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Abstract

Functional magnetic resonance imaging (fMRI) is an indispensable tool in modern
neuroscience, providing a non-invasive window into whole-brain dynamics at
millimeter-scale spatial resolution. However, fMRI is constrained by issues such
as high operation costs and immobility. With the rapid advancements in cross-
modality synthesis and brain decoding, the use of deep neural networks has emerged
as a promising solution for inferring whole-brain, high-resolution fMRI features
directly from electroencephalography (EEG), a more widely accessible and portable
neuroimaging modality. Nonetheless, the complex projection from neural activity
to fMRI hemodynamic responses and the spatial ambiguity of EEG pose substantial
challenges both in modeling and interpretability. Relatively few studies to date have
developed approaches for EEG-fMRI translation, and although they have made
significant strides, the inference of fMRI signals in a given study has been limited
to a small set of brain areas and to a single condition (i.e., either resting-state or a
specific task). The capability to predict fMRI signals in other brain areas, as well
as to generalize across conditions, remain critical gaps in the field. To tackle these
challenges, we introduce a novel and generalizable framework: NeuroBOLT1, i.e.,
Neuro-to-BOLD Transformer, which leverages multi-dimensional representation
learning from temporal, spatial, and spectral domains to translate raw EEG data
to the corresponding fMRI activity signals across the brain. Our experiments
demonstrate that NeuroBOLT effectively reconstructs unseen resting-state fMRI
signals from primary sensory, high-level cognitive areas, and deep subcortical brain
regions, achieving state-of-the-art accuracy with the potential to generalize across
varying conditions and sites, which significantly advances the integration of these
two modalities.

1 Introduction

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are the most
commonly utilized non-invasive neuroimaging techniques, providing crucial insights into brain
functionality. These two modalities offer distinct advantages and limitations that can complement
one another when combined [45, 13]. fMRI offers high spatial resolution imaging of whole-brain
activity by measuring blood-oxygen-level-dependent (BOLD) signal changes, which facilitates
probing regional and network-level function. However, fMRI suffers from low temporal resolution
and hemodynamic blurring, which limits its ability to capture the accurate timing of rapid neuronal
activity dynamics. Additionally, its high cost, non-portability, and incompatibility with metal implants
further restrict the utility of MRI in certain contexts. Conversely, EEG stands out as a low-cost,
portable neuroimaging modality with high temporal resolution [10, 30, 61]. However, EEG faces
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Figure 1: Overall illustration of EEG-to-BOLD fMRI translation using NeuroBOLT.
limitations due to volume conduction and from the superficial location of electrodes (on the scalp),
making it difficult for EEG to accurately infer the origins of the measured electrical potentials. In
this context, the high spatial resolution of fMRI becomes indispensable, especially for imaging deep
brain regions.

One approach for investigating the relationship between EEG and fMRI signals is by analyzing
data collected simultaneously from both modalities. Such studies have demonstrated correlations
between fMRI data and various features of EEG signals, such as the power in certain frequency bands
[27, 7, 28], which underscore the potential of EEG to inform fMRI features. However, factors such
as the disparate biophysical origins of the two signals, and differences in their spatial and temporal
resolutions, can limit the accuracy, interpretation, and consistency of correlation-based EEG-fMRI
studies. These challenges are exacerbated in conditions during which a participant is resting passively
(i.e., resting state), which is characterized by significant noise and randomness. Consequently, the
mechanisms linking neuronal activity to BOLD signals remain only partially understood, posing
challenges in mapping EEG to fMRI.

With recent progress in cross-modality synthesis and brain decoding techniques using deep neural
networks [8, 9, 16], EEG-to-fMRI synthesis has emerged as a promising yet largely untapped research
area [4]. Early pioneering work by [39, 43] employed ridge regression on EEG temporal-spectral
features to reconstruct fMRI signals from the visual cortex and sub-cortical regions. More recent
studies have used deep neural networks for EEG-fMRI translation [33–35, 5, 3, 25, 31], and those of
[25] and [31] developed sequence-to-sequence (Seq-to-Seq) models to reconstruct fMRI time series
of deep brain regions from EEG. However, these efforts have primarily focused on task datasets,
including cued eye opening/closing [25, 31, 34, 35, 54, 3], leaving the (fully eyes-closed) resting state
condition largely unexplored. In addition, prior studies rely on a subject-specific approach, wherein
models are solely trained and tested on different sections of the same individual’s scans. Further, only
a small number of brain regions have been examined in current studies, leaving as an open question
the predictive power of EEG for fMRI signals across broader areas (see Appendix B for further
discussion of related work). These limitations underscore the need for developing more generalizable
models for EEG-fMRI translation that are accompanied by more comprehensive evaluation.

In this paper, we present NeuroBOLT: a multi-dimensional transformer-based EEG encoding frame-
work for Neural-to-BOLD fMRI Translation (Figure 2). NeuroBOLT is designed to capture and
integrate multi-dimensional representations across temporal, spatial, and spectral domains, offering a
generalizable approach for translating raw EEG waves to BOLD fMRI time series from regions of
interest (ROIs). Drawing inspiration from vision transformer (ViT) [15] and its adaptation for multi-
channel biosignals [59, 22], our framework transforms raw EEG data into unified "EEG patches",
enabling flexible and effective EEG data encoding. These EEG patches are then passed into two
parallel sub-modules: (1) spatiotemporal and (2) spectral representation learning modules. The
spatiotemporal module is propelled by a recently proposed EEG foundation model (LaBraM) [22],
which has been trained to learn effective representations on about 2,500 hours of various types of EEG
signals. Moreover, as previous studies have emphasized the importance of leveraging spectral features
in EEG representation learning [59, 57, 60], EEG-fMRI correlations [27, 14], and EEG-to-fMRI
synthesis [31, 39, 25], the spectral module incorporates multi-scale encoding on EEG spectrogram
patches. Specifically, instead of employing a fixed window size for the Short-Time Fourier Transform
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(STFT) as commonly used [59, 58, 24, 11], we incorporate spectral features from windows of varying
scales. This approach retains the advantages of high temporal resolution from smaller windows and
high frequency resolution from larger windows, thereby enhancing the spectral analysis. The output
embeddings from the above two encoding modules are then integrated, allowing NeuroBOLT to
capture the complexity of neural dynamics and learn the projection from neural to BOLD signals.
The key contributions of this work are summarized as follows:

1) Generalizable EEG-to-fMRI translation framework. We introduce a novel approach, Neu-
roBOLT, that utilizes multi-spectral representation to predict high-dimensional fMRI signals from
raw EEG data without relying on predefined assumptions about the hemodynamic delay between
fMRI and EEG signals. Additionally, our model is designed to accommodate any number of EEG
channels, enhancing its versatility across various experimental setups.

2) Comprehensive evaluation of the predictive power. We performed comprehensive experiments
on subject-specific and cross-subject learning, across selected ROIs in primary sensory, high-level
cognitive, and deep brain regions. Further, we probe the generalizability of our approach across data
acquired in both resting state and task (auditory stimulus) conditions.

3) Successful resting-state fMRI reconstruction. To our knowledge, this is the first study to
successfully reconstruct the eyes-closed resting-state fMRI signal from raw EEG data, with a relatively
small number (26) of EEG electrodes.

