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Abstract

Text classification is a classical task in the field001
of natural language processing. Recently, graph002
neural networks (GNNs) have received consid-003
erable attention and made great breakthroughs004
on this task. However, current GNN-based005
methods neither fully utilize edge information006
nor obtain higher-order interactions of words.007
To address these problems, we propose the008
Intra-layer and Inter-layer Graph ATtention009
networks (IIGAT) to obtain the higher-order010
interactions of word nodes and construct multi-011
dimensional edges between word nodes in the012
intra-layer GAT to enrich the semantic informa-013
tion of words. Extensive experiments on four014
benchmark datasets demonstrate the effective-015
ness of our methods on the text classification016
task.017

1 Introduction018

Text classification is one of the most fundamental019

tasks in natural language processing (NLP), focus-020

ing on analyzing the text corpus to get the correct021

label for the text. Text classification plays a vital022

role in many applications, such as sentiment classi-023

fication (Tai et al., 2015), spam processing (Jindal024

and Liu, 2007) and question answering (Kalchbren-025

ner et al., 2014).026

The core of text classification is text represen-027

tation learning, which focuses on obtaining a set028

of vector representations from text sequences. In-029

spired by the success of deep learning, the manual030

extraction of features in traditional models is grad-031

ually abandoned, and automatic means are widely032

used to learn text features. In particular, convolu-033

tional neural networks (CNNs) (Kim, 2014) and034

recurrent neural networks (RNNs) (Liu et al., 2016)035

leverage their powerful feature extraction capa-036

bilities to model consecutive words in texts. To037

overcome the computational cost associated with038

increased sentence length, transformers (Zhang039

*Corresponding Author

and Zhang, 2020) compute the “influence” of each 040

word in the text by parallelizing the input and 041

achieve state-of-the-art results on applications with 042

large-scale datasets. 043

However, the above methods ignore structural 044

information between words in the text. In recent 045

years, as graph neural networks (GNNs) (Scarselli 046

et al., 2008) have gradually obtained more and 047

more attention and made great progress in NLP, 048

the research on text classification based on GNN 049

has gained higher and higher popularity. GNN can 050

build effective relational structures, maintain global 051

structural information and successfully apply to 052

graph-structured data. Yao et al. (2019) construct a 053

text graph for the entire corpus based on word co- 054

occurrence and document-word relations, jointly 055

learn word and document embeddings, and finally 056

classify the document nodes in the graph. Further, 057

Huang et al. (2019) propose to build a single graph 058

for each input document, and their model allows 059

inductive learning to support online testing. 060

These graph-based methods have two main draw- 061

backs. First, edge information is poorly utilized. 062

The current GNN-based models employ the neigh- 063

boring nodes of word nodes for aggregation (Kipf 064

and Welling, 2016), and one-dimensional edge in- 065

formation (Hu et al., 2019) serves no complemen- 066

tary role in updating word embeddings. However, 067

edge features in text graphs often contain much se- 068

mantic information. Second, the number of layers 069

of GNN is limited. On the one hand, GNN-based 070

models generally build networks with only two lay- 071

ers (Zhang et al., 2020). In the shallow aggregation 072

process, the central node tends to interact with its 073

1-hop neighbors and cannot obtain long-distance 074

neighbor information. On the other hand, the tra- 075

ditional GNN-based models commonly generate 076

over-smoothing after deepening the number of net- 077

work layers (Li et al., 2019; Chen et al., 2020), 078

resulting in features tending to be similar among 079

nodes. 080
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To address these problems, we propose a new081

