

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEOPE: A UNIFIED GEOMETRIC POSITIONAL EMBEDDING FOR STRUCTURED TENSORS

Anonymous authors

Paper under double-blind review

ABSTRACT

Standard Vision Transformers flatten 2D images into 1D sequences, disrupting the natural spatial topology. While Rotary Positional Embedding (RoPE) excels in 1D, it inherits this limitation, often treating spatially distant patches (e.g., at row edges) as sequence neighbors. Existing 2D approaches typically treat spatial axes independently, failing to decouple this false sequential proximity from true spatial distance. To restore the 2D spatial manifold, we introduce Geometric Positional Embedding (GeoPE), a framework that extends rotations to 3D Euclidean space using quaternions. To overcome non-commutativity and ensure symmetry, GeoPE constructs a unified rotational operator by computing the geometric mean in the Lie algebra. This creates a geometrically coupled encoding that effectively separates spatial dimensions. Extensive experiments on image classification, object detection, and 3D semantic segmentation demonstrate that GeoPE consistently outperforms existing 2D RoPE variants and significantly enhances shape bias, confirming its ability to capture true geometric structure.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has emerged as the backbone of large language models due to its capacity to capture global dependencies and generalize across modalities. However, Transformer lacks an inherent mechanism for sequence order (Devlin et al., 2019; Raffel et al., 2020; Shaw et al., 2018). Conventional positional encodings like Absolute Positional Encodings (APE) (Devlin et al., 2019; Chen et al., 2021) and Relative Positional Encodings (RPE) (Liu et al., 2021; Park et al., 2022; Wu et al., 2021) inject position information but often face trade-offs between flexibility and complexity. Rotary Positional Encoding (RoPE) (Su et al., 2024) overcomes these limitations by rotating query and key vectors in a 2D plane, providing attention with strong length generalization (Jiang et al., 2023; Touvron et al., 2023; Yao, 2024).

With Transformer increasingly applied to vision tasks, researchers have explored extending RoPE to two dimensions (Fang et al., 2024; Lu et al., 2024a;b). However, standard Vision Transformers (ViT) (Dosovitskiy et al., 2020) process images by flattening 2D grids into 1D sequences. This operation creates a geometric mismatch where spatially distant patches (e.g., at row edges) become immediate sequence neighbors. Existing 2D methods often adopt axis-wise designs, processing horizontal and vertical encodings independently or via mixed frequencies (Chu et al., 2024). For instance, Heo et al. (2024) partitions the embedding space to allow independent rotations per axis. Nevertheless, because these axes are not geometrically coupled, such approaches struggle to decouple the false sequential proximity created by flattening from true spatial locality, effectively leaving the weak cross-axis interaction of high-dimensional RoPEs unresolved.

The challenge of modeling this coupling is amplified in multi-modal learning (Dao et al., 2024; Yin et al., 2025; Shu et al., 2023). Some works extend RoPE to higher dimensions via Lie group/algebra frameworks (Appendix B). For example, Liu & Zhou (2025) formalizes RoPE using a maximal abelian subalgebra (MASA) and introduces cross-dimensional interactions through orthogonal basis changes. However, this can overly constrain representations or incur high computational costs. Comminiello et al. (2024) argues that hypercomplex algebras provide essential inductive biases for multidimensional structures. Alternatively, Ostmeier et al. learn dense skew-symmetric matrices to build rotation operators, yet this remains computationally expensive and lacks theoretical guarantees for efficient spatial reconstruction.

We propose Geometric Positional Embedding (GeoPE), which extends RoPE’s 2D complex-plane rotations to 3D Euclidean space using quaternions to strictly model coupled rotations in structured tensors (Section 3.3). Unlike independent axial methods, GeoPE treats spatial dimensions as a unified geometric entity. To overcome the non-commutativity of quaternion multiplication and ensure a consistent spatial prior, we construct a unified rotational operator by computing the symmetric mean in the logarithmic tangent space (Section 3.2). We also propose a linear variant for direct relative encoding (Section 3.4). This method enriches self-attention with a geometrically meaningful understanding of space, thereby fostering superior spatial reasoning and shape awareness (Section 4). Experiments (Section 5) show that GeoPE achieves significant performance gains in classification, detection, and segmentation, while retaining strong extrapolation properties.

2 RELATED WORK

Position Encodings. Transformers lack inherent positional awareness and thus rely on encodings to capture the order of tokens. The original Transformer (Vaswani et al., 2017) employs sinusoidal absolute positional encodings (APE), which generalize poorly to long sequences. In contrast, learnable APE (Shaw et al., 2018) improves flexibility and representation for tasks such as sentence alignment and context modeling. Vision Transformers (ViT) (Dosovitskiy et al., 2020) similarly adopt learnable APE for image patches. Relative positional encodings (RPE) model pairwise token distances, supporting long sequences and cross-sequence dependencies (Liu et al., 2021; Shaw et al., 2018), though naive designs incur quadratic cost. Rotary Positional Encoding (RoPE) (Su et al., 2024) encodes relative positions via complex-plane rotations and is widely used in large language models; however, its performance degrades when extrapolated to much longer contexts. More recent approaches learn semanticized position structures. Contextual positional encodings (CoPE) (Golovneva et al., 2024) enhance reasoning and mathematical capabilities. Abacus embeddings (McLeish et al., 2024) capture numerical structures for arithmetic, while lightweight methods, such as LaPE (Yu et al., 2023), apply adaptive normalization to improve robustness across architectures.

RoPE in Visual Model. RoPE has demonstrated strong extrapolation capabilities in long-text modeling and dialogue, motivating its extension to vision and multimodal tasks (Lu et al., 2024b; Wang et al., 2024; Yao et al., 2024). A straightforward adaptation applies 1D RoPE to ViT variants, as in Hybrid X-former (Jeevan & Sethi, 2022). However, gains are modest and have been validated only on small datasets (e.g., CIFAR, Tiny ImageNet). To better handle 2D inputs, works such as EVA-02 (Fang et al., 2024) and Unified-IO 2 (Lu et al., 2024a) have incorporated axial 2D RoPE into multimodal and diffusion models; however, these fail to capture diagonal interactions. RoPE for ViT (Heo et al., 2024) further proposed RoPE-Mixed, which combines axial frequencies to enhance 2D encodings and downstream performance. However, this approach remains essentially frequency composition, offering only loose dimensional coupling and limited generality. Qin et al. (2023) proposes a Quaternion Product Unit (QPU) that leverages quaternion algebra and the laws of the 3D rotation group ($SO(3)$). By representing 3D rotation data as quaternions, their work demonstrates that complex algebras can effectively maintain geometric structure and achieve superior robustness in rotation-sensitive tasks, which strongly aligns with the geometric approach of GeoPE.

Shape Bias. Cognitive science has shown that humans rely primarily on global shape, rather than texture or color, for object recognition and lexical learning, whereas CNNs exhibit a different tendency. Hosseini et al. (2018) demonstrated that standard CNNs often lack shape bias, instead depending heavily on local texture or color cues. However, Ritter et al. (2017) reported that networks can develop shape preference under certain conditions. To examine this systematically, Geirhos et al. (2018) compared CNNs and humans using style-transferred images with conflicting shape and texture information. While humans consistently prioritize shape, CNNs tend to favor texture. To mitigate this bias, they introduced Stylized-ImageNet, which reduced texture reliance and induced stronger shape bias, yielding models with improved robustness and transferability. These findings suggest that enhancing shape bias can make models more human-like while also strengthening generalization.

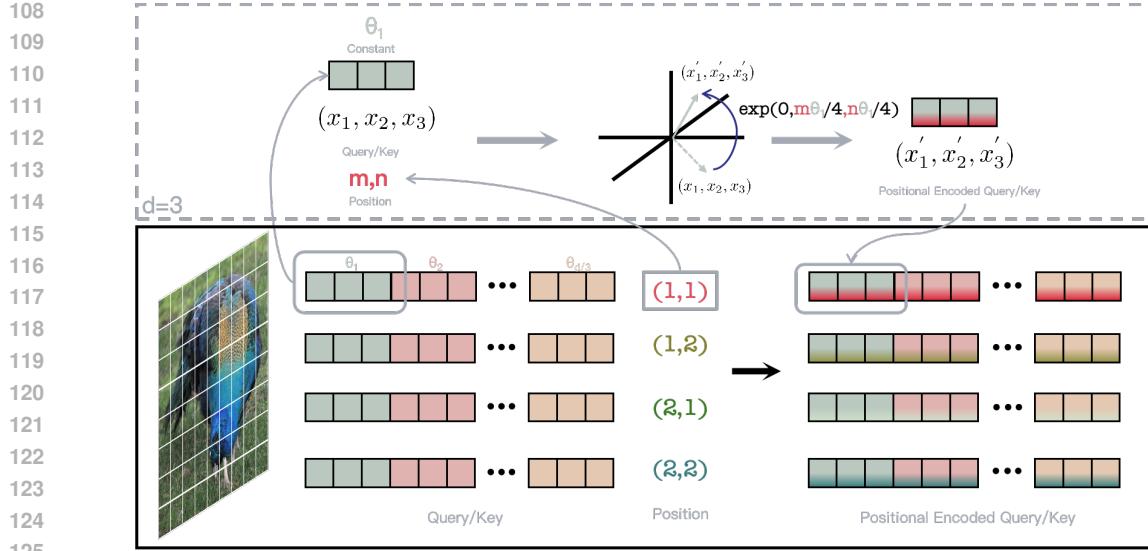


Figure 1: **Geometric Transform of Geometric Positional Embedding (GeoPE)**. This figure illustrates how GeoPE encodes 2D positions (e.g., (m, n)) by extending Rotary Positional Embedding (RoPE) to 3D space using **quaternions**. For each feature sub-vector (x_1, x_2, x_3) , GeoPE calculates the **geometric mean** of the height and width rotations in the **Lie algebra** to create a unified, symmetric rotation operator. This operator then applies a geometrically coupled 3D rotation to the query/key sub-vector via a **sandwich product** ($\mathbf{p}' = \mathbf{r}\mathbf{p}\mathbf{r}^*$) to inject the positional bias.

3 METHODOLOGY

In this section, we detail the formulation and implementation of GeoPE. We first establish the geometric requirements for multi-axial rotation in Section 3.1, then construct a symmetric rotational operator using Lie theory in Section 3.2. Finally, we demonstrate the framework’s extension to 3D in Section 3.3 and propose a linear variant in Section 3.4.

3.1 GENERALIZING ROTATIONS TO 3D SPACE

While RoPE effectively models 1D sequence distance introduced by Appendix H, it cannot distinguish between the ‘sequence neighbors’ created by flattening and true ‘spatial neighbors.’ To resolve this ambiguity, we extend the rotational domain to 3D Euclidean space as illustrated in Figure 1 using quaternions (introduced in Appendix A). By mapping height and width to orthogonal rotational axes (using j and k components), we ensure that sequence-adjacent but spatially-distant patches induce drastically different rotational states, effectively recovering the 2D manifold.