2 Method

2.1 Task Formulation

While it is well-established that fMRI signals are coupled to neuronal activity, the details of this
process are only partially understood and still under debate [19]. In practice, most studies model
the relationship between neuronal activity and fMRI by convolving the assumed neural activity
with the hemodynamic response function (HRF), which reaches its peak at about 6 seconds and
gradually returns to baseline over the next 12-15 seconds. However, the HRF is not uniform, varying
significantly across different brain regions and between individuals. Moreover, although EEG can
detect the electrical activity of neural populations at millisecond timescales, it suffers from volume
conduction, making it challenging to extract its neural origins. This spatial ambiguity also complicates
the interpretation of EEG and its relation to fMRI data.

In this study, we aim to build a neural network to learn this complicated projection from the
electrophysiological signal measured by EEG to the BOLD signal measured by fMRI. Our approach
tries to overcome the above challenges in the following ways: 1) it captures multi-dimensional
features of EEG across temporal, spatial, and spectral domains, learning representations that are
crucial for accurate fMRI synthesis; 2) it does not assume a pre-defined delay between the two
modalities, instead, we extract time windows of EEG data that span a duration approximating the
length of HRF preceding each fMRI data point as the inputs to predict the corresponding fMRI data
values (i.e., a Sequence-to-One model), in order to accommodate potential variability across subjects,
regions, and frequencies.

Functional MRI data are conventionally represented in four dimensions, and can be expressed as
a temporal sequence S = {V1, ..., VK} with K observations, where each observation is a volume
V ∈ Rx×y× z with spatial dimensions x, y, and z. This high-dimensional fMRI signal is often
summarized by representing it as a set of brain areas (i.e., P parcels), each with a corresponding fMRI
signal that is averaged over its constituent voxels vx,y,z ⊂ V . Here, we employ such a functional
parcellation, Dictionaries of Functional Modes (DiFuMo) [12], which was learned across millions of
fMRI volumes (see details in [12, 50]). We utilize the DiFuMo parcellation with P = 64 regions,
and the resulting parcellated fMRI data Y ∈ RP×K contains the signals from each of these regions.

Since fMRI signals are delayed by several seconds compared to the corresponding neural activity,
the relationship between an input EEG window and the corresponding fMRI prediction is defined
as Ŷp,t = fθ(Xt−T :t−1), where Ŷp,t ∈ R1 is the reconstructed fMRI value from the pth ROI at
time index t, and X ∈ RC×T represents the multi-channel EEG signal inputs with C electrodes, T
total timepoints. To estimate fθ(.), we formulate an optimization problem that minimizes the loss L
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Figure 2: Overall architecture of NeuroBOLT. Our method first divides the input EEG window
into uniform patches (A), and has two modules that are trained simultaneously: the temporal-spatial
representation learning module (B) and the spectral representation learning module (C). The output
embeddings from the two modules are summed and used as input to a regression head, which
generates the final output.

between the predicted fMRI signal Ŷp,t and the true fMRI signal Yp,t as follows:
min
fθ

EX [L(fθ(Xt−T :t−1), Yp,t)]. (1)

The function fθ is NeuroBOLT, which includes a temporal-spatial representation module and a
spectral representation learning module (Figure 2).

2.2 Model Architecture

In this section, we introduce our model: NeuroBOLT, a general architecture for translating EEG
signals to fMRI. Our model is designed to accommodate input EEG signals with an arbitrary number
of channels. As shown in Figure 2, we leverage the pre-trained EEG foundation model, LaBraM
(checkpoint version: LaBraM-base) [22], and finetune on our dataset to obtain spatiotemporal
representations of EEG signals. Additionally, we propose multi-scale spectral feature fusion to obtain
comprehensive spectral representations. These two modules learn complementary attributes of EEG
data. Finally, we integrate the spatiotemporal and multi-scale spectral representations and feed them
into a regression head for fMRI prediction.

Spatiotemporal Representation We formulate the multi-channel EEG signals as X ∈ RC×T ,
where C represents the number of EEG electrode channels and T denotes the time length of the
input EEG. To obtain the spatiotemporal representation of a given set of EEG signals, we leverage
an operation from LaBraM [22], which segments the EEG signals into patches. Assuming the
time window length (patch size) for tokenization of EEG signal is w and the stride is s, X can be
segmented into

⌊
T−w

s

⌋
+ 1 segments, with each segment denoted as x ∈ RC×w. In this work, we

use a window of length w and a stride s = w to segment each EEG channel into patches, obtaining
x = {xcj ,k ∈ Rw | j = 1, 2, . . . , C, k = 1, 2, . . . ,

⌊
T
w

⌋
}. The total number of patches is C ×

⌊
T
w

⌋
.

These patches are then passed forward to a temporal encoder [22] to obtain the patch embeddings,
denoted as:

{ecj ,k ∈ Rd | j = 1, 2, . . . , C, k = 1, 2, . . . , . . . ,

⌊
T

w

⌋
} (2)

where d is the dimension of the embedding.

To enable the model to capture the temporal and spatial information of the patch embeddings, we
set up a list of trainable temporal embeddings and spatial embeddings, denoted as TE = {tek |
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Figure 3: Multi-scale spectral feature embedding.

k = 1, 2, . . . ,
⌊
T
w

⌋
} and SE = {sej | j = 1, 2, . . . , C}, respectively. Thus, the final segment

embedding eseg can be represented as the sum of the output embedding, temporal embedding, and
spatial embedding, denoted as:

eseg = {ecj ,k + tek + sej | j = 1, 2, . . . , C, k = 1, 2, . . . ,

⌊
T

w

⌋
} (3)

The segment embedding eseg is directly fed into the Transformer encoder [52] to obtain the output
embeddings. We then apply average pooling to these embeddings to obtain the spatial and temporal
representation rst ∈ Rdst , where dst denotes the dimensionality.

Multi-scale Spectral Representation Compared to RGB images, EEG signals present several
challenges, such as a low signal-to-noise ratio, apparent stochasticity, nonstationarity, and nonlinear
characteristics, making the reconstruction of the original signals difficult [41]. Previous research
indicates that the frequency spectrum of EEG signals is crucial for understanding the brain’s neuro-
physiological activities [59, 55]. Therefore, in our work, we utilize the Short-Time Fourier Transform
(STFT) to achieve a spectral representation of EEG signals. Unlike most recent state-of-the-art
methods, we design a multi-scale spectral approach that captures both coarse and fine representations
in the temporal and frequency domains [56, 36]. Details of rationale can be found in Appendix C). For
the EEG signals X ∈ RC×T , we set the base window size as wb and define the window size at level l
as wl = wb × 2l, where l = 0, 1, . . . , L represents the level number. Thus, the EEG patches with
different window size can be denoted as xl = {xl,cj ,k ∈ Rwl | j = 1, 2, . . . , C, k = 1, 2, . . . ,

⌊
T
wl

⌋
}.

After obtaining the EEG patches, Fast Fourier Transform (FFT) is applied to each patch with the FFT
size matches the window length to calculate the magnitude spectrum with wl

2 + 1 frequency bins at

each level l, which can be denoted as sl ∈ RC×
⌊

T
wl

⌋
×(

wl
2 +1).