GNN model named Intra-layer and Inter-layer082

Graph Attention networks (IIGAT). We construct083

a single graph for each document, where nodes084

represent words, while edges represent multi-085

dimensional semantic relationships between words.086

We aggregate the node neighbor features in each087

layer through an intra-layer attention mechanism.088

The edge information is embedded into the nodes to089

update the word representations, which effectively090

uses edge features in the text graph. Meanwhile, we091

deepen the GNN layers to capture the higher-order092

interactions of words by adaptively selecting the093

effective node representations in each layer through094

an inter-layer attention mechanism.095

In brief, our contributions are summarized as096

follows:097

• We introduce multi-dimensional edge features to098

enhance the semantic information of the word099

nodes. The word representations are updated100

with edge and node information in each layer.101

• We propose a model containing intra-layer and102

inter-layer attention mechanisms called IIGAT,103

in which word nodes can capture the interaction104

of higher-order words in a deep GNN.105

• Extensive experiments indicate that our proposed106

IIGAT notably outperforms state-of-the-art text107

classification methods on several benchmark108

datasets.109

2 Related work110

2.1 Traditional Text Classification111

Traditional text classification methods generally112

combine feature engineering and shallow classi-113

fiers. Text representation learning methods such as114

BOW (Zhang et al., 2010) and word2vec (Mikolov115

et al., 2013) feed the text embeddings obtained116

from feature engineering into a shallow classi-117

fier (Keller et al., 1985; Joachims, 1998; Breiman,118

2001) for training. For similar purposes, the Light-119

GBM (Ke et al., 2017) framework based on a deci-120

sion tree algorithm (Brijain et al., 2014) has been121

proposed for a broad range of text classification122

tasks, showing extraordinary potential. However,123

traditional methods rely excessively on the empir-124

ical knowledge of experts and manual extraction125

of features, which consume massive resources and126

time. In contrast, our approach breaks this barrier127

by automatically learning the text representation in128

the raw datasets.129

2.2 Deep Text classification 130

With the rapid development of deep learning, many 131

deep learning models are used for text classifica- 132

tion tasks. Based on its excellent performance on 133

images (Krizhevsky et al., 2017), Kim (2014) ap- 134

plies convolution to text sequences and obtains 135

the final vector representations by pooling oper- 136

ations. Liu et al. (2016) and Zhang et al. (2018) 137

use memory units, learn historical information in 138

training and capture long-term dependency types in 139

text. Along with the proposed attention mechanism 140

(Vaswani et al., 2017), different textual informa- 141

tion is given different weights (Peters et al., 2018; 142

You et al., 2019), highlighting the contribution of 143

crucial information. Pre-trained models (Kenton 144

and Toutanova, 2019; Croce et al., 2020; Zhang 145

and Zhang, 2020) are introduced to learn global 146

semantic information efficiently with unsupervised 147

methods. Although the above approaches signif- 148

icantly improve the text classification task, they 149

mainly model consecutive words and fail to con- 150

sider the contextual information of text sequences. 151

Our proposed model converts text sequences into 152

graph structures, achieving semantic interactions 153

among non-contiguous words. 154

2.3 Graph Neural Networks 155

GNNs (Scarselli et al., 2008) have been mainly ded- 156

icated to modeling non-Euclidean data. Research 157

on applying GNN to text classification is divided 158

into two main categories: transductive learning 159

(Kipf and Welling, 2016) and inductive learning 160

(Hamilton et al., 2017; Veličković et al., 2017). 161

The former mainly learns a unique embedding for 162

each word node based on the graph structure. The 163

training requires the participation of all nodes in 164

the graph, using unlabeled samples to solve the 165

problem of insufficient training samples (Yao et al., 166

2019; Wang et al., 2021; Liu et al., 2020). The 167

latter is mainly a way of dynamic modeling, where 168

embedding is learned according to the change of 169

node neighbors. When the graph structure in the 170

test set changes, the corresponding node embed- 171

ding will be adjusted (Huang et al., 2019; Zhang 172

et al., 2020). However, both of these approaches 173

use only two-layers GNN, which dramatically lim- 174

its the perceptual field of neighbor aggregation (Wu 175

et al., 2019; Chen et al., 2020) when labels are miss- 176

ing in the datasets or connections between nodes 177

are sparse. In contrast, our approach deepens the 178

layers of the GNN in the text classification task and 179
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Figure 1: Illustration of the proposed IIGAT for text classification. We construct a graph for each document and
input both node representations (e.g., hi) and edge representations (e.g., eij) to IIGAT to obtain text representation
for higher-order word aggregation.

