
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DATATYPE TAGGING AND PROMPT ALIGNMENT: A
RECIPE FOR BOOSTING LLMS ON ALGORITHMIC TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper contributes toward strengthening the bridge between LLMs as program-
mers and classical ideas in programming languages (PL). Specifically, we show
that aligning prompts with typed programs enables even small models to reliably
emit one-line Python code. We present a simple yet effective recipe consisting
of three key ingredients: (i) inline datatype tagging for prompt and code; (ii) a
fine-tuned dual-head GPT-2-small with an auxiliary span probe over the prompt;
and (iii) a fixed decoder that enforces a finite-state grammar, validates AST shape,
and repairs outputs deterministically. On a stratified GPT-4o based dataset that
covers primitives such as add, subtract, max, min, and sort, the decoder
alone raises execution accuracy by over 40% (from 0.58 to 0.82)! For counting
and repeated addition, prompts map deterministically to single expressions (for ex-
ample, s.count(’r’) and sum([1]*100)), yielding near-zero errors within
coverage. Our approach runs on a single GPU, and presents a proof-of-concept on
how “datatype-aware tokenization” and “grammar-first decoding,” among other
ideas inspired by PL, improve reliability, coverage, and quality at low cost.

1 INTRODUCTION

Users often ask AI assistants to carry out small computational tasks such as basic arithmetic, process
sequences (e.g., adding, computing max, etc.), or other algorithmic tidbits. Most commonly, for
such tasks the user prompts in plain English (or another language), which forces the model to infer
datatypes and reconstruct a single line program while dealing with many different phrasings of the
same task. That extra work raises uncertainty and invites hallucination; unsurprisingly, arithmetic and
short program tasks remain brittle for general purpose models without imposing additional structure
(Cobbe et al., 2021; Ji et al., 2023). Reasoning style prompting helps, yet it still keeps planning in
text (Wei et al., 2022; Wang et al., 2022; Drozdov et al., 2022). Program or tool aided prompting
offloads execution (Gao et al., 2022; Chen et al., 2022; Yao et al., 2023; Schick et al., 2023), but it
typically assumes a strong model that already emits clean code or well formed structured calls.

We take a different stance: we treat these requests as typed program emission. We make datatypes
explicit in the input, we constrain decoding to a small set of legal shapes, and we execute inside a
sandbox. More precisely, our recipe comprises: (i) inline datatype tags; (ii) a small dual head student
with a code LM head and an auxiliary head that highlights important tokens in the prompt; (iii) a fixed
decoder with a DFA, an AST check, and a canonicalizer. Together these ideas make a small model
dependable on this narrow set of algorithmic tasks and greatly improve accuracy without increasing
model size. We illustrate our plan through a concrete proof-of-concept, for which we now formally
express the associated research question and our hypotheses.

Main question. Can a small LM reliably emit one line Python for basic algorithmic prompts if
we make datatypes explicit and restrict generation to tokens allowed by a small grammar?
Our Hypotheses.
(H1) Inline datatype tags align prompt and code tokens and narrow the next token choices.
(H2) A small token level tagger over the prompt stabilizes training and helps the model locate
numbers and list boundaries.
(H3) Grammar constrained decoding with a DFA during generation, plus an AST check and a
deterministic repair step, boosts accuracy.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1.1 MAIN CONTRIBUTIONS

In light of the above, we are now ready to summarize our key conceptual and practical contributions.

1. A simple paradigm. We propose to treat short algorithmic requests as typed program
emission. We make datatypes visible in the prompt with inline tags and we constrain
decoding with a small grammar gate (a deterministic finite automaton, DFA) and an abstract
syntax tree (AST) check. Importantly, this design moves structure into the interface and into
decoding and gives an auditable path from prompt to one line of code. We also formalize
the target as a regular language and give a DFA for it, prove soundness of the DFA plus AST
checks, and show completeness within our covered tasks for a deterministic canonicalizer (a
rule-based repair that maps a prompt to one legal line when needed). We provide simple
time bounds and safety invariants. See Theoretical properties (subsection 3.1) for details.
Figure 1 and Figure 2 illustrate the idea.

2. A learning recipe that aligns prompts with code. We finetune a small two head GPT-2
model on tagged sequences. The main head learns to generate tagged code. A light auxiliary
head learns to highlight numbers and list boundaries in the prompt. The auxiliary head is
used only during training. This recipe narrows the choices the model must consider and
improves training stability while keeping the model small. Figure 1 shows the training flow.

3. Constrained decoding with deterministic repair. During generation the DFA blocks
invalid next tokens and the AST check enforces the expected shape. If a string is not
acceptable a deterministic canonicalizer rebuilds one legal line from the prompt rather than
sampling again. Figure 3 shows streaming under the grammar gate, Figure 4 shows the
minimal list DFA, and Figure 5 shows canonical rewrites from tagged prompts to one line
Python.

Based on the above contributions, we envision a path to eventual industrial deployment. But more
modestly, toward validation of our ideas, we create “gold code”1 locally and validate it with parsing
and safe execution. A stronger teacher model writes prompts that preserve numerals and list entries.
On a stratified set of GPT-4o prompts for add, sub, max, min, and sort, guarded decoding alone raises
execution accuracy by over 40%, from 0.58 to 0.82. Tags reduce malformed outputs and the auxiliary
head improves training stability. We also sketch an industrial router that sends algorithmic requests to
this typed microservice and routes other traffic to a general model pool (Figure 6).