Similar to the operation in spatiotemporal module, we define a list of trainable frequency embeddings
for each magnitude spectrum at different levels, represented by:

FE = {fel ∈ RC×
⌊

T
wl

⌋
×d | l = 0, 1, . . . , L} (4)

These frequency embeddings, which vary in the number of temporal windows, are further mapped to
a set of window embeddings as follows:

WE = {wel ∈ RC×n×d | l = 0, 1, . . . , L} (5)

Then, we calculate the sum of the wel for each level to obtain an overall spectrum embedding as
esp ∈ RC×n×d as shown in equation 6

esp =

L∑
l=0

wel ∈ RC×n×d (6)
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For each channel, we apply spatial embedding, similar to the spatiotemporal representation section,
to obtain the final embedding with dimensions esp ∈ RC×n×d, where C, n and d represent the
channel number, window embedding dimension, and frequency embedding dimension, respectively.
The original Transformer is known to have quadratic complexity in both time and space, and EEG
signals typically contain tens of channels. To learn these embeddings with lower complexity [59], we
feed spectrum embeddings esp into a linear Transformer Encoder [53, 23]. Let the input embedding
esp ∈ RN×d, where N = C × n represents the number of tokens. The self-attention operation in the
linear Transformer Encoder can be formulated as follows:

H = Attention(espWQ,EespWK ,FespWV )

= softmax (
(espWQ)(EespWK)⊤√

k
)︸ ︷︷ ︸

N×D

·FespWV︸ ︷︷ ︸
D×k

(7)

Here WQ, WK , WV ∈ Rd×k are the query, key and value matrices. The self-attention module uses
a rank-D approximation for the softmax attention (N × N) by reduced-rank parameter matrices
E⊤ ∈ RN×D, F ∈ RD×N (where D ≪ N ). Main components of this module include one linear
self-attention layer and one fully connected network. Layer normalization before each component
[2], residual connection after each component [18], and dropout right after the self-attention to enable
stable training [49, 59]. The output is fed into average pooling along the token dimension to obtain
the final spectral representation rsp ∈ Rdsp , where rsp has the same dimension as the spatiotemporal
representation rst.

Projection Head The hidden embeddings from the above two modules are then summed up and
fed into a regression head, which consists of Gaussian Error Linear Unit (GELU) [20] followed by a
single linear layer, to make the final prediction of fMRI in the pth ROI at time t.

Ŷp,t = Linear(GELU(rst + rsp)) (8)

3 Experiments

3.1 Datasets

Resting-state dataset EEG and fMRI data were collected simultaneously from 24 healthy volun-
teers in two sessions, each lasting 20 minutes. Scans with significant artifacts in the EEG or fMRI
data were excluded for further analysis. The final sample contains 29 fMRI scans from 22 subjects, 7
of whom had two scans. During these fMRI scans, subjects rested passively with their eyes closed
(resting state). Written informed consent was obtained, and all protocols were approved by the
Institutional Review Board. BOLD fMRI data were collected on a 3T scanner using a multi-echo
gradient-echo EPI sequence with repetition time (TR) = 2100 ms. Scalp EEG was acquired simul-
taneously with fMRI using a 32-channel (10-20 system) MR-compatible system with FCz as the
reference (BrainAmps MR, Brain Products GmbH) at a sampling rate of 5 kHz, and was synchronized
to the scanner’s 10 MHz clock to facilitate MR gradient artifact reduction. Details of EEG and fMRI
acquisition, preprocessing as well as artifact reduction can be found in Appendix D.

Auditory Task Dataset To further evaluate the model generalization performance, we also include
simultaneous EEG-fMRI data (16 scans from 10 subjects) collected during auditory tasks. Subjects
were asked to keep their eyes closed the entire time and to make a right-handed button press as soon
as possible upon hearing a tone. This dataset was collected at a different site, different MR scanner
(3T Siemens Prisma scanner) and using a slightly different EEG cap (32 channels but with partially
different electrode settings). Please also see detailed information about data collection, preprocessing,
and experiments in Appendix D.

Unless specified otherwise, the experiments and results below refer to the resting-state data.

3.2 Experimental Setup

Preprocessing We employ DiFuMo with n = 64 dimensions [12] (see Section 2.1) to extract
measured BOLD signals within specific ROIs. We focus on seven ROIs that span a range of spatial
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locations and functional roles, namely: primary sensory regions (cuneus and Heschl’s gyrus),
high-level cognitive areas (anterior precuneus, anterior and middle frontal gyri), subcortical regions
(putamen and thalamus), and the global (whole-brain average) signal. From these ROI time series,
we regress out motion confounds, low-pass filter the signals below 0.15Hz, and use the 95th-percentile
of the absolute amplitude to normalize the demeaned ROI time courses. To prepare the EEG data for
input, we first exclude the ECG, EOG, and EMG channels (remaining 26 channels), and resample
the EEG to 200 Hz to enhance computational efficiency while preserving meaningful frequency
components (which are typically below 100 Hz). To predict the fMRI ROI signal, we extract EEG
windows of 16 seconds before each fMRI data point. This window length is selected to encompass
the peak and most of the variation in the hemodynamic response function. Additionally, this duration
aligns with the maximum temporal encoding window length of the pre-trained LaBraM model [22],
ensuring optimal fine-tuning. The normalization of the EEG also strictly follows [22], where EEG
data values are divided by 100 so that the resulting amplitude falls primarily between -1 to 1, since a
typical EEG amplitude range is from -100 µV to 100 µV .

Baselines and Evaluation Metrics The baseline models include state-of-the-art EEG encoding
models from [59] and [22], as well as two EEG-to-fMRI translation baselines [25, 31]. Since the
original EEG-to-fMRI baselines are sequence-to-sequence models, we adapted them by adding a
final projection layer to their encoder to enable sequence-to-one prediction. Additional details on
baseline implementations are provided in the Appendix E.2. We employed the following two metrics
for comparison: 1) Pearson correlation coefficient (R), which measures the strength and direction of
the linear relationship between prediction and ground truth; 2) Mean squared error (MSE), which
measures the average squared differences between prediction and ground truth across samples. The
main text highlights the correlation coefficient as the primary evaluation metric, while MSE results
are provided in the Appendix Table 6.

Implementation Details For the spatiotemporal module, we initialize the model by loading the
pretrained weights from LaBraM-base [22], with a token length = 200, i.e., 1 second, with no overlap.
Please refer to [22] for more details of EEG pretraining. For the multi-scale spectral module, we set
the smallest scale size l0 = 100, i.e., 0.5 seconds without overlap. Experiments are conducted on a
single RTX A5000 GPU using Python 3.9.12, Pytorch 2.0.1, and CUDA 11.7. To ensure consistency
during model training, we set a fixed seed across all experiments. The batch sizes are set at 16 and 64
for intra-subject and inter-subject analyses, respectively. AdamW is utilized as our optimizer, and
MSE as our training objective. The initial learning rate is set at 3e-4 with a weight decay of 0.05, and
a minimal learning rate of 1e-6. For subject-specific prediction, where training and testing occur on
the same scan, we split the scan in an 8:1:1 ratio for training, validation, and testing, i.e., training on
the first 80% of the data and testing on the last 10%. Given that the fMRI signal exhibits significant
autocorrelation, typically extending from about -10 to 10 seconds [6], we implement gaps of 20
seconds between the training and validation sets, as well as between the validation and testing sets, to
prevent data leakage. For the inter-subject analysis in resting-state data, we randomly divided the
datasets into training/validation/testing sets by approximately 3:1:1 (18 scans : 5 scans : 6 scans). For
the task data, we split the scans by 9 scans : 3 scans : 4 scans. Since data from the same individual
might have shared representations, the two scans from the same individual are ensured to be in the
same set (either training, validation, or testing set) to avoid possible data leakage. All models are
optimized on the training set and evaluated on the test set, with the best model and hyperparameters
selected based on the validation set.