Mathematically, a feature vector $\mathbf{x} \in \mathbb{R}^d$ is first partitioned into $d/3$ sub-vectors, $\{\mathbf{v}_i\}_{i=1}^{d/3}$, where each $\mathbf{v}_i = (v_x, v_y, v_z) \in \mathbb{R}^3$. Each sub-vector \mathbf{v}_i is then “lifted” into the quaternion space \mathbb{H} as a pure quaternion (i.e., a quaternion with a zero scalar part):

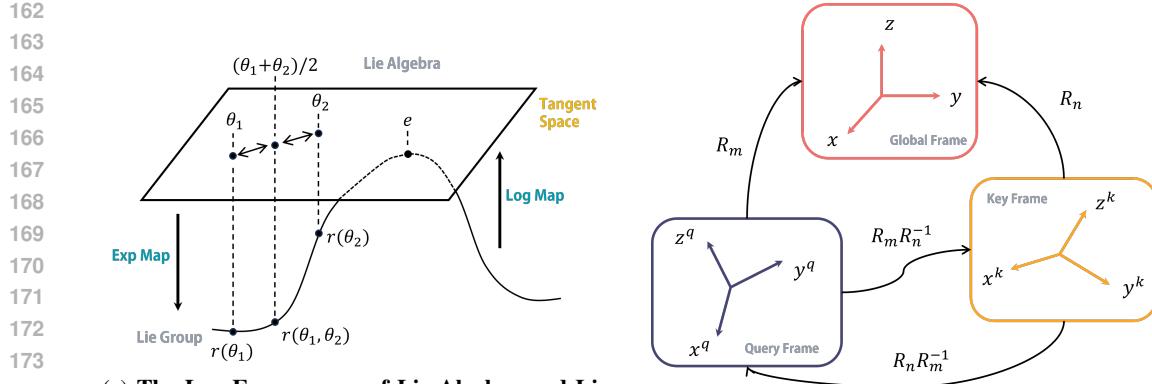
$$\mathbf{p} = 0 + v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k} \quad (1)$$

Given a unit quaternion \mathbf{r} that represents a desired rotation, the transformation of \mathbf{p} is given by the sandwich product:

$$\mathbf{p}' = \mathbf{r}\mathbf{p}\mathbf{r}^* \quad (2)$$

where \mathbf{r}^* is the conjugate of \mathbf{r} , which for a unit quaternion is equivalent to its inverse (\mathbf{r}^{-1}). A crucial property of this operation is that the result \mathbf{p}' remains a pure quaternion. Its vector part corresponds to the rotated vector \mathbf{v}'_i in \mathbb{R}^3 . This rotational operation is, by construction, an isometry for each 3D sub-vector, preserving its norm $\|\mathbf{v}_i\|$.

The rotational quaternion \mathbf{r} is a function of positional indices, e.g., (h, w) for a 2D image, which encode phase information θ_h and θ_w . For a position (p_h, p_w) and a given sub-vector $i \in \{1, \dots, d/3\}$,



(a) The Log-Exp average of Lie Algebra and Lie Group. To ensure symmetry, non-commutative rotations $r(\theta_1), r(\theta_2)$ are mapped to the linear Lie Algebra (Tangent Space, where e is identity element) via the Log Map. An arithmetic mean $(\theta_1 + \theta_2)/2$ is computed, and the result is mapped back to the Lie Group using the Exp Map to produce the symmetric operator $r(\theta_1, \theta_2)$.

(b) The transform of Global Frame and Relative frame. This panel presents two interpretations of the attention score $\langle R_m q, R_n k \rangle$. Global Frame: R_m and R_n transform vectors (q, k) into a shared, absolute Global Frame. Relative Frame: $R_m R_n^{-1}$ is the relative rotation operator that transforms the Key Frame (at n) into the Query Frame (at m).

Figure 2: Illustration of mathematical structure and coordinate transform.

these are defined as $\theta_h = p_h \cdot \lambda^{2i/d}$ and $\theta_w = p_w \cdot \lambda^{2i/d}$, where λ is a chosen base which is set as $\lambda = 100$ as usual(Heo et al., 2024).

3.2 CONSTRUCTING A SYMMETRIC OPERATOR

For 2D data, positional information along the height and width dimensions can be encoded as rotations about distinct axes. A natural choice is to associate them with rotations about the y-axis (**j**) and z-axis (**k**), respectively. This yields two base quaternions:

$$\mathbf{r}_h(\theta_h) = \cos\left(\frac{\theta_h}{2}\right) + \sin\left(\frac{\theta_h}{2}\right) \mathbf{j}, \quad \mathbf{r}_w(\theta_w) = \cos\left(\frac{\theta_w}{2}\right) + \sin\left(\frac{\theta_w}{2}\right) \mathbf{k}$$

A naive composition of these rotations via quaternion multiplication, such as $\mathbf{r}_{hw} = \mathbf{r}_h \mathbf{r}_w$, is ill-suited for our purpose. Quaternion multiplication is non-commutative ($\mathbf{r}_h \mathbf{r}_w \neq \mathbf{r}_w \mathbf{r}_h$), meaning the resulting rotation would be arbitrarily dependent on the chosen order of operations, creating an undesirable symmetric bias between the height and width encodings.(This requirement for symmetry is crucial because GeoPE is specifically designed for structures like 2D images, where the spatial axes are fundamentally isotropic and no axis is privileged, thus necessitating a commutative operator for consistent geometric coupling.)

To construct an operator that treats each spatial dimension symmetrically, we turn to the tools of Lie theory. The core idea is to compute the geometric mean of the rotations. This is achieved by mapping the quaternions from the non-linear Lie group of 3D rotations, $\text{SO}(3)$, to its corresponding linear Lie algebra, $\mathfrak{so}(3)$, via the logarithm map. In this tangent vector space, a simple averaging operation is well-defined and commutative. The result is then mapped back to the Lie group via the exponential map.

Accordingly, we define our symmetric rotational operator \mathbf{r} as:

$$\mathbf{r}(\theta_h, \theta_w) = \exp\left(\frac{1}{2} (\log(\mathbf{r}_h(\theta_h)) + \log(\mathbf{r}_w(\theta_w)))\right) \quad (3)$$

This symmetric coupling ensures that the relative position is not merely a linear combination of independent axes, but a unified geometric transformation. This prevents the model from collapsing the 2D structure back into 1D sequence patterns. As derived in Appendix C, the intermediate averaged vector in the Lie algebra $\mathfrak{so}(3)$ is $(0, \theta_h/4, \theta_w/4)$. The exponential map yields an elegant

216 closed-form solution for the resulting quaternion:
 217

$$218 \quad \mathbf{r} = \cos\left(\frac{\Theta}{2}\right) + \sin\left(\frac{\Theta}{2}\right) \frac{\theta_h}{2\Theta} \mathbf{j} + \sin\left(\frac{\Theta}{2}\right) \frac{\theta_w}{2\Theta} \mathbf{k} \quad (4)$$

220 where $\Theta = \frac{1}{2}\sqrt{\theta_h^2 + \theta_w^2}$. The coupled phase Θ is proportional to the Euclidean distance between
 221 (θ_h, θ_w) and the origin, while the vector components ensure that the influence of each positional
 222 phase remains monotonic. As illustrated in Figure 2a, this log-exp average provides a commutative
 223 and geometrically sound method for combining rotations.

224 The quaternion rotation in Equation 2 is equivalent to a matrix-vector product, $\mathbf{v}' = \mathbf{R}\mathbf{v}$, where $\mathbf{R} \in$
 225 $\text{SO}(3)$ is the rotation matrix corresponding to \mathbf{r} . The complete transformation on a d -dimensional
 226 query vector \mathbf{q} or key vector \mathbf{k} is thus a block-diagonal matrix:

$$227 \quad \mathbf{R}_{\text{GeoPE}} = \begin{pmatrix} \mathbf{R}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{R}_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{R}_{d/3} \end{pmatrix}, \mathbf{R}_i = \begin{pmatrix} \cos(\Theta) & -\frac{\theta_w \sin(\Theta)}{\sqrt{\theta_h^2 + \theta_w^2}} & \frac{\theta_h \sin(\Theta)}{\sqrt{\theta_h^2 + \theta_w^2}} \\ \frac{\theta_w \sin(\Theta)}{\sqrt{\theta_h^2 + \theta_w^2}} & 1 - \frac{\theta_w^2(1 - \cos(\Theta))}{\theta_h^2 + \theta_w^2} & \frac{\theta_h \theta_w(1 - \cos(\Theta))}{\theta_h^2 + \theta_w^2} \\ -\frac{\theta_h \sin(\Theta)}{\sqrt{\theta_h^2 + \theta_w^2}} & \frac{\theta_h \theta_w(1 - \cos(\Theta))}{\theta_h^2 + \theta_w^2} & 1 - \frac{\theta_h^2(1 - \cos(\Theta))}{\theta_h^2 + \theta_w^2} \end{pmatrix}$$

232 where each \mathbf{R}_i is a 3×3 rotation matrix derived from the quaternion \mathbf{r} computed with phases
 233 $(\theta_{h,i}, \theta_{w,i})$ specific to that block. When the structured tensor is one-dimensional, GeoPE as dis-
 234 cussed in Appendix F gracefully degenerates to a 2D rotation equivalent to the original RoPE (Su
 235 et al., 2024). Meanwhile, GeoPE keep long distance decay with projected similarity in Equation 9 as
 236 discussed in Appendix E

238 3.3 EXTENSION TO THREE SPATIAL DIMENSIONS

240 The GeoPE framework extends naturally to three spatial dimensions (e.g., for video data or volu-
 241 metric scans) with positions (d, h, w) . We introduce a third base quaternion for depth, $\mathbf{r}_d(\theta_d) =$
 242 $\cos(\frac{\theta_d}{2}) + \sin(\frac{\theta_d}{2})\mathbf{i}$, and compute the symmetric average of the three rotations:

$$243 \quad \mathbf{r}(\theta_d, \theta_h, \theta_w) = \exp\left(\frac{1}{3}(\log(\mathbf{r}_d) + \log(\mathbf{r}_h) + \log(\mathbf{r}_w))\right) \quad (5)$$

245 This yields the three-dimensional GeoPE operator by results in Appendix G:

$$247 \quad \mathbf{r} = \cos\left(\frac{\Theta}{2}\right) + \sin\left(\frac{\Theta}{2}\right) \left(\frac{\theta_d}{3\Theta} \mathbf{i} + \frac{\theta_h}{3\Theta} \mathbf{j} + \frac{\theta_w}{3\Theta} \mathbf{k} \right) \quad (6)$$

249 where the composite phase is now $\Theta = \frac{1}{3}\sqrt{\theta_d^2 + \theta_h^2 + \theta_w^2}$. This demonstrates the flexibility and
 250 scalability of our proposed geometric approach.

