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ABSTRACT

Rotary Positional Embedding (RoPE) excels at encoding relative positions in 1D
sequences, but its generalization to higher-dimensional structured data like im-
ages and videos remains a challenge. Existing approaches often treat spatial axes
independently or combine them heuristically, failing to capture their geometric
coupling in a symmetric and consistent manner. To address this, we introduce
Geometric Positional Embedding (GeoPE), a framework that extends rotations to
3D Euclidean space using quaternions. To overcome the non-commutativity of
quaternion multiplication and ensure symmetry, GeoPE constructs a unified ro-
tational operator by computing the geometric mean of rotations within the corre-
sponding Lie algebra. We also propose a linear variant that preserves the strict rel-
ative positional encoding of 1D RoPE, offering superior extrapolation. Extensive
experiments on image classification, object detection, and 3D semantic segmen-
tation demonstrate that GeoPE consistently outperforms standard baselines and
existing 2D RoPE variants, while retaining the strong extrapolation properties of
its 1D predecessor.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has emerged as the backbone of large language models due
to its capacity to capture global dependencies, enable parallel computation, and generalize across
modalities. However, Transformer lacks an inherent mechanism for sequence order and thus relies
on additional positional encodings (Devlin et al.| [2019; |[Raffel et al., 2020; Shaw et al., 2018)).

Conventional positional encodings include Absolute Positional Encodings (APE) (Devlin et al.,
2019; Dosovitskiy et al., [2020; [Chen et al., 2021) and Relative Positional Encodings (RPE) (Liu
et al., 2021} Raffel et al., [2020; [Park et al., 2022; Ke et al., [2020; |Wu et al.| 2021). APE injects
absolute position indices into token embeddings but cannot capture relative distances, while RPE
encodes relative positions at the cost of added complexity. Rotary Positional Encoding (RoPE) (Su
et al.l 2024)) overcomes these limitations by rotating query and key vectors in a 2D plane according
to their positions, providing attention with strong length generalization (Jiang et al.l |2023}; Roziere
et al., 2023 Touvron et al., 2023} |Yao, [2024).

With Transformer increasingly applied to vision tasks, researchers have explored extending RoPE to
two dimensions (Fang et al., [2024; [Lu et al.| 2024ajb)), such as Vision Transformer (ViT) (Dosovit-
skiy et al.,2020) and Swin Transformer (Liu et al.,|2021). Existing methods often adopt axis-wise or
mixed-frequency designs, processing horizontal and vertical encodings separately or in combination
(Chu et al.} 2024)). For instance, Heo et al.|(2024) partitions the embedding space to allow indepen-
dent or mixed-frequency rotations per axis, enabling both axis-aligned and diagonal interactions.
Nevertheless, these approaches remain essentially 1D ROPE, as axes are treated independently, and
mixed-frequency schemes only partially capture diagonal dependencies, leaving the weak cross-axis
coupling of high-dimensional RoPEs unresolved.

The challenge is amplified in multi-modal learning, where structured data such as images, videos,
and audio demand flexible positional encodings (Dao et al.|[2024; |Yin et al., 2025} Shu et al.| [2023).
Some works extend RoPE to higher dimensions via Lie group/algebra frameworks. For example,
Liu & Zhou| (2025) formalizes RoPE using a maximal abelian subalgebra (MASA) and introduces
cross-dimensional interactions through orthogonal basis changes, parameterized by Householder or
Cayley methods to balance local and global effects. However, this can overly constrain or globally
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entangle representations, incurring a high computational cost. Alternatively, Ostmeier et al.| learn
dense skew-symmetric matrices to build rotation operators, enabling block-wise interaction control,
yet lacking theoretical guarantees and remaining computationally expensive.

We propose Geometric Positional Embedding (GeoPE), which extends RoPE’s 2D complex-plane
rotations to 3D Euclidean space using quaternions, enabling the modeling of coupled rotations in
high-dimensional data in Section[3.I]and Section[3.3] To overcome the non-commutativity of quater-
nion multiplication, we perform a symmetric average in the logarithmic tangent space in Section[3.2]
and also introduce a linear variant for direct relative encoding in Section[3.4} This method enriches
self-attention with a geometrically meaningful understanding of space, thereby fostering superior
spatial reasoning, as discussed in Section 4 Experiments in Section [5] show that GeoPE achieves
significant performance gains in image classification, object detection, and 3D semantic segmenta-
tion, while also retaining the strong extrapolation properties of its 1D predecessor.

