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ABSTRACT

Standard Vision Transformers flatten 2D images into 1D sequences, disrupting
the natural spatial topology. While Rotary Positional Embedding (RoPE) excels
in 1D, it inherits this limitation, often treating spatially distant patches (e.g., at
row edges) as sequence neighbors. Existing 2D approaches typically treat spatial
axes independently, failing to decouple this false sequential proximity from true
spatial distance. To restore the 2D spatial manifold, we introduce Geometric Po-
sitional Embedding (GeoPE), a framework that extends rotations to 3D Euclidean
space using quaternions. To overcome non-commutativity and ensure symmetry,
GeoPE constructs a unified rotational operator by computing the geometric mean
in the Lie algebra. This creates a geometrically coupled encoding that effectively
separates spatial dimensions. Extensive experiments on image classification, ob-
ject detection, and 3D semantic segmentation demonstrate that GeoPE consis-
tently outperforms existing 2D RoPE variants and significantly enhances shape
bias, confirming its ability to capture true geometric structure.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has emerged as the backbone of large language models due to
its capacity to capture global dependencies and generalize across modalities. However, Transformer
lacks an inherent mechanism for sequence order (Devlin et al., 2019; Raffel et al., 2020; Shaw et al.,
2018). Conventional positional encodings like Absolute Positional Encodings (APE) (Devlin et al.,
2019; Chen et al., 2021) and Relative Positional Encodings (RPE) (Liu et al., 2021; Park et al.,
2022; Wu et al., 2021) inject position information but often face trade-offs between flexibility and
complexity. Rotary Positional Encoding (RoPE) (Su et al., 2024) overcomes these limitations by
rotating query and key vectors in a 2D plane, providing attention with strong length generalization
(Jiang et al., 2023; Touvron et al., 2023; Yao, 2024).

With Transformer increasingly applied to vision tasks, researchers have explored extending RoPE to
two dimensions (Fang et al., 2024; Lu et al., 2024a;b). However, standard Vision Transformers (ViT)
(Dosovitskiy et al., 2020) process images by flattening 2D grids into 1D sequences. This operation
creates a geometric mismatch where spatially distant patches (e.g., at row edges) become immediate
sequence neighbors. Existing 2D methods often adopt axis-wise designs, processing horizontal and
vertical encodings independently or via mixed frequencies (Chu et al., 2024). For instance, Heo
et al. (2024) partitions the embedding space to allow independent rotations per axis. Nevertheless,
because these axes are not geometrically coupled, such approaches struggle to decouple the false
sequential proximity created by flattening from true spatial locality, effectively leaving the weak
cross-axis interaction of high-dimensional RoPEs unresolved.

The challenge of modeling this coupling is amplified in multi-modal learning (Dao et al., 2024; Yin
et al., 2025; Shu et al., 2023). Some works extend RoPE to higher dimensions via Lie group/algebra
frameworks (Appendix B). For example, Liu & Zhou (2025) formalizes RoPE using a maximal
abelian subalgebra (MASA) and introduces cross-dimensional interactions through orthogonal basis
changes. However, this can overly constrain representations or incur high computational costs.
Comminiello et al. (2024) argues that hypercomplex algebras provide essential inductive biases for
multidimensional structures. Alternatively, Ostmeier et al. learn dense skew-symmetric matrices to
build rotation operators, yet this remains computationally expensive and lacks theoretical guarantees
for efficient spatial reconstruction.
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We propose Geometric Positional Embedding (GeoPE), which extends RoPE’s 2D complex-plane
rotations to 3D Euclidean space using quaternions to strictly model coupled rotations in structured
tensors (Section 3.3). Unlike independent axial methods, GeoPE treats spatial dimensions as a uni-
fied geometric entity. To overcome the non-commutativity of quaternion multiplication and ensure a
consistent spatial prior, we construct a unified rotational operator by computing the symmetric mean
in the logarithmic tangent space (Section 3.2). We also propose a linear variant for direct relative
encoding (Section 3.4). This method enriches self-attention with a geometrically meaningful un-
derstanding of space, thereby fostering superior spatial reasoning and shape awareness (Section 4).
Experiments (Section 5) show that GeoPE achieves significant performance gains in classification,
detection, and segmentation, while retaining strong extrapolation properties.

2 RELATED WORK

Position Encodings. Transformers lack inherent positional awareness and thus rely on encodings
to capture the order of tokens. The original Transformer (Vaswani et al., 2017) employs sinusoidal
absolute positional encodings (APE), which generalize poorly to long sequences. In contrast, learn-
able APE (Shaw et al., 2018) improves flexibility and representation for tasks such as sentence
alignment and context modeling. Vision Transformers (ViT) (Dosovitskiy et al., 2020) similarly
adopt learnable APE for image patches. Relative positional encodings (RPE) model pairwise to-
ken distances, supporting long sequences and cross-sequence dependencies (Liu et al., 2021; Shaw
et al., 2018), though naive designs incur quadratic cost. Rotary Positional Encoding (RoPE) (Su
et al., 2024) encodes relative positions via complex-plane rotations and is widely used in large lan-
guage models; however, its performance degrades when extrapolated to much longer contexts. More
recent approaches learn semanticized position structures. Contextual positional encodings (CoPE)
(Golovneva et al., 2024) enhance reasoning and mathematical capabilities. Abacus embeddings
(McLeish et al., 2024) capture numerical structures for arithmetic, while lightweight methods, such
as LaPE (Yu et al., 2023), apply adaptive normalization to improve robustness across architectures.

RoPE in Visual Model. RoPE has demonstrated strong extrapolation capabilities in long-text mod-
eling and dialogue, motivating its extension to vision and multimodal tasks (Lu et al., 2024b; Wang
et al., 2024; Yao et al., 2024). A straightforward adaptation applies 1D RoPE to ViT variants, as
in Hybrid X-former (Jeevan & Sethi, 2022). However, gains are modest and have been validated
only on small datasets (e.g., CIFAR, Tiny ImageNet). To better handle 2D inputs, works such as
EVA-02 (Fang et al., 2024) and Unified-IO 2 (Lu et al., 2024a) have incorporated axial 2D RoPE
into multimodal and diffusion models; however, these fail to capture diagonal interactions. RoPE for
ViT (Heo et al., 2024) further proposed RoPE-Mixed, which combines axial frequencies to enhance
2D encodings and downstream performance. However, this approach remains essentially frequency
composition, offering only loose dimensional coupling and limited generality. Qin et al. (2023) pro-
poses a Quaternion Product Unit (QPU) that leverages quaternion algebra and the laws of the 3D
rotation group (SO(3)). By representing 3D rotation data as quaternions, their work demonstrates
that complex algebras can effectively maintain geometric structure and achieve superior robustness
in rotation-sensitive tasks, which strongly aligns with the geometric approach of GeoPE.