252 3.4 LINEAR FORMULATION FOR RELATIVE POSITION ENCODING

254 A critical property of positional embeddings in Transformer architectures is the ability to encode
 255 relative position, as the attention mechanism is fundamentally relational. For a query \mathbf{q} at position
 256 m and a key \mathbf{k} at position n , the attention score is a function of $\langle \mathbf{R}_m \mathbf{q}, \mathbf{R}_n \mathbf{k} \rangle = \langle \mathbf{q}, \mathbf{R}_m^\top \mathbf{R}_n \mathbf{k} \rangle$.
 257 Ideally, the relative rotation matrix $\mathbf{R}_{m \rightarrow n} = \mathbf{R}_m^\top \mathbf{R}_n$ should depend only on the displacement
 258 $n - m$.

259 Our symmetric operator, while geometrically sound, does not inherently guarantee this linear rela-
 260 tionship in the parameter space. That is, $\mathbf{r}(\theta_h, \theta_w) \neq \mathbf{r}(\phi_h, \phi_w)\mathbf{r}(\theta_h - \phi_h, \theta_w - \phi_w)$. To recover an
 261 inductive bias analogous to the simple phase subtraction in 1D RoPE, we propose a 'Linear GeoPE'
 262 formulation. The core insight is to enforce a linear relationship in the Lie algebra, where rotational
 263 composition is approximated by vector addition. By defining the relative rotation based on the dif-
 264 ference of the Lie algebra vectors, i.e., $\mathbf{u}_{\text{rel}} = \mathbf{u}_k - \mathbf{u}_q$, we ensure the resulting rotation depends on
 265 the simple linear displacement of positional phases, mirroring the behavior of the original RoPE.

266 Let the Lie algebra vectors for a query at position (h_q, w_q) and a key at position (h_k, w_k) be $\mathbf{u}_q =$
 267 $(0, \theta_{h_q}/4, \theta_{w_q}/4)$ and $\mathbf{u}_k = (0, \theta_{h_k}/4, \theta_{w_k}/4)$, respectively. We define the relative Lie algebra
 268 vector as their difference:

$$269 \quad \mathbf{u}_{\text{rel}} = \mathbf{u}_k - \mathbf{u}_q = \left(0, \frac{\theta_{h_k} - \theta_{h_q}}{4}, \frac{\theta_{w_k} - \theta_{w_q}}{4}\right) \quad (7)$$

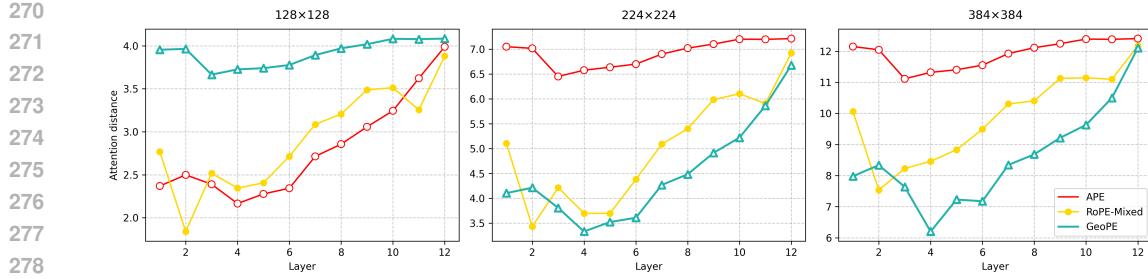


Figure 3: **Mean attention distance as a function of layer depth across different input resolutions.** The distance is computed as the average over attention scores, where query–key spatial distances are weighted by their corresponding attention weights and then normalized. While all methods exhibit an expanding receptive field in deeper layers, APE’s consistently higher distance suggests an inefficient and unfocused global search. In contrast, GeoPE maintains a more moderate distance, indicating a more structured and efficient strategy for balancing local and global information gathering. These relative trends remain consistent across all tested resolutions.

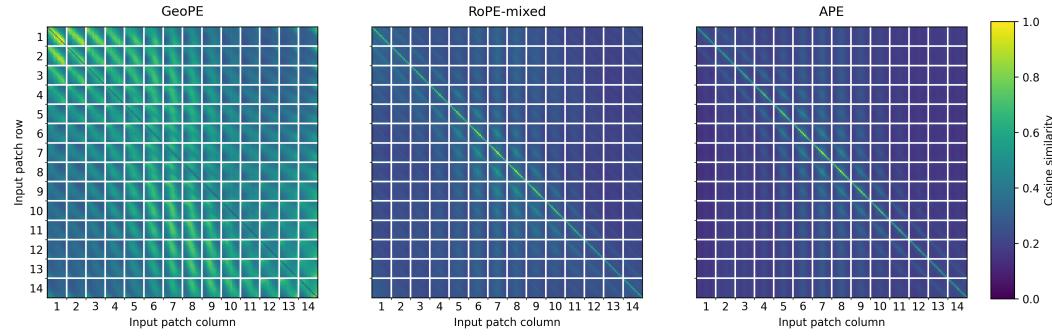


Figure 4: **Attention Map Visualization.** This figure compares the self-attention patterns from the final layer of ViT-Base models, evaluated after pre-training from scratch on ImageNet-1K. The heatmaps visualize the cosine similarity between patch representations, averaged across all attention heads, where the fine-grained patterns within the large squares reflect the feature correlation and similarity among the pixels inside each input patch. APE results in highly localized attention focused on the diagonal. RoPE-mixed shows a more distributed local pattern. In contrast, GeoPE facilitates complex, long-range attention, indicating a significantly more global receptive field. GeoPE’s global attention pattern demonstrates its improved ability to integrate features across the entire image based on geometric structure.

The relative rotation is then obtained by mapping this difference back to the Lie group: $\mathbf{r}_{\text{rel}} = \exp(\mathbf{u}_{\text{rel}})$. This construction ensures that the transformation between any two positions depends solely on their relative displacement.

This allows the attention score to be computed as $\langle \mathbf{q}, \mathbf{R}_{\text{rel}} \mathbf{k} \rangle$. However, unlike the 1D case where the relative rotation matrix is a simple 2D rotation, the 3×3 matrix \mathbf{R}_{rel} is generally dense. Applying this transformation explicitly is computationally more demanding than the standard GeoPE formulation, presenting a trade-off between enforcing a strict linear inductive bias and computational efficiency.

4 DISCUSSION

In this section, we further explore the properties of GeoPE to provide a deeper understanding of its mechanism and impact. We analyze the geometric interpretation of the attention score under 3D rotations and discuss how GeoPE influences the model’s spatial reasoning capabilities.

324 4.1 GEOMETRIC INTERPRETATION OF THE GEOFPE
325

326 GEOFPE enriches the self-attention mechanism by incorporating a geometrically meaningful under-
327 standing of space. The attention score between a query \mathbf{q} at position $m = (h_m, w_m)$ and a key \mathbf{k} at
328 position $n = (h_n, w_n)$ is computed on their rotated counterparts:

$$329 \text{AttnScore}(\mathbf{q}_m, \mathbf{k}_n) = \langle \mathbf{R}_m \mathbf{q}, \mathbf{R}_n \mathbf{k} \rangle = \langle \mathbf{q}, \mathbf{R}_m^\top \mathbf{R}_n \mathbf{k} \rangle \quad (8)$$

330 This formulation offers two powerful, complementary geometric interpretations as shown in Fig-
331 ure 2b.

332 **Global Coordinate Frame.** One perspective is that \mathbf{R}_m and \mathbf{R}_n transform the query and key vectors
333 from their local, position-agnostic feature spaces into a shared global coordinate frame defined by
334 their absolute positions. The inner product is then computed in this global frame, allowing for a
335 direct, spatially-aware comparison.

336 **Relative Coordinate Frame.** Alternatively, and perhaps more intuitively for attention, the term
337 $\mathbf{R}_{\text{rel}} = \mathbf{R}_m^\top \mathbf{R}_n$ can be interpreted as a relative rotation operator. It transforms the key vector \mathbf{k} from
338 its own positional frame at n into the query's positional frame at m . The attention score is thus a
339 measure of feature similarity after aligning the key to the query's geometric context.

340 Unlike the simple phase difference in Heo et al. (2024), this 3D relative rotation depends not only on
341 the magnitude of the displacement $(h_n - h_m, w_n - w_m)$ but also on the direction of displacement.
342 The attention score is governed by the inner product of a vector with its rotated version, which,
343 according to Rodrigues' rotation formula, is a function of both the angle and the axis of this relative
344 rotation. For a rotation of angle A about an axis \mathbf{n} , the inner product as discussed in Appendix D
345 becomes:

$$346 \langle \mathbf{q}, \mathbf{R}_{\text{rel}} \mathbf{k} \rangle = \underbrace{\langle \mathbf{q}, \mathbf{k} \rangle \cos(A)}_{\text{Projected Similarity}} + \underbrace{(\mathbf{q} \cdot \mathbf{n})(\mathbf{k} \cdot \mathbf{n})(1 - \cos(A))}_{\text{Axial Alignment}} - \underbrace{(\mathbf{n} \times \mathbf{q}) \cdot \mathbf{k} \sin(A)}_{\text{Torsional Component}} \quad (9)$$

347 This decomposition provides a clear geometric intuition. The Projected Similarity term general-
348 izes RoPE by modulating similarity based on displacement magnitude (via angle A). Crucially, the
349 Axial Alignment term adds sensitivity to the direction of displacement (via axis n). Unlike 1D-
350 based methods that primarily encode scalar distance (which can be misleading due to flattening),
351 this term allows the attention mechanism to explicitly differentiate between vertical and horizontal
352 relationships.

353 Consequently, the Torsional Component captures the relative spatial orientation. This equips the
354 model with a geometric directional prior, enabling it to recognize shape boundaries defined by spe-
355 cific directional transitions (e.g., corners and edges) rather than just local texture continuity found in
356 the flattened sequence.

