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Abstract

Deep learning models have made significant advancements in medical image segmentation.
Patch-based training is the standard practice for 3D segmentation models. During model
deployment in hospital settings, resource constraints may require performing inference with
reduced patch sizes. However, this might lead to a decrease in performance. In this study
we demonstrate that patch size augmentation is a straightforward and effective approach
to enhance the robustness of a 3D U-Net to different patch sizes during inference. Further-
more, we show that using a hypernetwork to adapt the U-Net to diverse patch sizes further
enhances performance across the patch size spectrum.

Keywords: Hypernetworks, patch size augmentation

1. Introduction

Medical image segmentation plays a vital role in clinical workflows, enabling accurate diag-
nosis (Munir et al., 2019), treatment planning (Satheeskumar, 2025), and disease monitor-
ing (Choy et al., 2023). Among existing architectures, U-Net (Ronneberger et al., 2015) has
become one of the most widely adopted and effective models for medical image segmenta-
tion (Azad et al., 2024). Due to the high computational demands of processing 3D medical
images, both training and inference commonly rely on patch-based strategies. The choice of
patch size is inherently task-dependent and critically influences model performance. Specif-
ically, the patch size used during training determines the amount of contextual information
available to the model for learning the segmentation task. While larger patches offer a
broader spatial context, they also entail greater computational cost. To enable efficient
batching, a fixed patch size is typically used during training. Inference is often conducted
using a sliding window approach with the same patch size as in training. However, in practi-
cal deployment, models might run in resource-constrained environments such as those found
in hospitals. Reducing the patch size is a straightforward approach to alleviate computa-
tional demands. Nonetheless, this introduces a distribution shift in contextual information,
which, as will be shown, can potentially degrade segmentation performance.

In this paper, we demonstrate the importance of these considerations and compare two
potential solutions in the context of multi-organ segmentation. First, drawing inspiration
from recent work (Beyer et al., 2023), we use patch size augmentation as a straightforward
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Figure 1: Considered models. The primary U-Net (red box) with the fixed patch size and
augmented patch size dataloaders (blue and pink boxes) respectively correspond
to U-Net FP and U-Net AP. The hyper-model (red and orange boxes combined)
with the augmented patch size dataloader corresponds to HN.

approach extending the data domain to various patch sizes. Then, we explore the use of a
hypernetwork (Ha et al., 2016) to condition the model on the patch size. The hypernetwork
dynamically adapts the model to the input patch size by predicting a set of model weights
which are optimal for this patch size. In medical applications, hypernetworks have shown
success in conditioning registration networks on regularization strength (Hoopes et al., 2021;
Mok and Chung, 2021) and segmentation networks on image spacing (Joutard et al., 2024),
or target organ (Billot et al., 2024). In our case, the hypernetwork conditions the model on
patch size by predicting optimal weights for a given amount of context.

2. Materials and Methods

Dataset We conducted our experiments on the AMOS dataset (Ji et al., 2022), selecting
the subset of 195 CT images in which all five following organs are segmented: liver, spleen,
stomach, right and left kidneys. The dataset is randomly partitioned into 80% for train-
ing and 20% for evaluation. For testing the model, we used the Learn2Reg 2020 Task 3
dataset (Hering et al., 2022) with 30 images.

Models In our experiments, we use a 3D U-Net with three levels, each consisting of
four convolutional layers and 16 channels per layer in the first level. The hypernetwork
is implemented as an MLP with three fully connected layers, each containing 50 units.
We train the segmentation network in three different setups: using a fixed patch size of
[128]3(U-Net FP), augmenting the patch size (U-Net AP) and using a hypernetwork
(Hypernetwork U-Net (HN)). These models are illustrated in figure 1.



WHY IS PATCH SIZE IMPORTANT?

. Organs
Model Configuration Liver | Spleen | Stomach | R. Kidney | L. Kidney Average
HN 0.922* | 0.921* 0.925 0.940* 0.826 0.901*
U-Net AP 0.886 | 0.882 0.915 0.936 0.755 0.897
U-Net FP 0.752 | 0.775 0.642 0.849 0.681 0.772

Table 1: Mean Dice scores over 500 different patch sizes. * denotes statistical significance for
the comparison between HN and U-Net AP (Wilcoxon signed-rank test, p < 0.01).

3. Results and Discussion

Table 1 presents the Dice scores for each organ and model configuration on the test set. In-
ference is performed on 500 patch sizes, including 29 evenly spaced isotropic sizes from [32]3
to [256]2, and 471 randomly sampled sizes. Patch size augmentation and the hypernetwork
both significantly improve performance (~ 13% increase in Dice score) over fixed-size train-
ing, with the greatest gains seen for patch sizes smaller (see fig. 2) than U-Net FP’s fixed
training size ([128]%), where loss of contextual information becomes critical. The results
corresponding to isotropic patch sizes are presented separately in table 2, as these configu-
rations are more prevalent in practical applications and therefore of greater relevance to end
users. These findings suggest that patch size augmentation is a straightforward yet effective
approach to improve the robustness of a model to varying patch sizes during inference. The
hypernetwork, while requiring additional computational resources during training, delivers
a significant improvement in performance over the U-Net PA, highlighting its potential for
further enhancing model accuracy in diverse scenarios.

Furthermore, we observed that training a U-Net on small patch sizes (e.g., [32]% or
[64]3) resulted in instability and failure to converge, as this complex task requires larger
contextual information. In contrast, only U-Net AP and HP were able to produce effective
models for these smaller patch sizes, demonstrating that these configurations are essential
for achieving a functional model under these conditions. This underscores the importance
of the patch-size distribution extension for enabling the model to learn relevant features
within the limited context regime.

4. Conclusion

In this study, we address the, often overlooked, distribution shift in contextual information
during inference. We demonstrated the effectiveness of two approaches, one relying solely
on patch size augmentation as a straightforward but effective solution, and a hypernetwork
based approach that requires slightly higher training investment but yields optimal per-
formances. We argue that both approaches could be seamlessly integrated into training
pipelines for any model architecture, not just U-Net. We believe this work has the potential
to facilitate model deployment in resource-limited scenarios such as hospitals. We will make
the code publicly available at https://github.com/ImFusionGmbH/FlexPatchSize
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Figure 2: Dice score on the test set as a function of the patch size. Each point represents
the mean over all organs and the error bars the standard deviation.
Model Configuration Organs Average
g Liver | Spleen | Stomach | R. Kidney | L. Kidney g
HN 0.904* | 0.914* 0.912 0.937* 0.826 0.892*
U-Net AP 0.879 | 0.877 0.897 0.932 0.757 0.887
U-Net FP 0.724 | 0.734 0.668 0.779 0.665 0.731

Table 2:

Mean Dice scores over 29 evenly spaced isotropic patch sizes from [32]® to [256]3.
* denotes statistical significance for the comparison between HN and U-Net AP
(Wilcoxon signed-rank test, p < 0.01).
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