1.2 RELATED WORK

Reasoning by prompting. Chain of Thought, Self Consistency, and Least to Most improve accuracy
by sampling and by decomposing rationales (Wei et al., 2022; Wang et al., 2022; Drozdov et al.,
2022). Planning remains in text, which leaves output structure unconstrained. Our approach moves
structure into the interface by exposing types and by constraining the decode.
Program and tool use. Program and tool aided methods execute generated code or invoke tools
(Gao et al., 2022; Chen et al., 2022; Press et al., 2022; Yao et al., 2023; Schick et al., 2023). Industry
practice mirrors this through function calling and structured outputs that enforce JSON schemas
at inference time, which makes downstream integration type safe (OpenAI, 2023; 2024). Large
production models highlight structured reasoning and tool readiness in technical reports such as
PaLM 2 (Anil et al., 2023). We aim for similar reliability with a much smaller model by aligning
tokens and by enforcing a compact grammar.
Constrained generation. Several frameworks enforce output shape during decoding, including
PICARD for Text to SQL (Scholak et al., 2021), Synchromesh for code (Poesia et al., 2022), and token
level schema guidance in Outlines and DOMINO (Willard & Louf, 2023; Beurer-Kellner et al., 2024).
LMQL expresses constraints and control flow as a query language that prunes invalid continuations
and reduces cost (Beurer-Kellner et al., 2023). We follow the same spirit of structured decoding
while adding input side typing, span supervision, and a deterministic repair path that together make a
small model reliable on our task (Poesia et al., 2022; Scholak et al., 2021; Willard & Louf, 2023;
Beurer-Kellner et al., 2024).

1“Gold code” is the gold-standard one line Python program that serves as the reference for accuracy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Algorithm 1 TAG TEXT inserts datatype tags and guarantees exact recovery.

def tag_text(s: str) -> str:
s = normalize_ascii(s) # keep quotes; normalize hyphens, spaces
toks = lex(s) # words, digits, quotes, brackets, commas
out = []
for t in toks:

if is_int_literal(t): out += [INT, t]
elif is_float_literal(t): out += [FLOAT, t]
elif is_bool_literal(t): out += [BOOL, t]
elif is_quoted_string(t): out += [STR, t]
elif t == "[": out += [LIST, "["]
elif t == "]": out += [LIST, "]"]
elif t == "(": out += [TUPLE, "("]
elif t == ")": out += [TUPLE, ")"]
else: out += [t]

return "".join(out)

Data lane

Model lane

Decoder lane

Runtime lane

Gold code
templates

AST +
sandbox

Teacher
paraphrases

Filter +
dedupe

Tag prompt
and code

Split train
and valid

<INT>, <FLOAT>, <BOOL>, <STR>, <LIST>, <TUPLE>, <|END|>

Dual-head GPT-2 small
Trunk

Code head
LM loss

Span head
𝜆 BCE

Grammar gate
DFA

AST shape
validator

Deterministic
canonicalizer

generated string

Span mask
(train only)

span logits reject

Restricted Python
whitelist eval

accept

fallback

Figure 1: Full pipeline from data to execution. We first create gold single line programs and check them with
AST parsing and safe evaluation. A stronger teacher writes matching prompts that keep numerals and list entries
unchanged. We clean and deduplicate the pairs, add inline type tags to the prompt and the code, and build the
training and validation splits. The model reads the tagged prompt, the end token, and the tagged code. The code
head learns with a causal language modeling loss, and a small span head learns to mark the argument tokens
in the prompt. At inference a deterministic finite automaton restricts decoding to legal shapes, and an AST
validator checks the result. If the output is not acceptable a canonicalizer rebuilds a single legal line from the
prompt. The final expression runs in a restricted Python sandbox that allows basic arithmetic and the functions
max, min, and sorted.

Code LMs and verification. Codex, AlphaCode, and Code Llama increase their pass rates through
scale and verification (Chen et al., 2021; Li et al., 2022; Rozière et al., 2023). Our goal is orthogonal:
we recover reliability with low compute by shrinking the search space and by validating AST shape.
Routing, mixtures, and guardrails. Mixture of Experts activates sparse experts inside a model
(Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2021; Du et al., 2022). System routers
and cascades choose among models or tools for quality and cost (Chen et al., 2023; Ding et al.,
2024; Wang et al., 2024; Dohan et al., 2022), and confidence aware early exit reduces latency when
uncertainty is low (Schuster et al., 2022). Guardrails in production stacks such as NeMo Guardrails
declaratively enforce policies and schemas around LLMs, and our grammar and AST checks play a
similar role at decode time (NVIDIA, 2023).

2 PROBLEM SETUP AND EXPERIMENTAL BACKGROUND

Our goal is to present a simple and general recipe that makes types explicit in the prompt, constrains
decoding with a small grammar, and runs the result in a sandbox. To make the ideas concrete we
use a compact set of single line algorithm expressions that provide clean ground truth, an exact
grammar, and a safe runtime. These examples are meant to serve as testbeds rather than a limit on
scope. Indeed, the same principles apply whenever outputs fit a small schema.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

We instantiate the recipe with five simple one-line algorithmic expressions over integers and lists:

add is a+b, sub is a−b,max is max([x1, . . . , xn]),min is min([x1, . . . , xn]), sort is sorted([x1, . . . , xn]),

with a, b, xi ∈ Z and n ≥ 1. The system must emit a single Python expression. Multi line code,
imports, side effects, and calls outside a small allowed set are not permitted. The allowed set is
integer arithmetic and max, min, and sorted. We also analyze two auxiliary families, character
counting and repeated addition, that map deterministically to single lines.

We make structure explicit on the input and the output. Deterministic mappers T for the prompt and
U for the code insert inline datatype tags so numerals, strings, booleans, and container boundaries are
visible to the model (Algorithm 1). A detagger D removes tags with a byte for byte guarantee, so
D(T (s)) = s and D(U(y)) = y. Decoding is constrained by a compact grammar that we compile
to a DFA. Only strings accepted by the DFA are sent to an AST shape validator, and only validated
expressions are executed in a sandbox. We report execution accuracy

ExecAcc = 1
N

∑
i

1
[
eval(ei) = eval(e⋆i)

]
after detagging. We also track diagnostics that include the DFA and AST pass rate, the fraction of
malformed outputs that are blocked, an error breakdown, and code segment cross entropy. Unless
noted, we use a stratified suite of 60 GPT 4o prompts that preserve numerals and list contents and
cover add, sub, max, min, and sort.