3.3 Intra-subject Prediction

In this section, models were trained on approximately 16 minutes of EEG data, and used to forecast a
future interval of fMRI signal (about 2 minutes) within a resting-state scan. Figure 4 illustrates the
distribution of correlation coefficients (R) between the predictions and the ground truth, along with
examples that represent the average performance of our model. The quantitative results are detailed
in the upper part of Table 1 and Figure 7 in Appendix. NeuroBOLT outperforms the next two best
EEG encoders by 12.26% and 9.71% (respectively) in terms of the average correlation, exhibiting the
best performance in reconstructing fMRI signals from all ROIs.
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Figure 4: Intra-subject prediction results. (A) The parcellation of the chosen ROIs. (B) The
distribution of prediction performance (Pearson’s correlation coefficients), with example time-series
reconstructions that represent performance levels near the mean (indicated by the small grey arrow in
the histogram). The dashed lines in the histograms represent mean correlation values.

Table 1: Model performance (R) in intra- and inter-subject experiments. Bold: the best performance;
the underlined: the second-best performance

Model Primary Sensory High-level Cognitive Subcortical - Avg. R↑Cuneus Heschl’s Gyrus Middle Frontal Precuneus Anterior Putamen Thalamus Global Signal

In
tr

a-
sc

an

BIOT [59] 0.531±0.223 0.518±0.207 0.490±0.162 0.459±0.110 0.410±0.205 0.411±0.231 0.493±0.133 0.473
LaBraM [22] 0.540±0.176 0.519±0.197 0.493±0.153 0.490±0.176 0.411±0.179 0.449±0.177 0.487±0.167 0.484
BEIRA [25] 0.357±0.241 0.396±0.240 0.294±0.228 0.320±0.220 0.234±0.194 0.328±0.197 0.456±0.240 0.341
Li, et al. [31] 0.460±0.228 0.515±0.207 0.376±0.169 0.457±0.204 0.324±0.183 0.398±0.194 0.583±0.170 0.445

NeuroBOLT (ours) 0.588±0.166 0.566±0.183 0.502±0.168 0.559±0.141 0.437±0.184 0.480±0.213 0.587±0.162 0.531

In
te

r-
su

bj
ec

t

FFCL [29] 0.326±0.094 0.412±0.039 0.327±0.078 0.437±0.091 0.243±0.125 0.373±0.082 0.512±0.048 0.376
CNN Transformer [44] 0.218±0.204 0.412±0.114 0.298±0.097 0.316±0.153 0.232±0.086 0.180±0.106 0.282±0.185 0.273
STT Transformer [48] 0.269±0.197 0.188±0.056 0.226±0.130 0.280±0.143 0.074±0.126 0.142±0.101 0.347±0.124 0.218

BIOT [59] 0.457±0.123 0.512±0.039 0.393±0.128 0.445±0.084 0.299±0.063 0.413±0.073 0.529±0.110 0.435
LaBraM [22] 0.177±0.116 0.211±0.105 0.153±0.132 0.170±0.152 0.047±0.111 0.147±0.122 0.150±0.152 0.151
BEIRA [25] 0.421±0.112 0.482±0.063 0.384±0.147 0.452±0.149 0.241±0.135 0.410±0.097 0.492±0.106 0.412
Li, et al. [31] 0.505±0.063 0.430±0.048 0.415±0.114 0.416±0.076 0.217±0.139 0.424±0.072 0.529±0.092 0.419

NeuroBOLT (ours) 0.482±0.100 0.561±0.046 0.423±0.115 0.496±0.136 0.335±0.144 0.453±0.106 0.564±0.115 0.473

3.4 Inter-subject Prediction

Predicting Resting-state Data from Unseen Subjects To assess the generalizability of NeuroBOLT
across subjects, we first evaluated its performance on held-out recordings in the resting-state dataset,
this time using EEG data to predict the fMRI ROI time series across entire scans (with length
of about 20 minutes). As shown in the lower part of Table 1, our model achieves the highest
average correlation across ROIs, with a score of 0.473. Figure 5 shows the correspondence between
the correlation values and the appearance of the reconstructions. This visualization reveals that
NeuroBOLT successfully captures major features of fMRI dynamics in reconstructing the whole
unseen fMRI scan, especially for primary sensory regions and global signals. Thus, even though
both EEG and resting-state fMRI have relatively low signal-to-noise ratio, NeuroBOLT still learns
meaningful EEG representations and EEG-fMRI correlations that are crucial for EEG-to-fMRI
translation. Additional results including performance distributions with statistical significance, MSE
table and examples visualizing the best and the worst fMRI scan reconstructions, are provided in
Appendix F for comprehensively displaying the performance. Furthermore, in comparison to other
state-of-the-art EEG-fMRI translation approaches [31, 25] and EEG encoding models [59, 22, 29,
44, 48], NeuroBOLT achieves lower mean squared error (MSE) and higher correlation, with at least
an 8.74% improvement in average correlations. Similar to the scenario of within-subject prediction,
NeuroBOLT shows the highest performance in predicting signals from global and primary sensory
regions, achieving average correlations of 0.564 and 0.522, respectively, followed by its performance
in high-level cognitive and subcortical regions.

Ablation Study In this section, we scrutinize the design of NeuroBOLT on the same unseen resting-
state recordings. Table 2 provides an ablation study on the contributions of each component in the
NeuroBOLT model. The table reveals that the integration of the spectral learning module markedly
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Figure 5: Examples of reconstruction of the unseen scans. Scans with the median performance
are shown. Dashed line: ground truth; colorful lines: model prediction

enhanced the average prediction performance by 0.285 in R, underscoring the pivotal role of spectral
features in EEG-fMRI translation. Further, we examine the effectiveness of our multi-scale spectral
representation learning module by incrementally increasing the number of included scales. Increasing
the number of scales led to significant performance improvements in most of the ROIs.

In our model, the number of FFT points matches the token length. Therefore, larger window sizes
produce a spectrogram with higher frequency resolution but at the expense of capturing more rapid
changes in temporal dynamics (also see in Figure 3). We observe that fusing multi-scale spectral
features leads to better performance in capturing the projection from EEG to fMRI. Additionally, as
shown in Table 2, different brain regions appear to prefer various numbers of scales, likely reflecting
distinct temporal-spectral dynamics across regions. Overall, the NeuroBOLT configuration with
four scales (l3) achieves the best average performance. We have adopted this setting for all of our
experiments.

Table 2: Ablation study on the different components of NeuroBOLT and various spectral scale level
settings. T represents the Temporal-spatial module, while MS stands for the Multi-scale Spectral
module. l denotes the number of scale levels that are used for spectral feature integration, where l0
means that only a single scale that equals the token size is employed.

