OF THE STRAIGHT-PATH INTERPOLATION

Between xT and x0, our straight-path interpolation provides a much simpler path than that of the
SDE path because it follows the linear equation in Eq. equation 6. Also, because of the nature of the
linear interpolation, its training is robust, even when i(u +∆u) is missing, if i(u) and i(u + 2∆u)
are considered. This is not guaranteed if a path from xT to x0 is non-linear. As a result, SPI-GAN
using the straight-path interpolation shows better performance.

One can also derive the following ordinary differential equation (ODE) from the straight-path inter-
polation definition in Eq. equation 6 after taking the derivative w.r.t. u:

di(u)

du
= x0 − xT , (10)

where one can get i(u+ h) = i(u) + hdi(u)du = (u+ h)x0 + (1− u− h)xT with the Euler method.
In comparison with the SDE in Eqs. equation 8 and equation 9, the ODE provides a much simpler
process.

C EFFECTIVENESS OF NEURAL ORDINARY DIFFERENTIAL
EQUATIONS-BASED MAPPING NETWORK

Homeomorphic Non-Homeomorphic

Figure 9: In a homeomorphic map-
ping, the relative positions of the
red and blue particles cannot be
switched after the mapping.

As we mentioned in the related work section, NODEs are able
to model continuous dynamics of hidden vectors over time us-
ing the following method:

h(u) = h(0) +

∫ u

0

f(h(t), t;θf)dt, (11)

where the neural network f(h(t), t;θf) learns dh(t)
dt . To de-

rive h(u), we solve the integral problem, and in this pro-
cess, there is one well-known characteristic of NODEs. Let
ψt : Rdim(h(0)) → Rdim(h(u)) be a mapping from 0 to u
generated by an ODE after solving the integral problem. It
is widely known that ψt becomes a homeomorphic mapping:
ϕt is continuous and bijective and ϕ−1

t is also continuous for
all t ∈ [0, T], where T is the last time point of the time do-
main (Dupont et al., 2019; Massaroli et al., 2020). From this
characteristic, the following proposition can be derived: the topology of the input space of ϕt is

13

Under review as a conference paper at ICLR 2024

Figure 10: Comparing î(u) according to the mapping network type. Given a fixed z, î(u) generated
by varying the latent vector from h(0) to h(1) Left: our NODE-based mapping network. Right: the
StyleGAN2’s original mapping network which is quickly trained to overlook u

preserved in its output space, and therefore, hidden trajectories crossing each other cannot be rep-
resented by NODEs — one can consider that topology as relative positions among particles. There-
fore, our NODE-based mapping network can learn the hidden dynamics of h(u) for all u ∈ (0, 1]
while maintaining the topology of h(u) at t = 0 (e.g., Fig. 9).

Figure 10 shows one advantage of the homeomorphic mapping of SPI-GAN. SPI-GAN with a
NODE-based mapping network, shows an appropriate denoising process when î(0) is generated us-
ing h(0) to h(1), given a fixed z. In contrast, StyleGAN2’s mapping network (non-homeomorphic)
do not show a denoising process. In other words, NODE-based SPI-GAN with the homeomorphic
characteristic can learn the denoising process, but SPI-GAN with the non-homeomorphic mapping
network are collapsed into clean images only. We think that this is because i) the time information
u is concatenated with the input to the StyleGAN2’s original non-homeomorphic mapping network,
but ii) it is trained to overlook u. This justifies our design choice to explicitly model the hidden
dynamics with the homeomorphic NODE.

D SPI-GAN DETAILS

In this section, we refer to the detailed model architecture, object function, and training algorithm
of our proposed SPI-GAN.

D.1 MODEL ARCHITECTURE

The network architectures of StyleGAN2 are modified to implement our proposed straight-path
interpolation after adding the NODE-based mapping network and customizing some parts.

Mapping network. Our mapping network consists of two parts. First, the network architecture
to define the function o is in Table 6. Second, the NODE-based network has the following ODE
function r in Table 7.

Table 6: The architecture of the network o.
LAYER DESIGN INPUT SIZE OUTPUT SIZE

1 LEAKYRELU(LINEAR) C ×H ×W dim(h)

Table 7: The architecture of the network r.
LAYER DESIGN INPUT SIZE OUTPUT SIZE

1 LEAKYRELU(LINEAR) dim(h) dim(h)

Generator. We follow the original StyleGAN2 architecture. However, we use the latent vector
h(u) instead of the intermediate latent code w of StyleGAN2.