effectively addresses the problem of higher-order180

interactions of nodes.181

3 Method182

In this section, we depict our method in three key183

components: the graph construction, the IIGAT184

and the readout function. The overall architecture185

is shown in Figure 1.186

3.1 Graph Construction187

We build a single graph for each document, where188

vertices correspond to the unique words in the docu-189

ment and the edges correspond to the co-occurrence190

relationships between words. Formally, the con-191

structed graph is denoted as G = (V, E), where V192

is the set of vertices and E is the set of edges. The193

co-occurrence relationship describes the frequency194

of co-occurrence between words in a fixed sliding195

window of the document, and edges are undirected196

in the graph.197

Let X ∈ Rn×d represents the feature matrix198

with the features of n word nodes, where d de-199

notes the dimensionality of the features. We use200

the indices in the subscripts to denote the elements201

of a matrix or a tensor. Hence, xi represents202

the representation of the ith node. Similarly, let203

E ∈ Rn×n×t represents the edge features between204

word nodes (Gong and Cheng, 2019) and eij ∈ Rt205

represents the t-dimensional feature vector of the206

edge connecting the ith and jth word nodes. Specif-207

ically, eij = 0 means no edge between the ith and208

jth word nodes.209

3.2 IIGAT 210

To perform node representation learning in deep- 211

ened GNN, we propose a new model called IIGAT 212

in this section. Unlike the traditional GNN model, 213

IIGAT contains both intra-layer and inter-layer at- 214

tention to capture higher-order contextual informa- 215

tion of words and avoid the performance degrada- 216

tion problem caused by gradient vanishing. 217

Intra-layer GAT. To reflect the different impor- 218

tance of neighbors of word nodes, we update the 219

feature representations of nodes and edges within 220

each layer by GAT. 221

Given a node i, its neighboring nodes can be 222

represented by Ni. In the previous GAT, the at- 223

tention vector depends only on the node features 224

and does not consider the weight of edges. In con- 225

trast, our proposed attention mechanism combines 226

multi-dimensional edge features, and the node rep- 227

resentation is updated by both neighboring nodes 228

and the corresponding edges jointly. For a spe- 229

cific layer l, the aggregation process is shown in 230

Figure 2, and the specific definitions are as follows: 231

α̂l−1
ij = f

(
aT

[
W1h

l−1
i ||W1h

l−1
j ||W2e

l−1
ij

])
,

(1) 232

233

αl−1
ij =

exp
(
α̂l−1
ij

)
∑

k∈Ni
exp

(
α̂l−1
ik

) , (2) 234

where f is the LeakyReLU activation function, W1 235

and W2 are shared matrices that augment the fea- 236

3



so
ftm

ax

ℎ𝑖𝑖 ℎ𝑗𝑗 𝑒𝑒𝑖𝑖𝑗𝑗

𝛼𝛼𝑖𝑖𝑗𝑗

Figure 2: Illustration of the intra-layer GAT aggregation
process.

