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ABSTRACT

The field of artificial intelligence (AI) in quantitative investment has seen signif-
icant advancements, yet it lacks a standardized benchmark aligned with industry
practices. This gap hinders research progress and limits the practical application
of academic innovations. We present QuantBench, an industrial-grade bench-
mark platform designed to address this critical need. QuantBench offers three
key strengths: (1) standardization that aligns with quantitative investment indus-
try practices, (2) flexibility to integrate various AI algorithms, and (3) full-pipeline
coverage of the entire quantitative investment process. Our empirical studies us-
ing QuantBench reveal some critical research directions, including the need for
continual learning to address distribution shifts, improved methods for modeling
relational financial data, and more robust approaches to mitigate overfitting in low
signal-to-noise environments. By providing a common ground for evaluation and
fostering collaboration between researchers and practitioners, QuantBench aims
to accelerate progress in AI for quantitative investment, similar to the impact of
benchmark platforms in computer vision and natural language processing.

1 INTRODUCTION

Although artificial intelligence (AI) for quantitative investment has been extensively studied by re-
search communities and many new trading algorithms have been developed in recent years, there is
a lack of a standardized benchmark that aligns with the testing standards used in the quantitative in-
vestment industry and by numerous trading firms. The absence of a standard benchmark dataset and
test pipeline, coupled with the diverse standards used in existing papers to evaluate algorithm perfor-
mance, may hinder research progress and limit the practical application of these advancements in the
industry. Meanwhile, the establishment of standardized benchmarks, as demonstrated by some rep-
resentative examples in computer vision (Deng et al., 2009) and natural language processing (Wang
et al., 2019a), has proven instrumental in advancing research in their respective fields.

To address this need, we propose QuantBench, an industrial-grade benchmark platform that of-
fers universality and comprehensive pipeline coverage. QuantBench offers (1) Standardization:
QuantBench adheres to research standards that are consistent with industrial practices in quanti-
tative investment. (2) Flexibility: QuantBench is designed to support the scalable integration of
various AI algorithms into the system. (3) Full-pipeline Coverage: QuantBench encompasses the
entire pipeline of general quantitative investment strategies, offering broad support for standardized
datasets, model implementations, and evaluations.

Specifically, QuantBench employs a layered approach to the quant research pipeline, as shown in
Figure 1, integrating diverse tasks and learning paradigms into a single platform. By incorporat-
ing a broad array of models, QuantBench bridges the gaps created by the segmented nature of the
field, enhances reproducibility through open-source implementations, and facilitates the integration
of advancements across disciplines. In addition, QuantBench also emphasizes the importance of a
unified dataset, constructing datasets with both breadth and depth while maintaining consistency in
data format across varied data types. Moreover, QuantBench offers a detailed market simulation
framework that can vary in realism depending on the specific trading scenario. This robust evalu-
ation framework accommodates quant-specific metrics that are both task-specific (e.g., signal and
portfolio performance) and task-agnostic (e.g., alpha correlation and decay). By aligning evalua-
tion metrics with tasks, QuantBench ensures that the chosen metrics capture the intricacies of these
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Figure 1: Overview of QuantBench. Upper: Quant research pipeline covered in QuantBench.
Lower: The layered design of QuantBench.

tasks, thereby enhancing the relevance of the findings. Additionally, it pays careful attention to
task-agnostic metrics to address the unique challenges presented by financial data, including low
signal-to-noise ratios and non-stationarity.

The contribution of QuantBench can be summarized as follows:

1. QuantBench enhances research efficiency by alleviating researchers from time-consuming pre-
processing tasks, enabling them to focus on critical algorithmic innovations.

2. QuantBench serves as a unified platform. Industry practitioners can leverage this platform to
rapidly implement state-of-the-art algorithms in their investment strategies. Conversely, Quant-
Bench amplifies the impact of academic research by facilitating its practical application.

3. Through the standardization provided by QuantBench, communication between academia and
industry is improved, thereby accelerating progress in the field of AI for quantitative investment.

4. Our empirical studies using QuantBench have identified several compelling research directions
with significant potential value: a) The distribution shift problem in quant data leads to rapid
model degradation, highlighting the need for continual learning approaches for efficient model
updates. b) Incorporation of graph structures does not consistently yield performance improve-
ments, indicating a need for more sophisticated methods to represent and model relational data
in financial contexts. c) While deep neural networks excel at fitting training objectives, this pro-
ficiency does not necessarily translate to superior returns over tree models, suggesting a potential
misalignment between typical training goals and real-world performance metrics. d) Model en-
sembles show promise in mitigating overfitting issues caused by the low signal-to-noise ratio
inherent in quantitative data. However, this finding also underscores the need for more robust
modeling approaches, such as training models with inherent diversity or employing causal learn-
ing techniques.