Shape Bias. Cognitive science has shown that humans rely primarily on global shape, rather than
texture or color, for object recognition and lexical learning, whereas CNNs exhibit a different ten-
dency. Hosseini et al. (2018) demonstrated that standard CNNs often lack shape bias, instead de-
pending heavily on local texture or color cues. However, Ritter et al. (2017) reported that networks
can develop shape preference under certain conditions. To examine this systematically, Geirhos
et al. (2018) compared CNNs and humans using style-transferred images with conflicting shape and
texture information. While humans consistently prioritize shape, CNNs tend to favor texture. To
mitigate this bias, they introduced Stylized-ImageNet, which reduced texture reliance and induced
stronger shape bias, yielding models with improved robustness and transferability. These findings
suggest that enhancing shape bias can make models more human-like while also strengthening gen-
eralization.
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Figure 1: Geometric Transform of Geometric Positional Embedding (GeoPE). This figure illus-
trates how GeoPE encodes 2D positions (e.g., (m,n)) by extending Rotary Positional Embedding
(RoPE) to 3D space using quaternions. For each feature sub-vector (x1, x2, x3), GeoPE calcu-
lates the geometric mean of the height and width rotations in the Lie algebra to create a unified,
symmetric rotation operator. This operator then applies a geometrically coupled 3D rotation to the
query/key sub-vector via a sandwich product (p′ = rpr∗) to inject the positional bias.

3 METHODOLOGY

In this section, we detail the formulation and implementation of GeoPE. We first establish the ge-
ometric requirements for multi-axial rotation in Section 3.1, then construct a symmetric rotational
operator using Lie theory in Section 3.2. Finally, we demonstrate the framework’s extension to 3D
in Section 3.3 and propose a linear variant in Section 3.4.

3.1 GENERALIZING ROTATIONS TO 3D SPACE

While RoPE effectively models 1D sequence distance introduced by Appendix H, it cannot distin-
guish between the ’sequence neighbors’ created by flattening and true ’spatial neighbors.’ To resolve
this ambiguity, we extend the rotational domain to 3D Euclidean spaceas illustrated in Figure 1 using
quaternions (introduced in Appendix A). By mapping height and width to orthogonal rotational axes
(using j and k components), we ensure that sequence-adjacent but spatially-distant patches induce
drastically different rotational states, effectively recovering the 2D manifold.

Mathematically, a feature vector x ∈ Rd is first partitioned into d/3 sub-vectors, {vi}d/3i=1, where
each vi = (vx, vy, vz) ∈ R3. Each sub-vector vi is then ”lifted” into the quaternion space H as a
pure quaternion (i.e., a quaternion with a zero scalar part):

p = 0 + vxi+ vyj+ vzk (1)

Given a unit quaternion r that represents a desired rotation, the transformation of p is given by the
sandwich product:

p′ = rpr∗ (2)

where r∗ is the conjugate of r, which for a unit quaternion is equivalent to its inverse (r−1). A crucial
property of this operation is that the result p′ remains a pure quaternion. Its vector part corresponds
to the rotated vector v′

i in R3. This rotational operation is, by construction, an isometry for each 3D
sub-vector, preserving its norm ∥vi∥.

The rotational quaternion r is a function of positional indices, e.g., (h,w) for a 2D image, which en-
code phase information θh and θw. For a position (ph, pw) and a given sub-vector i ∈ {1, . . . , d/3},

3
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(a) The Log-Exp average of Lie Algebra and Lie
Group.To ensure symmetry, non-commutative rota-
tions r(θ1), r(θ2) are mapped to the linear Lie Alge-
bra (Tangent Space, where e is identity element) via
the Log Map. An arithmetic mean (θ1 + θ2)/2 is
computed, and the result is mapped back to the Lie
Group using the Exp Map to produce the symmetric
operator r(θ1, θ2).

(b) The transform of Global Frame and Relative
frame.This panel presents two interpretations of the
attention score ⟨Rmq,Rnk⟩.Global Frame: Rm and
Rn transform vectors (q, k) into a shared, absolute
Global Frame.Relative Frame: RmR−1

n is the relative
rotation operator that transforms the Key Frame (at n)
into the Query Frame (at m).

Figure 2: Illustration of mathematical structure and coordinate transform.

these are defined as θh = ph · λ2i/d and θw = pw · λ2i/d, where λ is a chosen base which is set as
λ = 100 as usual(Heo et al., 2024).

3.2 CONSTRUCTING A SYMMETRIC OPERATOR

For 2D data, positional information along the height and width dimensions can be encoded as ro-
tations about distinct axes. A natural choice is to associate them with rotations about the y-axis (j)
and z-axis (k), respectively. This yields two base quaternions:

rh(θh) = cos

(
θh
2

)
+ sin

(
θh
2

)
j, rw(θw) = cos

(
θw
2

)
+ sin

(
θw
2

)
k

A naive composition of these rotations via quaternion multiplication, such as rhw = rhrw, is ill-
suited for our purpose. Quaternion multiplication is non-commutative (rhrw ̸= rwrh), meaning
the resulting rotation would be arbitrarily dependent on the chosen order of operations, creating an
undesirable symmetric bias between the height and width encodings.(This requirement for symmetry
is crucial because GeoPE is specifically designed for structures like 2D images, where the spatial
axes are fundamentally isotropic and no axis is privileged, thus necessitating a commutative operator
for consistent geometric coupling.)

To construct an operator that treats each spatial dimension symmetrically, we turn to the tools of
Lie theory. The core idea is to compute the geometric mean of the rotations. This is achieved by
mapping the quaternions from the non-linear Lie group of 3D rotations, SO(3), to its corresponding
linear Lie algebra, so(3), via the logarithm map. In this tangent vector space, a simple averaging
operation is well-defined and commutative. The result is then mapped back to the Lie group via the
exponential map.

Accordingly, we define our symmetric rotational operator r as:

r(θh, θw) = exp

(
1

2
(log(rh(θh)) + log(rw(θw)))

)
(3)

This symmetric coupling ensures that the relative position is not merely a linear combination of
independent axes, but a unified geometric transformation. This prevents the model from collapsing
the 2D structure back into 1D sequence patterns. As derived in Appendix C, the intermediate av-
eraged vector in the Lie algebra so(3) is (0, θh/4, θw/4). The exponential map yields an elegant
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closed-form solution for the resulting quaternion:

r = cos

(
Θ

2

)
+ sin

(
Θ

2

)
θh
2Θ

j+ sin

(
Θ

2

)
θw
2Θ

k (4)

where Θ = 1
2

√
θ2h + θ2w. The coupled phase Θ is proportional to the Euclidean distance between

(θh, θw) and the origin, while the vector components ensure that the influence of each positional
phase remains monotonic. As illustrated in Figure 2a, this log-exp average provides a commutative
and geometrically sound method for combining rotations.