ture dimension, and || denotes a connection opera-237

tion. The attention vector αl−1
ij is normalized using238

the softmax function. In particular, the edge fea-239

tures are updated by a linear transformation whose240

parameters are the weight matrix W l:241

elij = W lel−1
ij . (3)242

According to the obtained attention vector, GAT243

iteratively updates each node representation with244

the following formulas:245

hli = σ
(∑

j∈Ni
αl−1
ij Whl−1

j

)
, (4)246

where hli is the node representation obtained by247

updating node i at layer l, σ is the nonlinearity248

such as tanh, and W is an input transformation249

matrix.250

As a result, the feature representation of each251

node can obtain more semantic information when252

jointly enhanced by neighboring nodes and edge253

features.254

Inter-layer GAT. Since different-order neighbors255

of the central node produce different impacts in256

the text graph, we design an inter-layer attention257

mechanism to selectively aggregate node features258

of higher-order neighbors to avoid that deepening259

GAT produces the gradient vanishing problem.260

Formally, we input the node features hlv result-261

ing from the l-th layer to bi-directional LSTM (bi-262

LSTM) (Hochreiter and Schmidhuber, 1997) and263

obtain the forward hidden features
−→
hlv and back-264

ward hidden features
←−
hlv, respectively. Bi-LSTM265

fully uses past and future information by flowing 266

through the two-layer networks in forward and 267

backward temporal order. Then, the most useful 268

neighborhood range for each node v is determined 269

by calculating the attention score for each layer of 270

node features. Specifically, the calculation is as 271

follows: 272

ĥlv =

[−→
hlv ||
←−
hlv

]
, (5) 273

β̂l
v = score

(
ĥlv

)
, (6) 274

βl
v = softmax

(
β̂l
v

)
, (7) 275

where score is a learnable function that scores the 276

node features of each layer and βl
v denotes the 277

weight of node features at each layer after normal- 278

ization. 279

For the L layers GAT, the new node embedding 280

hfianlv is updated as: 281

hfinalv =
∑L

l=1β
l
vĥ

l
v, (8) 282

where
∑L

l=1 denotes the summation operation and 283

hfianlv denotes the final word node representation 284

obtained from the IIGAT model. 285

The proposed IIGAT model not only integrates 286

multi-dimensional edge features to enrich the se- 287

mantic information of nodes, but also effectively 288

distinguishes high-order neighbors at different 289

granularities, so that words can obtain sufficient 290

knowledge to get the final text representation. 291

3.3 Readout Function 292

After the nodes aggregate all the higher-order 293

neighbor information, we perform fusion learning 294

on the final node representation to obtain the graph- 295

level representation hG of the document. We define 296

the readout function as: 297

hG =
1

n

n∑
v=1

hfinalv +
n

max
v=1

(
hfinalv

)
. (9) 298

We obtain the graph-level representation by aver- 299

aging and maximizing together, which ensures that 300

the keywords in the text can be useful. 301

The label is predicted by feeding the graph-level 302

representation hG into a softmax layer: 303

ŷ = softmax (WhG + b) , (10) 304

where W is a trainable parameter matrix mapping 305

the graph-level representation into an output space 306

and b is a bias. 307
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Finally, we use cross-entropy loss as the loss308