Dual head objective. We concatenate inputs as x ∥ ⟨END⟩ ∥ y, where x is the tagged prompt and y is
the tagged code. The main head is a causal LM trained only on the code segment,

LLM = −
∑
t

log pθ(yt | x, ⟨END⟩, y<t) ,

with tokens in x and at <|END|> masked out. A span head learns a binary mask over the prompt
that highlights digits and container punctuation,

Lspan =

∑
i aipi BCE

(
σ(si),mi

)∑
i aipi

, L = LLM + λLspan, λ ∈ [0.25, 1.0].

At inference we use only the code head, and the span head is diagnostic.

Grammar constrained decoding and repair. The grammar

S → Add | Sub | Max | Min | Sort, Add → INT+ INT, Sub → INT− INT,

Max → max([ELTS]), Min → min([ELTS]), Sort → sorted([ELTS]),

uses INT= [-]?\d+ where the minus is the ASCII hyphen, and ELTS is a comma separated list
with at least one INT and no trailing comma. We compile this to a DFA with a sink for illegal steps.
The list subautomaton alternates between “expect int” and “expect comma or]”, which enforces at
least one element and no trailing comma. Inference is greedy under the DFA. We emit a token only if
a valid transition exists, cap the length, stop on EOS or newline or \endtok, normalize U+2212 to -,
take the first ASCII line, and detag. We then parse to an AST and enforce exact shape. If checks fail,
a deterministic canonicalizer reconstructs a legal expression by intent detection with small synonym
sets, number and sign normalization, enumeration extraction, and order fixes.

3 METHOD, DATASETS, AND RESULTS

Model and training. We fine tune GPT-2 small with a tokenizer augmented by
{<INT>, <FLOAT>, <BOOL>, <STR>, <LIST>, <TUPLE>, <|END|>}. Each example is
tagged prompt ∥<|END|> ∥tagged code. The main head is a causal LM trained only on
the code segment; a light span head predicts a per token mask on the prompt (digits and container
punctuation). At inference only the code head is used. Training runs for 1–3 epochs (learning rate
2×10−5, batch 8/16, max length 256). Base and auxiliary heads are saved separately to avoid tied
weight issues.

Data construction. For each skill, gold single line code is synthesized locally, validated with
ast.parse and safe execution, and paired with prompts from a stronger teacher (GPT-4o or -4o

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Prompt
“Add 13 and −7 and

sort the list [4, 2, 7, 2].”

Chain of
Thought (CoT) +
Datatype tagging

Grammar gate
DFA + AST

13 + (-7)
sorted([4,2,7,2])

Model Output
6 and [2, 2, 4, 7]

Figure 2: Pairing datatype tagging with CoT. A plain prompt often leads to long chain of thought text, extra
words, and sometimes malformed code before the answer. The same prompt with datatype tagging and a simple
grammar gate will give an immediate, clean result. CoT can still guide the plan, but tags expose numbers and list
boundaries and the DFA plus AST check allow only a single legal Python line. In the example we ask to add 13
and -7 and then sort the list [4, 2, 7, 2]. The system produces 13 + (-7) and sorted([4,2,7,2]) and
returns 6 and [2, 2, 4, 7] right away.

mini) instructed to preserve numerals and list contents. Rows store {source, skill, prompt,
code, tagged prompt, tagged code} and are deduplicated by normalized prompt and skill.
Evaluation uses a stratified held out suite of 60 GPT-4o prompts covering add/sub/max/min/sort;
counting and repeated addition are analyzed separately.

Findings.

• Datatype tags help. Training two identical students that differ only in tagging shows lower
code segment cross entropy and fewer malformed greedy generations with tags, especially
fewer bracket and operand order errors (Figure 2). Tags align prompt and code vocabularies
and shrink the search space.

• Constrained decoding drives accuracy. Starting from the tagged student, we compare greedy
decoding; DFA with an AST check; and DFA with an AST check plus a deterministic
canonicalizer. On the 60 prompt suite, execution accuracy rises from 0.58 to 0.82 without
any change to the model or the data. The largest gains are in subtraction and sorting, where
the validator and canonicalizer correct operand order and bracketing (Figures 3–5). The
DFA also removes a long tail of malformed strings and improves accept rates.

• Span probe stabilizes training. Adding the span head yields more stable optimization across
seeds and masks that clearly localize numerals and container boundaries. With grammar,
AST, and the canonicalizer at inference, end accuracy is comparable or slightly higher, so
the probe mainly aids stability and diagnostics rather than test time capacity.

• Deterministic families need no model. For character counting and repeated addition, a
canonicalizer maps prompts directly to s.count(c) and sum([x]*n) after synonym
and number normalization. Within stated coverage (ASCII and bounded lengths), errors are
near zero, which removes model calls and an entire class of failures.

3.1 THEORETICAL PROPERTIES OF THE METHOD

Let K = {max,min,sorted} and define

INT := [-]?+. (ASCII minus sign), ELTS := INT(,INT)∗,

so the target language is

L = {INT+INT, INT-INT} ∪
⋃
k∈K

{ k([ELTS]) }.