2 THE QUANT PIPELINE

QuantBench facilitates the evaluation of the entire research pipeline as illustrated in Figure 1. The
platform integrates features for data preparation and simulated trading environments, supporting the
four key phases of research:

• Factor Mining: This process involves identifying predictive financial features (Tulchinsky, 2019).
Within QuantBench, we enable formula-based factor mining, where each factor is defined as a sym-
bolic equation combining raw data elements and operational functions. Methods such as evolution-
ary algorithms (Zhang et al., 2020; Cui et al., 2021) are utilized to devise these expressions. Addi-
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Table 1: Comparison of different tasks covered in QuantBench

Task Data Output Objective Feedback Eval
Factor Mining Data Features Regression Reward Signal
Modelling Features Prediction Regression/Classification/Ranking Gradient Signal
End-to-end Modeling Features Position Utility Maximization Gradient Portfolio
Portfolio Optimization Prediction Position Utility Maximization Reward Portfolio
Order Execution Position Trade Utility Maximization Reward Execution

tionally, reinforcement learning techniques (Yu et al., 2023) have been employed to autonomously
discover high-performing factors through policy gradient methods.

• Modeling: This phase involves constructing models to forecast market movements (classification)
(Koa et al., 2024), predict asset returns (regression), or identify the most or least valuable assets
(ranking) (Feng et al., 2019). A variety of machine learning and deep learning approaches are
applicable in this stage, where the inputs are the features identified in the factor mining phase.

• Portfolio Optimization: This stage seeks to determine the optimal asset allocation to maximize
an investor’s utility, which is defined based on their risk profile. Simple strategies may involve
charaterstic-sorted portfolios (Cattaneo et al., 2020), where trading decisions are made according
to predicted values such as asset returns. More sophisticated approaches, such as mean-variance
optimization (Markowitz, 1952; 1959), aim to balance risk against return. Recent works also ex-
plore the use of deep learning models to directly generate portfolio allocations in an end-to-end
approach, training the model to maximize utility.

• Order Execution: The goal here is to execute buy or sell orders at optimal prices while minimizing
market impact. Placing large orders at once can adversely affect the asset’s price, thus increasing
trading costs. Traditional strategies employ optimal control techniques (Bertsimas & Lo, 1998;
Almgren & Chriss, 2000) to derive an execution strategy, while recent advancements have incor-
porated reinforcement learning (Nevmyvaka et al., 2006; Fang et al., 2021; 2023) to optimize this
process.

2.1 DESIGN OF QUANTBENCH

QuantBench adopts a structured, layered approach, integrating all research phases into a compre-
hensive framework, as depicted in Figure 1. At the foundation, the bottom layer consists of a diverse
array of models and datasets that underpin the entire quant research pipeline. This layer ensures
that a broad spectrum of financial data types and modeling techniques are accessible for rigorous
analysis. The middle layer of QuantBench processes outputs from the models, incorporates feed-
back mechanisms, and applies evaluation metrics. This layer effectively translates complex data
and model interactions into quantifiable results that facilitate direct comparisons and iterative im-
provements in model performance. At the top, the framework outlines the learning objectives and
the criteria for comprehensive evaluation. This layer aims to align the research outcomes with spe-
cific investment goals, such as maximizing utility or optimizing asset allocation, ensuring that the
training and evaluation stages are directly relevant to real-world financial strategies.

Within this structured design, the training and evaluation processes follow distinct yet interconnected
pathways. For training, the flow is: model + data → output → learning objective → feedback →
model. For evaluation, the sequence is: model + data → output → evaluation → metric. These
pathways ensure that both training and evaluation are systematic and aligned with the overarch-
ing objectives of the research. Table 1 offers a detailed comparison of each task according to this
hierarchical structure.

3 DATA

Data serves as the fundamental source of information for quantitative predictions and decision-
making in financial markets. The development of robust datasets in quantitative finance follows two
primary directions: increasing breadth and enhancing depth. QuantBench addresses both aspects
comprehensively. Increasing breadth involves incorporating diverse information sources, while en-
hancing depth focuses on improving data granularity. For instance, in low-frequency scenarios such
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Figure 2: Data processing pipeline of QuantBench. Blocks with green background are already
supported in QuantBench, and blocks with blue background are planned to be supported in the
future.

as monthly portfolio rebalancing, the integration of alternative data sources (e.g., satellite imagery
or credit card transaction data) can provide a more comprehensive context for each data point. Con-
versely, enhancing depth, such as transitioning from daily to minute-level stock price data, allows for
the detection of subtle patterns and trends, thereby potentially improving trading outcomes through
the preservation of more detailed information.

3.1 INCREASING DATA BREADTH

The expansion of information sources is crucial for developing a comprehensive view of the market.
By integrating diverse data types, it becomes possible to uncover latent relationships and enhance
predictive accuracy. QuantBench incorporates the following information sources:

• Market data: This includes price and volume data for stocks, options, and other financial instru-
ments. These data form the basis for many technical analysis strategies and can reveal trends in
market sentiment. In QuantBench we cover both aggregated bars (e.g. OHLCV) at regular time
intervals, and tick-level trade/quote data at irregular timesteps. Our starting point of market data
ranges from 2003 to 2006 and the current cutoff is May 2024.