function of our text classification model. It is de-309

noted as follows:310

Loss = −
∑
i∈D

C∑
i

yilog(ŷi), (11)311

where D is the set of document for training, C is312

the number of labels and yi is the one-hot ground313

truth label of document.314

4 Experiments315

This section describes the experimental details and316

reports the experimental results. First, we intro-317

duce the datasets used for the experiments and the318

baseline models used for comparison.319

4.1 Datasets320

We performed extensive experiments on four bench-321

mark datasets for text classification, including322

Ohsumed, R8, R52 and Movie Review (MR).323

Specifically, the ohsumed dataset is a subset of the324

MEDLINE dataset and consists of 7400 medical325

documents divided into 23 categories of cardiovas-326

cular disease labels, with each document having327

one or more of these labels. R8 and R52 are two328

subsets of Reuters. R8 contains 7674 documents329

divided into 8 categories; R52 contains 9100 docu-330

ments divided into 52 categories. MR is a movie331

review dataset containing 10,662 documents with332

two categories. Table 1 describes the statistical data333

of the used datasets and more detailed information334

can be found in (Yao et al., 2019).335

Since we only considered single-label classi-336

fication task, we first removed documents with337

two or more labels before the above datasets were338

trained. Then, we preprocessed the texts by clean-339

ing them, mainly by removing the stop words de-340

fined in NLTK (Loper and Bird, 2002) and the341

low–frequency words (less than 5 times) in the342

above datasets (Rousseau et al., 2015; Blanco and343

Lioma, 2012). Since the text length of the MR344

dataset was too short, we had only performed word345

tokenization on it.346

4.2 Baselines347

We used the following kinds of models as baseline348

models for comparison with our model:349

• TF-IDF+LR is a bag-of-words model that uses350

term frequency-inverse document frequency to351

calculate weights and then uses a logistic regres-352

sion algorithm as a classifier.353

• TextCNN (Kim, 2014) performs sentence-level 354

classification tasks on pre-trained word vectors 355

using CNNs. 356

• LSTM (Liu et al., 2016) proposes a RNN, which 357

applies to text classification with pre-trained 358

word embeddings. 359

• RCNN (Lai et al., 2015) applies a bidirectional 360

recurrent structure in the model to capture the 361

contextual information of words, and then adds 362

a maximum pooling operation to automatically 363

determine which words play a key role in text 364

classification. 365

• Graph-CNN (Defferrard et al., 2016) introduces 366

a graph CNN model, which operates convolutions 367

over word embedding similarity graphs with the 368

Chebyshev filter. 369

• TextGCN (Yao et al., 2019) suggests building 370

a graph for the entire corpus and then learning 371

word representations through graph convolutional 372

networks. 373

• TextLevel-GNN (Huang et al., 2019) constructs 374

a single graph for each sentence, sharing global 375

parameters in GNN learning. 376

• TensorGCN (Liu et al., 2020) builds text graph 377

tensor to describe semantic, syntactic and sequen- 378

tial contextual information. 379

• HyperGAT (Ding et al., 2020) puts forward the 380

concept of hypergraphs to obtain higher expres- 381

siveness with less computation. 382

• DADGNN (Liu et al., 2021) presents to deepen 383

GNN by decoupling two key stages (representa- 384

tion transformation and propagation). 385

• NMGC (Lei et al., 2021) designs a multi-hop 386

neighbor information fusion strategy to aggregate 387

different neighbor features from 1 hop to k hops. 388

4.3 Experimental Settings 389

For the datasets introduced above, we divided docu- 390

ments into a training set and a test set and randomly 391

divide the data in the training set for training and 392

validation with a ratio of 9:1, where the data in the 393

validation set facilitates the adjustment of hyperpa- 394

rameters in the model. We utilized Adam optimizer 395

with an initial learning rate of 10−3, and L2 weight 396

decay is set to 10−4. We set the dropout rate for 397
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Table 1: The statistics of datasets.

Dataset # Docs # Train # Test # Words # Categories Avg.Len

MR 10,662 7,108 3,554 18,764 2 20.39
R8 7,674 5,485 2,189 7,688 8 65.72

R52 9,100 6,532 2,568 8,892 52 69.82
Ohsumed 7,400 3,357 4,043 14,157 23 135.82

Table 2: Test accuracy (%) comparison of different text classification models. The best results are bolded.

Model MR R8 R52 Ohsumed

TF-IDF + LR 74.59 ± 0.00 93.74 ± 0.00 86.95 ± 0.00 54.66 ± 0.00

TextCNN 77.75 ± 0.72 95.71 ± 0.52 87.59 ± 0.48 58.44 ± 1.06
LSTM 77.33 ± 0.89 96.09 ± 0.19 90.48 ± 0.86 51.10 ± 1.50
RCNN 77.68 ± 0.86 96.31 ± 0.33 90.54 ± 0.91 49.27 ± 1.07

Graph-CNN 76.65 ± 0.63 95.32 ± 0.26 92.94 ± 0.24 63.12 ± 0.55
TextGCN 76.74 ± 0.20 97.07 ± 0.10 93.56 ± 0.18 68.36 ± 0.56

TextLevel-GNN 75.47 ± 0.36 97.80 ± 0.20 94.60 ± 0.30 69.40 ± 0.60
TensorGCN 77.91± 0.07 98.04 ± 0.08 95.05 ± 0.11 70.11 ± 0.24
HyperGAT 78.32± 0.27 97.97 ± 0.23 94.98 ± 0.27 69.90 ± 0.34
DADGNN 78.64± 0.29 97.31 ± 0.09 94.35 ± 0.06 —