Because ELTS is flat (no nesting), each subset is regular and therefore L is regular; a deterministic
finite automaton exists. Our compiled DFA uses a constant number of states (on the order of a few
dozen), performs O(1) transitions per token, and ignores whitespace between tokens.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Soundness. If a token stream y is accepted by the DFA and passes the AST shape check, then D(y)
parses to either BinOp(+/−) on two integer constants or a whitelisted call in K with a list of integer
constants. Evaluation in the sandbox is pure and without side effects, so the returned value matches
the denotational semantics of L.

Completeness within coverage. The deterministic canonicalizer C maps any in-coverage prompt (add,
subtract, max, min, or sort with recoverable numerals) to some C(p) ∈ L that always passes the DFA
and AST checks; when its preconditions do not hold, the system abstains.

Determinism and invariances. Greedy decoding under DFA gating with a fixed tokenizer is determin-
istic, and so is C. Normalizing the Unicode minus (U+2212→-) and benign whitespace edits do
not change acceptance.

Complexity and safety. With m generated tokens and n list elements, DFA guarded decoding runs
in O(m) time and O(1) memory; AST validation is O(m); sandbox evaluation is O(1) for add and
subtract, O(n) for max and min, and O(n log n) for sorted; C runs in O(|p|). Grammar and
AST checks forbid attribute access, arbitrary calls, comprehensions, f strings, and imports; only
{+,−,max,min,sorted} are permitted on integer payloads. Together with detagging idempo-
tence D(T (s)) = s and a deny by default sandbox, any returned string is either in L and safe to
execute, or the system abstains.

4 DISCUSSION AND IMPLICATIONS

Datatype tags align the token stream with the program space, so the model does not need to guess that
digits are integers or that brackets mark containers. A small DFA turns decoding into a short and safe
search over a few legal shapes, and a deterministic canonicalizer provides a reliable fallback. Because
each part is small, the pipeline is easy to audit and test. This mirrors guided generation frameworks
that prune invalid continuations during decoding (Scholak et al., 2021; Poesia et al., 2022; Willard &
Louf, 2023; Beurer-Kellner et al., 2024; 2023). As a systems pattern, typed prompting with grammar
first decoding complements function calling and structured outputs by moving structure into the
decode itself (OpenAI, 2023; 2024). It also fits cascades and budget aware routers, where we accept
when grammar and AST checks pass and otherwise abstain and defer to a larger model (Dohan et al.,
2022; Chen et al., 2023; Ding et al., 2024; Wang et al., 2024).

The same recipe extends to multimodal generation. Diffusion systems already expose typed control
channels such as edges, depth, keypoints, boxes, and masks (Zhang & Agrawala, 2023; Mou et al.,
2023). Attention level methods and compositional or classifier free guidance improve semantic faith-
fulness (Chefer et al., 2023; Hertz et al., 2022; Liu et al., 2022; Ho & Salimans, 2022). Our tags can
act as a front end schema, for example a JSON prompt with objects=[{class,bbox,color}]
and style={palette,lighting}, which routes fields to the right control adapters and softly
enforces counts and placements. For video, tags for shot list, duration, camera motion, and trajectories
can compile into per frame control streams for text to video models (Ho et al., 2022; Wang et al.,
2023; Guo et al., 2023; Singer et al., 2022).

Typed prompting is also natural for graph structured models, where schemas for node and edge
types and attributes are explicit. Recent work shows that pretrained GNNs can be steered with small
structured hints (Sun et al., 2023; Lee et al., 2024; Wu et al., 2023). A grammar first interface can
validate or synthesize a graph DSL before a GNN or a solver, which aligns with neural algorithmic
reasoning when the target computation has a known shape (Veličković & Blundell, 2021). There is
a path at pretraining time as well. A tag aware continued pretraining step in the spirit of T5 span
corruption with reserved whole tag symbols, a token level span probe, and a small grammar prediction
head could bake these inductive biases into larger instruction models (Raffel et al., 2020).

Lee et al. (2023) shows that small transformers learn arithmetic when inputs and intermediate steps
are tightly structured, with tiny decoder only models mastering addition and multiplication and
generalizing to longer lengths under disciplined formats and explicit steps . Follow up work reports
algorithmic gains from looping the same parameters across steps (Yang et al., 2024) and from self
improvement that moves from easy to hard cases (Lee et al., 2025). Our approach follows the same
idea by typing numbers and containers and by constraining the decode, and it can provide trusted in
coverage labels for self improvement while routing hard or out of coverage prompts to larger models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Valid stream sorted([4 , 2 , 7 , 2]) ✓ accepted

Blocked stream max([3 , -1 ,]) × blocked at trailing comma before]

Figure 3: Streaming decode with a grammar gate. The model emits one token at a time and the DFA checks
each new token. The top row shows a valid stream for sorted([4,2,7,2]). Every token is accepted, so
decoding finishes with a correct one line program. The bottom row shows an invalid stream for max([3,-1,]).
Decoding stops at the trailing comma before the closing bracket because the list automaton allows either another
integer or the closing bracket and never a comma right before]. Green tokens mark accepted steps and the red
token marks the first blocked step. The gate prevents malformed outputs early and hands control to the repair
path when needed.

start [int , accept[int]

,

int

Figure 4: Minimal DFA for integer lists. The automaton enforces two simple rules: there must be at least one
element and there cannot be a trailing comma. Decoding starts at START, reads [, then expects an integer in
INT. From INT it can read a comma and loop to INT for another element, or read] and move to ACCEPT. Any
other token sends the stream to a sink state and decoding stops. As a result it accepts [int] and [int, int,
...] and rejects [int,]. We use this gate during generation to block malformed lists early and to hand off
cleanly to the repair path if needed.

Datatype tagging ⇒ canonical rewrite ⇒ one-line Python

Prompt → Subtract 5 from 12.

Tagged → Subtract <INT>5 from <INT>12.

Emit → 12 - 5

Prompt → Arrange 4, 2, 7, 2 in ascending order.