Model
Primary Sensory High-level Cognitive Subcortical -

Avg. R↑Cuneus Heschl’s Gyrus Middle Frontal Precuneus Anterior Putamen Thalamus Global Signal
MSE↓ R↑ MSE↓ R↑ MSE↓ R↑ MSE↓ R↑ MSE↓ R↑ MSE↓ R↑ MSE↓ R↑

T [22] 0.247 0.177 0.239 0.211 0.256 0.153 0.246 0.170 0.259 0.047 0.255 0.147 0.246 0.150 0.151
MS w/ l3 0.208 0.404 0.193 0.486 0.222 0.384 0.193 0.489 0.245 0.274 0.222 0.452 0.181 0.534 0.432

T+MS w/ l0 0.215 0.405 0.188 0.480 0.212 0.424 0.190 0.482 0.234 0.314 0.207 0.436 0.185 0.508 0.436
T+MS w/ l1 0.208 0.430 0.186 0.486 0.212 0.424 0.193 0.469 0.234 0.323 0.211 0.429 0.178 0.533 0.442
T+MS w/ l2 0.197 0.464 0.174 0.542 0.213 0.432 0.189 0.491 0.235 0.317 0.215 0.433 0.177 0.549 0.461
T+MS w/ l3 0.192 0.482 0.171 0.561 0.215 0.423 0.188 0.496 0.235 0.335 0.208 0.453 0.171 0.564 0.473
T+MS w/ l4 0.210 0.432 0.178 0.524 0.213 0.429 0.200 0.502 0.235 0.323 0.206 0.455 0.179 0.558 0.460

Generalization to Task-related fMRI To evaluate the generalizability of our model trained on
resting-state data to other conditions, we conducted the following experiments on the task dataset
collected from a different site with a different scanner: (1) zero-shot generalization, where we
pretrained our model on resting-state data and tested its performance on task data; (2) intra- and inter-
subject prediction, where models were trained and evaluated only on task fMRI data; (3) fine-tuning,
where models trained on resting-state data were fine-tuned with task fMRI data, and (4) joint-training,
where we jointly trained (using both resting-state and auditory task fMRI data) and evaluated the
model on the respective held-out test sets of both datasets.

As shown in Table 3, the performance of our pretrained model on zero-shot whole-scan task fMRI
reconstruction achieved performances comparable to that of the resting-state data, with even better
performance in several regions compared with the model that was trained only on task fMRI. Fine-
tuning the model on the task dataset further improved the performance substantially. Moreover,
carrying out joint training using both resting-state and auditory task fMRI datasets resulted in the
best performance across 4 ROIs in task fMRI prediction. Our results also suggest that joint training
is not necessarily facilitating the prediction on resting-state fMRI (beyond training on resting-state
data alone), likely due to the smaller sample size of the task dataset and richer variability of brain
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dynamics in the resting state condition. More results of task-scan prediction, such as the intra-subject
prediction, comparison with baselines, and performance distribution, are provided in Appendix F.4.

Table 3: Performance of NeuroBOLT in inter-subject prediction in resting-state and auditory task
fMRI. Mean R values between prediction and g.t. are shown. RS: Resting-State, AT: Auditory Task,
RS-p+AT-f: Pretraining on RS and finetuning on AT, RS+AT: joint training of RS and AT.

Training Testing Primary Sensory High-level Cognitive Subcortical - Avg. R↑Cuneus Heschl’s Gyrus Middle Frontal Precuneus Anterior Putamen Thalamus Global Signal

RS AT 0.387±0.087 0.431±0.026 0.419±0.099 0.451±0.050 0.240±0.202 0.361±0.164 0.372±0.087 0.380
AT AT 0.428±0.141 0.479±0.084 0.407±0.058 0.460±0.071 0.187±0.253 0.362±0.166 0.287±0.120 0.373

RS-p+AT-f AT 0.446±0.033 0.547±0.060 0.437±0.089 0.471±0.065 0.241±0.188 0.401±0.177 0.385±0.098 0.418
RS+AT AT 0.461±0.101 0.516±0.044 0.434±0.106 0.476±0.041 0.248±0.194 0.401±0.220 0.404±0.070 0.420

RS RS 0.482±0.100 0.561±0.046 0.423±0.115 0.496±0.136 0.335±0.144 0.453±0.106 0.564±0.115 0.473
RS+AT RS 0.478±0.110 0.560±0.049 0.437±0.086 0.494±0.107 0.330±0.140 0.443±0.074 0.540±0.119 0.469

4 Discussion and Conclusion

Contributions In this study, we propose NeuroBOLT, a versatile deep-learning solution for pro-
jecting scalp EEG to BOLD fMRI signals. By learning a multi-dimensional EEG representation
from spatial, temporal, and spectral domains, NeuroBOLT shows a strong capability to reconstruct
resting-state fMRI signals from EEG alone. In addition to subject-specific models, it can also predict
fMRI time series from held-out subjects across entire 20-minute scans, which is a first in this field.
It is important to note that correlations of 0.4-0.5 are considered strong for predicting moment-by-
moment signal fluctuations in functional neuroimaging data, given the low signal-to-noise ratio
of EEG/fMRI. It is also worth mentioning that our model reconstructs resting-state fMRI signals
from deep subcortical regions like the thalamus (with accuracy comparable to, or exceeding, certain
cortical ROIs), using raw EEG data with a relatively small set of electrodes (26), enhancing the
capabilities of EEG to map subcortical dynamics. This number of channels is typically insufficient
to capture detailed neural activity from such regions using methods like EEG source localization
[47]. Moreover, NeuroBOLT supports an arbitrary number of EEG input channels, which allows
for flexible application across different EEG setups and across different experimental and clinical
settings. Overall, by advancing the field of EEG-fMRI translation, this work may ultimately open
new possibilities for non-invasive brain research and cost-effective clinical diagnostics.
Limitations Currently, our model is trained separately for each brain region, which is inefficient
for the ultimate goal of high-resolution fMRI reconstruction. Since functional modules in fMRI
also co-fluctuate dynamically, our future work aims to develop an integrated training approach that
leverages these co-fluctuations, aiming to enhance the model’s ability to reconstruct high-resolution
fMRI signals more efficiently. Furthermore, although our model demonstrates promising zero-
shot reconstruction performance on unseen task-based scans when trained on resting-state data
even with limited samples, the sample size of our resting-state and auditory task dataset remains
limited compared to existing studies on single modalities, which may still introduce potential bias or
overfitting. For certain comparisons, sizable variability in the performance of the proposed method
as well as the baseline methods was also observed (see Appendix F and Figures 7, 8). As our
model is adaptable to various channel configurations, we plan to leverage other publicly available
simultaneous EEG-fMRI datasets in our future work to train the model on larger, more diverse
samples. Additionally, future evaluation with multiple random seeds could help mitigate potential
biases especially under small sample size, enhancing the model’s reliability and generalizability.
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A Notation Table