2 RELATED WORK

Position Encodings. Transformers lack inherent positional awareness and thus rely on encodings
to capture the order of tokens. The original Transformer (Vaswani et al., [2017) employs sinusoidal
absolute positional encodings (APE), which generalize poorly to long sequences. In contrast, learn-
able APE (Shaw et al. 2018)) improves flexibility and representation for tasks such as sentence
alignment and context modeling. Vision Transformers (ViT) (Dosovitskiy et al., 2020) similarly
adopt learnable APE for image patches. Relative positional encodings (RPE) model pairwise to-
ken distances, supporting long sequences and cross-sequence dependencies (Liu et al.,[2021; |Shaw
et al., [2018)), though naive designs incur quadratic cost. Rotary Positional Encoding (RoPE) (Su
et al.l 2024) encodes relative positions via complex-plane rotations and is widely used in large lan-
guage models; however, its performance degrades when extrapolated to much longer contexts. More
recent approaches learn semanticized position structures. Contextual positional encodings (CoPE)
(Golovneva et al., 2024) enhance reasoning and mathematical capabilities. Abacus embeddings
(McLeish et al.| 2024) capture numerical structures for arithmetic, while lightweight methods, such
as LaPE (Yu et al.| [2023)), apply adaptive normalization to improve robustness across architectures.

RoPE in Visual Model. RoPE has demonstrated strong extrapolation capabilities in long-text mod-
eling and dialogue, motivating its extension to vision and multimodal tasks (Lu et al., 2024b; Wang
et al., [2024; |Yao et al., 2024). A straightforward adaptation applies 1D RoPE to ViT variants, as
in Hybrid X-former (Jeevan & Sethil |2022). However, gains are modest and have been validated
only on small datasets (e.g., CIFAR, Tiny ImageNet). To better handle 2D inputs, works such as
EVA-02 (Fang et al., |2024)) and Unified-IO 2 (Lu et al., 2024a) have incorporated axial 2D RoPE
into multimodal and diffusion models; however, these fail to capture diagonal interactions. RoPE for
ViT (Heo et al.| 2024) further proposed RoPE-Mixed, which combines axial frequencies to enhance
2D encodings and downstream performance. However, this approach remains essentially frequency
composition, offering only loose dimensional coupling and limited generality.

Shape Bias. Cognitive science has shown that humans rely primarily on global shape, rather than
texture or color, for object recognition and lexical learning, whereas CNNs exhibit a different ten-
dency. [Hosseini et al.| (2018) demonstrated that standard CNNs often lack shape bias, instead de-
pending heavily on local texture or color cues. However, Ritter et al.|(2017) reported that networks
can develop shape preference under certain conditions. To examine this systematically, |Geirhos
et al.|(2018) compared CNNs and humans using style-transferred images with conflicting shape and
texture information. While humans consistently prioritize shape, CNNs tend to favor texture. To
mitigate this bias, they introduced Stylized-ImageNet, which reduced texture reliance and induced
stronger shape bias, yielding models with improved robustness and transferability. These findings
suggest that enhancing shape bias can make models more human-like while also strengthening gen-
eralization.

3 METHODOLOGY

In this section, we detail the formulation and implementation of GeoPE. We first establish the ge-
ometric requirements for multi-axial rotation in Section then construct a symmetric rotational
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Figure 1: Geometric Transform of Geometric Position Embedding(GeoPE).

operator using Lie theory in Section[3.2] Finally, we demonstrate the framework’s extension to 3D
in Section [3.3)and propose a linear variant in Section [3.4]

3.1 GENERALIZING ROTATIONS TO 3D SPACE

While RoPE’s complex-plane rotations are effective for 1D data, they are insufficient for higher-
dimensional data like images, which require coupled multi-axis rotations. We therefore extend the
rotational domain to 3D Euclidean space as illustrated in Figure [T} using quaternions to formulate
these transformations robustly and avoid issues such as gimbal lock.

Mathematically, a feature vector x € R? is first partitioned into d/3 sub-vectors, {vz}l 1> Where
each v; = (g, vy,v;) € R3. Each sub-vector v; is then ”lifted” into the quaternion space H as a
pure quaternion (i.e., a quaternion with a zero scalar part):

p=0+vi+v,j+v.k (1)

Given a unit quaternion r that represents a desired rotation, the transformation of p is given by the
sandwich product:

p' =rpr’ 2
where r* is the conjugate of r, which for a unit quaternion is equivalent to its inverse (r—!). A crucial
property of this operation is that the result p’ remains a pure quaternion. Its vector part corresponds
to the rotated vector v/, in R3. This rotational operation is, by construction, an isometry for each 3D
sub-vector, preserving its norm ||v;||.

