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ABSTRACT

This paper contributes toward strengthening the bridge between LLMs as program-
mers and classical ideas in programming languages (PL). Specifically, we show
that aligning prompts with typed programs enables even small models to reliably
emit one-line Python code. We present a simple yet effective recipe consisting
of three key ingredients: (i) inline datatype tagging for prompt and code; (ii) a
fine-tuned dual-head GPT-2-small with an auxiliary span probe over the prompt;
and (iii) a fixed decoder that enforces a finite-state grammar, validates AST shape,
and repairs outputs deterministically. On a stratified GPT-4o based dataset that
covers primitives such as add, subtract, max, min, and sort, the decoder
alone raises execution accuracy by over 40% (from 0.58 to 0.82)! For counting
and repeated addition, prompts map deterministically to single expressions (for ex-
ample, s.count(’r’) and sum([1]*100)), yielding near-zero errors within
coverage. Our approach runs on a single GPU, and presents a proof-of-concept on
how “datatype-aware tokenization” and “grammar-first decoding,” among other
ideas inspired by PL, improve reliability, coverage, and quality at low cost.

1 INTRODUCTION

Users often ask AI assistants to carry out small computational tasks such as basic arithmetic, process
sequences (e.g., adding, computing max, etc.), or other algorithmic tidbits. Most commonly, for
such tasks the user prompts in plain English (or another language), which forces the model to infer
datatypes and reconstruct a single line program while dealing with many different phrasings of the
same task. That extra work raises uncertainty and invites hallucination; unsurprisingly, arithmetic and
short program tasks remain brittle for general purpose models without imposing additional structure
(Cobbe et al., 2021; Ji et al., 2023). Reasoning style prompting helps, yet it still keeps planning in
text (Wei et al., 2022; Wang et al., 2022; Drozdov et al., 2022). Program or tool aided prompting
offloads execution (Gao et al., 2022; Chen et al., 2022; Yao et al., 2023; Schick et al., 2023), but it
typically assumes a strong model that already emits clean code or well formed structured calls.

We take a different stance: we treat these requests as typed program emission. We make datatypes
explicit in the input, we constrain decoding to a small set of legal shapes, and we execute inside a
sandbox. More precisely, our recipe comprises: (i) inline datatype tags; (ii) a small dual head student
with a code LM head and an auxiliary head that highlights important tokens in the prompt; (iii) a fixed
decoder with a DFA, an AST check, and a canonicalizer. Together these ideas make a small model
dependable on this narrow set of algorithmic tasks and greatly improve accuracy without increasing
model size. We illustrate our plan through a concrete proof-of-concept, for which we now formally
express the associated research question and our hypotheses.

Main question. Can a small LM reliably emit one line Python for basic algorithmic prompts if
we make datatypes explicit and restrict generation to tokens allowed by a small grammar?
Our Hypotheses.
(H1) Inline datatype tags align prompt and code tokens and narrow the next token choices.
(H2) A small token level tagger over the prompt stabilizes training and helps the model locate
numbers and list boundaries.
(H3) Grammar constrained decoding with a DFA during generation, plus an AST check and a
deterministic repair step, boosts accuracy.
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1.1 MAIN CONTRIBUTIONS

In light of the above, we are now ready to summarize our key conceptual and practical contributions.

1. A simple paradigm. We propose to treat short algorithmic requests as typed program
emission. We make datatypes visible in the prompt with inline tags and we constrain
decoding with a small grammar gate (a deterministic finite automaton, DFA) and an abstract
syntax tree (AST) check. Importantly, this design moves structure into the interface and into
decoding and gives an auditable path from prompt to one line of code. We also formalize
the target as a regular language and give a DFA for it, prove soundness of the DFA plus AST
checks, and show completeness within our covered tasks for a deterministic canonicalizer (a
rule-based repair that maps a prompt to one legal line when needed). We provide simple
time bounds and safety invariants. See Theoretical properties (subsection 3.1) for details.
Figure 1 and Figure 2 illustrate the idea.

2. A learning recipe that aligns prompts with code. We finetune a small two head GPT-2
model on tagged sequences. The main head learns to generate tagged code. A light auxiliary
head learns to highlight numbers and list boundaries in the prompt. The auxiliary head is
used only during training. This recipe narrows the choices the model must consider and
improves training stability while keeping the model small. Figure 1 shows the training flow.

3. Constrained decoding with deterministic repair. During generation the DFA blocks
invalid next tokens and the AST check enforces the expected shape. If a string is not
acceptable a deterministic canonicalizer rebuilds one legal line from the prompt rather than
sampling again. Figure 3 shows streaming under the grammar gate, Figure 4 shows the
minimal list DFA, and Figure 5 shows canonical rewrites from tagged prompts to one line
Python.