357 For Linear GEOFPE, the angle A_i and axis \mathbf{n}_i for the i -th sub-vector are defined as:

$$358 A_i = \frac{1}{2} \sqrt{(\Delta\theta_{h,i})^2 + (\Delta\theta_{w,i})^2}, \quad \mathbf{n}_i = \frac{\frac{\Delta\theta_{h,i}}{4} \mathbf{j} + \frac{\Delta\theta_{w,i}}{4} \mathbf{k}}{\frac{1}{4} \sqrt{(\Delta\theta_{h,i})^2 + (\Delta\theta_{w,i})^2}} = \frac{\Delta\theta_{h,i} \mathbf{j} + \Delta\theta_{w,i} \mathbf{k}}{\sqrt{(\Delta\theta_{h,i})^2 + (\Delta\theta_{w,i})^2}}$$

359 where $\Delta\theta_{h,i} = \theta_{h_k,i} - \theta_{h_q,i} = (p_{h_k} - p_{h_q}) \cdot \lambda^{2i/d} = \Delta p_h \cdot \lambda^{2i/d}$ and $\Delta\theta_{w,i} = \theta_{w_k,i} - \theta_{w_q,i} =$
360 $(p_{w_k} - p_{w_q}) \cdot \lambda^{2i/d} = \Delta p_w \cdot \lambda^{2i/d}$. This shows that the interaction is a complex blend of the original
361 similarity $\langle \mathbf{q}, \mathbf{k} \rangle$ and terms modulated by the alignment of the vectors with the relative rotation axis,
362 endowing the model with a richer, more expressive spatial bias.

363 4.2 IMPACT ON ATTENTION PATTERNS AND SPATIAL AWARENESS

364 We hypothesize that GEOFPE's geometric inductive bias fosters more effective spatial reasoning by
365 enabling more meaningful attention patterns. Our analyses support this: models equipped with
366 GEOFPE exhibit longer attention distances in Figure 3 and more global attention maps in Figure 4.
367 This behavior allows the model to capture long-range dependencies and integrate information across
368 the entire spatial domain, rather than focusing only on local texture. We posit that this enhanced
369 global awareness directly contributes to the performance gains and improved shape-texture bias
370 observed in our experiments.

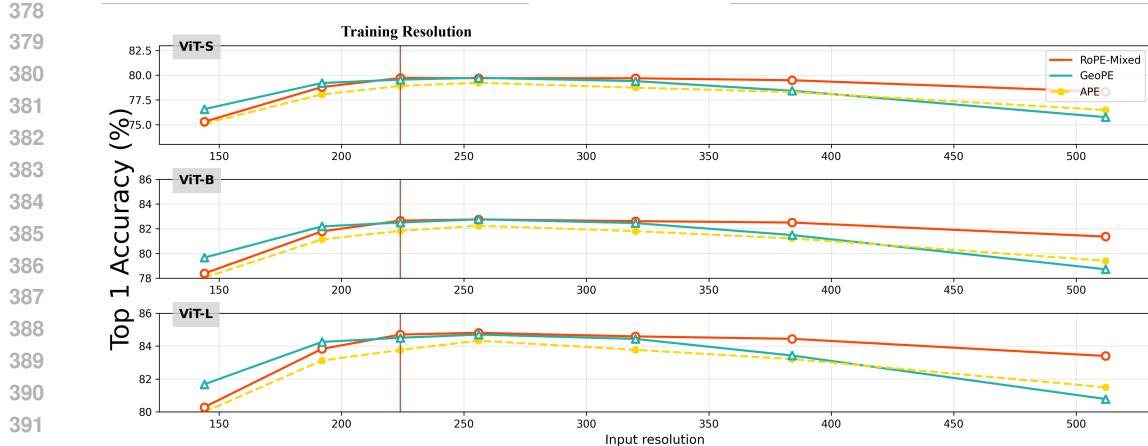


Figure 5: **Generalization performance to unseen input resolutions for ViT-S, -B, and -L models.** All models are trained at a fixed 224x224 resolution (marked by the vertical line) and evaluated on a range of different resolutions. Absolute Positional Embedding (APE) fails to generalize, with its accuracy collapsing at higher resolutions. In contrast, relative embeddings like RoPE-Mixed and GeoPE show strong robustness as their performance degrades gracefully, highlighting their suitability for real-world applications with variable input sizes.

5 EXPERIMENTS

We validate our methods, GeoPE and Linear GeoPE, through comprehensive experiments on image classification, object detection, and 3D semantic segmentation, benchmarking them against standard baselines and existing 2D rotational embeddings.

5.1 IMAGE CLASSIFICATION

We evaluate our methods on the ImageNet-1K classification task using Vision Transformer (ViT) (Dosovitskiy et al., 2020) and Swin Transformer (Liu et al., 2021) backbones, following the DeiT3 training protocol (Armeni et al., 2016b) with CE loss with fixed random seed(3407) Picard (2023). We additionally provide more reliable experiments in the Appendix K.

As shown in Table 1, GeoPE consistently improves Top-1 accuracy across all backbones. It outperforms standard baselines like APE and CPE (Chu et al., 2021) on ViT models and matches or exceeds the performance of PRB and Rope-Mixed (Heo et al., 2024) on Swin Transformers, demonstrating the broad applicability of its geometric prior. Furthermore, as depicted in Figure 5, Linear GeoPE exhibits exceptional zero-shot inference capabilities across multiple resolutions, confirming its superior extrapolation properties as a natural high-dimensional extension of RoPE (Su et al., 2024).

5.2 OBJECT DETECTION

To assess GeoPE’s impact on tasks requiring fine-grained spatial awareness, we evaluate it on the MS-COCO (Lin et al., 2014) object detection benchmark. We integrate GeoPE into the DINO-ViTDet (Zhang et al., 2022) framework, a strong object detection pipeline.

Table 2 shows that GeoPE consistently improves mAP for both ViT-B and ViT-L backbones. Compared with APE and Rope-Mixed (Heo et al., 2024), GeoPE provides the largest relative gains, highlighting the importance of explicit geometric priors in capturing global spatial relationships critical for accurate object detection.

432
 433 Table 1: Comparison of different Positional Encodings (PE) on ImageNet-1K. ViTs follow the recipe
 434 protocol, and Swin Transformers follow their original protocol. **Bold** denotes the best result in each
 435 group.

	Backbone	Resolution	PE Method	Top-1 Acc
438	ViT-Small	192 × 192	GeoPE	78.5
		192 × 192	LinGeoPE	78.8
	440	224 × 224	APE	79.9
		224 × 224	CPE	80.7
		224 × 224	GeoPE	81.2
444	445	224 × 224	APE	81.3
		224 × 224	CPE	82.2
		224 × 224	GeoPE	82.5
	448	224 × 224	APE	83.3
		224 × 224	CPE	83.6
		224 × 224	GeoPE	83.9
452	453	224 × 224	RPB	83.0
		224 × 224	Rope-Mixed	83.4
		224 × 224	GeoPE	83.5
	456	224 × 224	RPB	83.5
		224 × 224	Rope-Mixed	83.8
		224 × 224	GeoPE	83.6

460 5.3 3D SEMANTIC SEGMENTATION

462 To verify the hypothesis that GeoPE is suitable for any structured tensor data where spatial
 463 relationships are paramount, we apply it to 3D point cloud segmentation on the S3DIS dataset (Armeni
 464 et al., 2016b). We incorporate GeoPE into the Point Transformer architecture.

465 As reported in Table 3, GeoPE improves all major metrics, including overall accuracy, mean class
 466 accuracy, and mean IoU, relative to the RPE baseline. These improvements confirm that explicitly
 467 encoding multi-axis spatial relationships allows the model to better capture 3D geometric structures,
 468 validating the general applicability of GeoPE beyond 2D vision tasks.

471 5.4 SHAPE-TEXTURE BIAS ANALYSIS

473 To provide a deeper insight into how GeoPE enhances spatial reasoning, we conduct an analysis
 474 of the model’s shape-texture bias. A strong shape bias—the tendency to prioritize global object
 475 structure over local texture in decision-making—is a critical characteristic correlated with superior
 476 robustness and generalization capabilities. We assess this property using the rigorous methodology
 477 proposed by Geirhos et al. (2018), which employs specially constructed cue-conflict stimuli (images
 478 where texture and object shape point to conflicting categories) to explicitly quantify the model’s
 479 decision preference.

480 As illustrated in Figure 6, GeoPE consistently shifts the model towards a stronger Shape Bias. Stan-
 481 dard positional encodings often overfit to texture because the flattened sequence preserves local
 482 texture statistics even across unnatural boundaries (like row edges).

483 By enforcing a strict 3D geometric coupling, GeoPE penalizes attention to these ‘false sequence
 484 neighbors’ and rewards alignment with the true 2D structure. This result confirms that our method
 485 successfully mitigates the topological disruption of flattening, transitioning the model from a texture-
 biased sequence learner to a shape-aware geometric learner.

486
 487 Table 2: This table reports MSCOCO(Lin
 488 et al., 2014) detection performance (box AP).
 489 DINO(Zhang et al., 2022) is trained under
 490 the 12-epoch DINO-ViTDet setting(Ren et al.,
 491 2023). For GeoPE, we apply it to the ViT back-
 492 bone, which is pre-trained on ImageNet-1K us-
 493 ing the 400-epoch DeiT-III recipe.
 494

Backbone	PE	mAP
ViT-base	APE	49.4
	Rope-Mixed	51.2
	GeoPE	51.3
ViT-large	APE	51.1
	Rope-Mixed	52.9
	GeoPE	53.1

502
 503
 504 Table 3: Semantic segmentation performance
 505 on the S3DIS dataset(Armeni et al., 2016a),
 506 evaluated using 6-fold cross-validation.
 507

Backbone	PE	OA	mAcc	mIoU
Point-Transformer	RPE	90.2	81.9	73.5
	GeoPE	90.5	82.1	74.4

6 CONCLUSION

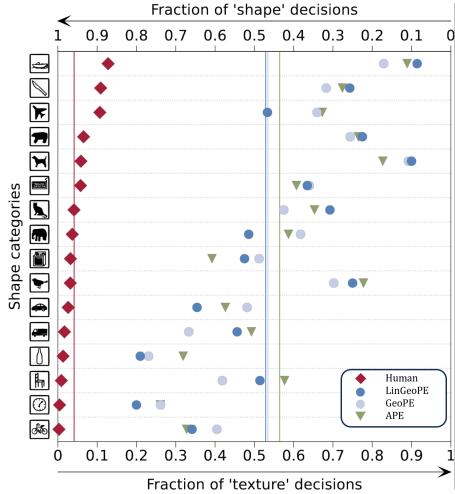
516 We propose GeoPE, a framework designed to restore the natural spatial topology disrupted by the
 517 flattening operation in Vision Transformers. By lifting coordinates into 3D Euclidean space using
 518 quaternions, GeoPE introduces a geometrically coupled encoding that effectively distinguishes true
 519 spatial locality from false sequence adjacency. To handle the non-commutativity of quaternions, we
 520 develop a symmetric averaging technique based on Lie theory and derive a Linear GeoPE variant that
 521 preserves relative position inductive biases. Extensive experiments demonstrate that GeoPE not only
 522 boosts performance on 2D and 3D tasks but also significantly enhances shape bias, confirming that
 523 the model has transitioned from relying on local texture statistics to understanding global geometry.
 524 Our work offers a principled path for robust spatial modeling in structured tensor data.