Discriminator. The network architecture of the discriminator is also based on StyleGAN2 (Karras
et al., 2020b) — StyleGAN2 has two versions for the discriminator, i.e., Original and Residual.
However, our discriminator receives time u as a conditional input. To this end, we use the positional
embedding of the time value as in (Ho et al., 2020). The hyperparameters for the discriminator are
in Table 8.

14

Under review as a conference paper at ICLR 2024

D.2 OBJECT FUNCTION

We train our model using the Adam optimizer for training both the generator and the discriminator.
We use the exponential moving average (EMA) when training the generator, which achieves high
performance in (Ho et al., 2020; Song et al., 2021c; Karras et al., 2020a). The hyperparameters for
the optimizer are in Table 8. The adversarial training object of our model is as follows:

min
ϕ

Ei(u)∼qi(u)

[
− log(Dϕ(i(u), u))

+ Ez∼N (0,σ2I)

[
− log(1−Dϕ(Gθ(Mψ(z)), u))

]]
,

max
θ,ψ

Ei(t)∼qi(u)

[
Ez∼N (0,σ2I)

[
log(Dϕ(Gθ(Mψ(z)), u))

]]
,

(12)

where, qi(u) is the interpolated image distribution,Dϕ is denoted as the discriminator,Gθ is denoted
as the generator, and Mψ is denoted as the mapping network of our model. We also use the R1

regularization and the path length regularization (Karras et al., 2020b). λR1 (resp. λpath) means the
coefficient of theR1 regularization term (resp. the coefficient of the path length regularization term).
Each regularizer term is as follows:

R1(ϕ) =λR1
Eq(i(u))

[
∥∇i(t)(Dϕ(i(u)|u)) ∥2

]
, (13)

Path length =λpathEh(u),i(u)

(
∥JTh(u)i(u) ∥2 − a

)
, (14)

where Jh(u) = ∂Gθ(h(u))/∂h(u) is the Jacobian matrix. The constant a is set dynamically during
optimization to find an appropriate global scale. The path length regularization helps with the map-
ping from latent vectors to images. The lazy regularization makes training stable by computing the
regularization terms (R1, path length) less frequently than the main loss function. In SPI-GAN, the
regularization term for the generator and the discriminator is calculated once every 4 iterations and
once every 16 iterations, respectively. The hyperparameters for the regularizers are in Table 8.

D.3 TRAINING ALGORITHM

There is a training algorithm. The two main differences with the sampling algorithm are i) we sam-
ple a set of noisy vectors {zl}Nl=1 whereas we use {xlT }Nl=1 in the training algorithm, and ii) for
sampling, we need only {hl(1)}Nl=1.

Algorithm 2 How to train SPI-GAN
Input: Training data Dtrain, Maximum iteration numbers max iter

1: Initialize discriminator ϕ, mapping net. ψ, generator θ
2: iter ← 0
3: while iter < max iter do
4: Create a mini-batch of real images {xl0}Nl=1, where xl0 means l-th real image
5: Calculate a mini-batch of noisy images {xlT }Nl=1 with the forward SDE path
6: Sample u, where u ∈ (0, 1]
7: Calculate {hl(u)}Nl=1 with the mapping network which processes {xlT }Nl=1

8: Generate fake images {̂il(u)}Nl=1 with the generator
9: if iter mod 2 ≡ 0 then

10: Calculate {il(u)}Nl=1 with Eq. 6
11: Update ϕ via adversarial training
12: else
13: Update ψ and θ via adversarial training
14: end if
15: iter ← iter + 1
16: end while
17: return ϕ, ψ, θ

E EXPERIMENTAL DETAILS

In this section, we describe the detailed experimental environments of SPI-GAN. We build our
experiments on top of (Kang et al., 2022)

15

Under review as a conference paper at ICLR 2024

E.1 EXPERIMENTAL ENVIRONMENTS

Our software and hardware environments are as follows: UBUNTU 18.04 LTS, PYTHON 3.9.7,
PYTORCH 1.10.0, CUDA 11.1, NVIDIA Driver 417.22, i9 CPU, NVIDIA RTX A5000, and
NVIDIA RTX A6000.

E.2 TARGET DIFFUSION MODEL

Our model uses a forward SDE to transform an image (x0) into a noise vector (xT). When generating
a noise vector, we use the forward equation of VP-SDE for its high efficacy/effectiveness. The β(t)
function of VP-SDE is as follows:

β(t) = βmin + t(βmax − βmin), (15)

where βmax = 20, βmin = 0.1, and t′ := t
T which is normalized from t ∈ {0, 1, . . . , T} to [0, 1].