• Fundamental: Fundamental data includes financial statements, earnings reports, and other
company-specific information. These data provide insight into a company’s underlying value and
growth prospects. In QuantBench we collect fundamental data from the income statements, bal-
ance sheets, and statements of cash flows from publicly listed companies and construct 21 built-in
features out of these data.

• Relational: Relational data captures the interactions between different entities, such as supply
chain relationships or corporate ownership structures. We collect relational data from Wikidata
by performing entity alignments based on company names and ticker symbols. We also construct
fully-connect graph/hypergraph from industrial categorizations following the GICS categorization.
Notably, to avoid future information leakage, we took the temporal information of relations from
Wikidata into account and supports graph snapshots at any given timestamp. The statistics of
relational data is shown in Table 9.

• News: News data, including articles, social media posts, and press releases, can provide real-time
information on market-moving events and shifts in sentiment. In QuantBench we collect both
the original news contents and processed numerical features such as news count and normalized
sentiment scores.

Furthermore, QuantBench incorporates a diverse range of markets, universes, and feature sets to
support more granular analysis:

• Markets and Universe: The dataset spans a range of markets, from those heavily influenced by
automated trading to emerging markets, each exhibiting distinct trading patterns and dynamics.
In markets dominated by automated trading, price adjustments tend to be swift and the trading
patterns intricate, reflecting the rapid decision-making processes. Conversely, emerging markets
often display slower price dynamics influenced significantly by individual investors. This diver-
sity allows QuantBench to evaluate model performance across various market behaviors. Addi-
tionally, stocks are categorized into large-cap, mid-cap, and small-cap segments, each presenting
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Figure 3: A non-exhaustive illustration of models covered in QuantBench and their evolution

unique characteristics. For example, large-cap stocks generally exhibit stability, contrasting with
the higher volatility and potential for growth in mid-cap and small-cap stocks. Such categorization
facilitates a detailed analysis of how market capitalization affects stock features and the predictive
accuracy of models, thereby highlighting the differences in risk and returns across segments.

• Feature Sets: Leveraging QuantBench’s capabilities in factor mining, we have integrated several
widely-used feature sets at the daily level. These include Alpha158 (Yang et al., 2020), which
offers a range of technical indicators, Alpha101 (Kakushadze, 2016), featuring short-term volume-
price characteristics, and Alpha191 (Li & Liu, 2017), tailored specifically for the Chinese stock
market and also focusing on short-term volume-price patterns.

3.2 GOING DEEP

Enhancing data resolution provides a detailed view of market dynamics. On a broader scale, quar-
terly or monthly data can uncover long-term trends and cyclical patterns, which are invaluable for
strategic asset allocation and portfolio planning. On a finer scale, tick-level data captures the in-
tricacies of intraday price movements and the effects of market microstructure, which are crucial
for developing high-frequency trading strategies. The selection of modeling techniques is also in-
fluenced by data frequency, with high-frequency data often necessitating more computationally ef-
ficient and scalable methods. In QuantBench, data frequencies range from quarterly (fundamental
data derived from financial statements) to tick-level (detailing trades and quotes), enabling a wide
array of quant tasks. Lower frequency data suits applications like factor investing and risk modeling,
while higher frequency data is essential for analyses such as order book scrutiny and trade execution
optimization. The capability to integrate data at varying frequencies also facilitates the development
of innovative multi-scale strategies. A comprehensive description of these data levels is available in
the supplementary materials.

4 MODELS

QuantBench categorizes various modeling methods from two orthogonal analytical perspectives:
architectural design and training objective. The initial model suite comprises a diverse array of
representative AI quant modeling methods, and we will continuously expand our repository with
state-of-the-art models to ensure QuantBench remains a cutting-edge benchmarking platform. The
full description of models currently supported in QuantBench can be found in the supplementary
material.

4.1 ARCHITECTURAL DESIGN

Based on whether the model treats each asset as individual or correlated, models can be categorized
as temporal and spatiotemporal. Figure 3 illustrates the evolution of these two types of models.
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Temporal Models Temporal models leverage the historical data of the individual assets for pre-
diction. Representative examples include: gradient boosted tree models (e.g., XGBoost (Chen &
Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018)), chosen
for their robust performance on tabular data (Grinsztajn et al., 2022); recurrent neural networks
(e.g. LSTM (Hochreiter & Schmidhuber, 1997)) and adaptations such as SFM (Zhang et al., 2017),
DA-RNN (Qin et al., 2017), and Hawkes-GRU (Sawhney et al., 2021b)) that excel at capturing
time-series dependencies; non-recurrent neural networks (e.g. TCN (Bai et al., 2018), MLP-Mixer
(Tolstikhin et al., 2021)) and Transformer-based models such as Informer (Zhou et al., 2021), Auto-
former (Wu et al., 2022), FEDFormer (Zhou et al., 2022), and PatchTST (Nie et al., 2022), offering
alternative mechanisms for sequential data modeling.