REPRODUCIBILITY STATEMENT

529 We have made extensive efforts to ensure the reproducibility of our work. The main paper pro-
 530 vides detailed descriptions of the proposed method, model architectures, and training procedures.
 531 Additional experimental details, ablation studies, and theoretical derivations are included in the Ap-
 532 pendix. We also provide the complete data preprocessing steps and hyperparameter configurations
 533 in the supplementary material. Furthermore, we submit the anonymized source code and training
 534 scripts as supplementary material to facilitate replication of all reported results.

ETHICAL STATEMENT

536 We used a large language model to improve the grammar and clarity of the paper’s text. All research
 537 ideas, experiments, and analyses are our own.
 538



508 Figure 6: **Shape Bias Relation Analysis.** This
 509 figure analyzes the decision bias of ViT-Small
 510 models, pre-trained from scratch on ImageNet-
 511 1K, using a cue-conflict methodology. The
 512 plot compares the fraction of 'shape' decisions
 513 (Y-axis) against 'texture' decisions (X-axis) for
 514 stimuli where these visual cues conflict. GeoPE
 515 and LinGeoPE consistently shift the model's
 516 bias towards shape , aligning them closer to hu-
 517 man perception and suggesting a more robust,
 518 holistic visual understanding.

540 REFERENCES
541

- 542 Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
543 Savarese. 3d semantic parsing of large-scale indoor spaces. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016a.
- 545 Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
546 Savarese. 3d semantic parsing of large-scale indoor spaces. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1534–1543, 2016b.
- 548 Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli, Hyung Won Chung, Yin-Wen Chang, and Chun-
549 Sung Ferng. A simple and effective positional encoding for transformers. *arXiv preprint arXiv:2104.08698*, 2021.
- 552 Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional
553 encodings for vision transformers. *arXiv preprint arXiv:2102.10882*, 2021.
- 555 Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama interface
556 for vision tasks. *CoRR*, 2024.
- 557 Danilo Comminiello, Eleonora Grassucci, Danilo P. Mandic, and Aurelio Uncini. Demystifying
558 the hypercomplex: Inductive biases in hypercomplex deep learning. *IEEE Signal Processing Magazine*, 41(3):59–71, 2024. doi: 10.1109/MSP.2024.3401622.
- 560 Hong N Dao, Tuyen Nguyen, Cherubin Mugisha, and Incheon Paik. A multimodal transfer learning
561 approach using pubmedclip for medical image classification. *IEEE Access*, 12:75496–75507,
562 2024.
- 564 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
565 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language
566 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
- 568 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
569 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
570 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- 573 Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02: A
574 visual representation for neon genesis. *Image and Vision Computing*, 149:105171, 2024.
- 576 Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
577 Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves
578 accuracy and robustness. In *International conference on learning representations*, 2018.
- 579 Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Contextual position en-
580 coding: Learning to count what's important. *arXiv preprint arXiv:2405.18719*, 2024.
- 581 Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision
582 transformer. In *European Conference on Computer Vision*, pp. 289–305. Springer, 2024.
- 584 Hossein Hosseini, Baichen Xiao, Mayoore Jaiswal, and Radha Poovendran. Assessing shape bias
585 property of convolutional neural networks. In *Proceedings of the IEEE Conference on Computer
586 Vision and Pattern Recognition Workshops*, pp. 1923–1931, 2018.
- 587 Pranav Jeevan and Amit Sethi. Resource-efficient hybrid x-formers for vision. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 2982–2990, 2022.
- 589 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
590 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
591 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
592 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

- 594 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 595 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 596 *conference on computer vision*, pp. 740–755. Springer, 2014.
- 597
- 598 Haiping Liu and Hongpeng Zhou. Rethinking rope: A mathematical blueprint for n-dimensional
 599 positional encoding. *arXiv preprint arXiv:2504.06308*, 2025.
- 600
- 601 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 602 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 603 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
- 604
- 605 Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek
 606 Hoiem, and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with
 607 vision language audio and action. In *Proceedings of the IEEE/CVF Conference on Computer*
 608 *Vision and Pattern Recognition*, pp. 26439–26455, 2024a.
- 609
- 610 Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. Fit:
 611 Flexible vision transformer for diffusion model. *arXiv preprint arXiv:2402.12376*, 2024b.
- 612
- 613 Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian Bartoldson, Bhavya
 614 Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
 arithmetic with the right embeddings. *Advances in Neural Information Processing Systems*, 37:
 615 108012–108041, 2024.
- 616
- 617 Sophie Ostmeier, Brian Axelrod, Maya Varma, Michael Moseley, Akshay S Chaudhari, and Curtis
 618 Langlotz. Liere: Lie rotational positional encodings. In *Forty-second International Conference*
 619 *on Machine Learning*.
- 620
- 621 Wonpyo Park, Woonggi Chang, Donggeon Lee, Juntae Kim, and Seung-won Hwang. Grpe: Relative
 622 positional encoding for graph transformer. *arXiv preprint arXiv:2201.12787*, 2022.
- 623
- 624 David Picard. Torch.manual_{seed}(3407) is all you need : On the influence of random seeds in deep learning architectures for co-
 625 Shaofei Qin, Xuan Zhang, Hongteng Xu, and Yi Xu. Fast quaternion product units for learning
 626 disentangled representations in $\mathbb{SO}(3)$. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(4):4504–4520, 2023. 10.1109/TPAMI.2022.3202217.
- 627
- 628 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 629 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 630 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- 631
- 632 Tianhe Ren, Shilong Liu, Feng Li, Hao Zhang, Ailing Zeng, Jie Yang, Xingyu Liao, Ding Jia,
 633 Hongyang Li, He Cao, Jianan Wang, Zhaoyang Zeng, Xianbiao Qi, Yuhui Yuan, Jianwei Yang, and
 634 Lei Zhang. detrex: Benchmarking detection transformers, 2023. URL <https://arxiv.org/abs/2306.07265>.
- 635
- 636 Samuel Ritter, David GT Barrett, Adam Santoro, and Matt M Botvinick. Cognitive psychology for
 637 deep neural networks: A shape bias case study. In *International conference on machine learning*,
 638 pp. 2940–2949. PMLR, 2017.
- 639
- 640 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
 641 tions. *arXiv preprint arXiv:1803.02155*, 2018.
- 642
- 643 Changyong Shu, Jiajun Deng, Fisher Yu, and Yifan Liu. 3dppe: 3d point positional encoding for
 644 transformer-based multi-camera 3d object detection. In *Proceedings of the IEEE/CVF International*
 645 *Conference on Computer Vision*, pp. 3580–3589, 2023.
- 646
- 647 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 648 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
- 649
- 650 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 651 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 652 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 649 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
 650 *processing systems*, 30, 2017.

651
 652 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 653 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 654 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

655 Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and Hongyang Chao. Rethinking and improving
 656 relative position encoding for vision transformer. In *Proceedings of the IEEE/CVF international*
 657 *conference on computer vision*, pp. 10033–10041, 2021.

658
 659 Yupu Yao. Generalize neural network through smooth hypothesis function. In *The Second*
 660 *Tiny Papers Track at ICLR 2024*, 2024. URL <https://openreview.net/forum?id=RpiKMGaK3>.

661
 662 Yupu Yao, Shangqi Deng, Zihan Cao, Harry Zhang, and Liang-Jian Deng. Apla: Additional
 663 perturbation for latent noise with adversarial training enables consistency, 2024. URL <https://arxiv.org/abs/2308.12605>.

664
 665 Hao Yin, Guangzong Si, and Zilei Wang. Clearsight: Visual signal enhancement for object halluci-
 666 nation mitigation in multimodal large language models. In *Proceedings of the Computer Vision and*
 667 *Pattern Recognition Conference*, pp. 14625–14634, 2025.

668
 669 Runyi Yu, Zhennan Wang, Yinhuai Wang, Kehan Li, Chang Liu, Haoyi Duan, Xiangyang Ji, and
 670 Jie Chen. Lape: Layer-adaptive position embedding for vision transformers with independent layer
 671 normalization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 672 5886–5896, 2023.

673
 674 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
 675 Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. *arXiv*
 676 *preprint arXiv:2203.03605*, 2022.

677 A QUATERNION ROTATIONAL TRANSFORMATIONS

678
 679 Quaternions are four-dimensional hypercomplex numbers that can be used to represent rotations in
 680 three-dimensional space. A quaternion contains three imaginary components.

681
 682 Its standard form is:

$$683 \mathbf{p} = w + xi + yj + zk \quad (10)$$

684
 685 It can also be written more compactly as:

$$686 \mathbf{p} = s + \mathbf{v} \quad (11)$$

687
 688 The basic properties of quaternions are:

$$689 \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1 \quad (12)$$

$$690 \mathbf{ij} = -\mathbf{ji} = \mathbf{k} \quad (13)$$

$$691 \mathbf{jk} = -\mathbf{kj} = \mathbf{i} \quad (14)$$

$$692 \mathbf{ki} = -\mathbf{ik} = \mathbf{j} \quad (15)$$

693
 694 We can see that, unlike real or complex numbers, quaternions satisfy anticommutative relations
 695 rather than commutative ones, and therefore their multiplication is non-commutative. For example,
 696 for two quaternions \mathbf{p}_1 and \mathbf{p}_2 , we have

$$697 \mathbf{p}_1 \mathbf{p}_2 \neq \mathbf{p}_2 \mathbf{p}_1. \quad (16)$$

702 Let two quaternions be: $\mathbf{p}_1 = s_1 + \mathbf{v}_1$ $\mathbf{p}_2 = s_2 + \mathbf{v}_2$, their multiplication formula is:
 703

$$704 \quad \mathbf{p}_1 \mathbf{p}_2 = s_1 s_2 - \mathbf{v}_1 \cdot \mathbf{v}_2 + s_1 \mathbf{v}_2 + s_2 \mathbf{v}_1 + \mathbf{v}_1 \times \mathbf{v}_2 \quad (17)$$

706 where \cdot denotes the dot product and \times denotes the cross product.
 707

708 A rotation in three-dimensional space can be regarded as a function ϕ , which is a mapping from
 709 \mathbb{R}^3 to itself. For the function ϕ to represent a rotation, it must preserve vector lengths, angles, and
 710 handedness during the transformation.