Table 4: Notations used in NeuroBOLT

Symbols Descriptions
S the 4-D fMRI sequence
V the fMRI volume at each time frame
Y , Ŷ the real and predicted fMRI ROI time series
fθ(.) the neural network
X the input EEG time sequence
C the number of EEG electrodes
T the time length of input EEG
w the time window length for tokenization of EEG signal
s the stride length
d the dimension of the latent embedding

ecj ,k the embedding of EEG patch at channel cj , kth time window in spatiotemporal module
tek the temporal embeddings of EEG patch at kth time window in spatiotemporal module
secj the spatial embeddings of EEG patch at channel cj in spatiotemporal module
TE the temporal embedding set in spatiotemporal module
SE the spatial embedding set in spatiotemporal module
eseg the final EEG patch embedding at certain channel and time window in spatiotemporal module
rst the final representation of spatiotemporal module
dst the dimension of final representation of spatiotemporal module

l the window size level in spectral module
L the number of window size level in spectral module
wb the base window size in spectral module
wl the window size at l level in spectral module
fel the frequency embedding at level l in spectral module
wel the window embedding at level l in spectral module
FE the frequency embedding set in spectral module
WE the window embedding set in spectral module
esp the overall spectrum embedding in spectral module
rsp the final representation of spectral module
dsp the dimension of final representation of spectral module
N the number of tokens
k the new dimensions of tokens after self-attention module
WQ, WK , WV the query, key, and value matrices in self-attention
E, F the low-rank projection matrices
H the output of the self-attention
D the reduced rank of self-attention matrices, D ≪ N

B Related Work

Before the adoption of deep learning methods, research into the correlations between EEG and
fMRI suggested the potential for inferring high-dimensional fMRI features based on only partial
information from relatively low-dimensional EEG measures. Most of these studies investigate
EEG-fMRI relationships by regressing the power in one or more EEG frequency bands against
the fMRI time series, after convolving the former with a BOLD hemodynamic response model
[38, 26]. However, there is currently no comprehensive, definitive model that summarizes the
complex translation from EEG to fMRI, possibly owing to complexities such as a potential state-
dependence of neurovascular coupling [51], and research into neural-BOLD relationships is still
ongoing [21, 19].

Early pioneering work by [39] applied ridge regression on EEG temporal-spectral features to recon-
struct fMRI signals from the visual cortex during an eyes-open-eyes-closed task, and to reconstruct
fMRI signals from the amygdala during auditory neurofeedback sessions. Since this study attempted
to reconstruct fMRI signals only from task-specific brain regions, the ability of EEG to infer fMRI sig-
nals from other regions needs further investigation. Using deep neural networks, [33–35, 5, 3, 25, 31]
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explored the capability of encoder-decoder based frameworks for EEG-fMRI translation. Specif-
ically, models developed by [33–35, 5] mainly focus on reconstructing fMRI volumes, but their
effectiveness in recovering fMRI temporal characteristics has yet to be quantitatively assessed. The
work of [25] and [31] addressed this gap in evaluating reconstruction performance in the temporal
domain by employing sequence-to-sequence models to directly reconstruct fMRI time series in deep
brain regions from raw EEG, analyzing the temporal correlation between predicted and actual fMRI
signals. However, these studies are constrained by small sample sizes and rely on a subject-specific
approach, wherein models are solely trained and tested on different sections of the same individual’s
scans. Additionally, most of the existing research has focused on EEG-to-fMRI synthesis during task
conditions, including cued eye opening/closing [25, 31, 34, 35, 54, 3], leaving the (fully eyes-closed)
resting state condition largely unexplored. This gap in the field may stem from the inherently noisier
and more random nature of resting-state data [32], which poses challenges for stable and accurate
translation between EEG and fMRI. Yet, resting state is a widely used condition due to its simplicity
and ease of applicability in patient populations [37]; therefore, there is a crucial need for models that
can successfully operate on resting-state data.

C Rationale of Designing Multi-scale Spectral Representation

Short-Time Fourier Transform (STFT) is the most widely used method to effectively evaluate how
the frequency content of EEG changes over time. Given an multi-channel EEG input sequence
X ∈ RC×T with C electrodes and T total time points, X can be segmented into

⌊
T−w

s

⌋
+ 1

segments. Each segment denoted as x ∈ RC×w, where s represents the stride, and w is the time
window length (patch size). Fast Fourier Transform (FFT) is then applied to each segment to calculate
the EEG frequency spectrum, where the number of FFT is set equal to the window length w. Thus,
the number of frequency features derived from each patch Nf = w

2 + 1. Consequently, the frequency
features of EEG sequence input X with stride equal to window length can be denoted as

fEEG ∈ RC×⌊ T
w ⌋×⌊w

2 +1⌋ (9)
, which serves as the input for spectral representation learning branch.

As noted from above, one of the limitations of the STFT is its fixed resolution. The width of the
window affects the representation of the signal, influencing whether frequency resolution (the ability
to distinguish closely spaced frequency components) or time resolution (the ability to detect when
frequencies change) is prioritized. A wider window w provides better frequency resolution (i.e.,
higher Nf ) but results in poorer time resolution (i.e., fewer time windows), while a narrower window
enhances time resolution but sacrifices frequency resolution, as illustrated in the bottom left of Figure
3. Moreover, different neural processes are associated with different frequency bands, which may
require distinct time windows to capture accurately. Therefore, in this study, we propose a multi-level
spectral representation learning approach that captures and aggregates a range of rapid to smooth
fluctuations with adaptive windows. By using varying time window lengths, the model can isolate
low-frequency, long-duration oscillations with larger windows and high-frequency, short-duration
oscillations with smaller windows. This flexibility ensures that each frequency band is represented
optimally, enhancing the model’s ability to map EEG to fMRI signals accurately as shown in Table 2.

D Dataset and Preprocessing Details

In this section, we provide more details about the simultaneous EEG-fMRI datasets used in this study
as well as the preprocessing steps. The resting-state data included in this analysis were collected from
22 healthy volunteers (mean age = 35.23± 16.86, 12 females). During these fMRI scans, subjects
were instructed only to rest passively with their eyes closed (resting state), and to try and keep their
head still. Participants were compensated 40 dollars. The auditory-task dataset consists of 16 scans
from 10 healthy volunteers (mean age = 27.20± 4.83, 4 females). During the scans, binaural tones
were delivered with randomized inter-stimulus intervals (ISI), and there are two versions of the task
that differed only in the timing of tone delivery: (1) a fast ISI version (6 scans, 500 TR/scan, ISI
mean = 5.6 ± 0.7 sec); (2) sparse ISI version (10 scans, 693 TR/scan, ISI mean = 40.1 ± 14.6 sec).

Written informed consent was obtained, and all protocols were approved by the Institutional Review
Boards of Vanderbilt University and NIH. This non-invasive imaging study poses minimal risk, and
individuals with contraindication to MRI were not eligible for participation.
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Removal of Scanner Artifacts in EEG. For the EEG data, gradient and ballistocardiogram (BCG)
artifacts were reduced using BrainVision Analyzer 2 (Brain Products, Munich, Germany), following
the parameters and procedures described in more detail in [40, 17]. Gradient artifact reduction
was performed using the average artifact subtraction technique[1], utilizing volume triggers. After
correcting for gradient artifacts, the EEG data were downsampled to 250 Hz.

