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Abstract

Text classification is a classical task in the field
of natural language processing. Recently, graph
neural networks (GNNs) have received consid-
erable attention and made great breakthroughs
on this task. However, current GNN-based
methods neither fully utilize edge information
nor obtain higher-order interactions of words.
To address these problems, we propose the
Intra-layer and Inter-layer Graph ATtention
networks (IIGAT) to obtain the higher-order
interactions of word nodes and construct multi-
dimensional edges between word nodes in the
intra-layer GAT to enrich the semantic informa-
tion of words. Extensive experiments on four
benchmark datasets demonstrate the effective-
ness of our methods on the text classification
task.

1 Introduction

Text classification is one of the most fundamental
tasks in natural language processing (NLP), focus-
ing on analyzing the text corpus to get the correct
label for the text. Text classification plays a vital
role in many applications, such as sentiment classi-
fication (Tai et al., 2015), spam processing (Jindal
and Liu, 2007) and question answering (Kalchbren-
ner et al., 2014).

The core of text classification is text represen-
tation learning, which focuses on obtaining a set
of vector representations from text sequences. In-
spired by the success of deep learning, the manual
extraction of features in traditional models is grad-
ually abandoned, and automatic means are widely
used to learn text features. In particular, convolu-
tional neural networks (CNNs) (Kim, 2014) and
recurrent neural networks (RNNs) (Liu et al., 2016)
leverage their powerful feature extraction capa-
bilities to model consecutive words in texts. To
overcome the computational cost associated with
increased sentence length, transformers (Zhang
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and Zhang, 2020) compute the “influence” of each
word in the text by parallelizing the input and
achieve state-of-the-art results on applications with
large-scale datasets.

However, the above methods ignore structural
information between words in the text. In recent
years, as graph neural networks (GNNs) (Scarselli
et al., 2008) have gradually obtained more and
more attention and made great progress in NLP,
the research on text classification based on GNN
has gained higher and higher popularity. GNN can
build effective relational structures, maintain global
structural information and successfully apply to
graph-structured data. Yao et al. (2019) construct a
text graph for the entire corpus based on word co-
occurrence and document-word relations, jointly
learn word and document embeddings, and finally
classify the document nodes in the graph. Further,
Huang et al. (2019) propose to build a single graph
for each input document, and their model allows
inductive learning to support online testing.

These graph-based methods have two main draw-
backs. First, edge information is poorly utilized.
The current GNN-based models employ the neigh-
boring nodes of word nodes for aggregation (Kipf
and Welling, 2016), and one-dimensional edge in-
formation (Hu et al., 2019) serves no complemen-
tary role in updating word embeddings. However,
edge features in text graphs often contain much se-
mantic information. Second, the number of layers
of GNN is limited. On the one hand, GNN-based
models generally build networks with only two lay-
ers (Zhang et al., 2020). In the shallow aggregation
process, the central node tends to interact with its
1-hop neighbors and cannot obtain long-distance
neighbor information. On the other hand, the tra-
ditional GNN-based models commonly generate
over-smoothing after deepening the number of net-
work layers (Li et al., 2019; Chen et al., 2020),
resulting in features tending to be similar among
nodes.



To address these problems, we propose a new
GNN model named Intra-layer and Inter-layer
Graph Attention networks (IIGAT). We construct
a single graph for each document, where nodes
represent words, while edges represent multi-
dimensional semantic relationships between words.
We aggregate the node neighbor features in each
layer through an intra-layer attention mechanism.
The edge information is embedded into the nodes to
update the word representations, which effectively
uses edge features in the text graph. Meanwhile, we
deepen the GNN layers to capture the higher-order
interactions of words by adaptively selecting the
effective node representations in each layer through
an inter-layer attention mechanism.

In brief, our contributions are summarized as
follows:

* We introduce multi-dimensional edge features to
enhance the semantic information of the word
nodes. The word representations are updated
with edge and node information in each layer.

* We propose a model containing intra-layer and
inter-layer attention mechanisms called IIGAT,
in which word nodes can capture the interaction
of higher-order words in a deep GNN.

» Extensive experiments indicate that our proposed
IIGAT notably outperforms state-of-the-art text
classification methods on several benchmark
datasets.