NMGC 76.21± 0.25 98.15 ± 0.16 95.16 ± 0.22 69.21 ± 0.17

IIGAT (ours) 80.56 ± 0.32 98.29 ± 0.15 95.88 ± 0.26 71.56 ± 0.25

the training process as 0.5 and the epoch number as398

400. The output dimension of the linear mapping399

W was fixed to 64 for all hidden layers. For base-400

line models, we used default parameter setups as401

in their published papers. In addition, after the text402

was cleaned, we initialized the word features using403

300-dimensional pre-trained GloVe word embed-404

dings (Pennington et al., 2014) and pre-processed405

the edge features using random initialization.406

4.4 Test Performance407

We first perform comprehensive experiments to408

evaluate the performance of the baselines and our409

model, and the results are shown in Table 2 in the410

form of accuracy rates. It is not difficult to observe411

from the results that our model outperforms all412

baselines on four datasets, demonstrating superior413

capabilities in text classification applications. We414

can analyze and explore this result in depth below:415

• Traditional Models. The TF-IDF+LR model416

integrates all words in the corpus in a bag-of-417

words format, ignoring grammatical and sequen-418

tial elements. In datasets like Ohsumed with long419

text and an excessive number of words, contex-420

tual information cannot be captured, resulting in 421

abysmal model performance. 422

• Deep Learning Models. Our model also out- 423

performs deep learning models based on CNNs 424

and RNNs. This is since CNN-based models 425

use convolutional operations to model the text lo- 426

cally and fail to obtain global information about 427

the text. Meanwhile, the RNN-based model cap- 428

tures the long-term dependency of words, but 429

brings many parameters to be computed, leading 430

to overfitting. Our graph-based approach allows 431

word nodes to learn more accurate word repre- 432

sentations based on the different collocations of 433

neighboring nodes. 434

• Graph-based Models. Early graph-based mod- 435

els such as TextGCN and TextLevel-GNN use co- 436

occurrence relations of words to extract semantic 437

information in text sequences to construct text 438

graphs. The graph-based model is significantly 439

higher than the other models in the Ohsumed 440

dataset, indicating the critical role of semantic 441

information in text classification. However, since 442

the MR dataset aims to address the sentiment clas- 443

sification task, the sequence-based model shows 444
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Table 3: Test classification accuracy of models in inter-layer GAT with attention (w/ A) and without attention (w/o
A) by varying the number of model layers.

Model MR R8 R52 Ohsumed

Inter-layer GAT ( 2 layers ) w/o A 79.32 97.60 94.30 69.20
Inter-layer GAT ( 2 layers ) w/ A 78.96 97.65 94.34 69.25

Inter-layer GAT ( 4 layers ) w/o A 77.84 96.76 92.09 68.98
Inter-layer GAT ( 4 layers) w/ A 79.82 97.85 94.56 70.86

Inter-layer GAT ( 6 layers ) w/o A 77.79 96.50 91.89 68.32
Inter-layer GAT ( 6 layers ) w/ A 80.06 98.29 95.88 71.12

Table 4: Comparison of classification accuracy with
different edge weights.

Model MR R8 R52 Ohsumed

(1) 0/1 edge 75.64 90.12 87.35 62.25
(2) PPMI edge w/o T 76.35 96.25 93.32 67.62
(3) PPMI edge w/ T 77.24 68.61 97.13 94.05
Original 80.56 98.29 95.88 71.23