Other EEG Preprocessing Details The EEG data were collected simultaneously with fMRI using
a 32-channel (10-20 system) MR-compatible system with FCz as the reference (BrainAmps MR,
Brain Products GmbH). The full channel names for resting-state data ordered as below: ’Fp1’, ’Fp2’,
’F3’, ’F4’, ’C3’, ’C4’, ’P3’, ’P4’, ’O1’, ’O2’, ’F7’, ’F8’, ’T7’, ’T8’, ’P7’, ’P8’, ’FPz’, ’Fz’, ’Cz’,
’Pz’, ’POz’, ’Oz’, ’FT9’, ’FT10’, ’TP9’, ’TP10’, ’EOG1’, ’EOG2’, ’EMG1’, ’EMG2’, ’EMG3’,
’ECG’. For the task condition, the EEG cap channel setting differed slightly: there was no ’FPz’,
’FT9’, ’FT10’, ’EOG1’, ’EOG2’, ’EMG1’, ’EMG2’, ’EMG3’. Instead, the cap included the following
additional channels: ’FC1’, ’FC2’, ’CP1’, ’CP2’, ’FC5’, ’FC6’, ’CP5’, ’CP6’.

The EOG, EMG, and ECG channels are excluded from our analysis, resulting in the final channel
number of 26 in resting-state and 31 in task-condition. Before sending into the model, the raw EEG
data were first resampled to 200Hz for computational efficiency while maintaining the meaningful
frequency components in EEG (typically below 100Hz) according to the Nyquist-Shannon sampling
theorem[42, 46], and then normalized by dividing the EEG data values by 100, since the clean EEG
data typically fall into the range between -100-100 µV . In our study, no additional low-pass or
high-pass filter is applied to the EEG signal. We also test the model performance in resting-state
inter-subject prediction scenario with a high pass filter (0.5Hz) applied to exclude the influence of
low-frequency drift. The results with or without filtering are very close, with only a 0.006 absolute
difference in average across all regions, which is also non-significant by t-test (T = 0.1525, p =
0.8814, two-sided). Therefore, we keep the original settings.

fMRI Collection and Preprocessing Resting-state MRI data were collected on a 3T Philips
scanner. A high-resolution, T1-weighted structural image (TR = 9 ms, TE = 4.60 ms, flip angle =
8 deg, 150 sagittal slices, 1 mm isotropic) was acquired for anatomic reference. BOLD-fMRI data
were collected using a multi-echo gradient-echo EPI sequence with a repetition time (TR) = 2100 ms,
echo times = 13, 31, and 49 ms, voxel size = 3 × 3 × 3 mm³, slice gap = 1 mm, matrix size = 96 × 96,
30 axial slices. Task MRI data were collected on a 3T Siemens Prisma scanner at a different site.
The T1-weighted structural images were collected with the following parameters: TR = 2200 ms, TE
= 4.25 ms, flip angle = 9 deg, 1 mm isotropic. Multi-echo gradient-echo EPI sequence was also used
for collection with TR = 2100 ms, echo times = 13.0, 29.4, and 45.7 ms, voxel size = 3 × 3 × 3 mm³,
slice gap = 1 mm, matrix size = 82 × 50, 30 axial slices. For each task scan, the first seven volumes
were dropped to allow magnetization to reach steady state.

MRI scanner (volume) triggers were recorded together with the EEG signals for data synchronization.
Slice-timing and motion coregistration were applied, followed by noise reduction using multi-echo
ICA as implemented in tedana 0.0.9a2. Subsequent steps included alignment to an MNI152 standard
template (matrix size = 91 × 109 x 91), removal of low-order trends (up to 4th-order polynomials),
and spatial smoothing (to 3mm FWHM) using AFNI 3.

Rationale for ROI Selection Although our model is designed to predict fMRI signals in any region
of the brain, we choose 7 ROIs to report as representative examples that are located in primary
sensory, high-level cognitive, and subcortical regions. Cuneus and Heschl’s gyrus are responsible for
primary visual and auditory processing; the anterior part of the precuneus is particularly involved
in several cognitive and perceptual processes; the middle frontal gyrus anterior is part of the frontal
lobe, serving an important role in high-level cognitive functions such as working memory, attention,
cognitive control, executive function; as for the subcortical regions, the putamen is part of the basal
ganglia, serving a crucial role in brain’s motor control; thalamus acts as the brain’s relay station,
transmitting sensory and motor signals to the cerebral cortex. It plays a crucial role in regulating
consciousness, sleep, and alertness by processing and relaying information from various sensory
systems and the spinal cord to appropriate areas of the brain for further processing.

2https://tedana.readthedocs.io/en/stable/
3https://afni.nimh.nih.gov/afni
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Table 5: Hyperparameters for NeuroBOLT
Hyperparameters Values

Batch size intra-sub:16, inter-sub:64
Peak learning rate 3e-4

Minimal learning rate 1e-6
Learning rate scheduler Cosine

Optimizer AdamW
Adam β (0.9,0.99)

Weight decay 0.05
Total epochs 30

Warmup epochs 5
Drop path 0.1

Layer-wise learning rate decay 0.65

E Training Details

E.1 Hyperparameter Settings

For the spatiotemporal module in NeuroBOLT, we leverage the architecture and pre-trained weights
from the state-of-the-art EEG foundation model LaBraM [22] (pre-trained weights version: LaBraM-
base), and then fine-tune it on our dataset. To keep consistent with the setting of the pre-trained
model, we also use a token size of 1 sec (200 timestamps) without overlap for this module, resulting
in 16 tokens per channel. Since we have EEG data with C = 26 channels, the final token number
would be 16× 26+1cls token = 417 before being sent into the transformer, please see other detailed
settings of the model architecture in the "fine-tuning session" of [22].

For the multi-scale frequency spectral representation learning module, we set the smallest scale to 0.5
seconds, corresponding to 100 points at our sampling rate of 200 Hz. For the multi-scale learning, we
use l3 throughout our experiments as it achieves the best average performance across other settings,
and it includes four window scales: 0.5 seconds, 1 second, 2 seconds, and 4 seconds. The hidden
features derived from these four scales are first projected to the same frequency embedding size
(equal to the final hidden embedding size: dhiddenembed = 200) and then projected to the same
temporal embedding shape (dtime = 32, which is derived by T

scale0 , where T = 3200 is the total
input EEG length 3200 timestamps, and as mentioned scale0 = 100). These projections are both
achieved by using a single layer of Linear projection. Therefore the shape of the embeddings before
the transformer module is (32× 26 + 1cls token, 200). In this study, we use a linear transformer[53]
instead as our encoder to reduce the complexity and improve the speed. A previous study by
[59] proves that the linear and the vanilla transformer yield very similar performance in biosignal
representation learning, while the former one takes less time, so we also adopt the transformer with
linear complexity in this study, with 8 heads and 4 transformer layers. We obtain the final embedding
from each module by an average pooling step. Then the shape of the hidden embeddings from
the spatiotemporal and multi-scale spectral modules are summed up, with a final embedding shape
(200, 1). Other training details are shown in Table 5.

E.2 Baselines

To ensure fair comparisons across all baselines, we apply the same seed and a consistent set of
hyperparameters - batch size, learning rate, optimizer, and number of training epochs - as detailed in
Table 5 for each reconstruction scenario.

EEG-fMRI Translation:

• Li et al. [31]: A Encoder-Decoder CNN that leverages effective spectral representation
learning with sinusoidal activation function for Sequence-to-Sequence EEG-fMRI prediction
in deep brain regions during eyes-open-eyes-closed (EOEC) task. We adapt this model by
only using the encoder part and then using linear projection to make predictions similar to
our approach.
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• BEIRA [25]: An interpretable CNN Encoder-Decoder for deep brain region fMRI recon-
struction during EOEC task. We also adapt this model by only using the encoder part and
then using linear projection to make predictions similar to our approach.