2 Related work
2.1 Traditional Text Classification

Traditional text classification methods generally
combine feature engineering and shallow classi-
fiers. Text representation learning methods such as
BOW (Zhang et al., 2010) and word2vec (Mikolov
et al., 2013) feed the text embeddings obtained
from feature engineering into a shallow classi-
fier (Keller et al., 1985; Joachims, 1998; Breiman,
2001) for training. For similar purposes, the Light-
GBM (Ke et al., 2017) framework based on a deci-
sion tree algorithm (Brijain et al., 2014) has been
proposed for a broad range of text classification
tasks, showing extraordinary potential. However,
traditional methods rely excessively on the empir-
ical knowledge of experts and manual extraction
of features, which consume massive resources and
time. In contrast, our approach breaks this barrier
by automatically learning the text representation in
the raw datasets.

2.2 Deep Text classification

With the rapid development of deep learning, many
deep learning models are used for text classifica-
tion tasks. Based on its excellent performance on
images (Krizhevsky et al., 2017), Kim (2014) ap-
plies convolution to text sequences and obtains
the final vector representations by pooling oper-
ations. Liu et al. (2016) and Zhang et al. (2018)
use memory units, learn historical information in
training and capture long-term dependency types in
text. Along with the proposed attention mechanism
(Vaswani et al., 2017), different textual informa-
tion is given different weights (Peters et al., 2018;
You et al., 2019), highlighting the contribution of
crucial information. Pre-trained models (Kenton
and Toutanova, 2019; Croce et al., 2020; Zhang
and Zhang, 2020) are introduced to learn global
semantic information efficiently with unsupervised
methods. Although the above approaches signif-
icantly improve the text classification task, they
mainly model consecutive words and fail to con-
sider the contextual information of text sequences.
Our proposed model converts text sequences into
graph structures, achieving semantic interactions
among non-contiguous words.

2.3 Graph Neural Networks

GNNSs (Scarselli et al., 2008) have been mainly ded-
icated to modeling non-Euclidean data. Research
on applying GNN to text classification is divided
into two main categories: transductive learning
(Kipf and Welling, 2016) and inductive learning
(Hamilton et al., 2017; Velickovié et al., 2017).
The former mainly learns a unique embedding for
each word node based on the graph structure. The
training requires the participation of all nodes in
the graph, using unlabeled samples to solve the
problem of insufficient training samples (Yao et al.,
2019; Wang et al., 2021; Liu et al., 2020). The
latter is mainly a way of dynamic modeling, where
embedding is learned according to the change of
node neighbors. When the graph structure in the
test set changes, the corresponding node embed-
ding will be adjusted (Huang et al., 2019; Zhang
et al., 2020). However, both of these approaches
use only two-layers GNN, which dramatically lim-
its the perceptual field of neighbor aggregation (Wu
etal., 2019; Chen et al., 2020) when labels are miss-
ing in the datasets or connections between nodes
are sparse. In contrast, our approach deepens the
layers of the GNN in the text classification task and
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Figure 1: Illustration of the proposed IIGAT for text classification. We construct a graph for each document and
input both node representations (e.g., h;) and edge representations (e.g., e;;) to IIGAT to obtain text representation

for higher-order word aggregation.

effectively addresses the problem of higher-order
interactions of nodes.

3 Method

In this section, we depict our method in three key
components: the graph construction, the IIGAT
and the readout function. The overall architecture
is shown in Figure 1.

3.1 Graph Construction

We build a single graph for each document, where
vertices correspond to the unique words in the docu-
ment and the edges correspond to the co-occurrence
relationships between words. Formally, the con-
structed graph is denoted as G = (V, £), where V
is the set of vertices and & is the set of edges. The
co-occurrence relationship describes the frequency
of co-occurrence between words in a fixed sliding
window of the document, and edges are undirected
in the graph.

Let X € R™ 9 represents the feature matrix
with the features of n word nodes, where d de-
notes the dimensionality of the features. We use
the indices in the subscripts to denote the elements
of a matrix or a tensor. Hence, x; represents
the representation of the i*” node. Similarly, let
E ¢ R™"™*! represents the edge features between
word nodes (Gong and Cheng, 2019) and e;; € R?
represents the ¢-dimensional feature vector of the
edge connecting the i*" and j*" word nodes. Specif-
ically, e;; = 0 means no edge between the i'" and
4" word nodes.