Based on the above contributions, we envision a path to eventual industrial deployment. But more
modestly, toward validation of our ideas, we create “gold code”1 locally and validate it with parsing
and safe execution. A stronger teacher model writes prompts that preserve numerals and list entries.
On a stratified set of GPT-4o prompts for add, sub, max, min, and sort, guarded decoding alone raises
execution accuracy by over 40%, from 0.58 to 0.82. Tags reduce malformed outputs and the auxiliary
head improves training stability. We also sketch an industrial router that sends algorithmic requests to
this typed microservice and routes other traffic to a general model pool (Figure 6).

1.2 RELATED WORK

Reasoning by prompting. Chain of Thought, Self Consistency, and Least to Most improve accuracy
by sampling and by decomposing rationales (Wei et al., 2022; Wang et al., 2022; Drozdov et al.,
2022). Planning remains in text, which leaves output structure unconstrained. Our approach moves
structure into the interface by exposing types and by constraining the decode.
Program and tool use. Program and tool aided methods execute generated code or invoke tools
(Gao et al., 2022; Chen et al., 2022; Press et al., 2022; Yao et al., 2023; Schick et al., 2023). Industry
practice mirrors this through function calling and structured outputs that enforce JSON schemas
at inference time, which makes downstream integration type safe (OpenAI, 2023; 2024). Large
production models highlight structured reasoning and tool readiness in technical reports such as
PaLM 2 (Anil et al., 2023). We aim for similar reliability with a much smaller model by aligning
tokens and by enforcing a compact grammar.
Constrained generation. Several frameworks enforce output shape during decoding, including
PICARD for Text to SQL (Scholak et al., 2021), Synchromesh for code (Poesia et al., 2022), and token
level schema guidance in Outlines and DOMINO (Willard & Louf, 2023; Beurer-Kellner et al., 2024).
LMQL expresses constraints and control flow as a query language that prunes invalid continuations
and reduces cost (Beurer-Kellner et al., 2023). We follow the same spirit of structured decoding
while adding input side typing, span supervision, and a deterministic repair path that together make a
small model reliable on our task (Poesia et al., 2022; Scholak et al., 2021; Willard & Louf, 2023;
Beurer-Kellner et al., 2024).

1“Gold code” is the gold-standard one line Python program that serves as the reference for accuracy.
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Algorithm 1 TAG TEXT inserts datatype tags and guarantees exact recovery.

def tag_text(s: str) -> str:
s = normalize_ascii(s) # keep quotes; normalize hyphens, spaces
toks = lex(s) # words, digits, quotes, brackets, commas
out = []
for t in toks:

if is_int_literal(t): out += [INT, t]
elif is_float_literal(t): out += [FLOAT, t]
elif is_bool_literal(t): out += [BOOL, t]
elif is_quoted_string(t): out += [STR, t]
elif t == "[": out += [LIST, "["]
elif t == "]": out += [LIST, "]"]
elif t == "(": out += [TUPLE, "("]
elif t == ")": out += [TUPLE, ")"]
else: out += [t]

return "".join(out)

Data lane

Model lane

Decoder lane

Runtime lane

Gold code
templates

AST +
sandbox

Teacher
paraphrases

Filter +
dedupe

Tag prompt
and code

Split train
and valid

<INT>, <FLOAT>, <BOOL>, <STR>, <LIST>, <TUPLE>, <|END|>

Dual-head GPT-2 small
Trunk

Code head
LM loss

Span head
𝜆 BCE

Grammar gate
DFA

AST shape
validator

Deterministic
canonicalizer

generated string

Span mask
(train only)

span logits reject

Restricted Python
whitelist eval

accept

fallback

Figure 1: Full pipeline from data to execution. We first create gold single line programs and check them with
AST parsing and safe evaluation. A stronger teacher writes matching prompts that keep numerals and list entries
unchanged. We clean and deduplicate the pairs, add inline type tags to the prompt and the code, and build the
training and validation splits. The model reads the tagged prompt, the end token, and the tagged code. The code
head learns with a causal language modeling loss, and a small span head learns to mark the argument tokens
in the prompt. At inference a deterministic finite automaton restricts decoding to legal shapes, and an AST
validator checks the result. If the output is not acceptable a canonicalizer rebuilds a single legal line from the
prompt. The final expression runs in a restricted Python sandbox that allows basic arithmetic and the functions
max, min, and sorted.