EEG Encoding:

• LaBraM [22]: A recent EEG foundation model trained on over 2,500 hours of EEG data to
learn the spatiotemporal information of EEG signals, which achieved the state-of-the-art
downstream classification task performance. We maintain the original model architecture
with a 200-dimensional latent embedding and utilize the pretrained weights from this model
(LaBraM-base, the only publicly available checkpoint for LaBraM) for fine-tuning on our
datasets.

• BIOT [59]: A transformer-based flexible bio-signal encoder architecture that learns the
temporal-spectral information from EEG signals. Since BIOT and LaBraM share similar
input processing, and both produce a one-dimensional latent representation for each sample,
we set BIOT’s embedding size to match LaBraM and our model (dhiddenembed = 200) to
ensure a fair comparison, keeping other parameters consistent with the original paper.

• FFCL [29]: A model that combines a CNN model and LSTM model for learning separate
representations, which are merged to make the final prediction.

• ST-Transformer [48]: a transformer-based spatial-temporal feature learning neural network
for EEG classification task.

• CNN Transformer [44]: A transformer convolutional neural network for automated artifact
detection in EEG.

For FFCL, ST-Transformer, and CNN Transformer, we retain the original model architectures as
used in the baseline experiments in [59]. For detailed implementation, please refer to their GitHub
repository4.

4https://github.com/ycq091044/BIOT/tree/main/model
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F Additional Results

F.1 Held-out Resting-state Scan Reconstructions Examples

In this section, we show more examples that reflect the best and the worst reconstruction performance
over all ROIs in Figure 6. The total length of the scans is 1207.5 seconds. NeuroBOLT shows the
capability to reconstruct the whole resting-state fMRI scan over a large time range.

Figure 6: More reconstruction results for inter-subject prediction (unseen subject) Normalized
predicted and real fMRI ROI signals are shown.

F.2 MSE Results in Resting-state Data

Here we provide the model performance assessed by MSE values for intra- and inter-subject experi-
ments conducted on resting-state data (see Table 6).

19



Table 6: MSE in intra- and inter-subject experiments on resting-state data.
Model Primary Sensory High-level Cognitive Subcortical - Avg. MSE↓Cuneus Heschl’s Gyrus Middle Frontal Precuneus Anterior Putamen Thalamus Global Signal

In
tr

a-
sc

an
BIOT[59] 0.271 0.249 0.237 0.287 0.238 0.274 0.249 0.258

LaBraM[22] 0.276 0.249 0.255 0.273 0.236 0.247 0.277 0.259
BEIRA [25] 0.249 0.244 0.260 0.288 0.239 0.241 0.222 0.249
Li, et al. [31] 0.261 0.226 0.275 0.275 0.249 0.229 0.226 0.249

NeuroBOLT (ours) 0.272 0.242 0.263 0.274 0.238 0.225 0.221 0.248

In
te

r-
su

bj
ec

t

FFCL [29] 0.225 0.212 0.230 0.205 0.250 0.230 0.189 0.220
CNN Transformer [44] 0.261 0.226 0.236 0.223 0.246 0.248 0.282 0.246
STT Transformer [48] 0.240 0.295 0.299 0.244 0.258 0.255 0.245 0.262

BIOT [59] 0.217 0.186 0.220 0.201 0.239 0.220 0.196 0.211
LaBraM [22] 0.247 0.239 0.256 0.246 0.259 0.255 0.246 0.250
BEIRA [25] 0.231 0.194 0.242 0.197 0.250 0.230 0.201 0.221
Li, et al. [31] 0.193 0.218 0.214 0.219 0.263 0.212 0.196 0.216

NeuroBOLT (ours) 0.192 0.171 0.215 0.188 0.235 0.208 0.171 0.197

F.3 Distributions of Resting-state Reconstruction Performance

This subsection presents statistical measures for resting-state fMRI scan reconstructions in comparison
with other models (see Figure 7). While the presence of statistical significance varies across methods
and ROIs, our proposed approach demonstrates consistently higher mean performance than the
baselines for all (or all but one) of the ROIs in the intra/inter-scan comparisons.

Figure 7: Intra- and inter-subject EEG-to-fMRI synthesis performance in resting-state. Paired
t-test significance between NeuroBOLT and each baseline: *p<0.05, **p<0.01, ***p<0.001; Error
bars are showing the standard deviation (S.D.).

F.4 Task-fMRI Prediction Performance

In this subsection, we show that, in addition to the resting-state condition, NeuroBOLT is also effective
when trained and tested on auditory-task condition in both intra- (Figure 8(A)) and inter-subject
conditions (Figure 8(B)), achieving the best unseen scan reconstruction performance in 6 out of 7
ROIs. Figure 8(C) present a comparison example between the unseen task signal reconstructed by
the model fully trained on resting-state data (zero-shot) and the signal reconstructed by the model
trained on resting-state data and further fine-tuned on task data.
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Figure 8: Task-condition EEG-to-fMRI synthesis performance (A) Distribution of correlation
coefficients between ground truth and signals predicted by NeuroBOLT for intra-subject predictions
under resting-state and auditory-task conditions. (B) Inter-subject prediction performance (R value)
in 4 held-out auditory task scans compared with other baselines. Paired t-test significance between
NeuroBOLT and each baseline: *p<0.05, **p<0.01, ***p<0.001; Error bars are showing the standard
deviation (S.D.). (C) Example scan of inter-subject task fMRI reconstruction: zero-shot testing with
pretrained model on resting state (shown in light green) and subsequent fine-tuning on task condition
(shown in dark green). Note that only partial time series are shown here for better visualization. R
values are calculated from full sequences.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper identifies the current challenges in EEG-fMRI translation tasks and
proposes a method to address them. We summarize our contributions in the abstract and
also highlight them using bullet points at the end of the Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 5, we discuss the limitations of our method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper does not include theoretical results. But we formulate our question,
and method with detailed formulas.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the Methods section, we provide detailed information about the model
architecture and the dimensions of the input and output. In the supplemental materials, we
offer comprehensive details on preprocessing and training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes. We have provided our project page link, where the data and code would
be updated.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 3 and supplemental materials, we report how we prepared the data
and provide all training and testing details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we provide plots with error bars and statistical test in the Appendix 7, 8,
and we provide S.D. in the main tables 1, 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In section 3.2, we report these information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms, in every respect with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 4, we summarize the broader impacts of our work, highlighting
our efforts to address clinical diagnostic challenges through non-invasive and cost-effective
methods.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the source code paper we used properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code for the model and our analysis will be well documented, and will be
public on github. Our data will also be well documented as well and can be made public
upon request.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: During our data collection, subjects rested passively with their eyes closed
(resting state). Participants were compensated 40 dollars. Written informed consent was ob-
tained, and all protocols were approved by the Institutional Review Board. This information
is included in the appendix dataset session.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We state that we have IRB approval in section 3.1 and in the Appendix D, and
that the study poses minimal risk to participants. Individuals with contraindication to MRI
were not eligible for the study.

27

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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