Spatial Models QuantBench incorporates several models for spatial modeling, addressing the in-
terconnected landscape of stocks. Simple graph models such as Graph Attention Networks (GAT)
(Veličković et al., 2018) and Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) are
utilized to process information across market graphs effectively. Additionally, for more complex
financial networks that involve various types of relationships, heterogeneous graph models such as
Relational Graph Convolutional Networks (RGCN) (Schlichtkrull et al., 2018) and Relational Stock
Ranking (RSR) network (Feng et al., 2019) are implemented. To capture higher-order relationships
beyond simple pairwise interactions between stocks, QuantBench also includes hypergraph models
such as ESTIMATE (Huynh et al., 2022), STHCN (Sawhney et al., 2020), and STHAN (Sawhney
et al., 2021a), which offer a more comprehensive analysis of the financial market’s structure.

4.2 TRAINING OBJECTIVE

The selection of a training objective is informed by task-specific requirements and the intended out-
come. For example, classification tasks predict binary outcomes, such as the direction of stock price
movements, which is useful for market timing strategies. Regression tasks forecast continuous out-
comes such as stock returns, which are usually used for downstream portfolio optimization in stock
cross-sectional strategies. Ranking focuses on the relative order of assets rather than their precise
values, enhancing the profitability of characteristic-sorted portfolio. In contrast, utility maximiza-
tion directly seeks to enhance financial metrics that account for both risk and return, which is usually
used for end-to-end modelling that directly generates positions.

Notably, some objectives, especially those involving complex simulations or non-standard feedback
mechanisms, present unique challenges for optimization. For instance, objectives involving direct
financial gain, such as price advantage, are not inherently differentiable due to the inclusion of
trading simulation steps. These require alternative approaches such as reinforcement learning, where
a model is refined based on a reward system derived from its trading performance.

Remark: While we strive to faithfully reimplement models and reproduce results, discrepancies may
arise between our versions and the original works. To foster transparency and community engage-
ment, we will open-source QuantBench’s implementation. We encourage contributions, including
corrections from original authors and new methods, to enrich and refine QuantBench.

5 EVALUATION

Task-specific Metrics Different tasks have different goals and thus require different evaluation
metrics.

• Signal Model outputs used as alpha signals or stock scores can guide investment decisions. Com-
mon metrics for evaluating signal quality include Information Coefficient (IC), which measures
correlation between the signal and future returns, and ICIR, which adjusts IC for signal volatility.

• Portfolio Investment strategy performance can be measured using metrics like annualized return
for profitability and risk-adjusted returns like the Sharpe ratio. Other key metrics include max
drawdown (maximum loss during a period) and turnover (frequency of portfolio rebalancing).

• Execution These metrics assess the efficiency of trade implementation. Slippage measures the
difference between expected and actual execution prices, while market impact evaluates the ad-
verse effect of trades on market prices. Other costs such as commissions and transaction fees are
also considered.
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Task-agnostic Metrics Due to the inherent nature of quantitative finance, we consider the follow-
ing additional metrics:

• Robustness This measures the model’s performance under varying market conditions and stress
tests. Key metrics include return stability, drawdown consistency, and sensitivity to input pertur-
bations, helping assess how well the model adapts to different environments.

• Correlation In multi-model or multi-strategy setups, correlation metrics like pairwise correlation
coefficients help assess the diversification benefits. Lower correlations indicate more diversified
signals or portfolios, which can improve overall risk-adjusted returns.

• Decay Alpha decay tracks the diminishing effectiveness of a model’s signal or strategy over time.
Metrics such as the half-life of IC and time-varying performance provide insights into how quickly
a model’s predictive power fades and when updates might be needed.

6 EMPIRICAL STUDY

In this section, we present our empirical findings with QuantBench and derive some important find-
ings and therefore potential future research directions.

6.1 COMPARISON BETWEEN TREE MODELS AND DEEP NEURAL NETWORKS

Table 2: Performance comparison between XGBoost and LSTM on different features

Features Model IC (%) Return (%) SR

Alpha101
XGBoost 2.31% ± 0.00% 24.58% ± 0.08% 0.8093 ± 0.0029
LSTM 4.76% ± 0.13% 24.25% ± 3.17% 0.7741 ± 0.0984

Diff -51.47% 1.36% 4.55%

Alpha158
XGBoost 2.53% ± 0.00% 20.31% ± 0.00% 0.6407 ± 0.0000
LSTM 5.95% ± 0.50% 23.76% ± 5.76% 0.7561 ± 0.1750