Tagged → Arrange <LIST>[<INT>4, <INT>2, <INT>7,
<INT>2<LIST>] in ascending order.

Emit → sorted([4, 2, 7, 2])

Prompt → How many ’r’ in ’strawberry’?

Tagged → How many <STR>’r’<STR> in
<STR>’strawberry’<STR>?

Emit → ’strawberry’.count(’r’)

Prompt → Add one 15 times.

Tagged → Add <INT>1 <INT>15 times.

Emit → sum([1]*15)

Figure 5: Datatype tagging enables canonical rewrites and one-line Python. Each row shows
a natural language prompt, its tagged version, and the emitted single-line Python expression. Tags
make numerals and container boundaries explicit, which lets a canonicalizer resolve order-sensitive
phrasing and enumerations into safe one-liners.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

5 LIMITATIONS

Our scope is narrow. We handle one line integer arithmetic and list operations. Extending to floats,
richer strings and Unicode, nested or heterogeneous containers, dictionaries, or matrices would
need more tags and larger grammars for the DFA and the AST checks, and probably a larger model.
Grammar and AST checks ensure the shape of the output rather than full semantics (Scholak et al.,
2021; Poesia et al., 2022; Willard & Louf, 2023; Beurer-Kellner et al., 2024).

Security still needs defense in depth. We use time limits and memory limits, caps on input length
and list length, and Unicode normalization to reduce confusables and mixed scripts (Unicode
Consortium, 2024a;b;c). We run with strict process isolation and we block imports by default, and we
harden validators with property based tests (Claessen & Hughes, 2000). Running one line programs
inside a WebAssembly runtime gives stronger isolation than running inside the process (Haas et al.,
2017). Structure aware decoding lowers error rates but it does not remove arithmetic brittleness or
hallucination (Cobbe et al., 2021; Ji et al., 2023). Moreover, any move to floating point must handle
well known numerical issues (Goldberg, 1991).

6 BROADER IMPLICATIONS AND FUTURE WORK

Typed prompting with grammar first decoding is a general design rather than a niche trick. It maps free
form requests into a small and auditable program space and it prunes invalid strings during decoding
(Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Beurer-Kellner et al., 2024; 2023).
The smaller search space improves reliability and cost, and prior work reports large cost reductions
and near 2× speedups when constraints are paired with speculative decoding (Beurer-Kellner et al.,
2023; 2024). In production this pattern fits cascades and routers. We accept when grammar and
AST checks pass and otherwise we abstain and hand off to a larger model (Chen et al., 2023; Ding
et al., 2024; Wang et al., 2024; Dohan et al., 2022). Confidence aware early exit and speculative
drafting further reduce latency (Schuster et al., 2022; Leviathan et al., 2023). Safety also improves.
Grammar gates and AST whitelists narrow prompt injection and unsafe output risks, and sandboxing
with Unicode normalization, property based tests, and guardrails adds defense in depth (OWASP,
2023; Unicode Consortium, 2024a;b;c; Claessen & Hughes, 2000; Haas et al., 2017; NVIDIA, 2023;
Sheshadri, 2023).

7 REPRODUCIBILITY

Here is a short path to reproduce our results. The notebooks are in the Supplementary Material.

1) Build the data. Generate gold single line programs for the five skills. Validate each with
ast.parse and safe execution. Use a stronger model to generate prompts while keeping nu-
merals and list entries unchanged. Save JSON with fields source, skill, prompt, code,
tagged prompt, tagged code. Make a 90/10 split stratified by skill and list length.

2) Tag and tokenize. Insert inline tags for literals and containers on the prompt and on the code.
Use <INT>, <FLOAT>, <BOOL>, <STR>, <LIST>, <TUPLE>, and <|END|>. Ensure round trip
recovery so that detagging returns the original text byte for byte. Register each tag as a single
tokenizer token.

3) Train the model. Feed tagged prompt <|END|> tagged code. Train GPT-2 small with
a causal LM loss only on the code tokens. Optionally add a span head over the prompt that predicts a
binary mask for digits and container punctuation. Use one to three epochs with learning rate 2×10−5

and batch size eight or sixteen and maximum sequence length 256. Fix seeds. Save base and auxiliary
heads separately to avoid tied weight issues.

4) Run inference. Decode under a DFA that enforces the allowed grammar. Stop on EOS or on
newline or on <|END|>. Detag, then check AST shape. For add and sub require two integer
constants. For max, min, and sorted require one list of integer constants. If checks fail apply a
deterministic canonicalizer that resolves intent synonyms, normalizes numbers, extracts lists, and
fixes operand order. For counting and repeated addition emit s.count(c) and sum([x]*n)
directly. Execute only inside the sandbox.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

API gateway

Normalize + pre-safety
rate limit, PII scrub

Cache hit?

Response cache

Return cached

Feature extraction
length, numerals/lists, tool hints

Algorithmic request?

Yes

No

Policy store
SLOs, budget

Model registry
candidates

Select model
QoS/cost policy, A/B

Chosen LLM

LLM result

No
General LLM pool

Datatype tagger
add <INT>, <LIST>, <|END|>, etc.