Under these conditions, (Song et al., 2021c, Appendix B) proves that the noise vector at t′ = 1 (xT)
follows a unit Gaussian distribution.

E.3 DATA AUGMENTATION

Our model uses the adaptive discriminator augmentation (ADA) (Karras et al., 2020a), which has
shown good performance in StyleGAN2.2 The ADA applies image augmentation adaptively to train-
ing the discriminator. We can determine the maximum degree of the data augmentation, which is
known as an ADA target, and the number of the ADA learning can be determined through the ADA
interval. We also apply mixing regularization (λmixing) to encourage the styles to localize. Mixing
regularization determines how many percent of the generated images are generated from two noisy
images during training (a.k.a, style mixing). There are hyperparameters for the data augmentation
in Table 8.

E.4 HYPERPARAMETERS

We list all the key hyperparameters in our experiments for each dataset. Our supplementary material
accompanies some trained checkpoints and one can easily reproduce.

Table 8: Hyperparameters set for SPI-GAN.

CIFAR-10 CelebA-HQ-256 LSUN-Church-256

Augmentation
ADA target 0.6 0.6 0.6
ADA interval 4 4 4
λmixing (%) 0 90 90

Architecture Mapping network 1 7 7
Discriminator Original Residual Residual

Optimizer

Learning rate for generator 0.0025 0.0025 0.0025
Learning rate for discriminator 0.0025 0.0025 0.0025
EMA 0.999 0.999 0.999
ODE Solver 4th order Runge–Kutta

Regularization

Lazy generator 4 4 4
Lazy discriminator 16 16 16
λR1 0.01 10 10
λpath 0 2 2

E.5 TRAINING TIME

The training time for each 1024 CIFAR-10 images is around 32.0s for SPI-GAN and around 45.6s
for Diffusion-GAN using four NVIDIA A5000 GPUs.

E.6 ADDITIONAL ABLATION STUDIES

We report additional ablation studies to show the superiority of our model. First, the result of SPI-
GAN without a mapping network is reported in Table 9. To generate a noise image î(u) without

2https://github.com/NVlabs/stylegan2 (Nvidia Source Code License)

16

https://github.com/NVlabs/stylegan2

Under review as a conference paper at ICLR 2024

a mapping network, u is given as a conditional input to the generator. Second, give time point u
as a conditional input to the SPI-GAN generator. The result is in Table 10. SPI-GAN shows better
performance than both ablation studies.

Table 9: Ablation study for mapping network
MODEL FID

SPI-GAN (W/O MAPPING NETWORK) 5.72
SPI-GAN 3.01

Table 10: Ablation study for condition u
LAYER DESIGN

SPI-GAN (CONDITION u TO GENERATOR) 3.03
SPI-GAN 3.01

F VISUALIZATION

We introduce interpolation and several high-resolution generated samples.

F.1 INTERPOLATION

Figure 11: Generation by interpolating h(1) = (1− a)h(1)′ + ah(1)′′, where 0 ≤ a ≤ 1.

F.2 CIFAR-10

Figure 12: Qualitative results on CIFAR-10.

17

Under review as a conference paper at ICLR 2024

F.3 QUALITATIVE RESULTS ON HIGH RESOLUTION DATASETS

Figure 13: CelebA-HQ-256 Figure 14: LSUN-Church-256

F.4 COMPARISON OF GENERATED DIFFUSION PROCESSES AND REAL DIFFUSION PROCESSES

Figure 15: Comparing î(u) and i(u). Left: Given a fixed z, î(u) is generated from SPI-GAN by
varying the latent vector from h(0) to h(1). Right: Diffusion process of original images

18

	Introduction
	Related work and preliminaries
	Proposed method
	Overall workflow
	Diffusion through the forward SDE
	Straight-path interpolation
	Mapping network
	Generator
	Discriminator
	Training algorithm
	How to generate

	Experiments
	Experimental environments
	Main results
	Ablation studies
	Additional studies

	Conclusions and discussions
	Ethics statement
	Reproducibility statement
	Stochastic differential equation (SDE)
	Effectiveness of the straight-path interpolation
	Effectiveness of neural ordinary differential equations-based mapping network
	SPI-GAN details
	Model architecture
	Object function
	Training algorithm

	Experimental details
	Experimental environments
	Target diffusion model
	Data augmentation
	Hyperparameters
	Training time
	Additional ablation studies

	Visualization
	Interpolation
	CIFAR-10
	Qualitative results on high resolution datasets
	Comparison of generated diffusion processes and real diffusion processes