Code LMs and verification. Codex, AlphaCode, and Code Llama increase their pass rates through
scale and verification (Chen et al., 2021; Li et al., 2022; Rozière et al., 2023). Our goal is orthogonal:
we recover reliability with low compute by shrinking the search space and by validating AST shape.
Routing, mixtures, and guardrails. Mixture of Experts activates sparse experts inside a model
(Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2021; Du et al., 2022). System routers
and cascades choose among models or tools for quality and cost (Chen et al., 2023; Ding et al.,
2024; Wang et al., 2024; Dohan et al., 2022), and confidence aware early exit reduces latency when
uncertainty is low (Schuster et al., 2022). Guardrails in production stacks such as NeMo Guardrails
declaratively enforce policies and schemas around LLMs, and our grammar and AST checks play a
similar role at decode time (NVIDIA, 2023).

2 PROBLEM SETUP AND EXPERIMENTAL BACKGROUND

Our goal is to present a simple and general recipe that makes types explicit in the prompt, constrains
decoding with a small grammar, and runs the result in a sandbox. To make the ideas concrete we
use a compact set of single line algorithm expressions that provide clean ground truth, an exact
grammar, and a safe runtime. These examples are meant to serve as testbeds rather than a limit on
scope. Indeed, the same principles apply whenever outputs fit a small schema.
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We instantiate the recipe with five simple one-line algorithmic expressions over integers and lists:

add is a+b, sub is a−b,max is max([x1, . . . , xn]),min is min([x1, . . . , xn]), sort is sorted([x1, . . . , xn]),

with a, b, xi ∈ Z and n ≥ 1. The system must emit a single Python expression. Multi line code,
imports, side effects, and calls outside a small allowed set are not permitted. The allowed set is
integer arithmetic and max, min, and sorted. We also analyze two auxiliary families, character
counting and repeated addition, that map deterministically to single lines.

We make structure explicit on the input and the output. Deterministic mappers T for the prompt and
U for the code insert inline datatype tags so numerals, strings, booleans, and container boundaries are
visible to the model (Algorithm 1). A detagger D removes tags with a byte for byte guarantee, so
D(T (s)) = s and D(U(y)) = y. Decoding is constrained by a compact grammar that we compile
to a DFA. Only strings accepted by the DFA are sent to an AST shape validator, and only validated
expressions are executed in a sandbox. We report execution accuracy

ExecAcc = 1
N

∑
i

1
[
eval(ei) = eval(e⋆i )

]
after detagging. We also track diagnostics that include the DFA and AST pass rate, the fraction of
malformed outputs that are blocked, an error breakdown, and code segment cross entropy. Unless
noted, we use a stratified suite of 60 GPT 4o prompts that preserve numerals and list contents and
cover add, sub, max, min, and sort.

Dual head objective. We concatenate inputs as x ∥ ⟨END⟩ ∥ y, where x is the tagged prompt and y is
the tagged code. The main head is a causal LM trained only on the code segment,

LLM = −
∑
t

log pθ(yt | x, ⟨END⟩, y<t) ,

with tokens in x and at <|END|> masked out. A span head learns a binary mask over the prompt
that highlights digits and container punctuation,

Lspan =

∑
i aipi BCE

(
σ(si),mi

)∑
i aipi

, L = LLM + λLspan, λ ∈ [0.25, 1.0].

At inference we use only the code head, and the span head is diagnostic.

Grammar constrained decoding and repair. The grammar

S → Add | Sub | Max | Min | Sort, Add → INT+ INT, Sub → INT− INT,

Max → max([ELTS]), Min → min([ELTS]), Sort → sorted([ELTS]),

uses INT= [-]?\d+ where the minus is the ASCII hyphen, and ELTS is a comma separated list
with at least one INT and no trailing comma. We compile this to a DFA with a sink for illegal steps.
The list subautomaton alternates between “expect int” and “expect comma or ]”, which enforces at
least one element and no trailing comma. Inference is greedy under the DFA. We emit a token only if
a valid transition exists, cap the length, stop on EOS or newline or \endtok, normalize U+2212 to -,
take the first ASCII line, and detag. We then parse to an AST and enforce exact shape. If checks fail,
a deterministic canonicalizer reconstructs a legal expression by intent detection with small synonym
sets, number and sign normalization, enumeration extraction, and order fixes.

3 METHOD, DATASETS, AND RESULTS

Model and training. We fine tune GPT-2 small with a tokenizer augmented by
{<INT>, <FLOAT>, <BOOL>, <STR>, <LIST>, <TUPLE>, <|END|>}. Each example is
tagged prompt ∥<|END|> ∥tagged code. The main head is a causal LM trained only on
the code segment; a light span head predicts a per token mask on the prompt (digits and container
punctuation). At inference only the code head is used. Training runs for 1–3 epochs (learning rate
2×10−5, batch 8/16, max length 256). Base and auxiliary heads are saved separately to avoid tied
weight issues.