Code LM (dual-head)
GPT-2 to GPT-3.5 class

Guards
DFA + AST + Canonicalizer

Sandboxed eval
restricted Python

Algorithmic result

Yes

Algorithmic microservice

Post-safety + formatting
redaction, schema

Cache store Response cache

Return to client

cached

Telemetry & A/B logs
latency, cost, accuracy

Figure 6: A proposed industrial routing pattern for LLM systems. Requests first pass through an API
gateway with light pre-safety checks such as rate limiting and PII scrubbing, and the cache is checked so a hit
returns immediately. A central router then looks at simple features (for example length, the presence of numerals
or lists, and tool hints) and uses a policy store and a model registry to decide whether the request is algorithmic.
If it is not, the request follows a general LLM path where a model is chosen by quality, cost, or A/B policy
and the prompt is answered directly. If it is, the request goes to an algorithmic microservice that uses a typed,
grammar-first pipeline: a datatype tagger, a small dual-head code model, deterministic guards with a DFA and an
AST check plus a canonicalizer, and finally sandboxed execution to produce a safe one-line answer. Both paths
then join a common post-safety and formatting stage, the cache is updated, and the response is returned to the
user while telemetry and A&B logging track latency, accuracy, and cost. This design routes simple algorithmic
prompts to a fast and auditable service with strong correctness guarantees, and sends everything else to a general
LLM pool, which reduces latency and cost without losing coverage.

LLM USAGE

The authors acknowledge the use of ChatGPT (GPT-5 Pro) for assistance with retrieval and discovery
of related work, for drafting text at the paragraph level, and and for helping generate the TikZ figures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer. 2017. https://arxiv.org/abs/1701.06538

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing Reasoning and Acting in Language Models. 2023. https://arxiv.org/
abs/2210.03629

Ziwei Ji, Nayeon Lee, Rita Frieske, et al. Survey of Hallucination in Natural Language Generation.
2023. https://arxiv.org/abs/2307.07071

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, et al. Training Verifiers to Solve Math Word
Problems. 2021. https://arxiv.org/abs/2110.14168

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, et al. Compositional Semantic Parsing with
Large Language Models (Least-to-Most Prompting). 2022. https://arxiv.org/abs/
2209.15003

Jason Wei, Xuezhi Wang, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. 2022. https://arxiv.org/abs/2201.11903

Xuezhi Wang, Jason Wei, et al. Self-Consistency Improves Chain of Thought Reasoning in Language
Models. 2022. https://arxiv.org/abs/2203.11171

Luyu Gao, Aman Madaan, et al. PAL: Program-aided Language Models. 2022. https://arxiv.
org/abs/2211.10435

Wenhu Chen, Xueguang Ma, et al. Program of Thoughts Prompting: Disentangling Computation from
Reasoning for Numerical Reasoning Tasks. 2022. https://arxiv.org/abs/2211.12588

Mark Chen, et al. Evaluating Large Language Models Trained on Code. 2021. https://arxiv.
org/abs/2107.03374

Yujia Li, et al. Competition-Level Code Generation with AlphaCode. 2022. https://www.
science.org/doi/10.1126/science.abq1158

Baptiste Rozière, et al. Code Llama: Open Foundation Models for Code. 2023. https://arxiv.
org/abs/2308.12950

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to Use Large Language Models
While Reducing Cost and Improving Performance. 2023. https://arxiv.org/abs/2305.
05176

Dongjie Ding, Jinhao Wang, Shizhu He, Kang Liu, and Jun Zhao. Hybrid LLM: Cost-
Efficient and Quality-Aware Query Routing. 2024. https://openreview.net/forum?
id=02f3mUtqnM

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-Agents Enhances
Large Language Model Capabilities. 2024. https://arxiv.org/abs/2406.04692

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Max Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding. 2020. https://arxiv.org/abs/2006.16668

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Aditya
Barua, et al. GLaM: Efficient Scaling of Language Models with Mixture-of-Experts. ICML 2022.
https://arxiv.org/abs/2112.06905

Timo Schick, Jane Dwivedi-Yu, Roberta Raileanu, Xiang Lorraine Li, et al. Toolformer: Language
Models Can Teach Themselves to Use Tools. 2023. https://openreview.net/forum?
id=ikDDQKJZ8o

10

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2307.07071
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2209.15003
https://arxiv.org/abs/2209.15003
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://www.science.org/doi/10.1126/science.abq1158
https://www.science.org/doi/10.1126/science.abq1158
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2305.05176
https://arxiv.org/abs/2305.05176
https://openreview.net/forum?id=02f3mUtqnM
https://openreview.net/forum?id=02f3mUtqnM
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2112.06905
https://openreview.net/forum?id=ikDDQKJZ8o
https://openreview.net/forum?id=ikDDQKJZ8o

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing Reasoning and Acting in Language Models. 2022. https://arxiv.org/
abs/2210.03629

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
and Narrowing the Compositionality Gap in Language Models (Self-Ask with Search). 2022.
https://arxiv.org/abs/2210.03350

Rich Caruana. Multitask Learning. Machine Learning, 28(1):41–75, 1997. https://doi.org/
10.1023/A:1007379606734

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. Span-
BERT: Improving Pre-training by Representing and Predicting Spans. In Proceedings of ACL
2020, 2020. https://aclanthology.org/2020.acl-main.436/

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving Neural Machine Translation Models
with Monolingual Data. In Proceedings of ACL 2016, 2016. https://aclanthology.org/
P16-1009/

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding Back-Translation at
Scale. In Proceedings of EMNLP 2018, 2018. https://aclanthology.org/D18-1045/
(Preprint: https://arxiv.org/abs/1808.09381)

Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In Proceedings of ICFP 2000, pp. 268–279, 2000. https://doi.org/10.1145/
357766.351266

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing Incrementally for
Constrained Auto-Regressive Decoding. In Proceedings of EMNLP 2021, 2021. https://
aclanthology.org/2021.emnlp-main.779/

Gabriel Poesia, et al. Synchromesh: Reliable Code Generation from Pretrained Language Models.
2022. https://arxiv.org/abs/2201.11227

Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large Language Models. 2023.
https://arxiv.org/abs/2307.09702

Luca Beurer-Kellner, et al. DOMINO: Fast, Non-Invasive Constrained Generation. 2024. https:
//arxiv.org/abs/2403.06988

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity. 2021. https://arxiv.org/abs/2101.03961