3.2 IIGAT

To perform node representation learning in deep-
ened GNN, we propose a new model called IIGAT
in this section. Unlike the traditional GNN model,
IIGAT contains both intra-layer and inter-layer at-
tention to capture higher-order contextual informa-
tion of words and avoid the performance degrada-
tion problem caused by gradient vanishing.
Intra-layer GAT. To reflect the different impor-
tance of neighbors of word nodes, we update the
feature representations of nodes and edges within
each layer by GAT.

Given a node i, its neighboring nodes can be
represented by N;. In the previous GAT, the at-
tention vector depends only on the node features
and does not consider the weight of edges. In con-
trast, our proposed attention mechanism combines
multi-dimensional edge features, and the node rep-
resentation is updated by both neighboring nodes
and the corresponding edges jointly. For a spe-
cific layer [, the aggregation process is shown in
Figure 2, and the specific definitions are as follows:

alt = 7 (o [wanl = wanl | wael )
(1)
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where f is the LeakyReL.U activation function, W1
and W5 are shared matrices that augment the fea-
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Figure 2: Illustration of the intra-layer GAT aggregation
process.

ture dimension, and || denotes a connection opera-
tion. The attention vector aé;l is normalized using
the softmax function. In particular, the edge fea-
tures are updated by a linear transformation whose
parameters are the weight matrix W:

eéj = Wleéjfl. 3)

According to the obtained attention vector, GAT
iteratively updates each node representation with
the following formulas:

W= o (EjeMaéj_lWhé._l), &)

where hﬁ is the node representation obtained by
updating node ¢ at layer [, o is the nonlinearity
such as tanh, and W is an input transformation
matrix.

As a result, the feature representation of each

node can obtain more semantic information when
jointly enhanced by neighboring nodes and edge
features.
Inter-layer GAT. Since different-order neighbors
of the central node produce different impacts in
the text graph, we design an inter-layer attention
mechanism to selectively aggregate node features
of higher-order neighbors to avoid that deepening
GAT produces the gradient vanishing problem.

Formally, we input the node features A result-
ing from the [/-th layer to bi-directional LSTM (bi-
LSTM) (Hochreiter and Schmidhuber, 1997) and

obtain the forward hidden features Ij and back-

v

${—
ward hidden features A, respectively. Bi-LSTM

fully uses past and future information by flowing
through the two-layer networks in forward and
backward temporal order. Then, the most useful
neighborhood range for each node v is determined
by calculating the attention score for each layer of
node features. Specifically, the calculation is as

follows:
it = i 17t )
Bl = score (hg) : 6)
B, = softmax (6 %)

where score is a learnable function that scores the
node features of each layer and 3! denotes the
weight of node features at each layer after normal-
ization.

For the L layers GAT, the new node embedding
hiie™ is updated as:

piinal = S BLRL, (8)

where ZZL: 1 denotes the summation operation and
K™ denotes the final word node representation
obtained from the IIGAT model.

The proposed IIGAT model not only integrates
multi-dimensional edge features to enrich the se-
mantic information of nodes, but also effectively
distinguishes high-order neighbors at different
granularities, so that words can obtain sufficient

knowledge to get the final text representation.

3.3 Readout Function

After the nodes aggregate all the higher-order
neighbor information, we perform fusion learning
on the final node representation to obtain the graph-
level representation h¢ of the document. We define
the readout function as:

hg — :LG: hgmal + I}}E{( (hginal> ) (9)
v=1

We obtain the graph-level representation by aver-
aging and maximizing together, which ensures that
the keywords in the text can be useful.

The label is predicted by feeding the graph-level
representation hg into a softmax layer:

i = softmax (Whg + b) (10)

where W is a trainable parameter matrix mapping
the graph-level representation into an output space
and b is a bias.



Finally, we use cross-entropy loss as the loss
function of our text classification model. It is de-
noted as follows:

C
Loss = = > " yilog(§),

€D 1

(1)

where D is the set of document for training, C'is
the number of labels and y; is the one-hot ground
truth label of document.

4 [Experiments

This section describes the experimental details and
reports the experimental results. First, we intro-
duce the datasets used for the experiments and the
baseline models used for comparison.

4.1 Datasets

We performed extensive experiments on four bench-
mark datasets for text classification, including
Ohsumed, R8, R52 and Movie Review (MR).
Specifically, the ohsumed dataset is a subset of the
MEDLINE dataset and consists of 7400 medical
documents divided into 23 categories of cardiovas-
cular disease labels, with each document having
one or more of these labels. R8 and R52 are two
subsets of Reuters. R8 contains 7674 documents
divided into 8 categories; R52 contains 9100 docu-
ments divided into 52 categories. MR is a movie
review dataset containing 10,662 documents with
two categories. Table 1 describes the statistical data
of the used datasets and more detailed information
can be found in (Yao et al., 2019).