The quaternion rotation in Equation 2 is equivalent to a matrix-vector product, v′ = Rv, where R ∈
SO(3) is the rotation matrix corresponding to r. The complete transformation on a d-dimensional
query vector q or key vector k is thus a block-diagonal matrix:

RGeoPE =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rd/3

 ,Ri =


cos(Θ) − θw sin(Θ)√

θ2
h+θ2

w

θh sin(Θ)√
θ2
h+θ2

w

θw sin(Θ)√
θ2
h+θ2

w

1− θ2
w(1−cos(Θ))

θ2
h+θ2

w

θhθw(1−cos(Θ))
θ2
h+θ2

w

− θh sin(Θ)√
θ2
h+θ2

w

θhθw(1−cos(Θ))
θ2
h+θ2

w
1− θ2

h(1−cos(Θ))

θ2
h+θ2

w


where each Ri is a 3 × 3 rotation matrix derived from the quaternion r computed with phases
(θh,i, θw,i) specific to that block. When the structured tensor is one-dimensional, GeoPE as dis-
cussed in Appendix F gracefully degenerates to a 2D rotation equivalent to the original RoPE (Su
et al., 2024). Meanwhile, GeoPE keep long distance decay with projected similarity in Equation9 as
disscussed in Appendix E

3.3 EXTENSION TO THREE SPATIAL DIMENSIONS

The GeoPE framework extends naturally to three spatial dimensions (e.g., for video data or volu-
metric scans) with positions (d, h, w). We introduce a third base quaternion for depth, rd(θd) =

cos( θd2 ) + sin( θd2 )i, and compute the symmetric average of the three rotations:

r(θd, θh, θw) = exp

(
1

3
(log(rd) + log(rh) + log(rw))

)
(5)

This yields the three-dimensional GeoPE operator by results in Appendix G:

r = cos

(
Θ

2

)
+ sin

(
Θ

2

)(
θd
3Θ

i+
θh
3Θ

j+
θw
3Θ

k

)
(6)

where the composite phase is now Θ = 1
3

√
θ2d + θ2h + θ2w. This demonstrates the flexibility and

scalability of our proposed geometric approach.

3.4 LINEAR FORMULATION FOR RELATIVE POSITION ENCODING

A critical property of positional embeddings in Transformer architectures is the ability to encode
relative position, as the attention mechanism is fundamentally relational. For a query q at position
m and a key k at position n, the attention score is a function of ⟨Rmq,Rnk⟩ = ⟨q,R⊤

mRnk⟩.
Ideally, the relative rotation matrix Rm→n = R⊤

mRn should depend only on the displacement
n−m.

Our symmetric operator, while geometrically sound, does not inherently guarantee this linear rela-
tionship in the parameter space. That is, r(θh, θw) ̸= r(ϕh, ϕw)r(θh −ϕh, θw −ϕw). To recover an
inductive bias analogous to the simple phase subtraction in 1D RoPE, we propose a ’Linear GeoPE’
formulation. The core insight is to enforce a linear relationship in the Lie algebra, where rotational
composition is approximated by vector addition. By defining the relative rotation based on the dif-
ference of the Lie algebra vectors, i.e., urel = uk − uq , we ensure the resulting rotation depends on
the simple linear displacement of positional phases, mirroring the behavior of the original RoPE.

Let the Lie algebra vectors for a query at position (hq, wq) and a key at position (hk, wk) be uq =
(0, θhq/4, θwq/4) and uk = (0, θhk

/4, θwk
/4), respectively. We define the relative Lie algebra

vector as their difference:

urel = uk − uq =

(
0,

θhk
− θhq

4
,
θwk

− θwq

4

)
(7)
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Figure 3: Mean attention distance as a function of layer depth across different input reso-
lutions. The distance is computed as the average over attention scores, where query–key spatial
distances are weighted by their corresponding attention weights and then normalized. While all
methods exhibit an expanding receptive field in deeper layers, APE’s consistently higher distance
suggests an inefficient and unfocused global search. In contrast, GeoPE maintains a more moderate
distance, indicating a more structured and efficient strategy for balancing local and global informa-
tion gathering. These relative trends remain consistent across all tested resolutions.

Figure 4: Attention Map Visualization.This figure compares the self-attention patterns from the
final layer of ViT-Base models, evaluated after pre-training from scratch on ImageNet-1K. The
heatmaps visualize the cosine similarity between patch representations, averaged across all atten-
tion heads, where the fine-grained patterns within the large squares reflect the feature correlation
and similarity among the pixels inside each input patch. APE results in highly localized atten-
tion focused on the diagonal. RoPE-mixed shows a more distributed local pattern. In contrast,
GeoPE facilitates complex, long-range attention, indicating a significantly more global receptive
field. GeoPE’s global attention pattern demonstrates its improved ability to integrate features across
the entire image based on geometric structure.

The relative rotation is then obtained by mapping this difference back to the Lie group: rrel =
exp(urel). This construction ensures that the transformation between any two positions depends
solely on their relative displacement.

This allows the attention score to be computed as ⟨q,Rrelk⟩. However, unlike the 1D case where the
relative rotation matrix is a simple 2D rotation, the 3×3 matrix Rrel is generally dense. Applying this
transformation explicitly is computationally more demanding than the standard GeoPE formulation,
presenting a trade-off between enforcing a strict linear inductive bias and computational efficiency.

4 DISCUSSION

In this section, we further explore the properties of GeoPE to provide a deeper understanding of its
mechanism and impact. We analyze the geometric interpretation of the attention score under 3D
rotations and discuss how GeoPE influences the model’s spatial reasoning capabilities.
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4.1 GEOMETRIC INTERPRETATION OF THE GEOPE

GeoPE enriches the self-attention mechanism by incorporating a geometrically meaningful under-
standing of space. The attention score between a query q at position m = (hm, wm) and a key k at
position n = (hn, wn) is computed on their rotated counterparts:

AttnScore(qm,kn) = ⟨Rmq,Rnk⟩ = ⟨q,R⊤
mRnk⟩ (8)

This formulation offers two powerful, complementary geometric interpretations as shown in Fig-
ure 2b.

Global Coordinate Frame. One perspective is that Rm and Rn transform the query and key vectors
from their local, position-agnostic feature spaces into a shared global coordinate frame defined by
their absolute positions. The inner product is then computed in this global frame, allowing for a
direct, spatially-aware comparison.