Data construction. For each skill, gold single line code is synthesized locally, validated with
ast.parse and safe execution, and paired with prompts from a stronger teacher (GPT-4o or -4o
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Prompt
“Add 13 and −7 and

sort the list [4, 2, 7, 2].”

Chain of
Thought (CoT) +
Datatype tagging

Grammar gate
DFA + AST

13 + (-7)
sorted([4,2,7,2])

Model Output
6 and [2, 2, 4, 7]

Figure 2: Pairing datatype tagging with CoT. A plain prompt often leads to long chain of thought text, extra
words, and sometimes malformed code before the answer. The same prompt with datatype tagging and a simple
grammar gate will give an immediate, clean result. CoT can still guide the plan, but tags expose numbers and list
boundaries and the DFA plus AST check allow only a single legal Python line. In the example we ask to add 13
and -7 and then sort the list [4, 2, 7, 2]. The system produces 13 + (-7) and sorted([4,2,7,2]) and
returns 6 and [2, 2, 4, 7] right away.

mini) instructed to preserve numerals and list contents. Rows store {source, skill, prompt,
code, tagged prompt, tagged code} and are deduplicated by normalized prompt and skill.
Evaluation uses a stratified held out suite of 60 GPT-4o prompts covering add/sub/max/min/sort;
counting and repeated addition are analyzed separately.

Findings.

• Datatype tags help. Training two identical students that differ only in tagging shows lower
code segment cross entropy and fewer malformed greedy generations with tags, especially
fewer bracket and operand order errors (Figure 2). Tags align prompt and code vocabularies
and shrink the search space.

• Constrained decoding drives accuracy. Starting from the tagged student, we compare greedy
decoding; DFA with an AST check; and DFA with an AST check plus a deterministic
canonicalizer. On the 60 prompt suite, execution accuracy rises from 0.58 to 0.82 without
any change to the model or the data. The largest gains are in subtraction and sorting, where
the validator and canonicalizer correct operand order and bracketing (Figures 3–5). The
DFA also removes a long tail of malformed strings and improves accept rates.

• Span probe stabilizes training. Adding the span head yields more stable optimization across
seeds and masks that clearly localize numerals and container boundaries. With grammar,
AST, and the canonicalizer at inference, end accuracy is comparable or slightly higher, so
the probe mainly aids stability and diagnostics rather than test time capacity.

• Deterministic families need no model. For character counting and repeated addition, a
canonicalizer maps prompts directly to s.count(c) and sum([x]*n) after synonym
and number normalization. Within stated coverage (ASCII and bounded lengths), errors are
near zero, which removes model calls and an entire class of failures.

3.1 THEORETICAL PROPERTIES OF THE METHOD

Let K = {max,min,sorted} and define

INT := [-]?+. (ASCII minus sign), ELTS := INT(,INT)∗,

so the target language is

L = {INT+INT, INT-INT} ∪
⋃
k∈K

{ k([ELTS]) }.

Because ELTS is flat (no nesting), each subset is regular and therefore L is regular; a deterministic
finite automaton exists. Our compiled DFA uses a constant number of states (on the order of a few
dozen), performs O(1) transitions per token, and ignores whitespace between tokens.
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Soundness. If a token stream y is accepted by the DFA and passes the AST shape check, then D(y)
parses to either BinOp(+/−) on two integer constants or a whitelisted call in K with a list of integer
constants. Evaluation in the sandbox is pure and without side effects, so the returned value matches
the denotational semantics of L.

Completeness within coverage. The deterministic canonicalizer C maps any in-coverage prompt (add,
subtract, max, min, or sort with recoverable numerals) to some C(p) ∈ L that always passes the DFA
and AST checks; when its preconditions do not hold, the system abstains.

Determinism and invariances. Greedy decoding under DFA gating with a fixed tokenizer is determin-
istic, and so is C. Normalizing the Unicode minus (U+2212→-) and benign whitespace edits do
not change acceptance.

Complexity and safety. With m generated tokens and n list elements, DFA guarded decoding runs
in O(m) time and O(1) memory; AST validation is O(m); sandbox evaluation is O(1) for add and
subtract, O(n) for max and min, and O(n log n) for sorted; C runs in O(|p|). Grammar and
AST checks forbid attribute access, arbitrary calls, comprehensions, f strings, and imports; only
{+,−,max,min,sorted} are permitted on integer payloads. Together with detagging idempo-
tence D(T (s)) = s and a deny by default sandbox, any returned string is either in L and safe to
execute, or the system abstains.