Diff -57.48% -14.53% -15.27%

Given the inherent noise in financial data, feature engineering plays a crucial role in improving the
signal-to-noise ratio. This experiment examines the effect of feature engineering on model perfor-
mance across tree-based and deep neural network (DNN) models. Using Chinese stock market data,
we employed two feature sets—Alpha101 and Alpha158—while comparing XGBoost (tree-based)
and LSTM (DNN) models. The backtest used a ranking-based stock selection strategy, selecting
the top 300 stocks at each cross-section without applying feature selection. The results in Table
2 indicate that DNNs generally outperform tree-based models in IC. However, tree models pro-
duced better returns and Sharpe ratios with Alpha101. When using Alpha158, DNN performance
improved, though the gains were more pronounced in IC than returns. These findings suggest that
tree models tend to perform better with feature sets that have strong predictive power, potentially
due to reduced overfitting or differences in problem structure (Grinsztajn et al., 2022). On the other
hand, DNNs excel at capturing intricate, complex patterns, making them more adept at modeling
sophisticated relationships. In future research, integrating factor mining with model design could
further enhance the performance of both types of models.

6.2 COMPARISON AMONG DIFFERENT MODELS

This experiment explores the impact of model architecture on predictive performance. Using US
stock data with volume-price and fundamental features, we trained models using IC loss and con-
ducted backtests under the same strategy used in other experiments. Additionally, Wikidata, which
provides intra-stock relational information, was incorporated. Results in Table 3 show that vanilla
RNN models performed well, with slight improvements seen in adapted versions like ALSTM. In
contrast, certain models, such as Hypergraph Neural Networks, failed to perform adequately, likely
due to mismatches between the data type and the intended use case for these models. Transformer
models designed for time-series data also underperformed in stock prediction tasks, a finding con-
sistent with other studies. Wikidata’s inclusion yielded minimal improvements, possibly because the
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Table 3: Comparisons of performance of different models.

Model Type Model IC (%) ICIR (%) Return (%) MDD (%) SR CR

Vanilla RNN LSTM 3.89 ± 0.29 79.56 ± 7.72 54.90 ± 5.53 -8.64 ± 1.23 3.0175 ± 0.2395 6.3922 ± 0.5040
GRU 4.12 ± 0.12 81.85 ± 13.56 61.36 ± 4.64 -8.44 ± 2.40 3.4433 ± 0.3542 7.6200 ± 1.7613

Adapted RNN

ALSTM 4.22 ± 0.03 93.47 ± 3.87 54.13 ± 2.91 -8.65 ± 1.28 3.0361 ± 0.2256 6.3909 ± 1.1978
SFM 3.58 ± 0.18 86.57 ± 3.55 53.43 ± 6.08 -9.06 ± 0.60 2.9749 ± 0.3702 5.9478 ± 1.0961
Multi-scale
RNN

3.79 ± 0.25 81.55 ± 13.31 52.75 ± 3.37 -9.02 ± 1.71 2.9540 ± 0.0769 5.9677 ± 0.9095

D-LSTM 2.86 ± 0.25 71.36 ± 7.11 37.23 ± 1.57 -9.95 ± 1.07 2.1891 ± 0.0957 3.7554 ± 0.2451
Hawkes-GRU 3.46 ± 0.62 89.47 ± 33.15 0.35 ± 10.81 -15.28 ± 0.87 -0.0195 ± 0.7246 0.0502 ± 0.7303

Other Seq Model

MSTR-I 2.52 ± 0.30 52.30 ± 10.97 33.53 ± 4.27 -10.48 ± 1.71 1.9079 ± 0.1575 3.2627 ± 0.6748
TCN 3.86 ± 0.16 92.13 ± 10.40 54.72 ± 4.33 -9.49 ± 1.72 2.9729 ± 0.1510 5.8813 ± 0.9236
Mixer 3.67 ± 0.07 79.43 ± 8.71 46.78 ± 3.48 -8.92 ± 2.31 2.7001 ± 0.3210 5.5299 ± 1.4799
Dlinear 2.99 ± 0.22 63.39 ± 9.54 40.09 ± 4.53 -7.80 ± 0.50 2.5229 ± 0.3029 5.1675 ± 0.7925

Transformer

Autoformer 0.08 ± 0.13 2.54 ± 4.47 -8.82 ± 3.82 -15.68 ± 5.05 -0.7467 ± 0.3440 -0.5514 ± 0.0728
FEDformer 0.13 ± 0.08 2.47 ± 1.41 -3.16 ± 1.37 -11.12 ± 0.58 -0.2449 ± 0.1082 -0.2812 ± 0.1117
Pyraformer 1.14 ± 0.00 12.08 ± 0.25 7.20 ± 7.44 -6.55 ± 1.75 0.6162 ± 0.6166 0.9819 ± 0.8742
PatchTST 1.07 ± 0.18 17.91 ± 3.07 8.96 ± 6.10 -12.40 ± 2.07 0.6079 ± 0.4118 0.7806 ± 0.5557