711 To preserve lengths, it must satisfy:

712 Length is preserved.

$$713 \quad \|\phi(\mathbf{p})\| = \|\mathbf{p}\| \quad (18)$$

715 Angles is preserved.

$$716 \quad \phi(\mathbf{p}_1) \cdot \phi(\mathbf{p}_2) = \mathbf{p}_1 \cdot \mathbf{p}_2 \quad (19)$$

718 Handedness is preserved.

$$719 \quad \phi(\mathbf{p}_1) \times \phi(\mathbf{p}_2) = \phi(\mathbf{p}_1 \times \mathbf{p}_2) \quad (20)$$

720 Through formula derivation and verification, the following function is shown to satisfy the above
 721 conditions for representing quaternion rotation.

$$722 \quad \phi_{\mathbf{r}}(\mathbf{p}) = \mathbf{r} \mathbf{p} \mathbf{r}^{-1} \quad (21)$$

724 Here, \mathbf{r} is a non-zero quaternion, and the argument \mathbf{p} of the function can be viewed as a point in
 725 three-dimensional space, that is, a quaternion with a real (or scalar) part equal to zero.
 726

727 Next, we need to find the expression for the quaternion \mathbf{r} such that it corresponds to a rotation
 728 transformation around the rotation axis \mathbf{A} by an angle θ . After derivation, a unit quaternion \mathbf{r} can
 729 be chosen, and the expression for \mathbf{r} is:

$$730 \quad \mathbf{r} = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} \mathbf{A} \quad (22)$$

732 where \mathbf{A} is usually represented by \mathbf{i} , \mathbf{j} , and \mathbf{k} .

734 In summary, to apply a rotation transformation to a three-dimensional point \mathbf{p} , which is treated as a
 735 quaternion with a real part of zero, also known as a pure quaternion and imaginary quaternion, via
 736 the quaternion \mathbf{r} , one only needs to perform the following calculation:

$$737 \quad \mathbf{p}' = \mathbf{r} \mathbf{p} \mathbf{r}^{-1} \quad (23)$$

739 We note that for any non-zero scalar a (e.g., $a = -1$), the quaternions $a\mathbf{r}$ and \mathbf{r} represent the same
 740 rotation. This is proven as follows:

$$742 \quad (a\mathbf{r}) \mathbf{p} (a\mathbf{r})^{-1} = a\mathbf{r} \mathbf{p} \frac{\mathbf{r}^{-1}}{a} = \mathbf{r} \mathbf{p} \mathbf{r}^{-1}. \quad (24)$$

744 Furthermore, the product of two quaternions, \mathbf{r}_1 and \mathbf{r}_2 , also represents a rotation. Specifically, $\mathbf{r}_1 \mathbf{r}_2$
 745 represents the rotation obtained by first applying the rotation \mathbf{r}_2 , followed by \mathbf{r}_1 . The proof is given
 746 by:
 747

$$748 \quad \mathbf{r}_1 (\mathbf{r}_2 \mathbf{p} \mathbf{r}_2^{-1}) \mathbf{r}_1^{-1} = (\mathbf{r}_1 \mathbf{r}_2) \mathbf{p} (\mathbf{r}_2^{-1} \mathbf{r}_1^{-1}) = (\mathbf{r}_1 \mathbf{r}_2) \mathbf{p} (\mathbf{r}_1 \mathbf{r}_2)^{-1}. \quad (25)$$

750 This property allows us to concatenate an arbitrary number of rotation quaternions into a single
 751 quaternion.

752 From the above, we can see that quaternion multiplication is not commutative. Thus, for two unit
 753 quaternions \mathbf{r}_1 and \mathbf{r}_2 , we have

$$754 \quad \mathbf{r}_1 \mathbf{r}_2 \neq \mathbf{r}_2 \mathbf{r}_1. \quad (26)$$

755 This problem can be addressed using Lie groups and Lie algebras.

756 **B LIE GROUPS AND LIE ALGEBRAS**

757
 758 Lie groups are mathematical objects that possess both group structures and smooth manifold struc-
 759 tures. Elements of a Lie group can undergo transformations in a continuous manner. Common
 760 examples of Lie groups include rotation groups $SO(n)$, special linear groups $SL(n, \mathbb{R})$, and general
 761 linear groups $GL(n, \mathbb{R})$. Among them, rotation groups $SO(n)$ describes rotational operations in an
 762 n -dimensional space. In particular, $SO(3)$ describes rotations in three-dimensional space.

763 Lie algebras are the tangent spaces of Lie groups, characterizing the local properties of Lie groups
 764 near the identity element. Each Lie group corresponds to a Lie algebra. Lie algebra elements
 765 generate Lie group elements through the exponential map. Conversely, Lie group elements can be
 766 mapped back to the Lie algebra through the logarithm map.

767 When the Lie group is a matrix group, elements of the Lie algebra typically correspond to in-
 768 finitesimal variations of matrices. For example, the Lie algebra $\mathfrak{so}(3)$ of the rotation group $SO(3)$
 769 can be represented using skew-symmetric matrices, which describe infinitesimal rotations in three-
 770 dimensional space.

771 The multiplication structure of quaternions has an analogous relationship with elements of the Lie
 772 algebra $\mathfrak{so}(3)$. By mapping quaternions to elements of $\mathfrak{so}(3)$ via the logarithm map, quaternion
 773 rotations can be described and computed using Lie algebra operations and also addresses the non-
 774 commutativity of quaternion multiplication.

775 **C DERIVATION OF THE SYMMETRIC OPERATOR**

776 This section details the derivation of the closed-form solution for the symmetric rotational operator
 777 $\mathbf{r}(\theta_h, \theta_w)$ introduced in Section 3.2.

778 Our goal is to compute the geometric mean of two base rotations, $\mathbf{r}_h(\theta_h)$ and $\mathbf{r}_w(\theta_w)$, using the
 779 log-exp map formalism:

$$780 \mathbf{r}(\theta_h, \theta_w) = \exp \left(\frac{1}{2} (\log(\mathbf{r}_h(\theta_h)) + \log(\mathbf{r}_w(\theta_w))) \right) \quad (27)$$

781 The logarithm map for a unit quaternion $\mathbf{r} = \cos(\alpha) + \sin(\alpha)\mathbf{n}$, where \mathbf{n} is a unit vector, is given
 782 by $\log(\mathbf{r}) = \alpha\mathbf{n}$. The vector $\alpha\mathbf{n}$ is an element of the Lie algebra $\mathfrak{so}(3)$.

783 The base quaternions are:

$$784 \mathbf{r}_h(\theta_h) = \cos \left(\frac{\theta_h}{2} \right) + \sin \left(\frac{\theta_h}{2} \right) \mathbf{j} \quad (28)$$

$$785 \mathbf{r}_w(\theta_w) = \cos \left(\frac{\theta_w}{2} \right) + \sin \left(\frac{\theta_w}{2} \right) \mathbf{k} \quad (29)$$

786 Applying the logarithm map to each, we get:

$$787 \log(\mathbf{r}_h(\theta_h)) = \frac{\theta_h}{2} \mathbf{j} \quad (30)$$

$$788 \log(\mathbf{r}_w(\theta_w)) = \frac{\theta_w}{2} \mathbf{k} \quad (31)$$

802 In the vector space $\mathfrak{so}(3) \cong \mathbb{R}^3$, these correspond to the vectors $(0, \theta_h/2, 0)$ and $(0, 0, \theta_w/2)$.

803 We compute the arithmetic mean of these vectors in the Lie algebra:

$$804 \mathbf{u} = \frac{1}{2} (\log(\mathbf{r}_h) + \log(\mathbf{r}_w)) = \frac{1}{2} \left(\frac{\theta_h}{2} \mathbf{j} + \frac{\theta_w}{2} \mathbf{k} \right) = \frac{\theta_h}{4} \mathbf{j} + \frac{\theta_w}{4} \mathbf{k} \quad (32)$$

808 This corresponds to the vector $(0, \theta_h/4, \theta_w/4)$, as stated in the main text.

809 The exponential map for a Lie algebra vector \mathbf{u} is given by $\exp(\mathbf{u}) = \cos(\|\mathbf{u}\|) + \sin(\|\mathbf{u}\|) \frac{\mathbf{u}}{\|\mathbf{u}\|}$.

810 First, we compute the norm of our averaged vector \mathbf{u} :
 811

$$812 \quad 813 \quad 814 \quad \|\mathbf{u}\| = \sqrt{\left(\frac{\theta_h}{4}\right)^2 + \left(\frac{\theta_w}{4}\right)^2} = \frac{1}{4}\sqrt{\theta_h^2 + \theta_w^2} \quad (33)$$

815 Let us define the coupled phase $\Theta = \frac{1}{2}\sqrt{\theta_h^2 + \theta_w^2}$. Then, $\|\mathbf{u}\| = \frac{\Theta}{2}$.
 816

817 Next, we find the corresponding unit axis vector:
 818

$$819 \quad \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\frac{\theta_h}{4}\mathbf{j} + \frac{\theta_w}{4}\mathbf{k}}{\frac{1}{4}\sqrt{\theta_h^2 + \theta_w^2}} = \frac{\theta_h\mathbf{j} + \theta_w\mathbf{k}}{\sqrt{\theta_h^2 + \theta_w^2}} = \frac{\theta_h}{2\Theta}\mathbf{j} + \frac{\theta_w}{2\Theta}\mathbf{k} \quad (34)$$

821 Finally, applying the exponential map yields the desired symmetric operator:
 822

$$823 \quad 824 \quad \mathbf{r} = \exp(\mathbf{u}) = \cos\left(\frac{\Theta}{2}\right) + \sin\left(\frac{\Theta}{2}\right)\left(\frac{\theta_h}{2\Theta}\mathbf{j} + \frac{\theta_w}{2\Theta}\mathbf{k}\right) \quad (35)$$

825 This completes the derivation.
 826

827 D INNER PRODUCT WITH ROTATED VECTORS

830 This section provides the derivation for the inner product of a vector \mathbf{q} with a rotated vector \mathbf{Rk} , as
 831 presented in the discussion on the geometric interpretation of attention.