4 DISCUSSION AND IMPLICATIONS

Datatype tags align the token stream with the program space, so the model does not need to guess that
digits are integers or that brackets mark containers. A small DFA turns decoding into a short and safe
search over a few legal shapes, and a deterministic canonicalizer provides a reliable fallback. Because
each part is small, the pipeline is easy to audit and test. This mirrors guided generation frameworks
that prune invalid continuations during decoding (Scholak et al., 2021; Poesia et al., 2022; Willard &
Louf, 2023; Beurer-Kellner et al., 2024; 2023). As a systems pattern, typed prompting with grammar
first decoding complements function calling and structured outputs by moving structure into the
decode itself (OpenAI, 2023; 2024). It also fits cascades and budget aware routers, where we accept
when grammar and AST checks pass and otherwise abstain and defer to a larger model (Dohan et al.,
2022; Chen et al., 2023; Ding et al., 2024; Wang et al., 2024).

The same recipe extends to multimodal generation. Diffusion systems already expose typed control
channels such as edges, depth, keypoints, boxes, and masks (Zhang & Agrawala, 2023; Mou et al.,
2023). Attention level methods and compositional or classifier free guidance improve semantic faith-
fulness (Chefer et al., 2023; Hertz et al., 2022; Liu et al., 2022; Ho & Salimans, 2022). Our tags can
act as a front end schema, for example a JSON prompt with objects=[{class,bbox,color}]
and style={palette,lighting}, which routes fields to the right control adapters and softly
enforces counts and placements. For video, tags for shot list, duration, camera motion, and trajectories
can compile into per frame control streams for text to video models (Ho et al., 2022; Wang et al.,
2023; Guo et al., 2023; Singer et al., 2022).

Typed prompting is also natural for graph structured models, where schemas for node and edge
types and attributes are explicit. Recent work shows that pretrained GNNs can be steered with small
structured hints (Sun et al., 2023; Lee et al., 2024; Wu et al., 2023). A grammar first interface can
validate or synthesize a graph DSL before a GNN or a solver, which aligns with neural algorithmic
reasoning when the target computation has a known shape (Veličković & Blundell, 2021). There is
a path at pretraining time as well. A tag aware continued pretraining step in the spirit of T5 span
corruption with reserved whole tag symbols, a token level span probe, and a small grammar prediction
head could bake these inductive biases into larger instruction models (Raffel et al., 2020).

Lee et al. (2023) shows that small transformers learn arithmetic when inputs and intermediate steps
are tightly structured, with tiny decoder only models mastering addition and multiplication and
generalizing to longer lengths under disciplined formats and explicit steps . Follow up work reports
algorithmic gains from looping the same parameters across steps (Yang et al., 2024) and from self
improvement that moves from easy to hard cases (Lee et al., 2025). Our approach follows the same
idea by typing numbers and containers and by constraining the decode, and it can provide trusted in
coverage labels for self improvement while routing hard or out of coverage prompts to larger models.
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Valid stream sorted( [ 4 , 2 , 7 , 2 ] ) ✓ accepted

Blocked stream max( [ 3 , -1 , ] ) × blocked at trailing comma before ]

Figure 3: Streaming decode with a grammar gate. The model emits one token at a time and the DFA checks
each new token. The top row shows a valid stream for sorted([4,2,7,2]). Every token is accepted, so
decoding finishes with a correct one line program. The bottom row shows an invalid stream for max([3,-1,]).
Decoding stops at the trailing comma before the closing bracket because the list automaton allows either another
integer or the closing bracket and never a comma right before ]. Green tokens mark accepted steps and the red
token marks the first blocked step. The gate prevents malformed outputs early and hands control to the repair
path when needed.

start [ int , accept[ int ]

,

int

Figure 4: Minimal DFA for integer lists. The automaton enforces two simple rules: there must be at least one
element and there cannot be a trailing comma. Decoding starts at START, reads [, then expects an integer in
INT. From INT it can read a comma and loop to INT for another element, or read ] and move to ACCEPT. Any
other token sends the stream to a sink state and decoding stops. As a result it accepts [int] and [int, int,
...] and rejects [int, ]. We use this gate during generation to block malformed lists early and to hand off
cleanly to the repair path if needed.

Datatype tagging ⇒ canonical rewrite ⇒ one-line Python

Prompt → Subtract 5 from 12.

Tagged → Subtract <INT>5 from <INT>12.

Emit → 12 - 5

Prompt → Arrange 4, 2, 7, 2 in ascending order.