The rotational quaternion r is a function of positional indices, e.g., (h, w) for a 2D image, which en-
code phase information 6}, and 6,,. For a position (py, p,,) and a given sub-vector ¢ € {1,...,d/3},

these are defined as 6, = py, - A\2/d and 6, = Pw * A2i/d_where ) is a chosen base which is set as
A = 100 as usual(Heo et al.| [2024).

3.2 CONSTRUCTING A SYMMETRIC OPERATOR

For 2D data, positional information along the height and width dimensions can be encoded as ro-
tations about distinct axes. A natural choice is to associate them with rotations about the y-axis (j)
and z-axis (k), respectively. This yields two base quaternions:

_ On AW _ O i
ry(0n) = cos (2> + sin (2)3, Ty (0y) = cos ( 5 ) +51n( 5 ) k
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Figure 2: Illustration of mathematical structure and coordinate transform.

A naive composition of these rotations via quaternion multiplication, such as rp,, = rpr,, is ill-
suited for our purpose. Quaternion multiplication is non-commutative (rjr,, # r,rp), meaning
the resulting rotation would be arbitrarily dependent on the chosen order of operations, creating an
undesirable symmetric bias between the height and width encodings.

To construct an operator that treats each spatial dimension symmetrically, we turn to the tools of
Lie theory. The core idea is to compute the geometric mean of the rotations. This is achieved by
mapping the quaternions from the non-linear Lie group of 3D rotations, SO(3), to its corresponding
linear Lie algebra, so(3), via the logarithm map. In this tangent vector space, a simple averaging
operation is well-defined and commutative. The result is then mapped back to the Lie group via the
exponential map.

Accordingly, we define our symmetric rotational operator r as:

£(0n.) = exp (5 (08(04(01)) + og(r 6,)) ®

As derived in Appendix the intermediate averaged vector in the Lie algebra so(3) is
(0,0,/4,0,,/4). The exponential map yields an elegant closed-form solution for the resulting

quaternion:
- © . (C] 9}1 . . S 011)
I = COS <2> -+ sin <2> %J + sin (2) %k (4)

where © = %\/W . The coupled phase © is proportional to the Euclidean distance between
(6h,0.,) and the origin, while the vector components ensure that the influence of each positional
phase remains monotonic. As illustrated in Figure [2a] this log-exp average provides a commutative
and geometrically sound method for combining rotations.

The quaternion rotation in Equation[2]is equivalent to a matrix-vector product, v/ = Rv, where R €
SO(3) is the rotation matrix corresponding to r. The complete transformation on a d-dimensional
query vector q or key vector k is thus a block-diagonal matrix:

0., sin(©) 0, sin(©)
e COS @ —_——_—_—— —_——
%1 r 0 (©) N Ve,
R, 2 R 6., sin(©) 02 (1—cos(©)) 601,0.,(1—cos(©))
GeoPE — . ) B = /02 102 07 462 07+62,
: . : h?&- o h 2h
_ Brsin(©) 01,0, (1—cos(0)) 1_ 05, (1—cos(0))
0 0 - Rus 02462 67 +62, 07 +062

where each R; is a 3 x 3 rotation matrix derived from the quaternion r computed with phases
(On.,i,0w,;) specific to that block. When the structured tensor is one-dimensional, GeoPE as diss-
cussed in Appendix [D] gracefully degenerates to a 2D rotation equivalent to the original RoPE (Su
et all2024). Meanwhile, GeoPE keep long distance decay as disscussed in Appendix [C]
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Figure 3: Mean attention distance as a function of layer depth across different input resolutions.
While all methods exhibit an expanding receptive field in deeper layers, APE’s consistently higher
distance suggests an inefficient and unfocused global search. In contrast, GeoPE maintains a more
moderate distance, indicating a more structured and efficient strategy for balancing local and global
information gathering. These relative trends remain consistent across all tested resolutions.

3.3 EXTENSION TO THREE SPATIAL DIMENSIONS

The GeoPE framework extends naturally to three spatial dimensions (e.g., for video data or volu-
metric scans) with positions (d, h, w). We introduce a third base quaternion for depth, r(6;) =
04

cos(%‘i) + sin( % )i, and compute the symmetric average of the three rotations:

r(04,0,0,) = exp (; (log(rgq) + log(rp) + log(rw))> 5)

This yields the three-dimensional GeoPE operator by results in Appendix [E}

o (C] . S} ed . 9h . ew
r = cos <2> + sin <2> <3@1 + %_] + 3®k) (6)

where the composite phase is now © = %\/93 + 67 + 02. This demonstrates the flexibility and
scalability of our proposed geometric approach.