Since we only considered single-label classi-
fication task, we first removed documents with
two or more labels before the above datasets were
trained. Then, we preprocessed the texts by clean-
ing them, mainly by removing the stop words de-
fined in NLTK (Loper and Bird, 2002) and the
low—frequency words (less than 5 times) in the
above datasets (Rousseau et al., 2015; Blanco and
Lioma, 2012). Since the text length of the MR
dataset was too short, we had only performed word
tokenization on it.

4.2 Baselines

We used the following kinds of models as baseline
models for comparison with our model:

* TF-IDF+LR is a bag-of-words model that uses
term frequency-inverse document frequency to
calculate weights and then uses a logistic regres-
sion algorithm as a classifier.

* TextCNN (Kim, 2014) performs sentence-level
classification tasks on pre-trained word vectors
using CNNs.

* LSTM (Liu et al., 2016) proposes a RNN, which
applies to text classification with pre-trained
word embeddings.

* RCNN (Lai et al., 2015) applies a bidirectional
recurrent structure in the model to capture the
contextual information of words, and then adds
a maximum pooling operation to automatically
determine which words play a key role in text
classification.

¢ Graph-CNN (Defferrard et al., 2016) introduces
a graph CNN model, which operates convolutions
over word embedding similarity graphs with the
Chebyshev filter.

* TextGCN (Yao et al., 2019) suggests building
a graph for the entire corpus and then learning
word representations through graph convolutional
networks.

* TextLevel-GNN (Huang et al., 2019) constructs
a single graph for each sentence, sharing global
parameters in GNN learning.

* TensorGCN (Liu et al., 2020) builds text graph
tensor to describe semantic, syntactic and sequen-
tial contextual information.

* HyperGAT (Ding et al., 2020) puts forward the
concept of hypergraphs to obtain higher expres-
siveness with less computation.

* DADGNN (Liu et al., 2021) presents to deepen
GNN by decoupling two key stages (representa-
tion transformation and propagation).

* NMGC (Lei et al., 2021) designs a multi-hop
neighbor information fusion strategy to aggregate
different neighbor features from 1 hop to k hops.

4.3 Experimental Settings

For the datasets introduced above, we divided docu-
ments into a training set and a test set and randomly
divide the data in the training set for training and
validation with a ratio of 9:1, where the data in the
validation set facilitates the adjustment of hyperpa-
rameters in the model. We utilized Adam optimizer
with an initial learning rate of 1073, and Ly weight
decay is set to 107, We set the dropout rate for



Table 1: The statistics of datasets.

Dataset #Docs #Train #Test # Words # Categories Avg.Len
MR 10,662 7,108 3,554 18,764 2 20.39
RS 7,674 5,485 2,189 7,688 8 65.72
R52 9,100 6,532 2,568 8,892 52 69.82

Ohsumed 7,400 3,357 4,043 14,157 23 135.82

Table 2: Test accuracy (%) comparison of different text classification models. The best results are bolded.

Model MR RS R52 Ohsumed
TF-IDF + LR 74.59 £+ 0.00 93.74 £+ 0.00 86.95 + 0.00 54.66 + 0.00
TextCNN 77.75 £ 0.72 95.71 £ 0.52 87.59 +0.48 58.44 + 1.06
LSTM 77.33 £ 0.89 96.09 £+ 0.19 90.48 £+ 0.86 51.10 £ 1.50
RCNN 77.68 + 0.86 96.31 £+ 0.33 90.54 + 0.91 49.27 £+ 1.07
Graph-CNN 76.65 + 0.63 95.32 +£ 0.26 9294 + 0.24 63.12 £ 0.55
TextGCN 76.74 £ 0.20 97.07 £ 0.10 93.56 £ 0.18 68.36 £+ 0.56
TextLevel-GNN 75.47 £+ 0.36 97.80 £+ 0.20 94.60 + 0.30 69.40 + 0.60
TensorGCN 7791+ 0.07 98.04 £+ 0.08 95.05 £ 0.11 70.11 £+ 0.24
HyperGAT 78.32+ 0.27 97.97 £ 0.23 94.98 + 0.27 69.90 + 0.34

DADGNN 78.64+ 0.29 97.31 + 0.09 94.35 £+ 0.06 —

NMGC 76.21+£ 0.25 98.15 £ 0.16 95.16 £ 0.22 69.21 £0.17
IIGAT (ours) 80.56 + 0.32 98.29 + 0.15 95.88 + 0.26 71.56 + 0.25

the training process as 0.5 and the epoch number as
400. The output dimension of the linear mapping
W was fixed to 64 for all hidden layers. For base-
line models, we used default parameter setups as
in their published papers. In addition, after the text
was cleaned, we initialized the word features using
300-dimensional pre-trained GloVe word embed-
dings (Pennington et al., 2014) and pre-processed
the edge features using random initialization.