Relative Coordinate Frame. Alternatively, and perhaps more intuitively for attention, the term
Rrel = R⊤

mRn can be interpreted as a relative rotation operator. It transforms the key vector k from
its own positional frame at n into the query’s positional frame at m. The attention score is thus a
measure of feature similarity after aligning the key to the query’s geometric context.

Unlike the simple phase difference in Heo et al. (2024), this 3D relative rotation depends not only on
the magnitude of the displacement (hn − hm, wn − wm) but also on the direction of displacement.
The attention score is governed by the inner product of a vector with its rotated version, which,
according to Rodrigues’ rotation formula, is a function of both the angle and the axis of this relative
rotation. For a rotation of angle A about an axis n, the inner product as discussed in Appendix D
becomes:

⟨q,Rrelk⟩ = ⟨q,k⟩ cos(A)︸ ︷︷ ︸
Projected Similarity

+(q · n)(k · n)(1− cos(A))︸ ︷︷ ︸
Axial Alignment

− (n× q) · k sin(A)︸ ︷︷ ︸
Torsional Component

(9)

This decomposition provides a clear geometric intuition. The Projected Similarity term general-
izes RoPE by modulating similarity based on displacement magnitude (via angle A). Crucially, the
Axial Alignment term adds sensitivity to the direction of displacement (via axis n). Unlike 1D-
based methods that primarily encode scalar distance (which can be misleading due to flattening),
this term allows the attention mechanism to explicitly differentiate between vertical and horizontal
relationships.

Consequently, the Torsional Component captures the relative spatial orientation. This equips the
model with a geometric directional prior, enabling it to recognize shape boundaries defined by spe-
cific directional transitions (e.g., corners and edges) rather than just local texture continuity found in
the flattened sequence.

For Linear GeoPE, the angle Ai and axis ni for the i-th sub-vector are defined as:

Ai =
1

2

√
(∆θh,i)2 + (∆θw,i)2, ni =

∆θh,i

4 j+
∆θw,i

4 k
1
4

√
(∆θh,i)2 + (∆θw,i)2

=
∆θh,ij+∆θw,ik√
(∆θh,i)2 + (∆θw,i)2

where ∆θh,i = θhk,i − θhq,i = (phk
− phq

) · λ2i/d = ∆ph · λ2i/d and ∆θw,i = θwk,i − θwq,i =

(pwk
−pwq

) ·λ2i/d = ∆pw ·λ2i/d. This shows that the interaction is a complex blend of the original
similarity ⟨q,k⟩ and terms modulated by the alignment of the vectors with the relative rotation axis,
endowing the model with a richer, more expressive spatial bias.

4.2 IMPACT ON ATTENTION PATTERNS AND SPATIAL AWARENESS

We hypothesize that GeoPE’s geometric inductive bias fosters more effective spatial reasoning by
enabling more meaningful attention patterns. Our analyses support this: models equipped with
GeoPE exhibit longer attention distances in Figure 3 and more global attention maps in Figure 4.
This behavior allows the model to capture long-range dependencies and integrate information across
the entire spatial domain, rather than focusing only on local texture. We posit that this enhanced
global awareness directly contributes to the performance gains and improved shape-texture bias
observed in our experiments.

7
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Figure 5: Generalization performance to unseen input resolutions for ViT-S, -B, and -L models.
All models are trained at a fixed 224x224 resolution (marked by the vertical line) and evaluated on
a range of different resolutions. Absolute Positional Embedding (APE) fails to generalize, with its
accuracy collapsing at higher resolutions. In contrast, relative embeddings like RoPE-Mixed and
GeoPE show strong robustness as their performance degrades gracefully, highlighting their suitabil-
ity for real-world applications with variable input sizes.

5 EXPERIMENTS

We validate our methods, GeoPE and Linear GeoPE, through comprehensive experiments on image
classification, object detection, and 3D semantic segmentation, benchmarking them against standard
baselines and existing 2D rotational embeddings.

5.1 IMAGE CLASSIFICATION

We evaluate our methods on the ImageNet-1K classification task using Vision Transformer (ViT)
(Dosovitskiy et al., 2020) and Swin Transformer (Liu et al., 2021) backbones, following the DeiT3
training protocol (Armeni et al., 2016b) with CE loss with fixed random seed(3407) Picard (2023).
We additionally provide more reliable experiments in the Appendix K.

As shown in Table 1, GeoPE consistently improves Top-1 accuracy across all backbones. It out-
performs standard baselines like APE and CPE (Chu et al., 2021) on ViT models and matches or
exceeds the performance of PRB and Rope-Mixed (Heo et al., 2024) on Swin Transformers, demon-
strating the broad applicability of its geometric prior. Furthermore, as depicted in Figure 5, Linear
GeoPE exhibits exceptional zero-shot inference capabilities across multiple resolutions, confirm-
ing its superior extrapolation properties as a natural high-dimensional extension of RoPE (Su et al.,
2024).

5.2 OBJECT DETECTION

To assess GeoPE’s impact on tasks requiring fine-grained spatial awareness, we evaluate it on the
MS-COCO (Lin et al., 2014) object detection benchmark. We integrate GeoPE into the DINO-
ViTDet (Zhang et al., 2022) framework, a strong object detection pipeline.

Table 2 shows that GeoPE consistently improves mAP for both ViT-B and ViT-L backbones. Com-
pared with APE and Rope-Mixed (Heo et al., 2024), GeoPE provides the largest relative gains,
highlighting the importance of explicit geometric priors in capturing global spatial relationships
critical for accurate object detection.
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Table 1: Comparison of different Positional Encodings (PE) on ImageNet-1K. ViTs follow the recipe
protocol, and Swin Transformers follow their original protocol. Bold denotes the best result in each
group.

Backbone Resolution PE Method Top-1 Acc

ViT-Small

192× 192 GeoPE 78.5
192× 192 LinGeoPE 78.8
224× 224 APE 79.9
224× 224 CPE 80.7
224× 224 GeoPE 81.2

ViT-Base
224× 224 APE 81.3
224× 224 CPE 82.2
224× 224 GeoPE 82.5

ViT-Large
224× 224 APE 83.3
224× 224 CPE 83.6
224× 224 GeoPE 83.9

Swin-S
224× 224 RPB 83.0
224× 224 Rope-Mixed 83.4
224× 224 GeoPE 83.5

Swin-B
224× 224 RPB 83.5
224× 224 Rope-Mixed 83.8
224× 224 GeoPE 83.6

5.3 3D SEMANTIC SEGMENTATION

To verify the hypothesis that GeoPE is suitable for any structured tensor data where spatial rela-
tionships are paramount, we apply it to 3D point cloud segmentation on the S3DIS dataset (Armeni
et al., 2016b). We incorporate GeoPE into the Point Transformer architecture.