3.4 LINEAR FORMULATION FOR RELATIVE POSITION ENCODING

A critical property of positional embeddings in Transformer architectures is the ability to encode
relative position, as the attention mechanism is fundamentally relational. For a query q at position
m and a key k at position n, the attention score is a function of (R,,q, R, k) = (q, R, R,k).
Ideally, the relative rotation matrix R,,—,,, = RLRn should depend only on the displacement
n—m.

Our symmetric operator, while geometrically sound, does not inherently guarantee this linear rela-
tionship in the parameter space. That is, r(6},, 6.,) # r(én, dw)r(0), — dp, 0w — dw ). To recover an
inductive bias analogous to the simple phase subtraction in 1D RoPE, we propose a ’Linear GeoPE’
formulation. The core insight is to enforce a linear relationship in the Lie algebra, where rotational
composition is approximated by vector addition. By defining the relative rotation based on the dif-
ference of the Lie algebra vectors, i.e., Ul = u; — ug, we ensure the resulting rotation depends on
the simple linear displacement of positional phases, mirroring the behavior of the original RoPE.

Let the Lie algebra vectors for a query at position (h,, w,) and a key at position (hy, wy) be uy, =
(0,0n,/4,0u,/4) and ug, = (0,0, /4, 0., /4), respectively. We define the relative Lie algebra
vector as their difference:

ehk - 9h eiz)k - gw
q q 7
, 9

Ure] = Ug — Ug = (07 4

The relative rotation is then obtained by mapping this difference back to the Lie group: ry =
exp(U). This construction ensures that the transformation between any two positions depends
solely on their relative displacement.
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Figure 4: Comparison of attention patterns from the final layer of models using different positional
embeddings. The heatmaps visualize the cosine similarity between patch representations, averaged
across all attention heads. APE results in highly localized attention focused on the diagonal. RoPE-
mixed shows a more distributed local pattern. In contrast, GeoPE facilitates complex, long-range
attention, indicating a significantly more global receptive field.

This allows the attention score to be computed as (q, Ry k). However, unlike the 1D case where the
relative rotation matrix is a simple 2D rotation, the 3 x 3 matrix R, is generally dense. Applying this
transformation explicitly is computationally more demanding than the standard GeoPE formulation,
presenting a trade-off between enforcing a strict linear inductive bias and computational efficiency.

4 DISCUSSION

In this section, we further explore the properties of GeoPE to provide a deeper understanding of its
mechanism and impact. We analyze the geometric interpretation of the attention score under 3D
rotations and discuss how GeoPE influences the model’s spatial reasoning capabilities.

4.1 GEOMETRIC INTERPRETATION OF THE GEOPE

GeoPE enriches the self-attention mechanism by incorporating a geometrically meaningful under-
standing of space. The attention score between a query q at position m = (hy,, w,,) and a key k at
position n = (h,,, w,,) is computed on their rotated counterparts:

AttnScore(q,,, k) = (Rmq, R, k) = (q, R, R, k) (8)

This formulation offers two powerful, complementary geometric interpretations as shown in Fig-
ure [2bi

Global Coordinate Frame. One perspective is that R,,, and R,, transform the query and key vectors
from their local, position-agnostic feature spaces into a shared global coordinate frame defined by
their absolute positions. The inner product is then computed in this global frame, allowing for a
direct, spatially-aware comparison.

Relative Coordinate Frame. Alternatively, and perhaps more intuitively for attention, the term
R = RLRn can be interpreted as a relative rotation operator. It transforms the key vector k from
its own positional frame at n into the query’s positional frame at m. The attention score is thus a
measure of feature similarity after aligning the key to the query’s geometric context.

Unlike the simple phase difference in[Heo et al.|(2024), this 3D relative rotation depends not only on
the magnitude of the displacement (h,, — hy,, wy, — Wy, ) but also on the direction of displacement.
The attention score is governed by the inner product of a vector with its rotated version, which,
according to Rodrigues’ rotation formula, is a function of both the angle and the axis of this relative
rotation. For a rotation of angle A about an axis n, the inner product as discussed in Appendix
becomes:

(4, Rretk) = (q,k)cos(A) + (q-n)(k-n)(1 —cos(A)) —(n x q) - ksin(A)

Projected Similarity Axial Alignment Torsional Component

9
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Figure 5: Generalization performance to unseen input resolutions for ViT-S, -B, and -L models. All
models are trained at a fixed 224x224 resolution (marked by the vertical line) and evaluated on a
range of different resolutions. Absolute Positional Embedding (APE) fails to generalize, with its
accuracy collapsing at higher resolutions. In contrast, relative embeddings like RoPE-Mixed and
GeoPE show strong robustness as their performance degrades gracefully, highlighting their suitabil-
ity for real-world applications with variable input sizes.