Tagged → Arrange <LIST>[<INT>4, <INT>2, <INT>7,
<INT>2<LIST>] in ascending order.

Emit → sorted([4, 2, 7, 2])

Prompt → How many ’r’ in ’strawberry’?

Tagged → How many <STR>’r’<STR> in
<STR>’strawberry’<STR>?

Emit → ’strawberry’.count(’r’)

Prompt → Add one 15 times.

Tagged → Add <INT>1 <INT>15 times.

Emit → sum([1]*15)

Figure 5: Datatype tagging enables canonical rewrites and one-line Python. Each row shows
a natural language prompt, its tagged version, and the emitted single-line Python expression. Tags
make numerals and container boundaries explicit, which lets a canonicalizer resolve order-sensitive
phrasing and enumerations into safe one-liners.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

5 LIMITATIONS

Our scope is narrow. We handle one line integer arithmetic and list operations. Extending to floats,
richer strings and Unicode, nested or heterogeneous containers, dictionaries, or matrices would
need more tags and larger grammars for the DFA and the AST checks, and probably a larger model.
Grammar and AST checks ensure the shape of the output rather than full semantics (Scholak et al.,
2021; Poesia et al., 2022; Willard & Louf, 2023; Beurer-Kellner et al., 2024).

Security still needs defense in depth. We use time limits and memory limits, caps on input length
and list length, and Unicode normalization to reduce confusables and mixed scripts (Unicode
Consortium, 2024a;b;c). We run with strict process isolation and we block imports by default, and we
harden validators with property based tests (Claessen & Hughes, 2000). Running one line programs
inside a WebAssembly runtime gives stronger isolation than running inside the process (Haas et al.,
2017). Structure aware decoding lowers error rates but it does not remove arithmetic brittleness or
hallucination (Cobbe et al., 2021; Ji et al., 2023). Moreover, any move to floating point must handle
well known numerical issues (Goldberg, 1991).

6 BROADER IMPLICATIONS AND FUTURE WORK

Typed prompting with grammar first decoding is a general design rather than a niche trick. It maps free
form requests into a small and auditable program space and it prunes invalid strings during decoding
(Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Beurer-Kellner et al., 2024; 2023).
The smaller search space improves reliability and cost, and prior work reports large cost reductions
and near 2× speedups when constraints are paired with speculative decoding (Beurer-Kellner et al.,
2023; 2024). In production this pattern fits cascades and routers. We accept when grammar and
AST checks pass and otherwise we abstain and hand off to a larger model (Chen et al., 2023; Ding
et al., 2024; Wang et al., 2024; Dohan et al., 2022). Confidence aware early exit and speculative
drafting further reduce latency (Schuster et al., 2022; Leviathan et al., 2023). Safety also improves.
Grammar gates and AST whitelists narrow prompt injection and unsafe output risks, and sandboxing
with Unicode normalization, property based tests, and guardrails adds defense in depth (OWASP,
2023; Unicode Consortium, 2024a;b;c; Claessen & Hughes, 2000; Haas et al., 2017; NVIDIA, 2023;
Sheshadri, 2023).

7 REPRODUCIBILITY

Here is a short path to reproduce our results. The notebooks are in the Supplementary Material.

1) Build the data. Generate gold single line programs for the five skills. Validate each with
ast.parse and safe execution. Use a stronger model to generate prompts while keeping nu-
merals and list entries unchanged. Save JSON with fields source, skill, prompt, code,
tagged prompt, tagged code. Make a 90/10 split stratified by skill and list length.

2) Tag and tokenize. Insert inline tags for literals and containers on the prompt and on the code.
Use <INT>, <FLOAT>, <BOOL>, <STR>, <LIST>, <TUPLE>, and <|END|>. Ensure round trip
recovery so that detagging returns the original text byte for byte. Register each tag as a single
tokenizer token.

3) Train the model. Feed tagged prompt <|END|> tagged code. Train GPT-2 small with
a causal LM loss only on the code tokens. Optionally add a span head over the prompt that predicts a
binary mask for digits and container punctuation. Use one to three epochs with learning rate 2×10−5

and batch size eight or sixteen and maximum sequence length 256. Fix seeds. Save base and auxiliary
heads separately to avoid tied weight issues.