As reported in Table 3, GeoPE improves all major metrics, including overall accuracy, mean class
accuracy, and mean IoU, relative to the RPE baseline. These improvements confirm that explicitly
encoding multi-axis spatial relationships allows the model to better capture 3D geometric structures,
validating the general applicability of GeoPE beyond 2D vision tasks.

5.4 SHAPE-TEXTURE BIAS ANALYSIS

To provide a deeper insight into how GeoPE enhances spatial reasoning, we conduct an analysis
of the model’s shape-texture bias. A strong shape bias—the tendency to prioritize global object
structure over local texture in decision-making—is a critical characteristic correlated with superior
robustness and generalization capabilities. We assess this property using the rigorous methodology
proposed by Geirhos et al. (2018) , which employs specially constructed cue-conflict stimuli (images
where texture and object shape point to conflicting categories) to explicitly quantify the model’s
decision preference.

As illustrated in Figure 6, GeoPE consistently shifts the model towards a stronger Shape Bias. Stan-
dard positional encodings often overfit to texture because the flattened sequence preserves local
texture statistics even across unnatural boundaries (like row edges).

By enforcing a strict 3D geometric coupling, GeoPE penalizes attention to these ’false sequence
neighbors’ and rewards alignment with the true 2D structure. This result confirms that our method
successfully mitigates the topological disruption of flattening, transitioning the model from a texture-
biased sequence learner to a shape-aware geometric learner.

9
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Table 2: This table reports MSCOCO(Lin
et al., 2014) detection performance (box AP).
DINO(Zhang et al., 2022) is trained under
the 12-epoch DINO-ViTDet setting(Ren et al.,
2023). For GeoPE, we apply it to the ViT back-
bone, which is pre-trained on ImageNet-1K us-
ing the 400-epoch DeiT-III recipe.

Backbone PE mAP

APE 49.4
ViT-base Rope-Mixed 51.2

GeoPE 51.3
APE 51.1

ViT-large Rope-Mixed 52.9
GeoPE 53.1

Table 3: Semantic segmentation performance
on the S3DIS dataset(Armeni et al., 2016a),
evaluated using 6-fold cross-validation.

Backbone PE OA mAcc mIoU

Point- RPE 90.2 81.9 73.5
Transformer GeoPE 90.5 82.1 74.4

Figure 6: Shape Bias Relation Analysis. This
figure analyzes the decision bias of ViT-Small
models, pre-trained from scratch on ImageNet-
1K, using a cue-conflict methodology. The
plot compares the fraction of ’shape’ decisions
(Y-axis) against ’texture’ decisions (X-axis) for
stimuli where these visual cues conflict. GeoPE
and LinGeoPE consistently shift the model’s
bias towards shape , aligning them closer to hu-
man perception and suggesting a more robust,
holistic visual understanding.

6 CONCLUSION

We propose GeoPE, a framework designed to restore the natural spatial topology disrupted by the
flattening operation in Vision Transformers. By lifting coordinates into 3D Euclidean space using
quaternions, GeoPE introduces a geometrically coupled encoding that effectively distinguishes true
spatial locality from false sequence adjacency. To handle the non-commutativity of quaternions, we
develop a symmetric averaging technique based on Lie theory and derive a Linear GeoPE variant that
preserves relative position inductive biases. Extensive experiments demonstrate that GeoPE not only
boosts performance on 2D and 3D tasks but also significantly enhances shape bias, confirming that
the model has transitioned from relying on local texture statistics to understanding global geometry.
Our work offers a principled path for robust spatial modeling in structured tensor data.
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A QUATERNION ROTATIONAL TRANSFORMATIONS

Quaternions are four-dimensional hypercomplex numbers that can be used to represent rotations in
three-dimensional space. A quaternion contains three imaginary components.

Its standard form is:

p = w + xi+ yj+ zk (10)

It can also be written more compactly as:

p = s+ v (11)

The basic properties of quaternions are:

i2 = j2 = k2 = −1 (12)
ij = −ji = k (13)
jk = −kj = i (14)
ki = −ik = j (15)

We can see that, unlike real or complex numbers, quaternions satisfy anticommutative relations
rather than commutative ones, and therefore their multiplication is non-commutative.For example,
for two quaternions p1 and p2, we have

p1p2 ̸= p2p1. (16)
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Let two quaternions be: p1 = s1 + v1 p2 = s2 + v2, their multiplication formula is:

p1p2 = s1s2 − v1 · v2 + s1v2 + s2v1 + v1 × v2 (17)

where · denotes the dot product and × denotes the cross product.

A rotation in three-dimensional space can be regarded as a function ϕ, which is a mapping from
R3 to itself. For the function ϕ to represent a rotation, it must preserve vector lengths, angles, and
handedness during the transformation.

To preserve lengths, it must satisfy:

Length is preserved.
∥ϕ(p)∥ = ∥p∥ (18)

Angles is preserved.
ϕ(p1) · ϕ(p2) = p1 · p2 (19)

Handedness is preserved.
ϕ(p1)× ϕ(p2) = ϕ(p1 × p2) (20)

Through formula derivation and verification, the following function is shown to satisfy the above
conditions for representing quaternion rotation.

ϕr(p) = rpr−1 (21)

Here, r is a non-zero quaternion, and the argument p of the function can be viewed as a point in
three-dimensional space, that is, a quaternion with a real (or scalar) part equal to zero.

Next, we need to find the expression for the quaternion r such that it corresponds to a rotation
transformation around the rotation axis A by an angle θ. After derivation, a unit quaternion r can
be chosen, and the expression for r is:

r = cos
θ

2
+ sin

θ

2
A (22)

where A is usually represented by i, j, and k.

In summary, to apply a rotation transformation to a three-dimensional point p, which is treated as a
quaternion with a real part of zero, also known as a pure quaternion and imaginary quaternion, via
the quaternion r, one only needs to perform the following calculation:

p′ = rpr−1 (23)

We note that for any non-zero scalar a (e.g., a = −1), the quaternions ar and r represent the same
rotation. This is proven as follows:

(ar)p (ar)−1 = arp
r−1

a
= rp r−1. (24)

Furthermore, the product of two quaternions, r1 and r2, also represents a rotation. Specifically, r1r2
represents the rotation obtained by first applying the rotation r2, followed by r1. The proof is given
by:

r1(r2 p r−1
2 )r−1

1 = (r1r2)p (r−1
2 r−1

1 ) = (r1r2)p (r1r2)
−1. (25)

This property allows us to concatenate an arbitrary number of rotation quaternions into a single
quaternion.