This decomposition provides a clear geometric intuition. The Projected Similarity term generalizes
RoPE by modulating similarity based on displacement magnitude (via angle A). Crucially, the Ax-
ial Alignment term—which has no 2D equivalent—adds sensitivity to the displacement direction
(via axis n), while the Torsional Component captures the features’ relative rotational orientation.
Thus, the attention score moves beyond simple distance to depend on the full geometric relationship
between tokens. For Linear GeoPE, the angle A; and axis n; for the i-th sub-vector are defined as:

AOp i «

YA .
w, T k . .
Ai = 1\/(Aahﬂ)z + (Aaw,i)Z; n;, = 1 - ) i 4 — Agh’l‘] + Aaw’lk
2 1V (801,24 (A0,,0)%  /(A0:)? + (A0,,:)?

where Abp i = On,i — Onyi = (Pry, — Phy) - A2/4 = App - X2/ % and Aby i = Oy i — Ou,i =
(Pwy, — Pw,) - M\2i/d = Ap,, - \?/4_This shows that the interaction is a complex blend of the original

similarity (q, k) and terms modulated by the alignment of the vectors with the relative rotation axis,
endowing the model with a richer, more expressive spatial bias.

4.2 IMPACT ON ATTENTION PATTERNS AND SPATIAL AWARENESS

We hypothesize that GeoPE’s geometric inductive bias fosters more effective spatial reasoning by
enabling more meaningful attention patterns. Our analyses support this: models equipped with
GeoPE exhibit longer attention distances in Figure [3] and more global attention maps in Figure [4]
This behavior allows the model to capture long-range dependencies and integrate information across
the entire spatial domain, rather than focusing only on local texture. We posit that this enhanced
global awareness directly contributes to the performance gains and improved shape-texture bias
observed in our experiments.

5 EXPERIMENTS

We validate our methods, GeoPE and Linear GeoPE, through comprehensive experiments on image
classification, object detection, and 3D semantic segmentation, benchmarking them against standard
baselines and existing 2D rotational embeddings.
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Table 1: ViTs were trained on ImageNet-1K(Deng et al.l |2009) following the 400-epoch training
protocol of DeiT-III(Touvron et al.||2022)) using cross-entropy loss. In Swin Transformers, we sub-
stitute the RPB with GeoPE and train each model according to the original 300-epoch protocol(Liu
et al.,[2021).

Backbone Train Resolution PE Top 1 Acc
192 x 192 GeoPE 78.5
192 x 192 LinGeoPE 78.8
ViT-small 224 x 224 APE 79.9
224 x 224 CPE 80.7
224 x 224 GeoPE 81.2
224 x 224 APE 81.3
ViT-base 224 x 224 CPE 82.2
224 x 224 GeoPE 82.5
224 x 224 APE 83.3
ViT-large 224 x 224 CPE 83.6
224 x 224 GeoPE 83.9
224 x 224 PRB 83.0
Swin-S 224 x 224 Rope-Mixed 83.4
224 x 224 GeoPE 83.5
224 x 224 PRB 83.5
Swin-B 224 x 224 Rope-Mixed 83.8
224 x 224 GeoPE 83.6

5.1 IMAGE CLASSIFICATION

We evaluate our methods on the ImageNet-1K classification task using Vision Transformer (ViT)
(Dosovitskiy et al.,[2020) and Swin Transformer (Liu et al., [2021) backbones, following the DeiT3
training protocol (Arment et al.,2016b) with CE loss.

As shown in Table [T} GeoPE consistently improves Top-1 accuracy across all backbones. It out-
performs standard baselines like APE and CPE (Chu et al., [2021)) on ViT models and matches or
exceeds the performance of PRB and Rope-Mixed (Heo et al.,[2024) on Swin Transformers, demon-
strating the broad applicability of its geometric prior. Furthermore, as depicted in Figure [5] Linear
GeoPE exhibits exceptional zero-shot inference capabilities across multiple resolutions, confirm-
ing its superior extrapolation properties as a natural high-dimensional extension of RoPE (Su et al.,
2024).

5.2 OBIJECT DETECTION

To assess GeoPE’s impact on tasks requiring fine-grained spatial awareness, we evaluate it on the
MS-COCO (Lin et al., [2014) object detection benchmark. We integrate GeoPE into the DINO-
ViTDet (Zhang et al.l 2022)) framework, a strong object detection pipeline.