Tabular TFT 3.99 ± 0.05 80.06 ± 3.05 54.31 ± 5.02 -7.10 ± 0.68 3.2324 ± 0.1920 7.6561 ± 0.0300

Vanilla GNN GCN -0.10 ± 0.04 -6.30 ± 2.60 -13.07 ± 1.79 -19.50 ± 1.91 -1.1009 ± 0.1568 -0.6685 ± 0.0275
GAT 3.90 ± 0.15 85.48 ± 3.86 58.07 ± 4.69 -8.20 ± 0.61 3.0730 ± 0.1991 7.1307 ± 0.9839

Relational GNN

RGCN 3.78 ± 0.32 75.62 ± 9.61 49.58 ± 6.17 -8.83 ± 2.17 2.7706 ± 0.3492 5.9268 ± 1.8845
HATS 0.23 ± 0.10 12.97 ± 6.03 -11.98 ± 3.76 -19.31 ± 2.60 -1.0024 ± 0.3119 -0.6110 ± 0.1372
RSR 0.12 ± 0.08 5.79 ± 3.70 -12.21 ± 4.07 -18.62 ± 4.30 -1.0150 ± 0.3333 -0.6459 ± 0.0643
HATR-I 3.07 ± 0.02 59.75 ± 4.35 37.66 ± 7.83 -11.00 ± 5.27 2.1913 ± 0.5738 4.0609 ± 2.6585

Hypergraph NN STHAN 0.05 ± 0.13 3.11 ± 6.73 -11.44 ± 2.40 -17.73 ± 2.35 -0.9541 ± 0.2098 -0.6411 ± 0.0525
STHGCN -0.01 ± 0.04 -0.44 ± 2.98 -9.90 ± 0.79 -16.41 ± 0.84 -0.8278 ± 0.0662 -0.6031 ± 0.0243

Adaptive GNN
THGNN 4.93 ± 0.22 100.27 ± 2.95 65.04 ± 2.01 -9.32 ± 0.37 3.3184 ± 0.1365 6.9788 ± 0.1852
DTML 3.87 ± 0.18 80.53 ± 4.49 54.71 ± 4.71 -7.99 ± 0.65 3.1993 ± 0.1832 6.9029 ± 1.0647
Crossformer 4.50 ± 0.42 77.54 ± 13.49 55.03 ± 6.50 -9.06 ± 1.23 3.1269 ± 0.2902 6.1366 ± 0.8872

information is already widely known and exploited by other market participants. Relational GNNs,
such as RGCN, which account for differences in edge types, were more effective than homogeneous
models like GCN. Adaptive graph models, which learn graph structures from data, outperformed
others, suggesting that latent relationships between stocks hold valuable predictive power. The re-
sults point to future research opportunities in designing models that can better integrate temporal and
cross-sectional information through unified architectural approaches, avoiding bottlenecks between
stages of information processing.

6.3 DIFFERENT TRAINING OBJECTIVES

Table 4: Comparison across different training objectives

Model Objective Return (%) SR IC (%)

LSTM

CLF 19.31 ± 0.80 1.9757 ± 0.1888 2.77 ± 0.32
IC 36.03 ± 3.99 1.8642 ± 0.1930 3.62 ± 0.09
MSE 8.97 ± 10.41 0.4484 ± 0.5537 1.78 ± 1.20
Ranking -1.11 ± 2.74 -0.0978 ± 0.2347 -0.07 ± 0.09

RGCN

CLF 19.53 ± 1.48 2.1073 ± 0.1532 2.66 ± 0.11
IC 44.97 ± 3.23 2.1990 ± 0.1855 3.97 ± 0.30
MSE 9.13 ± 13.99 0.5141 ± 0.9210 1.47 ± 1.18
Ranking -3.75 ± 6.26 -0.2929 ± 0.5210 0.05 ± 0.03

DTML

CLF 14.10 ± 1.96 1.5255 ± 0.0703 2.55 ± 0.10
IC 38.56 ± 11.29 1.8796 ± 0.6417 3.24 ± 0.55
MSE -1.98 ± 1.57 -0.1616 ± 0.1272 0.22 ± 0.37
Ranking -2.21 ± 3.59 -0.1793 ± 0.2833 -0.07 ± 0.07

The choice of training objective is critical in quant modeling as it directly influences the resulting
model’s final performance. This experiment investigated the effect of various training objectives,
including classification loss (CLF), IC loss, MSE loss, and pairwise ranking loss (Ranking), along-
side a combination of MSE and ranking loss with weighted coefficients. The experimental setup
mirrored that of previous sections, with the results summarized in Table 4. Different training objec-
tives excel in different performance metrics. For instance, LSTM models trained with classification
loss achieved the highest Sharpe ratio, while IC loss yielded the best IC and return metrics. This
underscores the importance of tailoring the loss function to the model’s final objective—whether
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it’s return-focused or prediction-focused. Moreover, the effectiveness of training objectives varies
between models. For cross-sectional models like RGCN, IC loss proved superior, while temporal
models like LSTM did not benefit as much from IC loss. This suggests that future work should
focus on aligning training objectives with the specific characteristics of the model architecture. Ad-
ditionally, this experiment highlights the potential for research in AutoML to optimize the selection
of training objectives automatically, and end-to-end learning (Liu et al., 2023; Wei et al., 2023) to
better incorporate the final goal as training objective.