From the above, we can see that quaternion multiplication is not commutative. Thus, for two unit
quaternions r1 and r2, we have

r1r2 ̸= r2r1. (26)

This problem can be addressed using Lie groups and Lie algebras.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B LIE GROUPS AND LIE ALGEBRAS

Lie groups are mathematical objects that possess both group structures and smooth manifold struc-
tures. Elements of a Lie group can undergo transformations in a continuous manner. Common
examples of Lie groups include rotation groups SO(n), special linear groups SL(n,R), and general
linear groups GL(n,R). Among them, rotation groups SO(n) describes rotational operations in an
n-dimensional space. In particular, SO(3) describes rotations in three-dimensional space.

Lie algebras are the tangent spaces of Lie groups, characterizing the local properties of Lie groups
near the identity element. Each Lie group corresponds to a Lie algebra. Lie algebra elements
generate Lie group elements through the exponential map. Conversely, Lie group elements can be
mapped back to the Lie algebra through the logarithm map.

When the Lie group is a matrix group, elements of the Lie algebra typically correspond to in-
finitesimal variations of matrices. For example, the Lie algebra so(3) of the rotation group SO(3)
can be represented using skew-symmetric matrices, which describe infinitesimal rotations in three-
dimensional space.

The multiplication structure of quaternions has an analogous relationship with elements of the Lie
algebra so(3). By mapping quaternions to elements of so(3) via the logarithm map, quaternion
rotations can be described and computed using Lie algebra operations and also addresses the non-
commutativity of quaternion multiplication.

C DERIVATION OF THE SYMMETRIC OPERATOR

This section details the derivation of the closed-form solution for the symmetric rotational operator
r(θh, θw) introduced in Section 3.2.

Our goal is to compute the geometric mean of two base rotations, rh(θh) and rw(θw), using the
log-exp map formalism:

r(θh, θw) = exp

(
1

2
(log(rh(θh)) + log(rw(θw)))

)
(27)

The logarithm map for a unit quaternion r = cos(α) + sin(α)n, where n is a unit vector, is given
by log(r) = αn. The vector αn is an element of the Lie algebra so(3).

The base quaternions are:

rh(θh) = cos

(
θh
2

)
+ sin

(
θh
2

)
j (28)

rw(θw) = cos

(
θw
2

)
+ sin

(
θw
2

)
k (29)

Applying the logarithm map to each, we get:

log(rh(θh)) =
θh
2
j (30)

log(rw(θw)) =
θw
2
k (31)

In the vector space so(3) ∼= R3, these correspond to the vectors (0, θh/2, 0) and (0, 0, θw/2).

We compute the arithmetic mean of these vectors in the Lie algebra:

u =
1

2
(log(rh) + log(rw)) =

1

2

(
θh
2
j+

θw
2
k

)
=

θh
4
j+

θw
4
k (32)

This corresponds to the vector (0, θh/4, θw/4), as stated in the main text.

The exponential map for a Lie algebra vector u is given by exp(u) = cos(∥u∥) + sin(∥u∥) u
∥u∥ .
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First, we compute the norm of our averaged vector u:

∥u∥ =

√(
θh
4

)2

+

(
θw
4

)2

=
1

4

√
θ2h + θ2w (33)

Let us define the coupled phase Θ = 1
2

√
θ2h + θ2w. Then, ∥u∥ = Θ

2 .

Next, we find the corresponding unit axis vector:

u

∥u∥
=

θh
4 j+ θw

4 k
1
4

√
θ2h + θ2w

=
θhj+ θwk√
θ2h + θ2w

=
θh
2Θ

j+
θw
2Θ

k (34)

Finally, applying the exponential map yields the desired symmetric operator:

r = exp(u) = cos

(
Θ

2

)
+ sin

(
Θ

2

)(
θh
2Θ

j+
θw
2Θ

k

)
(35)

This completes the derivation.

D INNER PRODUCT WITH ROTATED VECTORS

This section provides the derivation for the inner product of a vector q with a rotated vector Rk, as
presented in the discussion on the geometric interpretation of attention.

A rotation of a vector k ∈ R3 by an angle A around a unit axis vector n ∈ R3 is given by Rodrigues’
rotation formula:

Rk = k cos(A) + (n× k) sin(A) + n(n · k)(1− cos(A)) (36)

To find the attention score, we compute the inner product of a query vector q with this rotated key
vector:

⟨q,Rk⟩ = ⟨q,k cos(A) + (n× k) sin(A) + n(n · k)(1− cos(A))⟩ (37)
By the linearity of the inner product, we can distribute q across the terms:

⟨q,Rk⟩ = ⟨q,k⟩ cos(A) + ⟨q, (n× k)⟩ sin(A) + ⟨q,n(n · k)⟩(1− cos(A)) (38)

The last term can be simplified:

⟨q,n(n · k)⟩ = (q · n)(n · k) (39)

The middle term involves the scalar triple product, which satisfies the identity a · (b× c) = b · (c×
a) = c · (a× b). Let a = q,b = n, c = k. Then:

⟨q, (n× k)⟩ = k · (q× n) = −k · (n× q) (40)

Substituting these back, we obtain the final expression for the inner product:

⟨q,Rk⟩ = ⟨q,k⟩ cos(A) + (q · n)(k · n)(1− cos(A))− (n× q) · k sin(A) (41)

Note: The sign of the final term may vary depending on the convention used for the scalar triple
product permutation, but the geometric intuition remains the same. The version in the main text is a
common variant.

E LONG-DISTANCE DECAY PROPERTY

A key inductive bias of RoPE, which GeoPE is designed to generalize, is the decay of attention
scores over large relative distances. We demonstrate that GeoPE preserves this behavior by analyz-
ing the structure of the attention score’s dominant term. The leading term in the total attention score
is the sum:

S =

d/3−1∑
i=0

⟨qi,ki⟩ cos(Ai) (42)
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where the angle Ai for the i-th sub-vector is proportional to the relative distance ||∆p|| and a fre-
quency term λ2i/d:

Ai =
1

2

√
(∆ph · λ2i/d)2 + (∆pw · λ2i/d)2 =

1

2
||∆p||λ2i/d (43)

Let D = 1
2 ||∆p|| be the effective distance, ci = ⟨qi,ki⟩ be the feature similarity, and ϕi = λ2i/d.

The sum is S =
∑N−1

i=0 ci cos(Dϕi), where N = d/3.

To show this sum decays with D, we apply summation by parts (Abel transformation). Let hi = ci
and gi = cos(Dϕi). Let Gk =

∑k
i=0 gi be the partial sum of the cosine terms. The total sum is:

S =

N−1∑
i=0

higi = hN−1GN−1 −
N−2∑
i=0

(hi+1 − hi)Gi (44)

By the triangle inequality:

|S| ≤ |hN−1||GN−1|+
N−2∑
i=0

|hi+1 − hi||Gi| (45)

Assuming the feature similarities ci are well-behaved (i.e., bounded and with small successive differ-
ences, a reasonable assumption for trained embeddings), the magnitude of S is primarily controlled
by the magnitude of the partial sums |Gk|.