4) Run inference. Decode under a DFA that enforces the allowed grammar. Stop on EOS or on
newline or on <|END|>. Detag, then check AST shape. For add and sub require two integer
constants. For max, min, and sorted require one list of integer constants. If checks fail apply a
deterministic canonicalizer that resolves intent synonyms, normalizes numbers, extracts lists, and
fixes operand order. For counting and repeated addition emit s.count(c) and sum([x]*n)
directly. Execute only inside the sandbox.
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Figure 6: A proposed industrial routing pattern for LLM systems. Requests first pass through an API
gateway with light pre-safety checks such as rate limiting and PII scrubbing, and the cache is checked so a hit
returns immediately. A central router then looks at simple features (for example length, the presence of numerals
or lists, and tool hints) and uses a policy store and a model registry to decide whether the request is algorithmic.
If it is not, the request follows a general LLM path where a model is chosen by quality, cost, or A/B policy
and the prompt is answered directly. If it is, the request goes to an algorithmic microservice that uses a typed,
grammar-first pipeline: a datatype tagger, a small dual-head code model, deterministic guards with a DFA and an
AST check plus a canonicalizer, and finally sandboxed execution to produce a safe one-line answer. Both paths
then join a common post-safety and formatting stage, the cache is updated, and the response is returned to the
user while telemetry and A&B logging track latency, accuracy, and cost. This design routes simple algorithmic
prompts to a fast and auditable service with strong correctness guarantees, and sends everything else to a general
LLM pool, which reduces latency and cost without losing coverage.

LLM USAGE

The authors acknowledge the use of ChatGPT (GPT-5 Pro) for assistance with retrieval and discovery
of related work, for drafting text at the paragraph level, and and for helping generate the TikZ figures.
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Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large Language Models. 2023.
https://arxiv.org/abs/2307.09702

Luca Beurer-Kellner, et al. DOMINO: Fast, Non-Invasive Constrained Generation. 2024. https:
//arxiv.org/abs/2403.06988

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity. 2021. https://arxiv.org/abs/2101.03961

The Unicode Consortium. Unicode Technical Report #36: Unicode Security Considerations. 2024.
Latest version: https://www.unicode.org/reports/tr36/

The Unicode Consortium. Unicode Technical Standard #39: Unicode Security Mechanisms. 2024.
Latest version: https://www.unicode.org/reports/tr39/

The Unicode Consortium. Unicode Standard Annex #15: Unicode Normalization Forms. 2024.
Latest version: https://www.unicode.org/reports/tr15/

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Dan Gohman, Luke Wagner, Alon
Zakai, J. F. Bastien, and Michael Holman. Bringing the Web up to Speed with WebAssembly. In
Proceedings of PLDI 2017. https://doi.org/10.1145/3062341.3062363

David Goldberg. What Every Computer Scientist Should Know About Floating-Point Arith-
metic. ACM Computing Surveys, 23(1):5–48, 1991. https://doi.org/10.1145/103162.
103163

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting Is Programming: A Query
Language for Large Language Models (LMQL). Proceedings of the ACM on Programming
Languages, 7(PLDI): 1–27, 2023. https://arxiv.org/abs/2212.06094

11

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03350
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://aclanthology.org/2020.acl-main.436/
https://aclanthology.org/P16-1009/
https://aclanthology.org/P16-1009/
https://aclanthology.org/D18-1045/
https://arxiv.org/abs/1808.09381
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://aclanthology.org/2021.emnlp-main.779/
https://aclanthology.org/2021.emnlp-main.779/
https://arxiv.org/abs/2201.11227
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2101.03961
https://www.unicode.org/reports/tr36/
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr15/
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://arxiv.org/abs/2212.06094


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A. Saurous, Jascha Sohl-Dickstein, Kevin Murphy, and
Charles Sutton. Language Model Cascades. 2022. https://arxiv.org/abs/2207.10342

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Vinh Q. Tran, Yi Tay, Donald Metzler, and
Eunsol Choi. Confident Adaptive Language Modeling. NeurIPS, 2022. https://arxiv.org/
abs/2207.07061

Yaniv Leviathan, Matan Kalman, and Yoav Levine. Fast Inference from Transformers via Speculative
Decoding. ICML, 2023. https://arxiv.org/abs/2211.17192

OWASP Foundation. Top 10 for Large Language Model Ap-
plications. 2023. Latest version: https://owasp.org/
www-project-top-10-for-large-language-model-applications/

Alessandro Panella, Vivek Sharma, et al. NeMo Guardrails: A Toolkit for Controllable and Safe
LLM Applications. NVIDIA Technical Report, 2023. https://docs.nvidia.com/nemo/
guardrails/

Shreya Rajpal. Guardrails AI: Building Reliable LLM Applications. 2023. https://www.
guardrailsai.com/

OpenAI. Function calling and other API updates. 2023. https://openai.com/index/
function-calling-and-other-api-updates/

OpenAI. Introducing Structured Outputs in the API. 2024. https://openai.com/index/
introducing-structured-outputs-in-the-api/