6.4 ALPHA DECAY IN QUANT MODELS

2021-04-01 2021-07-01 2021-10-01 2022-01-01 2022-04-01 2022-07-01 2022-10-01 2023-01-01 2023-04-01

0.0

0.2

0.4

0.6

0.8

3month
6month
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Figure 4: Comparison of different rolling schemes

In continuously evolving financial markets, alpha decay is a common phenomenon. This experiment
aimed to measure the speed of market evolution by evaluating different model updating schemes us-
ing walk-forward optimization techniques with varying rolling steps (3, 6, and 12 months, as well
as no rolling). The study was conducted on US stock data from 2021 to 2023, with the S&P 500
used as a benchmark. Figure 4 shows that more frequent model updates, such as the 3-month rolling
scheme, consistently produced the best performance, while the no-rolling approach performed the
worst. This suggests that more frequent updates help address the distribution shifts caused by market
evolution, thus slowing alpha decay. However, these frequent updates come with significant com-
putational costs, as the model must be retrained more often. This emphasizes the need for future
research into more efficient online learning and continual learning techniques that can reduce the
computational burden while still allowing for timely model updates.

6.5 HYPERPARAMETER TUNING FOR QUANT MODELS

Table 5: Comparison of different settings of validation set selection and training schema.

Training Segmentation IC (%) ICIR (%) Return (%) SR

Normal
Tail 3.29 ± 0.77 75.39 ± 31.09 29.87 ± 13.00 1.5454 ± 0.7088
Random 3.86 ± 0.26 93.96 ± 9.25 36.84 ± 9.27 1.8969 ± 0.4680
Fragmented 1.71 ± 0.56 41.58 ± 17.52 26.55 ± 8.12 1.2500 ± 0.4283

Retrain
Tail 3.15 ± 0.22 77.18 ± 3.76 26.62 ± 6.06 1.4431 ± 0.2227
Random 3.80 ± 0.39 88.34 ± 13.73 41.36 ± 11.08 1.9334 ± 0.4886
Fragmented 2.59 ± 0.98 57.05 ± 20.24 30.26 ± 9.47 1.5372 ± 0.4348

A key challenge in quantitative finance is the selection of a validation set for hyperparameter tuning.
Traditionally, the validation set is selected as the tail segment of the training data just before the
test set, assuming it will best reflect out-of-sample performance. However, validation set selection
is not unique (de Prado, 2018), and different methods can yield varied results. In this experiment,
we compared different validation set construction methods: tail, random, and fragmented (scattered
fragments across the historical period). We also tested two training strategies: normal, where the
validation data is not used in training, and retrain, where the model is retrained using the entire
dataset (including the validation set) after hyperparameters are tuned. The results in Table 5 show
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that retraining on the full dataset had little or negative impact in the tail and random settings but
produced positive results in the fragmented design, suggesting that hyperparameters tuned this way
may be more stable. The random validation set method outperformed the tail method, likely because
it introduced more diverse data patterns into the validation process. While the fragmented setting
showed potential, further research is needed to refine this approach and optimize hyperparameter
stability.

6.6 QUANT MODEL ENSEMBLE

Figure 5: Ensemble curve with variance illustrated. Shaded area indicates different rolling periods.

Financial data typically exhibit a low signal-to-noise ratio, making models prone to overfitting. This
experiment assessed how overfitting affects model performance and explored ensembling as a miti-
gation strategy. We used volume-price data from US stocks and trained an MLP-Mixer model over
40 repeated runs, each with a different random seed. An ensemble of the 40 models’ predictions
was computed and backtested. Figure 5 shows significant variance in performance across different
runs, confirming the susceptibility of models to overfitting on noisy patterns. However, ensembling
the predictions helped reduce this variance, improving robustness and protecting against overfitting.
Even a simple model averaging approach provided a notable performance boost. Future research
should focus on methods that encourage diversity during model training, building more robust en-
sembles and further mitigating the effects of overfitting.