4.4 Test Performance

We first perform comprehensive experiments to
evaluate the performance of the baselines and our
model, and the results are shown in Table 2 in the
form of accuracy rates. It is not difficult to observe
from the results that our model outperforms all
baselines on four datasets, demonstrating superior
capabilities in text classification applications. We
can analyze and explore this result in depth below:

* Traditional Models. The TF-IDF+LR model
integrates all words in the corpus in a bag-of-
words format, ignoring grammatical and sequen-
tial elements. In datasets like Ohsumed with long
text and an excessive number of words, contex-

tual information cannot be captured, resulting in
abysmal model performance.

Deep Learning Models. Our model also out-
performs deep learning models based on CNNss
and RNNs. This is since CNN-based models
use convolutional operations to model the text lo-
cally and fail to obtain global information about
the text. Meanwhile, the RNN-based model cap-
tures the long-term dependency of words, but
brings many parameters to be computed, leading
to overfitting. Our graph-based approach allows
word nodes to learn more accurate word repre-
sentations based on the different collocations of
neighboring nodes.

Graph-based Models. Early graph-based mod-
els such as TextGCN and TextLevel-GNN use co-
occurrence relations of words to extract semantic
information in text sequences to construct text
graphs. The graph-based model is significantly
higher than the other models in the Ohsumed
dataset, indicating the critical role of semantic
information in text classification. However, since
the MR dataset aims to address the sentiment clas-
sification task, the sequence-based model shows



Table 3: Test classification accuracy of models in inter-layer GAT with attention (w/ A) and without attention (w/o

A) by varying the number of model layers.

Model MR RS RS2 Ohsumed
Inter-layer GAT ( 2 layers ) w/o A 79.32 97.60 94.30 69.20
Inter-layer GAT ( 2 layers ) w/ A 78.96 97.65 94.34 69.25
Inter-layer GAT ( 4 layers ) w/o A 77.84 96.76 92.09 68.98
Inter-layer GAT ( 4 layers) w/ A 79.82 97.85 94.56 70.86
Inter-layer GAT ( 6 layers ) w/o A 77.79 96.50 91.89 68.32
Inter-layer GAT ( 6 layers ) w/ A 80.06 98.29 95.88 71.12

Table 4: Comparison of classification accuracy with
different edge weights.

Model MR RS R52 Ohsumed
(1) 0/1 edge 75.64 90.12 87.35 62.25
(2) PPMI edge w/o T 7635 96.25 93.32 67.62
(3)PPMIedgew/T 7724 68.61 97.13 94.05
Original 80.56 98.29 95.88 71.23

a more robust classification performance than
the text graph that considers only semantic in-
formation. Later, HyperGAT and TensorGCN
proposed the concepts of hypergraph and graph
tensor, respectively, to incorporate sequence, se-
mantic and syntactic information into text graphs
with appropriate aggregation strategies. Although
they fail to consider higher-order interactions of
words, the results show that they improve the
performance of graph-based models in sentiment
classification. Recently, DADGNN and NMGC
effectively handle the word higher-order interac-
tions in the text by solving the overfitting problem
in graph convolutional networks. However, their
models are limited by the characteristics of graph
convolutional networks and cannot tackle induc-
tive tasks. In summary, the above results reveal
that our model can show more stable and better
performance in all graph-based models.

4.5 Ablation Study

In this subsection, we performed ablation studies to
explore the role of different modules in the IIGAT
model.

4.5.1 The multi-dimensional edge features in
Intra-layer GAT

We verify the effectiveness of multi-dimensional
edge features in the intra-layer graph attention net-
work and Table 4 shows the results.