Rohan Anil, et al. PaLM 2 Technical Report. 2023. https://arxiv.org/abs/2305.10403

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-Excite:
Attention-Based Semantic Guidance for Text-to-Image Diffusion Models. arXiv preprint
arXiv:2301.13826, 2023. https://arxiv.org/abs/2301.13826

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. arXiv preprint arXiv:2207.12598,
2022. https://arxiv.org/abs/2207.12598

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting Is Programming: A Query
Language for Large Language Models (LMQL). Proc. ACM Program. Lang. (PLDI), 7:1–27, 2023.
https://arxiv.org/abs/2212.06094

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A. Saurous, Jascha Sohl-Dickstein, Kevin Murphy, and
Charles Sutton. Language Model Cascades. 2022. https://arxiv.org/abs/2207.
10342

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident Adaptive Language Modeling. NeurIPS, 2022. https://arxiv.
org/abs/2207.07061

NVIDIA. NeMo Guardrails: Documentation. 2023. https://docs.nvidia.com/
nemo-guardrails/index.html

Lvmin Zhang and Maneesh Agrawala. Adding Conditional Control to Text-to-Image Diffusion
Models. 2023. https://arxiv.org/abs/2302.05543

Chong Mou, Jian Zhang, Xin Wang, Jiahao Wang, Yong Guo, Ziyu Guan, and Dacheng Tao. T2I-
Adapter: Learning Adapters to Dig Out More Controllable Factors for Text-to-Image Synthesis.
2023. https://arxiv.org/abs/2302.08453

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-Prompt Image Editing with Cross Attention Control. 2022. https://arxiv.org/abs/
2208.01626

12

https://arxiv.org/abs/2207.10342
https://arxiv.org/abs/2207.07061
https://arxiv.org/abs/2207.07061
https://arxiv.org/abs/2211.17192
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://docs.nvidia.com/nemo/guardrails/
https://docs.nvidia.com/nemo/guardrails/
https://www.guardrailsai.com/
https://www.guardrailsai.com/
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2301.13826
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2212.06094
https://arxiv.org/abs/2207.10342
https://arxiv.org/abs/2207.10342
https://arxiv.org/abs/2207.07061
https://arxiv.org/abs/2207.07061
https://docs.nvidia.com/nemo-guardrails/index.html
https://docs.nvidia.com/nemo-guardrails/index.html
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2302.08453
https://arxiv.org/abs/2208.01626
https://arxiv.org/abs/2208.01626


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel
Cohen-Or. Attend-and-Excite: Attention-Based Semantic Guidance for Text-
to-Image Diffusion Models. ACM Transactions on Graphics (TOG), 42(4),
2023. Project page: https://cris.tau.ac.il/en/publications/
attend-and-excite-attention-based-semantic-guidance-for-text-to-im

Nataniel Rufo Liu, Asi Mamistvalov, Hila Baruch, Yoni Kasten, Tali Dekel, and Michal Irani.
Compositional Visual Generation with Composable Diffusion Models. 2022. https://arxiv.
org/abs/2206.01714

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models. 2021. https://arxiv.org/abs/2112.10741

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, and Tim Salimans. Video Diffusion Models. 2022.
https://openreview.net/forum?id=nqPVgmV2jE

Wen Wang, Difan Liu, Lianghua Huang, Ying Shan, and Xiaohu Qie. VideoComposer: Composi-
tional Video Synthesis with Motion Controllability. 2023. https://arxiv.org/abs/2306.
02018

Yuwei Guo, Jiancheng Yang, Yujun Shen, and Deli Zhao. AnimateDiff: Animate Your Personalized
Text-to-Image Diffusion Models without Specific Tuning. 2023. https://arxiv.org/abs/
2307.04725

Uriel Singer, Shelly Sheynin, Adam Polyak, Thomas Hayes, Jing Yu Koh, Ofir Nachum, Shi-
ran Kahane, et al. Make-A-Video: Text-to-Video Generation without Text-Video Data. 2022.
https://arxiv.org/abs/2209.14792

Lirong Wu, Zhenyu Hou, Hongchang Zhang, Zonghan Wu, Jia Li, and Stan Z. Li. A Survey of Graph
Prompting Methods: Paradigms, Methods, and Applications. 2023. https://arxiv.org/
abs/2312.03892

Yizhou Sun, Yilun Zhao, Ziqi Wang, and M. Papageorgiou. Multi-Task Graph Prompting for Graph
Classification with Multiple Scattering. In Proceedings of IJCAI, 2024. https://eprints.
soton.ac.uk/483682/
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