Table [2| shows that GeoPE consistently improves mAP for both ViT-B and ViT-L backbones. Com-
pared with APE and Rope-Mixed (Heo et al. [2024), GeoPE provides the largest relative gains,
highlighting the importance of explicit geometric priors in capturing global spatial relationships
critical for accurate object detection.

5.3 3D SEMANTIC SEGMENTATION

To verify the hypothesis that GeoPE is suitable for any structured tensor data where spatial rela-
tionships are paramount, we apply it to 3D point cloud segmentation on the S3DIS dataset (Armeni
et al.Ll 2016b). We incorporate GeoPE into the Point Transformer architecture.

As reported in Table [3] GeoPE improves all major metrics, including overall accuracy, mean class
accuracy, and mean IoU, relative to the RPE baseline. These improvements confirm that explicitly
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Table 2: This table reports MSCOCO(Lin
et al., 2014) detection performance (box AP).

DINO(Zhang et al.l 2022) is trained under Fraction of 'shape’ decisions
the 12-epoch DINO-ViTDet setting(Ren et al., 1 09 08 07 06 05 04 03 02 01 0
2023). For GeoPE, we apply it to the ViT back- =] * °
bone, which is pre-trained on ImageNet-1K us- : | o
ing the 400-epoch DeiT-III recipe. CIRS o
* °
Backbone PE mAP P10 °
’g > °
APE 49.4 Im ¢ o
ViT-base  Rope-Mixed 51.2 é : .
o (%] °
GeoPE 51.3 Z2ald -
APE 51.1 ] o
ViT-large Rope-Mixed 52.9 : . ]
GeoPE 53.1 @ R
e ]

0 01 02 03 04 05 06 07 08 09 1

Fraction of 'texture' decisions

Table 3: Semantic segmentation performance  Figure 6: Shape Bias Relation Analysis. The
on the S3DIS dataset(Armeni et all 2016a), plot shows the fraction of ’shape’ versus ’tex-
evaluated using 6-fold cross-validation. ture’ decisions for different image categories.

Backbone PE 0A  mAcc mloU Models with GeoPE consistently show a higher

shape bias.
Point- RPE 90.2 81.9 73.5
Transformer GeoPE 90.5 82.1 74.4

encoding multi-axis spatial relationships allows the model to better capture 3D geometric structures,
validating the general applicability of GeoPE beyond 2D vision tasks.

5.4 SHAPE-TEXTURE BIAS ANALYSIS

To assess GeoPE’s impact on spatial reasoning, we analyze its effect on the model’s shape-texture
bias. A strong shape bias, which prioritizes object structure over texture, is often correlated with bet-
ter robustness and generalization. As shown in Figure[6] GeoPE significantly increases the model’s
shape bias compared to the baseline. This provides compelling evidence that our method encour-
ages learning features more attuned to object geometry, fostering a more robust and holistic visual
understanding by striking an effective balance between shape and texture.

6 CONCLUSION

We propose GeoPE, a method that extends 1D rotational embeddings to higher dimensions by using
quaternions for 3D rotations in vector sub-spaces. To overcome the non-commutativity of quater-
nions, we introduce a symmetric averaging technique based on Lie theory and derive a Linear GeoPE
variant that preserves relative position encoding. Extensive experiments show GeoPE significantly
enhances spatial awareness in Transformers, boosting performance on 2D and 3D tasks while re-
taining the excellent extrapolation properties of its 1D predecessor. Our work offers a principled
and effective path for position encoding in models for structured data.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The main paper pro-
vides detailed descriptions of the proposed method, model architectures, and training procedures.
Additional experimental details, ablation studies, and theoretical derivations are included in the Ap-
pendix. We also provide the complete data preprocessing steps and hyperparameter configurations
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in the supplementary material. Furthermore, we submit the anonymized source code and training
scripts as supplementary material to facilitate replication of all reported results.
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A DERIVATION OF THE SYMMETRIC OPERATOR

This section details the derivation of the closed-form solution for the symmetric rotational operator
r(0y, 0,,) introduced in Section 3.2}

Our goal is to compute the geometric mean of two base rotations, r(6;,) and r,,(6,,), using the
log-exp map formalism:

£(0n, ) = oxp 5 (Qou(rn(01) + lou(ro 0,)) (10

The logarithm map for a unit quaternion r = cos(«) + sin(a)n, where n is a unit vector, is given
by log(r) = an. The vector an is an element of the Lie algebra so0(3).
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The base quaternions are:

rp(0y) = cos <0h> + sin <9h>j (11)
2 2
ry(0) = cos (0;) + sin (0;) k (12)
Applying the logarithm map to each, we get:
On .
log(x1(6n)) = '] (13)
log(ry(0w)) = %Uk (14)

In the vector space 50(3) 22 R3, these correspond to the vectors (0, 6),/2,0) and (0,0, 6,,/2).