In case (1), we do not attribute any semantic in-
formation to the edges in the text graph and simply
give attention to the existence of connections be-
tween words using 0 or 1 weights (the existence
of a connection is assigned a value of 1). It can be
seen that the model classification performance de-
teriorates when the edge weights only represent the
connection information because it fails to reflect
the semantic relationship between words.

In case (2) and (3), we both use positive point-
wise mutual information (PPMI) to calculate the
weights between two words. The difference is
whether they are trainable (w/o T denotes not train-
able, w/ T denotes trainable). From the results,
the fixed edge weights do not perform as well as
trainable edges in the model, indicating the effec-
tiveness of updating the edge weights in model
training. However, neither of them is as effective as
the multi-dimensional edge features in our model.
We conclude that multi-dimensional edge features
can carry more semantic information and be better
integrated into word embeddings in combination
with word features.

4.5.2 The Attention Mechanism in Inter-layer
GAT

As can be seen from the Table 3, we discuss the
effect of the attention mechanism in the inter-layer
GAT on the model performance. The results show
that the inter-layer attention mechanism has little
improvement on the model performance when the
model is stacked with two layers. However, when
the model stacks more than two layers, eliminat-
ing the inter-layer attention mechanism gradually
decreases model performance as the number of net-
work layers deepens. The main reason is that if
the deep GNN cannot effectively distinguish the
importance of nodes in each layer, the final node
representation aggregates the nodes in all layers
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Figure 3: Test accuracy (%) with different layers on the
MR dataset and Ohsumed dataset.

with equal status. The deeper the networks are,
the more frequently the nodes interact. The repre-
sentation obtained for each node in the text graph
may tend to be consistent, damaging the classifi-
cation accuracy. Moreover, the data can show that
when nodes aggregate 4-hop neighbors or 6-hops,
the final node representation can adaptively select
node features in each layer through an inter-layer
attention mechanism, demonstrating the improve-
ment of model performance by higher-order word
interactions.

4.6 Parameter Sensitivity

Figure 3 shows the performance of our model af-
ter deepening the number of network layers. The
stacking of network layers allows the semantic in-
formation of the central node to be propagated in-
directly from more neighbors than just the 1-hop
neighbors. We found that the experimental results
of the model gradually improved as the number
of network layers increased. The long text dataset
Ohsumed achieves the best performance when the
network is stacked with five layers, compared to
the short text dataset MR where the performance
degrades when the network is stacked with seven
layers. It illustrates that the short text needs to ag-
gregate more higher-order neighbors to enrich the
semantic information of words due to the sparsely
available labels.

Figure 4 presents the test accuracies of the [IGAT
with different sliding window sizes on the MR
dataset and Ohsumed dataset. Sliding window size
affects the density of neighboring nodes. A slid-
ing window that is too small could not yield useful
co-occurrence information between words, while a
sliding window that is too large may produce inter-
fering data that impacts word embedding. From the
results, it can be seen that the model performance is
optimal for both MR dataset and Ohsumed dataset
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Figure 4: Test accuracy (%) with different sliding win-
dow sizes on the MR dataset and Ohsumed dataset.

when the sliding window size is 5.

4.7 Document Visualization

To intuitively probe the effectiveness of our model
in deep GNNs, we use the t-SNE tool (Van der
Maaten and Hinton, 2008) to visualize the docu-
ment embedding for comparison. Figure 5 shows
the visualization results of IIGAT stacking with
two and six layers on the R8 dataset. We observe
that IIGAT stacks with six layers can learn more
distinguishable document embeddings than stacks
with two layers. It proves that our model can en-
hance document embeddings by allowing words to
gain more semantic information.

(a) IIGAT, two layers

(b) IIGAT, six layers

Figure 5: The t-SNE visualization of document embed-
dings in R8.

5 Conclusion

In this paper, we propose a novel text classifica-
tion method based on graph neural networks called
IIGAT. It constructs a single graph for each doc-
ument and adds multi-dimensional edge features
between word nodes that are embedded in the word
representations during aggregation. In addition,
we capture the higher-order interactions of words
by combining intra-layer and inter-layer attention
mechanisms. The results of the extensive experi-
ments demonstrate that the proposed model is su-
perior to the state-of-the-art methods.



References

Roi Blanco and Christina Lioma. 2012. Graph-based
term weighting for information retrieval. Information
retrieval, 15(1):54-92.

Leo Breiman. 2001. Random forests. Machine learning,
45(1):5-32.