The Unicode Consortium. Unicode Technical Report #36: Unicode Security Considerations. 2024.
Latest version: https://www.unicode.org/reports/tr36/

The Unicode Consortium. Unicode Technical Standard #39: Unicode Security Mechanisms. 2024.
Latest version: https://www.unicode.org/reports/tr39/

The Unicode Consortium. Unicode Standard Annex #15: Unicode Normalization Forms. 2024.
Latest version: https://www.unicode.org/reports/tr15/

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Dan Gohman, Luke Wagner, Alon
Zakai, J. F. Bastien, and Michael Holman. Bringing the Web up to Speed with WebAssembly. In
Proceedings of PLDI 2017. https://doi.org/10.1145/3062341.3062363

David Goldberg. What Every Computer Scientist Should Know About Floating-Point Arith-
metic. ACM Computing Surveys, 23(1):5–48, 1991. https://doi.org/10.1145/103162.
103163

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting Is Programming: A Query
Language for Large Language Models (LMQL). Proceedings of the ACM on Programming
Languages, 7(PLDI): 1–27, 2023. https://arxiv.org/abs/2212.06094

11

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03350
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://aclanthology.org/2020.acl-main.436/
https://aclanthology.org/P16-1009/
https://aclanthology.org/P16-1009/
https://aclanthology.org/D18-1045/
https://arxiv.org/abs/1808.09381
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://aclanthology.org/2021.emnlp-main.779/
https://aclanthology.org/2021.emnlp-main.779/
https://arxiv.org/abs/2201.11227
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2101.03961
https://www.unicode.org/reports/tr36/
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr15/
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://arxiv.org/abs/2212.06094

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A. Saurous, Jascha Sohl-Dickstein, Kevin Murphy, and
Charles Sutton. Language Model Cascades. 2022. https://arxiv.org/abs/2207.10342

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Vinh Q. Tran, Yi Tay, Donald Metzler, and
Eunsol Choi. Confident Adaptive Language Modeling. NeurIPS, 2022. https://arxiv.org/
abs/2207.07061

Yaniv Leviathan, Matan Kalman, and Yoav Levine. Fast Inference from Transformers via Speculative
Decoding. ICML, 2023. https://arxiv.org/abs/2211.17192

OWASP Foundation. Top 10 for Large Language Model Ap-
plications. 2023. Latest version: https://owasp.org/
www-project-top-10-for-large-language-model-applications/

Alessandro Panella, Vivek Sharma, et al. NeMo Guardrails: A Toolkit for Controllable and Safe
LLM Applications. NVIDIA Technical Report, 2023. https://docs.nvidia.com/nemo/
guardrails/

Shreya Rajpal. Guardrails AI: Building Reliable LLM Applications. 2023. https://www.
guardrailsai.com/

OpenAI. Function calling and other API updates. 2023. https://openai.com/index/
function-calling-and-other-api-updates/

OpenAI. Introducing Structured Outputs in the API. 2024. https://openai.com/index/
introducing-structured-outputs-in-the-api/

Rohan Anil, et al. PaLM 2 Technical Report. 2023. https://arxiv.org/abs/2305.10403

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-Excite:
Attention-Based Semantic Guidance for Text-to-Image Diffusion Models. arXiv preprint
arXiv:2301.13826, 2023. https://arxiv.org/abs/2301.13826

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. arXiv preprint arXiv:2207.12598,
2022. https://arxiv.org/abs/2207.12598

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting Is Programming: A Query
Language for Large Language Models (LMQL). Proc. ACM Program. Lang. (PLDI), 7:1–27, 2023.
https://arxiv.org/abs/2212.06094

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A. Saurous, Jascha Sohl-Dickstein, Kevin Murphy, and
Charles Sutton. Language Model Cascades. 2022. https://arxiv.org/abs/2207.
10342

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident Adaptive Language Modeling. NeurIPS, 2022. https://arxiv.
org/abs/2207.07061

NVIDIA. NeMo Guardrails: Documentation. 2023. https://docs.nvidia.com/
nemo-guardrails/index.html

Lvmin Zhang and Maneesh Agrawala. Adding Conditional Control to Text-to-Image Diffusion
Models. 2023. https://arxiv.org/abs/2302.05543

Chong Mou, Jian Zhang, Xin Wang, Jiahao Wang, Yong Guo, Ziyu Guan, and Dacheng Tao. T2I-
Adapter: Learning Adapters to Dig Out More Controllable Factors for Text-to-Image Synthesis.
2023. https://arxiv.org/abs/2302.08453

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-Prompt Image Editing with Cross Attention Control. 2022. https://arxiv.org/abs/
2208.01626

12

https://arxiv.org/abs/2207.10342
https://arxiv.org/abs/2207.07061
https://arxiv.org/abs/2207.07061
https://arxiv.org/abs/2211.17192
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://owasp.org/www-project-top-10-for-large-language-model-applications/
https://docs.nvidia.com/nemo/guardrails/
https://docs.nvidia.com/nemo/guardrails/
https://www.guardrailsai.com/
https://www.guardrailsai.com/
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/function-calling-and-other-api-updates/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2301.13826
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2212.06094
https://arxiv.org/abs/2207.10342
https://arxiv.org/abs/2207.10342
https://arxiv.org/abs/2207.07061
https://arxiv.org/abs/2207.07061
https://docs.nvidia.com/nemo-guardrails/index.html
https://docs.nvidia.com/nemo-guardrails/index.html
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2302.08453
https://arxiv.org/abs/2208.01626
https://arxiv.org/abs/2208.01626

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel
Cohen-Or. Attend-and-Excite: Attention-Based Semantic Guidance for Text-
to-Image Diffusion Models. ACM Transactions on Graphics (TOG), 42(4),
2023. Project page: https://cris.tau.ac.il/en/publications/
attend-and-excite-attention-based-semantic-guidance-for-text-to-im