We compute the arithmetic mean of these vectors in the Lie algebra:

_ 1 _ 1 eh. 9w _ eh. ew

This corresponds to the vector (0,6 /4,6,,/4), as stated in the main text.

The exponential map for a Lie algebra vector u is given by exp(u) = cos(|[ul]) + sin([[ul[) ;3

First, we compute the norm of our averaged vector u:

0,\>  [6,\° 1
=y (%) + (%) = e )

Let us define the coupled phase © = 3/6Z + 02, Then, |lu|| = .

Next, we find the corresponding unit axis vector:

nj4 %%  0,5+0,k 6 0
u :14J+ 1 _ hd + Ow :lj+7wk (17)
ol ~ IV VG 200 26

Finally, applying the exponential map yields the desired symmetric operator:

r = exp(u) = cos (2) + sin <2> (29(}:).] + gqék) (18)

This completes the derivation.

B INNER PRODUCT WITH ROTATED VECTORS
This section provides the derivation for the inner product of a vector q with a rotated vector Rk, as
presented in the discussion on the geometric interpretation of attention.

A rotation of a vector k € R? by an angle A around a unit axis vector n € R? is given by Rodrigues’
rotation formula:

Rk =kcos(A) + (n x k)sin(A) + n(n - k)(1 — cos(A4)) (19)

To find the attention score, we compute the inner product of a query vector q with this rotated key
vector:

(q, Rk) = (q,kcos(A) 4+ (n x k) sin(4) + n(n - k)(1 — cos(A4))) (20)
By the linearity of the inner product, we can distribute q across the terms:
(a4, Rk) = (q,k) cos(4) + (q, (n x k)) sin(4) + (q,n(n - k))(1 — cos(4)) @21
The last term can be simplified:
{(@n(n-k)) = (q-n)(n- k) (22)
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The middle term involves the scalar triple product, which satisfies the identity a- (b x ¢c) = b - (¢ x
a)=c-(axb). Leta=q,b=mn,c=k. Then:

(@,(n xk)) =k-(qxn)=-k-(nxq) (23)
Substituting these back, we obtain the final expression for the inner product:
(q,Rk) = (q,k) cos(4) + (q-n)(k-n)(1 —cos(A)) — (n x q) - ksin(A) (24)

Note: The sign of the final term may vary depending on the convention used for the scalar triple
product permutation, but the geometric intuition remains the same. The version in the main text is a
common variant.

C LONG-DISTANCE DECAY PROPERTY

A key inductive bias of RoPE, which GeoPE is designed to generalize, is the decay of attention
scores over large relative distances. We demonstrate that GeoPE preserves this behavior by analyz-
ing the structure of the attention score’s dominant term. The leading term in the total attention score

is the sum:
d/3-1

S = Z (qs, ki) cos(4;) (25)
=0
where the angle A; for the i-th sub-vector is proportional to the relative distance ||Ap|| and a fre-
quency term \2%/9:

A= %\/ (App - A20/0)2 4 (Ap,, - A2i/d)2 — %||Ap||)\2i/d 26)

Let D = }||Ap|| be the effective distance, ¢; = (q;,k;) be the feature similarity, and ¢; = A\%/<.
The sumis S = 31V o' ¢; cos(D¢;), where N = d/3.

To show this sum decays with D, we apply summation by parts (Abel transformation). Let h; = ¢;
and g; = cos(D¢;). Let Gy, = Zf:o gi be the partial sum of the cosine terms. The total sum is:

N-1 N—2
S = Z higi =hn_1GNn_1 — Z (hix1 — hi)G; 27
i=0 i=0
By the triangle inequality:
N-2
S| < |- allGnal + > higr — hillGil (28)
i=0

Assuming the feature similarities ¢; are well-behaved (i.e., bounded and with small successive differ-
ences, a reasonable assumption for trained embeddings), the magnitude of .S is primarily controlled
by the magnitude of the partial sums |G|

The partial sum Gy, = E?:o cos(Dg;) is a sum of cosines with geometrically increasing frequencies
(¢; = A?"/%). For a large distance D, the arguments D¢; grow rapidly, causing the cosine terms to
oscillate with increasing frequency. Such sums are bounded due to destructive interference. While
a simple closed-form bound is not available as in the arithmetic case (original RoPE), the geometric
progression of frequencies ensures that the terms do not align constructively, keeping |G| bounded
for any k. As D — oo, the oscillations become more rapid, strengthening the cancellation effect.
This implies that the average magnitude of the attention score decays with distance, preserving the
crucial inductive bias for locality, analogous to the property shown in (Su et al.| 2024)).