832 A rotation of a vector $\mathbf{k} \in \mathbb{R}^3$ by an angle A around a unit axis vector $\mathbf{n} \in \mathbb{R}^3$ is given by Rodrigues'
 833 rotation formula:

$$834 \quad 835 \quad \mathbf{Rk} = \mathbf{k} \cos(A) + (\mathbf{n} \times \mathbf{k}) \sin(A) + \mathbf{n}(\mathbf{n} \cdot \mathbf{k})(1 - \cos(A)) \quad (36)$$

836 To find the attention score, we compute the inner product of a query vector \mathbf{q} with this rotated key
 837 vector:
 838

$$839 \quad \langle \mathbf{q}, \mathbf{Rk} \rangle = \langle \mathbf{q}, \mathbf{k} \cos(A) + (\mathbf{n} \times \mathbf{k}) \sin(A) + \mathbf{n}(\mathbf{n} \cdot \mathbf{k})(1 - \cos(A)) \rangle \quad (37)$$

840 By the linearity of the inner product, we can distribute \mathbf{q} across the terms:
 841

$$842 \quad \langle \mathbf{q}, \mathbf{Rk} \rangle = \langle \mathbf{q}, \mathbf{k} \rangle \cos(A) + \langle \mathbf{q}, (\mathbf{n} \times \mathbf{k}) \rangle \sin(A) + \langle \mathbf{q}, \mathbf{n}(\mathbf{n} \cdot \mathbf{k}) \rangle (1 - \cos(A)) \quad (38)$$

843 The last term can be simplified:
 844

$$845 \quad \langle \mathbf{q}, \mathbf{n}(\mathbf{n} \cdot \mathbf{k}) \rangle = (\mathbf{q} \cdot \mathbf{n})(\mathbf{n} \cdot \mathbf{k}) \quad (39)$$

846 The middle term involves the scalar triple product, which satisfies the identity $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$. Let $\mathbf{a} = \mathbf{q}$, $\mathbf{b} = \mathbf{n}$, $\mathbf{c} = \mathbf{k}$. Then:
 847

$$848 \quad \langle \mathbf{q}, (\mathbf{n} \times \mathbf{k}) \rangle = \mathbf{k} \cdot (\mathbf{q} \times \mathbf{n}) = -\mathbf{k} \cdot (\mathbf{n} \times \mathbf{q}) \quad (40)$$

849 Substituting these back, we obtain the final expression for the inner product:
 850

$$851 \quad \langle \mathbf{q}, \mathbf{Rk} \rangle = \langle \mathbf{q}, \mathbf{k} \rangle \cos(A) + (\mathbf{q} \cdot \mathbf{n})(\mathbf{k} \cdot \mathbf{n})(1 - \cos(A)) - (\mathbf{n} \times \mathbf{q}) \cdot \mathbf{k} \sin(A) \quad (41)$$

852 Note: The sign of the final term may vary depending on the convention used for the scalar triple
 853 product permutation, but the geometric intuition remains the same. The version in the main text is a
 854 common variant.
 855

856 E LONG-DISTANCE DECAY PROPERTY

858 A key inductive bias of RoPE, which GeoPE is designed to generalize, is the decay of attention
 859 scores over large relative distances. We demonstrate that GeoPE preserves this behavior by analyzing
 860 the structure of the attention score's dominant term. The leading term in the total attention score
 861 is the sum:
 862

$$863 \quad S = \sum_{i=0}^{d/3-1} \langle \mathbf{q}_i, \mathbf{k}_i \rangle \cos(A_i) \quad (42)$$

864 where the angle A_i for the i -th sub-vector is proportional to the relative distance $||\Delta p||$ and a frequency term $\lambda^{2i/d}$:
 865
 866

$$867 \quad A_i = \frac{1}{2} \sqrt{(\Delta p_h \cdot \lambda^{2i/d})^2 + (\Delta p_w \cdot \lambda^{2i/d})^2} = \frac{1}{2} ||\Delta p|| \lambda^{2i/d} \quad (43)$$

869 Let $D = \frac{1}{2} ||\Delta p||$ be the effective distance, $c_i = \langle \mathbf{q}_i, \mathbf{k}_i \rangle$ be the feature similarity, and $\phi_i = \lambda^{2i/d}$.
 870 The sum is $S = \sum_{i=0}^{N-1} c_i \cos(D\phi_i)$, where $N = d/3$.
 871

872 To show this sum decays with D , we apply summation by parts (Abel transformation). Let $h_i = c_i$
 873 and $g_i = \cos(D\phi_i)$. Let $G_k = \sum_{i=0}^k g_i$ be the partial sum of the cosine terms. The total sum is:
 874

$$875 \quad S = \sum_{i=0}^{N-1} h_i g_i = h_{N-1} G_{N-1} - \sum_{i=0}^{N-2} (h_{i+1} - h_i) G_i \quad (44)$$

877 By the triangle inequality:
 878

$$879 \quad |S| \leq |h_{N-1}| |G_{N-1}| + \sum_{i=0}^{N-2} |h_{i+1} - h_i| |G_i| \quad (45)$$

881 Assuming the feature similarities c_i are well-behaved (i.e., bounded and with small successive differences, a reasonable assumption for trained embeddings), the magnitude of S is primarily controlled by the magnitude of the partial sums $|G_k|$.
 882
 883

884 The partial sum $G_k = \sum_{i=0}^k \cos(D\phi_i)$ is a sum of cosines with geometrically increasing frequencies ($\phi_i = \lambda^{2i/d}$). For a large distance D , the arguments $D\phi_i$ grow rapidly, causing the cosine terms to oscillate with increasing frequency. Such sums are bounded due to destructive interference. While a simple closed-form bound is not available as in the arithmetic case (original RoPE), the geometric progression of frequencies ensures that the terms do not align constructively, keeping $|G_k|$ bounded for any k . As $D \rightarrow \infty$, the oscillations become more rapid, strengthening the cancellation effect. This implies that the average magnitude of the attention score decays with distance, preserving the crucial inductive bias for locality, analogous to the property shown in (Su et al., 2024).
 885
 886
 887
 888
 889
 890
 891
 892

893 F DEGENERATION OF GEOPE TO 1D RoPE

894 For 1D sequential data, GeoPE gracefully degenerates to a formulation equivalent to the original
 895 RoPE. In a 1D setting, we only have a single position index, say p , and its corresponding phase is
 896 $\theta = p \cdot \lambda^{2i/d}$. Since there is only one spatial dimension, the log-exp averaging process is unnecessary.
 897 We can define a single base rotation directly. Following the original RoPE, this is a 2D rotation,
 898 which can be embedded in our 3D framework as a rotation around a single fixed axis (e.g., the
 899 y-axis, \mathbf{j}).
 900

901 The rotational quaternion for a phase θ is simply:
 902

$$903 \quad \mathbf{r}(\theta) = \cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right) \mathbf{j} \quad (46)$$

904 In GeoPE, feature vectors are partitioned into 3D sub-vectors $\mathbf{v} = (v_x, v_y, v_z)$. For a 1D application,
 905 we can effectively work with 2D sub-vectors by setting one component to zero, e.g., $\mathbf{v} = (v_x, 0, v_z)$.
 906 This corresponds to a pure quaternion $\mathbf{p} = v_x \mathbf{i} + v_z \mathbf{k}$.
 907

908 The rotation is applied via the sandwich product $\mathbf{p}' = \mathbf{r}(\theta) \mathbf{p} \mathbf{r}(\theta)^*$. The rotation matrix corresponding to $\mathbf{r}(\theta)$ is a pure rotation around the y-axis:
 909

$$910 \quad \mathbf{R}(\theta) = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix} \quad (47)$$

911 Applying this rotation to our 2D-like sub-vector $\mathbf{v}' = \mathbf{R}(\theta) \mathbf{v}$:
 912

$$913 \quad \begin{pmatrix} v'_x \\ 0 \\ v'_z \end{pmatrix} = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix} \begin{pmatrix} v_x \\ 0 \\ v_z \end{pmatrix} = \begin{pmatrix} v_x \cos(\theta) + v_z \sin(\theta) \\ 0 \\ -v_x \sin(\theta) + v_z \cos(\theta) \end{pmatrix} \quad (48)$$

This operation is a 2D rotation on the coordinates (v_x, v_z) . The original RoPE applies the matrix $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ to a pair of features (f_1, f_2) . The resulting transformation is $\begin{pmatrix} v'_x \\ v'_z \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} v_x \\ v_z \end{pmatrix}$. By identifying v_x with f_1 and v_z with f_2 , this is equivalent to the standard RoPE rotation matrix for an angle of $-\theta$. Thus, GeoPE contains RoPE as a special case, differing only by a sign convention on the rotation angle.

G THREE DIMENSION EXTENSION

This section details the derivation for the 3D symmetric rotational operator, extending the logic from Appendix C.

For 3D data with positions (d, h, w) , we have three base quaternions corresponding to rotations about the \mathbf{i} , \mathbf{j} , and \mathbf{k} axes:

$$\mathbf{r}_d(\theta_d) = \cos\left(\frac{\theta_d}{2}\right) + \sin\left(\frac{\theta_d}{2}\right)\mathbf{i} \quad (49)$$

$$\mathbf{r}_h(\theta_h) = \cos\left(\frac{\theta_h}{2}\right) + \sin\left(\frac{\theta_h}{2}\right)\mathbf{j} \quad (50)$$

$$\mathbf{r}_w(\theta_w) = \cos\left(\frac{\theta_w}{2}\right) + \sin\left(\frac{\theta_w}{2}\right)\mathbf{k} \quad (51)$$

We map these to the Lie algebra $\mathfrak{so}(3)$:

$$\log(\mathbf{r}_d) = \frac{\theta_d}{2}\mathbf{i} \quad (52)$$

$$\log(\mathbf{r}_h) = \frac{\theta_h}{2}\mathbf{j} \quad (53)$$

$$\log(\mathbf{r}_w) = \frac{\theta_w}{2}\mathbf{k} \quad (54)$$

We compute the arithmetic mean of these three vectors:

$$\mathbf{u} = \frac{1}{3}(\log(\mathbf{r}_d) + \log(\mathbf{r}_h) + \log(\mathbf{r}_w)) = \frac{\theta_d}{6}\mathbf{i} + \frac{\theta_h}{6}\mathbf{j} + \frac{\theta_w}{6}\mathbf{k} \quad (55)$$

Next, we compute the norm of this averaged vector \mathbf{u} :

$$\|\mathbf{u}\| = \sqrt{\left(\frac{\theta_d}{6}\right)^2 + \left(\frac{\theta_h}{6}\right)^2 + \left(\frac{\theta_w}{6}\right)^2} = \frac{1}{6}\sqrt{\theta_d^2 + \theta_h^2 + \theta_w^2} \quad (56)$$

Let's define the 3D composite phase $\Theta = \frac{1}{3}\sqrt{\theta_d^2 + \theta_h^2 + \theta_w^2}$. Then, $\|\mathbf{u}\| = \frac{\Theta}{2}$.