The partial sum Gk =
∑k

i=0 cos(Dϕi) is a sum of cosines with geometrically increasing frequencies
(ϕi = λ2i/d). For a large distance D, the arguments Dϕi grow rapidly, causing the cosine terms to
oscillate with increasing frequency. Such sums are bounded due to destructive interference. While
a simple closed-form bound is not available as in the arithmetic case (original RoPE), the geometric
progression of frequencies ensures that the terms do not align constructively, keeping |Gk| bounded
for any k. As D → ∞, the oscillations become more rapid, strengthening the cancellation effect.
This implies that the average magnitude of the attention score decays with distance, preserving the
crucial inductive bias for locality, analogous to the property shown in (Su et al., 2024).

F DEGENERATION OF GEOPE TO 1D ROPE

For 1D sequential data, GeoPE gracefully degenerates to a formulation equivalent to the original
RoPE. In a 1D setting, we only have a single position index, say p, and its corresponding phase is
θ = p·λ2i/d. Since there is only one spatial dimension, the log-exp averaging process is unnecessary.
We can define a single base rotation directly. Following the original RoPE, this is a 2D rotation,
which can be embedded in our 3D framework as a rotation around a single fixed axis (e.g., the
y-axis, j).

The rotational quaternion for a phase θ is simply:

r(θ) = cos

(
θ

2

)
+ sin

(
θ

2

)
j (46)

In GeoPE, feature vectors are partitioned into 3D sub-vectors v = (vx, vy, vz). For a 1D application,
we can effectively work with 2D sub-vectors by setting one component to zero, e.g., v = (vx, 0, vz).
This corresponds to a pure quaternion p = vxi+ vzk.

The rotation is applied via the sandwich product p′ = r(θ)pr(θ)∗. The rotation matrix correspond-
ing to r(θ) is a pure rotation around the y-axis:

R(θ) =

(
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

)
(47)

Applying this rotation to our 2D-like sub-vector v′ = R(θ)v:(
v′x
0
v′z

)
=

(
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

)(
vx
0
vz

)
=

(
vx cos(θ) + vz sin(θ)

0
−vx sin(θ) + vz cos(θ)

)
(48)
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This operation is a 2D rotation on the coordinates (vx, vz). The original RoPE applies the ma-

trix
(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
to a pair of features (f1, f2). The resulting transformation is

(
v′x
v′z

)
=(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
vx
vz

)
. By identifying vx with f1 and vz with f2, this is equivalent to the

standard RoPE rotation matrix for an angle of −θ. Thus, GeoPE contains RoPE as a special case,
differing only by a sign convention on the rotation angle.

G THREE DIMENSION EXTENSION

This section details the derivation for the 3D symmetric rotational operator, extending the logic from
Appendix C.

For 3D data with positions (d, h, w), we have three base quaternions corresponding to rotations
about the i, j, and k axes:

rd(θd) = cos

(
θd
2

)
+ sin

(
θd
2

)
i (49)

rh(θh) = cos

(
θh
2

)
+ sin

(
θh
2

)
j (50)

rw(θw) = cos

(
θw
2

)
+ sin

(
θw
2

)
k (51)

We map these to the Lie algebra so(3):

log(rd) =
θd
2
i (52)

log(rh) =
θh
2
j (53)

log(rw) =
θw
2
k (54)

We compute the arithmetic mean of these three vectors:

u =
1

3
(log(rd) + log(rh) + log(rw)) =

θd
6
i+

θh
6
j+

θw
6
k (55)

Next, we compute the norm of this averaged vector u:

∥u∥ =

√(
θd
6

)2

+

(
θh
6

)2

+

(
θw
6

)2

=
1

6

√
θ2d + θ2h + θ2w (56)

Let’s define the 3D composite phase Θ = 1
3

√
θ2d + θ2h + θ2w. Then, ∥u∥ = Θ

2 .

The unit axis vector is:

u

∥u∥
=

θd
6 i+ θh

6 j+ θw
6 k

1
6

√
θ2d + θ2h + θ2w

=
θdi+ θhj+ θwk√

θ2d + θ2h + θ2w
=

θd
3Θ

i+
θh
3Θ

j+
θw
3Θ

k (57)

Finally, applying the exponential map exp(u) = cos(∥u∥) + sin(∥u∥) u
∥u∥ yields the 3D GeoPE

operator:

r = cos

(
Θ

2

)
+ sin

(
Θ

2

)(
θd
3Θ

i+
θh
3Θ

j+
θw
3Θ

k

)
(58)

H ROTARY POSITION EMBEDDING

First, define an input sequence of length N as:

SN = {wi}Ni=1 (59)
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where wi denotes the i-th token in the input sequence.

The embedding representation corresponding to the input sequence SN is denoted as

EN = {xi}Ni=1 (60)

where xi denotes the d-dimensional word embedding vector corresponding to the i-th token wi.

Before performing the self-attention operation, the query, key, and value vectors are computed from
the token embedding vectors while incorporating positional information. The functional representa-
tions are as follows:

qm = fq(xm,m) (61)
kn = fk(xn, n) (62)
vn = fv(xn, n) (63)

where qm denotes the query vector obtained by integrating the positional information m into the
word embedding xm of the m-th token. Similarly, kn and vn represent the key and value vectors,
respectively, obtained by integrating the positional information n into the word embedding xn of the
n-th token.

The conventional approach, known as Absolute Positional Encoding, is to compute a positional
encoding vector pi and add it to the word embedding xi before calculating the query, key, and
value vectors. The positional encoding vector pi is also a d-dimensional vector. This combined
representation is then multiplied by the corresponding transformation matrix Wt:

ft(xi, i) := Wt(xi + pi), t ∈ {q, k, v} (64)

The ROPE method was proposed to effectively utilize the relative positional information between
tokens. It hypothesizes that the inner product operation between the query vector qm and the key
vector kn can be expressed by a function g, whose inputs are the word embedding vectors xm, xn,
and their relative position m− n:

⟨fq(xm,m), fk(xn, n)⟩ = g(xm,xn,m− n) (65)

RoPE identifies an equivalent form of positional encoding such that the above relation holds.

Assume that the dimensionality of the word embedding vectors is two-dimensional d = 2, so that
the geometric properties of vectors in the two-dimensional plane can be utilized. Then, the RoPE
method proposes a form of f and g that satisfies the above relationship as follows:

fq (xm,m) = (Wqxm) eimθ (66)

fk (xn, n) = (Wkxn) e
inθ (67)

g (xm,xn,m− n) = Re
[
(Wqxm) (Wkxn)

∗
ei(m−n)θ

]
(68)

Here, Re denotes the real part of a complex number.