Mr Brijain, R Patel, MR Kushik, and K Rana. 2014. A
survey on decision tree algorithm for classification.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding,
and Yaliang Li. 2020. Simple and deep graph con-
volutional networks. In International Conference on
Machine Learning, pages 1725-1735. PMLR.

Danilo Croce, Giuseppe Castellucci, and Roberto Basili.
2020. Gan-bert: Generative adversarial learning for
robust text classification with a bunch of labeled ex-
amples. In Proceedings of the 58th annual meeting of

the association for computational linguistics, pages
2114-2119.

Michaél Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances
in neural information processing systems, 29.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,
and Huan Liu. 2020. Be more with less: Hypergraph
attention networks for inductive text classification.
arXiv preprint arXiv:2011.00387.

Liyu Gong and Qiang Cheng. 2019. Exploiting edge
features for graph neural networks. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9211-9219.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735-
1780.

Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, and
Xiaoli Li. 2019. Heterogeneous graph attention net-
works for semi-supervised short text classification.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4821-4830.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong
Zhang, and Houfeng Wang. 2019. Text level graph
neural network for text classification. arXiv preprint
arXiv:1910.02356.

Nitin Jindal and Bing Liu. 2007. Review spam detection.
In Proceedings of the 16th international conference
on World Wide Web, pages 1189-1190.

Thorsten Joachims. 1998. Text categorization with sup-
port vector machines: Learning with many relevant
features. In European conference on machine learn-
ing, pages 137-142. Springer.

N Kalchbrenner, E Grefenstette, and Philip Blunsom.
2014. A convolutional neural network for modelling
sentences. In 52nd Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. Advances in neural information
processing systems, 30.

James M Keller, Michael R Gray, and James A Givens.
1985. A fuzzy k-nearest neighbor algorithm. /IEEE
transactions on systems, man, and cybernetics,
(4):580-585.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171-4186.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2017. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM,
60(6):84-90.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In Twenty-ninth AAAI conference on artifi-
cial intelligence.

Fangyuan Lei, Xun Liu, Zhengming Li, Qingyun Dai,
and Senhong Wang. 2021. Multihop neighbor infor-
mation fusion graph convolutional network for text
classification. Mathematical Problems in Engineer-
ing, 2021.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard
Ghanem. 2019. Deepgcns: Can gens go as deep as
cnns? In Proceedings of the IEEE/CVF international
conference on computer vision, pages 9267-9276.

P. Liu, X. Qiu, and X. Huang. 2016. Recurrent neural
network for text classification with multi-task learn-
ing. AAAI Press.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv.
2020. Tensor graph convolutional networks for text
classification. In Proceedings of the AAAI conference

on artificial intelligence, volume 34, pages 8409—
8416.

Yonghao Liu, Renchu Guan, Fausto Giunchiglia,
Yanchun Liang, and Xiaoyue Feng. 2021. Deep at-
tention diffusion graph neural networks for text clas-
sification. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,

pages 8142-8152.



Edward Loper and Steven Bird. 2002. NLTK: the natu-
ral language toolkit. CoRR, cs.CL/0205028.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532-1543.

Matthew Peters, M. Neumann, M. Iyyer, M. Gardner,
and L. Zettlemoyer. 2018. Deep contextualized word
representations.

Francois Rousseau, Emmanouil Kiagias, and Michalis
Vazirgiannis. 2015. Text categorization as a graph
classification problem. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1702—1712.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE transactions on
neural networks, 20(1):61-80.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks.
arXiv preprint arXiv:1503.00075.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021.
Self-supervised heterogeneous graph neural network
with co-contrastive learning. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining, pages 1726-1736.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger. 2019. Simpli-
fying graph convolutional networks. In International
conference on machine learning, pages 6861-6871.
PMLR.

10

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7370-7377.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. Advances in Neural Information Pro-
cessing Systems, 32.

Haopeng Zhang and Jiawei Zhang. 2020. Text graph
transformer for document classification. In Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP).

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Un-
derstanding bag-of-words model: a statistical frame-
work. International journal of machine learning and
cybernetics, 1(1):43-52.

Yue Zhang, Qi Liu, and Linfeng Song. 2018. Sentence-
state Istm for text representation. In ACL (1).

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. 2020. Every document owns
its structure: Inductive text classification via graph
neural networks. arXiv preprint arXiv:2004.13826.


https://arxiv.org/abs/cs/0205028
https://arxiv.org/abs/cs/0205028
https://arxiv.org/abs/cs/0205028