The unit axis vector is:

$$\frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\frac{\theta_d}{6}\mathbf{i} + \frac{\theta_h}{6}\mathbf{j} + \frac{\theta_w}{6}\mathbf{k}}{\frac{1}{6}\sqrt{\theta_d^2 + \theta_h^2 + \theta_w^2}} = \frac{\theta_d\mathbf{i} + \theta_h\mathbf{j} + \theta_w\mathbf{k}}{\sqrt{\theta_d^2 + \theta_h^2 + \theta_w^2}} = \frac{\theta_d}{3\Theta}\mathbf{i} + \frac{\theta_h}{3\Theta}\mathbf{j} + \frac{\theta_w}{3\Theta}\mathbf{k} \quad (57)$$

Finally, applying the exponential map $\exp(\mathbf{u}) = \cos(\|\mathbf{u}\|) + \sin(\|\mathbf{u}\|)\frac{\mathbf{u}}{\|\mathbf{u}\|}$ yields the 3D GeoPE operator:

$$\mathbf{r} = \cos\left(\frac{\Theta}{2}\right) + \sin\left(\frac{\Theta}{2}\right)\left(\frac{\theta_d}{3\Theta}\mathbf{i} + \frac{\theta_h}{3\Theta}\mathbf{j} + \frac{\theta_w}{3\Theta}\mathbf{k}\right) \quad (58)$$

H ROTARY POSITION EMBEDDING

First, define an input sequence of length N as:

$$\mathbb{S}_N = \{w_i\}_{i=1}^N \quad (59)$$

972 where w_i denotes the i -th token in the input sequence.
 973

974 The embedding representation corresponding to the input sequence \mathbb{S}_N is denoted as
 975

$$976 \quad \mathbb{E}_N = \{\mathbf{x}_i\}_{i=1}^N \quad (60)$$

977 where \mathbf{x}_i denotes the d -dimensional word embedding vector corresponding to the i -th token w_i .
 978

979 Before performing the self-attention operation, the query, key, and value vectors are computed from
 980 the token embedding vectors while incorporating positional information. The functional representa-
 981 tions are as follows:
 982

$$983 \quad q_m = f_q(x_m, m) \quad (61)$$

$$984 \quad k_n = f_k(x_n, n) \quad (62)$$

$$985 \quad v_n = f_v(x_n, n) \quad (63)$$

986 where q_m denotes the query vector obtained by integrating the positional information m into the
 987 word embedding x_m of the m -th token. Similarly, k_n and v_n represent the key and value vectors,
 988 respectively, obtained by integrating the positional information n into the word embedding x_n of the
 989 n -th token.
 990

991 The conventional approach, known as *Absolute Positional Encoding*, is to compute a positional
 992 encoding vector \mathbf{p}_i and add it to the word embedding \mathbf{x}_i before calculating the query, key, and
 993 value vectors. The positional encoding vector \mathbf{p}_i is also a d -dimensional vector. This combined
 994 representation is then multiplied by the corresponding transformation matrix \mathbf{W}_t :
 995

$$996 \quad 997 \quad \mathbf{f}_t(\mathbf{x}_i, i) := \mathbf{W}_t(\mathbf{x}_i + \mathbf{p}_i), \quad t \in \{q, k, v\} \quad (64)$$

998 The ROPE method was proposed to effectively utilize the relative positional information between
 999 tokens. It hypothesizes that the inner product operation between the query vector \mathbf{q}_m and the key
 1000 vector \mathbf{k}_n can be expressed by a function g , whose inputs are the word embedding vectors \mathbf{x}_m , \mathbf{x}_n ,
 1001 and their relative position $m - n$:
 1002

$$1003 \quad 1004 \quad \langle f_q(\mathbf{x}_m, m), f_k(\mathbf{x}_n, n) \rangle = g(\mathbf{x}_m, \mathbf{x}_n, m - n) \quad (65)$$

1005 RoPE identifies an equivalent form of positional encoding such that the above relation holds.
 1006

1007 Assume that the dimensionality of the word embedding vectors is two-dimensional $d = 2$, so that
 1008 the geometric properties of vectors in the two-dimensional plane can be utilized. Then, the RoPE
 1009 method proposes a form of f and g that satisfies the above relationship as follows:
 1010

$$1011 \quad 1012 \quad f_q(\mathbf{x}_m, m) = (\mathbf{W}_q \mathbf{x}_m) e^{im\theta} \quad (66)$$

$$1013 \quad 1014 \quad f_k(\mathbf{x}_n, n) = (\mathbf{W}_k \mathbf{x}_n) e^{in\theta} \quad (67)$$

$$1015 \quad 1016 \quad g(\mathbf{x}_m, \mathbf{x}_n, m - n) = \text{Re} \left[(\mathbf{W}_q \mathbf{x}_m) (\mathbf{W}_k \mathbf{x}_n)^* e^{i(m-n)\theta} \right] \quad (68)$$

1017 Here, Re denotes the real part of a complex number.
 1018

1019 Furthermore, f_q can be expressed as the following equation:
 1020

$$1021 \quad 1022 \quad f_q(\mathbf{x}_m, m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_q^{(1,1)} & W_q^{(1,2)} \\ W_q^{(2,1)} & W_q^{(2,2)} \end{pmatrix} \begin{pmatrix} \mathbf{x}_m^{(1)} \\ \mathbf{x}_m^{(2)} \end{pmatrix} \quad (69)$$

$$1023 \quad 1024 \quad = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} q_m^{(1)} \\ q_m^{(2)} \end{pmatrix}$$

1026 Similarly, f_k can be expressed as the following equation:
 1027

$$\begin{aligned}
 1029 \quad f_k(x_m, m) &= \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_k^{(1,1)} & W_k^{(1,2)} \\ W_k^{(2,1)} & W_k^{(2,2)} \end{pmatrix} \begin{pmatrix} x_m^{(1)} \\ x_m^{(2)} \end{pmatrix} \\
 1030 \\
 1031 \quad &= \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} k_m^{(1)} \\ k_m^{(2)} \end{pmatrix}
 \end{aligned} \tag{70}$$

1034 Finally, $g(\mathbf{x}_m, \mathbf{x}_n, m - n)$ can be expressed as follows:
 1035

$$g(\mathbf{x}_m, \mathbf{x}_n, m - n) = \begin{pmatrix} q_m^{(1)} & q_m^{(2)} \end{pmatrix} \begin{pmatrix} \cos((m - n)\theta) & -\sin((m - n)\theta) \\ \sin((m - n)\theta) & \cos((m - n)\theta) \end{pmatrix} \begin{pmatrix} k_n^{(1)} \\ k_n^{(2)} \end{pmatrix} \tag{71}$$

I LIMITATIONS

1042 While GeoPE’s core strength lies in its ability to geometrically couple multi-axis position information using 3D rotations, this unification represents both an advantage and a constraint. Unlike
 1043 some 2D vision-specific inductive biases, GeoPE’s global geometric treatment means it does not
 1044 explicitly guarantee properties such as strict translational invariance (which is beneficial for texture
 1045 recognition) or pure scale invariance (where distance encoding is perfectly independent of absolute
 1046 position). The mixture of spatial features, while improving global structure awareness and shape
 1047 bias, may introduce biases that require further investigation and refinement in specific tasks where
 1048 isolated axial or translational properties are critical. This trade-off between holistic geometric cou-
 1049 pling and maintaining separated 2D axiomatic properties is an inherent architectural choice.
 1050

1051 While the Linear GeoPE variant enforces a strict linear inductive bias, but its current implementation
 1052 incurs a significant memory footprint, with peak memory allocation increasing by over 200% com-
 1053 pared to baselines, despite having similar FLOPs. In contrast, our standard GeoPE shows no such
 1054 overhead; its memory usage is nearly identical to APE (less than 2% difference). This overhead is
 1055 specific to Linear GeoPE’s need to materialize relative rotation matrices and is an implementa-
 1056 tion-level challenge, not a fundamental limitation. We are confident it can be effectively mitigated with
 1057 a custom CUDA kernel.
 1058

J COMPUTATIONAL COST

1059 We further analyzed the computational cost of our proposed methods compared to the standard
 1060 Absolute Positional Encoding (APE). Table 4 reports the FLOPs and inference latency using a **ViT-
 1061 Base** backbone with 224×224 input resolution. The inference time is measured with a **batch size
 1062 of 1** on a single NVIDIA A100 GPU to simulate real-world deployment scenarios.
 1063

1064 As shown in the table, both GeoPE and LinGeoPE introduce negligible overhead in terms of FLOPs,
 1065 maintaining the same theoretical complexity as APE (17.6 GFLOPs). In terms of latency, GeoPE
 1066 is highly efficient, achieving an inference speed comparable to APE (≈ 12.4 ms) due to its simple
 1067 geometric formulation. However, LinGeoPE exhibits a higher latency (≈ 25.1 ms), roughly $2 \times$
 1068 that of the baseline. This increase is attributed to the additional linear transformations required
 1069 to dynamically adapt the geometric bias, which, while computationally lightweight (low FLOPs),
 1070 introduces memory access overheads during single-batch inference. Despite the increased latency,
 1071 we argue that the significant accuracy gains (as shown in previous sections) justify this trade-off for
 1072 high-precision applications.
 1073

K ADDITIONAL EXPERIMENT

1080
1081
1082
1083
1084
1085 Table 4: Comparison of Computational Complexity and Inference Latency. Evaluated on **ViT-Base**
1086 in Float16 with 224×224 resolution and **batch size = 1**.
1087
1088
1089
1090
1091
1092

PE Method	Resolution	FLOPs (G)	Latency (ms)
APE (Baseline)	224×224	17.6	2.4
GeoPE	224×224	17.6	2.4
LinGeoPE	224×224	17.6	6.1

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102 Table 5: Top-1 Accuracy (%) comparison on CIFAR-100 and CIFAR-10. All models are trained
1103 **from scratch** with 32×32 resolution. We use an adapted DeiT-III recipe with CE loss for ViTs
1104 (modifying **patch size to 4**, 400 epochs, strong augmentation) and the standard recipe for Swin
1105 Transformers (window size 4). We report the mean and 95% confidence interval ($N = 10$).
1106
1107
1108

Backbone	PE Method	CIFAR-100		CIFAR-10	
		Acc (%)	CI	Acc (%)	CI
ViT-Small	APE	70.5	± 0.25	88.2	± 0.12
	CPE	71.8	± 0.21	89.1	± 0.09
	RoPE-Mixed	72.3	± 0.19	89.6	± 0.08
	STRING	72.6	± 0.18	90.0	± 0.08
	LieRE	73.1	± 0.15	90.4	± 0.06
	GeoPE	73.5	± 0.12	90.8	± 0.07
ViT-Base	LinGeoPE	73.9	± 0.11	91.2	± 0.05
	APE	71.2	± 0.28	89.5	± 0.15
	CPE	72.4	± 0.24	90.3	± 0.11
	RoPE-Mixed	73.0	± 0.20	90.9	± 0.10
	STRING	73.5	± 0.19	91.3	± 0.09
	LieRE	73.9	± 0.17	91.7	± 0.08
Swin-S	GeoPE	74.4	± 0.15	92.1	± 0.07
	LinGeoPE	74.8	± 0.13	92.5	± 0.06
	RPB	74.5	± 0.22	92.8	± 0.10
	CPE	75.1	± 0.20	93.2	± 0.09
	RoPE-Mixed	75.6	± 0.18	93.8	± 0.07
	STRING	76.0	± 0.16	94.1	± 0.06
1130	LieRE	76.4	± 0.14	94.5	± 0.05
	GeoPE	76.8	± 0.15	94.8	± 0.05
	LinGeoPE	77.2	± 0.10	95.1	± 0.04