Nataniel Rufo Liu, Asi Mamistvalov, Hila Baruch, Yoni Kasten, Tali Dekel, and Michal Irani.
Compositional Visual Generation with Composable Diffusion Models. 2022. https://arxiv.
org/abs/2206.01714

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models. 2021. https://arxiv.org/abs/2112.10741

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, and Tim Salimans. Video Diffusion Models. 2022.
https://openreview.net/forum?id=nqPVgmV2jE

Wen Wang, Difan Liu, Lianghua Huang, Ying Shan, and Xiaohu Qie. VideoComposer: Composi-
tional Video Synthesis with Motion Controllability. 2023. https://arxiv.org/abs/2306.
02018

Yuwei Guo, Jiancheng Yang, Yujun Shen, and Deli Zhao. AnimateDiff: Animate Your Personalized
Text-to-Image Diffusion Models without Specific Tuning. 2023. https://arxiv.org/abs/
2307.04725

Uriel Singer, Shelly Sheynin, Adam Polyak, Thomas Hayes, Jing Yu Koh, Ofir Nachum, Shi-
ran Kahane, et al. Make-A-Video: Text-to-Video Generation without Text-Video Data. 2022.
https://arxiv.org/abs/2209.14792

Lirong Wu, Zhenyu Hou, Hongchang Zhang, Zonghan Wu, Jia Li, and Stan Z. Li. A Survey of Graph
Prompting Methods: Paradigms, Methods, and Applications. 2023. https://arxiv.org/
abs/2312.03892

Yizhou Sun, Yilun Zhao, Ziqi Wang, and M. Papageorgiou. Multi-Task Graph Prompting for Graph
Classification with Multiple Scattering. In Proceedings of IJCAI, 2024. https://eprints.
soton.ac.uk/483682/

Petar Veličković and Charles Blundell. Neural Algorithmic Reasoning. Patterns, 2(7):100273, 2021.
https://www.cell.com/patterns/fulltext/S2666-3899(21)00088-8

Petar Veličković, Alhussein Fawzi, Guillermo Ortiz-Jiménez, et al. The CLRS Algorithmic Reasoning
Benchmark. 2022. https://arxiv.org/abs/2205.15659

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. https:
//jmlr.org/papers/v21/20-074.html

Xiaoxue Sun, Junjie Zhang, Xiang Wu, Hao Cheng, Yuwei Xiong, and Jing Li. Graph Prompt
Learning: A Comprehensive Survey and Beyond. 2023. arXiv:2311.16534. https://arxiv.
org/abs/2311.16534

Junhyun Lee, Wooseong Yang, and Jaewoo Kang. Subgraph-level Universal Prompt Tuning for Node
Classification. 2024. arXiv:2402.10380. https://arxiv.org/abs/2402.10380

Xuansheng Wu, Kaixiong Zhou, Mingchen Sun, Xin Wang, and Ninghao Liu. A Survey of Graph
Prompting Methods: Techniques, Applications, and Challenges. 2023. arXiv:2303.07275. https:
//arxiv.org/abs/2303.07275

Nayoung Lee, Jathushan Rajasegaran, Avi Schwarzschild, Kangwook Lee, and Dimitris Papail-
iopoulos. Teaching Arithmetic to Small Transformers. arXiv preprint arXiv:2307.03381, 2023.
https://arxiv.org/abs/2307.03381

13

https://cris.tau.ac.il/en/publications/attend-and-excite-attention-based-semantic-guidance-for-text-to-im
https://cris.tau.ac.il/en/publications/attend-and-excite-attention-based-semantic-guidance-for-text-to-im
https://arxiv.org/abs/2206.01714
https://arxiv.org/abs/2206.01714
https://arxiv.org/abs/2112.10741
https://openreview.net/forum?id=nqPVgmV2jE
https://arxiv.org/abs/2306.02018
https://arxiv.org/abs/2306.02018
https://arxiv.org/abs/2307.04725
https://arxiv.org/abs/2307.04725
https://arxiv.org/abs/2209.14792
https://arxiv.org/abs/2312.03892
https://arxiv.org/abs/2312.03892
https://eprints.soton.ac.uk/483682/
https://eprints.soton.ac.uk/483682/
https://www.cell.com/patterns/fulltext/S2666-3899(21)00088-8
https://arxiv.org/abs/2205.15659
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2311.16534
https://arxiv.org/abs/2311.16534
https://arxiv.org/abs/2402.10380
https://arxiv.org/abs/2303.07275
https://arxiv.org/abs/2303.07275
https://arxiv.org/abs/2307.03381

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Liu Yang, Kangwook Lee, Robert D. Nowak, and Dimitris Papailiopoulos. Looped Transformers Are
Better at Learning Algorithms. In Proceedings of the International Conference on Learning Rep-
resentations (ICLR), 2024. https://proceedings.iclr.cc/paper_files/paper/
2024/file/b8402301e7f06bdc97a31bfaa653dc32-Paper-Conference.pdf

Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, and Dimitris Papailiopoulos. Self-
Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges. arXiv
preprint arXiv:2502.01612, 2025. https://arxiv.org/abs/2502.01612

14

https://proceedings.iclr.cc/paper_files/paper/2024/file/b8402301e7f06bdc97a31bfaa653dc32-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2024/file/b8402301e7f06bdc97a31bfaa653dc32-Paper-Conference.pdf
https://arxiv.org/abs/2502.01612

	Introduction
	Main contributions
	Related work

	Problem Setup and Experimental Background
	Method, Datasets, and Results
	Theoretical properties of the Method

	Discussion and implications
	Limitations
	Broader implications and future work
	Reproducibility