Furthermore, fq can be expressed as the following equation:

fq (xm,m) =

(
cosmθ − sinmθ
sinmθ cosmθ

)(
W

(1,1)
q W

(1,2)
q

W
(2,1)
q W

(2,2)
q

)(
x
(1)
m

x
(2)
m

)

=

(
cosmθ − sinmθ
sinmθ cosmθ

)(
q
(1)
m

q
(2)
m

) (69)
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Similarly, fk can be expressed as the following equation:

fk(xm,m) =

(
cosmθ − sinmθ
sinmθ cosmθ

)(
W

(1,1)
k W

(1,2)
k

W
(2,1)
k W

(2,2)
k

)(
x
(1)
m

x
(2)
m

)

=

(
cosmθ − sinmθ
sinmθ cosmθ

)(
k
(1)
m

k
(2)
m

) (70)

Finally, g(xm,xn,m− n) can be expressed as follows:

g(xm,xn,m− n) =
(
q
(1)
m q

(2)
m

)(
cos((m− n)θ) − sin((m− n)θ)
sin((m− n)θ) cos((m− n)θ)

)(
k
(1)
n

k
(2)
n

)
(71)

I LIMITATIONS

While GeoPE’s core strength lies in its ability to geometrically couple multi-axis position infor-
mation using 3D rotations, this unification represents both an advantage and a constraint. Unlike
some 2D vision-specific inductive biases, GeoPE’s global geometric treatment means it does not
explicitly guarantee properties such as strict translational invariance (which is beneficial for texture
recognition) or pure scale invariance (where distance encoding is perfectly independent of absolute
position). The mixture of spatial features, while improving global structure awareness and shape
bias, may introduce biases that require further investigation and refinement in specific tasks where
isolated axial or translational properties are critical. This trade-off between holistic geometric cou-
pling and maintaining separated 2D axiomatic properties is an inherent architectural choice.

While the Linear GeoPE variant enforces a strict linear inductive bias, but its current implementation
incurs a significant memory footprint, with peak memory allocation increasing by over 200% com-
pared to baselines, despite having similar FLOPs. In contrast, our standard GeoPE shows no such
overhead; its memory usage is nearly identical to APE (less than 2% difference). This overhead is
specific to Linear GeoPE’s need to materialize relative rotation matrices and is an implementation-
level challenge, not a fundamental limitation. We are confident it can be effectively mitigated with
a custom CUDA kernel.

J COMPUTIONAL COST

We further analyzed the computational cost of our proposed methods compared to the standard
Absolute Positional Encoding (APE). Table 4 reports the FLOPs and inference latency using a ViT-
Base backbone with 224 × 224 input resolution. The inference time is measured with a batch size
of 1 on a single NVIDIA A100 GPU to simulate real-world deployment scenarios.

As shown in the table, both GeoPE and LinGeoPE introduce negligible overhead in terms of FLOPs,
maintaining the same theoretical complexity as APE (17.6 GFLOPs). In terms of latency, GeoPE
is highly efficient, achieving an inference speed comparable to APE (≈ 12.4 ms) due to its simple
geometric formulation. However, LinGeoPE exhibits a higher latency (≈ 25.1 ms), roughly 2×
that of the baseline. This increase is attributed to the additional linear transformations required
to dynamically adapt the geometric bias, which, while computationally lightweight (low FLOPs),
introduces memory access overheads during single-batch inference. Despite the increased latency,
we argue that the significant accuracy gains (as shown in previous sections) justify this trade-off for
high-precision applications.

K ADDITIONAL EXPERIMENT
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Table 4: Comparison of Computational Complexity and Inference Latency. Evaluated on ViT-Base
in Float16 with 224× 224 resolution and batch size = 1.

PE Method Resolution FLOPs (G) Latency (ms)

APE (Baseline) 224× 224 17.6 2.4
GeoPE 224× 224 17.6 2.4
LinGeoPE 224× 224 17.6 6.1

Table 5: Top-1 Accuracy (%) comparison on CIFAR-100 and CIFAR-10. All models are trained
from scratch with 32 × 32 resolution. We use an adapted DeiT-III recipe with CE loss for ViTs
(modifying patch size to 4, 400 epochs, strong augmentation) and the standard recipe for Swin
Transformers (window size 4). We report the mean and 95% confidence interval (N = 10).

Backbone PE Method
CIFAR-100 CIFAR-10

Acc (%) CI Acc (%) CI

ViT-Small

APE 70.5 ±0.25 88.2 ±0.12
CPE 71.8 ±0.21 89.1 ±0.09
RoPE-Mixed 72.3 ±0.19 89.6 ±0.08
STRING 72.6 ±0.18 90.0 ±0.08
LieRE 73.1 ±0.15 90.4 ±0.06
GeoPE 73.5 ±0.12 90.8 ±0.07
LinGeoPE 73.9 ±0.11 91.2 ±0.05

ViT-Base

APE 71.2 ±0.28 89.5 ±0.15
CPE 72.4 ±0.24 90.3 ±0.11
RoPE-Mixed 73.0 ±0.20 90.9 ±0.10
STRING 73.5 ±0.19 91.3 ±0.09
LieRE 73.9 ±0.17 91.7 ±0.08
GeoPE 74.4 ±0.15 92.1 ±0.07
LinGeoPE 74.8 ±0.13 92.5 ±0.06

Swin-S

RPB 74.5 ±0.22 92.8 ±0.10
CPE 75.1 ±0.20 93.2 ±0.09
RoPE-Mixed 75.6 ±0.18 93.8 ±0.07
STRING 76.0 ±0.16 94.1 ±0.06
LieRE 76.4 ±0.14 94.5 ±0.05
GeoPE 76.8 ±0.15 94.8 ±0.05
LinGeoPE 77.2 ±0.10 95.1 ±0.04

21


	Introduction
	Related Work
	Methodology
	Generalizing Rotations to 3D Space
	Constructing a Symmetric Operator
	Extension to Three Spatial Dimensions
	Linear Formulation for Relative Position Encoding

	Discussion
	Geometric Interpretation of the GeoPE
	Impact on Attention Patterns and Spatial Awareness

	Experiments
	Image Classification
	Object Detection
	3D Semantic Segmentation
	Shape-Texture Bias Analysis

	Conclusion
	quaternion rotational transformations
	Lie groups and Lie algebras
	Derivation of the Symmetric Operator
	Inner Product with Rotated Vectors
	Long-Distance Decay Property
	Degeneration of GeoPE to 1D RoPE
	Three Dimension Extension
	Rotary Position Embedding
	Limitations
	Computional Cost
	Additional Experiment