D DEGENERATION OF GEOPE TO 1D ROPE
For 1D sequential data, GeoPE gracefully degenerates to a formulation equivalent to the original

RoPE. In a 1D setting, we only have a single position index, say p, and its corresponding phase is
6 = p-A\%"/?_ Since there is only one spatial dimension, the log-exp averaging process is unnecessary.
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We can define a single base rotation directly. Following the original RoPE, this is a 2D rotation,
which can be embedded in our 3D framework as a rotation around a single fixed axis (e.g., the

y-axis, j).

The rotational quaternion for a phase 6 is simply:

0 AW
r(0) = cos <2) + sin (2> j (29)

In GeoPE, feature vectors are partitioned into 3D sub-vectors v = (v, vy, v.). Fora 1D application,
we can effectively work with 2D sub-vectors by setting one component to zero, e.g., v = (v, 0, v,).
This corresponds to a pure quaternion p = v,i + v, k.

The rotation is applied via the sandwich product p’ = r(6)pr(6)*. The rotation matrix correspond-
ing to r(#) is a pure rotation around the y-axis:

< cos(d) O sin(G))
RO=( 0 1 0 (30)
—sin(f) 0 cos(6)

Applying this rotation to our 2D-like sub-vector v = R(0)v:

vl cos(d) 0 sin(0)\ (v v cos(6) + v, sin(6)
vl —sin(f) 0 cos(f)/) \v, —vy sin(6) + v, cos(0)
This operation is a 2D rotation on the coordinates (v;,v.). The original RoPE applies the ma-

. [cos(f) —sin(h) . . U AN
trix (sin( 6)  cos(h) to a pair of features (fi, f2). The resulting transformation is o) =

cos() sin(0)\ [vs e . . . .
( sin(@) cos(6) ) \v. ) By identifying v, with f; and v, with f5, this is equivalent to the
standard RoPE rotation matrix for an angle of —0. Thus, GeoPE contains RoPE as a special case,
differing only by a sign convention on the rotation angle.

E THREE DIMENSION EXTENSION

This section details the derivation for the 3D symmetric rotational operator, extending the logic from
Appendix [A]

For 3D data with positions (d, h,w), we have three base quaternions corresponding to rotations
about the i, j, and k axes:

rq(64) = cos (02d> + sin <92d) i (32)
ri(0y) = cos <02h> + sin <92h>3 (33)
0y =eon (%) o (%) -
We map these to the Lie algebra so(3):
log(e) = 2 65)
tog(en) = 25 36)
log(ru) = %"k (37)

We compute the arithmetic mean of these three vectors:

1 0 0 0w
u = . (log(ry) + log(ry) + log(ry)) = gdi + ghj + 5k (38)

3
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Next, we compute the norm of this averaged vector u:

0.\> [0\ [6,\> 1
= (%) () (%) = L )

Let’s define the 3D composite phase © = £1/62 + 67 + 62. Then, |ju|| = =3

w*

The unit axis vector is:
ed 1 ah : Qw . .
Fi+gi+ gk 6 0 Ok  bg, O, 0,
i:161 26J2 6 = d1_2|— hJ2+ :il'i_i}_]—‘rik (40)
lal 102467 +02 JOZ+67+62 30 307 30
Finally, applying the exponential map exp(u) = cos(|ju||) + sin(||u|\)”—:‘l|‘ yields the 3D GeoPE
operator:

- (C] . S} gd . 9h . Ow
r = cos <2> + sin <2> (3@1 + %_] + 3@k) 41

F LIMITATIONS

The Linear GeoPE variant enforces a strict linear inductive bias, but its current implementation
incurs a significant memory footprint, with peak memory allocation increasing by over 200% com-
pared to baselines, despite having similar FLOPs. In contrast, our standard GeoPE shows no such
overhead; its memory usage is nearly identical to APE (less than 2% difference). This overhead is
specific to Linear GeoPE’s need to materialize relative rotation matrices and is an implementation-
level challenge, not a fundamental limitation. We are confident it can be effectively mitigated with
a custom CUDA kernel.
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