a more robust classification performance than445

the text graph that considers only semantic in-446

formation. Later, HyperGAT and TensorGCN447

proposed the concepts of hypergraph and graph448

tensor, respectively, to incorporate sequence, se-449

mantic and syntactic information into text graphs450

with appropriate aggregation strategies. Although451

they fail to consider higher-order interactions of452

words, the results show that they improve the453

performance of graph-based models in sentiment454

classification. Recently, DADGNN and NMGC455

effectively handle the word higher-order interac-456

tions in the text by solving the overfitting problem457

in graph convolutional networks. However, their458

models are limited by the characteristics of graph459

convolutional networks and cannot tackle induc-460

tive tasks. In summary, the above results reveal461

that our model can show more stable and better462

performance in all graph-based models.463

4.5 Ablation Study464

In this subsection, we performed ablation studies to465

explore the role of different modules in the IIGAT466

model.467

4.5.1 The multi-dimensional edge features in468

Intra-layer GAT469

We verify the effectiveness of multi-dimensional470

edge features in the intra-layer graph attention net-471

work and Table 4 shows the results.472

In case (1), we do not attribute any semantic in- 473

formation to the edges in the text graph and simply 474

give attention to the existence of connections be- 475

tween words using 0 or 1 weights (the existence 476

of a connection is assigned a value of 1). It can be 477

seen that the model classification performance de- 478

teriorates when the edge weights only represent the 479

connection information because it fails to reflect 480

the semantic relationship between words. 481

In case (2) and (3), we both use positive point- 482

wise mutual information (PPMI) to calculate the 483

weights between two words. The difference is 484

whether they are trainable (w/o T denotes not train- 485

able, w/ T denotes trainable). From the results, 486

the fixed edge weights do not perform as well as 487

trainable edges in the model, indicating the effec- 488

tiveness of updating the edge weights in model 489

training. However, neither of them is as effective as 490

the multi-dimensional edge features in our model. 491

We conclude that multi-dimensional edge features 492

can carry more semantic information and be better 493

integrated into word embeddings in combination 494

with word features. 495

4.5.2 The Attention Mechanism in Inter-layer 496

GAT 497

As can be seen from the Table 3, we discuss the 498

effect of the attention mechanism in the inter-layer 499

GAT on the model performance. The results show 500

that the inter-layer attention mechanism has little 501

improvement on the model performance when the 502

model is stacked with two layers. However, when 503

the model stacks more than two layers, eliminat- 504

ing the inter-layer attention mechanism gradually 505

decreases model performance as the number of net- 506

work layers deepens. The main reason is that if 507

the deep GNN cannot effectively distinguish the 508

importance of nodes in each layer, the final node 509

representation aggregates the nodes in all layers 510
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(a) MR (b) Ohsumed

Figure 3: Test accuracy (%) with different layers on the
MR dataset and Ohsumed dataset.

with equal status. The deeper the networks are,511

the more frequently the nodes interact. The repre-512

sentation obtained for each node in the text graph513

may tend to be consistent, damaging the classifi-514

cation accuracy. Moreover, the data can show that515

when nodes aggregate 4-hop neighbors or 6-hops,516

the final node representation can adaptively select517

node features in each layer through an inter-layer518

attention mechanism, demonstrating the improve-519

ment of model performance by higher-order word520

interactions.521

4.6 Parameter Sensitivity522

Figure 3 shows the performance of our model af-523

ter deepening the number of network layers. The524

stacking of network layers allows the semantic in-525

formation of the central node to be propagated in-526

directly from more neighbors than just the 1-hop527

neighbors. We found that the experimental results528

of the model gradually improved as the number529

of network layers increased. The long text dataset530

Ohsumed achieves the best performance when the531

network is stacked with five layers, compared to532

the short text dataset MR where the performance533

degrades when the network is stacked with seven534

layers. It illustrates that the short text needs to ag-535

gregate more higher-order neighbors to enrich the536

semantic information of words due to the sparsely537

available labels.538

Figure 4 presents the test accuracies of the IIGAT539

with different sliding window sizes on the MR540

dataset and Ohsumed dataset. Sliding window size541

affects the density of neighboring nodes. A slid-542

ing window that is too small could not yield useful543

co-occurrence information between words, while a544

sliding window that is too large may produce inter-545

fering data that impacts word embedding. From the546

results, it can be seen that the model performance is547

optimal for both MR dataset and Ohsumed dataset548

(a) MR (b) Ohsumed

Figure 4: Test accuracy (%) with different sliding win-
dow sizes on the MR dataset and Ohsumed dataset.

when the sliding window size is 5. 549

4.7 Document Visualization 550

To intuitively probe the effectiveness of our model 551

in deep GNNs, we use the t-SNE tool (Van der 552

Maaten and Hinton, 2008) to visualize the docu- 553

ment embedding for comparison. Figure 5 shows 554

the visualization results of IIGAT stacking with 555

two and six layers on the R8 dataset. We observe 556

that IIGAT stacks with six layers can learn more 557

distinguishable document embeddings than stacks 558

with two layers. It proves that our model can en- 559

hance document embeddings by allowing words to 560

gain more semantic information. 561

(a) IIGAT, two layers (b) IIGAT, six layers

Figure 5: The t-SNE visualization of document embed-
dings in R8.

5 Conclusion 562

In this paper, we propose a novel text classifica- 563

tion method based on graph neural networks called 564

IIGAT. It constructs a single graph for each doc- 565

ument and adds multi-dimensional edge features 566

between word nodes that are embedded in the word 567

representations during aggregation. In addition, 568

we capture the higher-order interactions of words 569

by combining intra-layer and inter-layer attention 570

mechanisms. The results of the extensive experi- 571

ments demonstrate that the proposed model is su- 572

perior to the state-of-the-art methods. 573
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