7 RELATED WORKS

Quantitative modeling traditionally starts with multi-factor models. While being explainable, these
conventional models relying on linear regression and predefined factors often miss capturing com-
plex non-linear interactions among factors. In contrast, recent advancements have integrated AI into
quantitative finance (Kelly & Xiu, 2023; Cheng et al., 2020; Hu et al., 2021; Sonkiya et al., 2022),
utilizing techniques from gradient-boosted trees (Chen & Guestrin, 2016; Ke et al., 2017) to deep
learning, which excel in identifying intricate patterns that enhance predictive accuracy. AI models
(Zhang et al., 2017; Qin et al., 2017; Du et al., 2021; Wang et al., 2021a; Sawhney et al., 2021b;
Deng et al., 2019; Ding et al., 2021; Feng et al., 2019; Chen et al., 2018; Wang et al., 2021b; Xu
et al., 2021) are trained to forecast market trends and guide portfolio optimization through mecha-
nisms like reinforcement learning (Jiang et al., 2017; Zhang et al., 2022; Wang et al., 2021c; 2019b)
and imitation learning (Niu et al., 2022; Liu et al., 2020), reflecting a holistic approach to modern
quant modeling. Moreover, the specific properties of financial data calls for relevant studies in causal
inference (Zhu et al., 2021), transfer learning (Li et al., 2022), ensemble learning (Sun et al., 2023b),
continual learning (Zhao et al., 2023), etc. Existing works have also explored evaluating these AI-
driven methods. Qlib (Yang et al., 2020) constructs a benchmark for stock prediction, but mostly
focus on temporal models and has an earlier cutoff (early 2022). FinRL-Meta (Liu et al., 2022) and
TradeMaster (Sun et al., 2023a) are two comprehensive platforms for quantitative investment with
a special focus on reinforcement learning. Compared with these works, QuantBench is designed to
provide a holistic view of the full quant research pipeline, rather than focusing on specific techniques
such as reinforcement learning.
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A DISCUSSION ON LIMITATIONS AND FUTURE WORK

Despite the significant strides made with QuantBench, opportunities for enhancement remain. In
terms of data, there is a need to broaden the scope by incorporating alternative data sources and
to deepen the granularity by including metrics such as order flow, which would enrich the dataset
with more detailed information. On the model front, integrating newer architectures and innovative
formulations will further enhance the platform’s capability. For evaluation, implementing more
realistic and efficient backtesting methods, along with metrics tailored to specific tasks, will improve
the robustness and applicability of the benchmarks.

B COMPARISON WITH SOTA BENCHMARKS

Table 6: Comparison with other benchmark works

Benchmark # Dataset # Models # Metrics
Data Coverage Tasks

Volume-price Fundamental Relational News FM Pred PO OE
Qlib 2 18 7 ✓ ✓ ✓ ✓
FinRL 2 8 5 ✓ ✓ ✓ ✓ ✓
TradeMaster 13 16 10 ✓ ✓ ✓
QuantBench 24 44 20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C EXTENDED DETAILS ON DATASETS

Table 7: Coverage of different types of data in current version of QuantBench.

Volume-price Fundamental
Relational NewsDaily Minute Tick PIT Industry

Stocks

US

All ✓ ✓ ✓ ✓ ✓ ✓ ✓
SP500 ✓ ✓ ✓ ✓ ✓ ✓ ✓
SP600 ✓ ✓ ✓ ✓ ✓ ✓ ✓
SP400 ✓ ✓ ✓ ✓ ✓ ✓ ✓

CN

All ✓ ✓ ✓ ✓ ✓
CSI300 ✓ ✓ ✓ ✓ ✓
CSI500 ✓ ✓ ✓ ✓ ✓
CSI1000 ✓ ✓ ✓ ✓ ✓

HK

All ✓ ✓ ✓
HSLI ✓ ✓ ✓
HSMI ✓ ✓ ✓
HSSI ✓ ✓ ✓

UK

All ✓ ✓ ✓ ✓ ✓
FTSE 100 ✓ ✓ ✓ ✓ ✓
FTSE 250 ✓ ✓ ✓ ✓ ✓
FTSE SmallCap ✓ ✓ ✓ ✓ ✓

JP
All ✓ ✓ ✓
NIKKEI225 ✓ ✓ ✓
TOPIX ✓ ✓ ✓

FR
All ✓ ✓ ✓
CAC40 ✓ ✓ ✓

Forex ✓ ✓
Crypto ✓ ✓
Futures ✓
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Table 8: Major regions and stock universes involved in QuantBench

Region China US Hong Kong UK
Attribute Name Stocks Name Stocks Name Stocks Name Stocks

Universe
Large-cap CSI 300 300 S&P 500 500 HSLI 30 FTSE 100 100
Mid-cap CSI 500 500 S&P 400 400 HSMI 50 FTSE 250 250

Small-cap CSI 1000 1000 S&P 600 600 HSSI 150 FTSE SmallCap 300

Table 9: Statistics of relational data on stocks. The statistics are taken with respect to the full stock
universe on the regional market.

#Stocks
Wikidata Industry

Nodes Ratio 1-hop edges 2-hop edges Industry number Average degree
CN 5128 728 14.20% 23 4809 30 159.87
US 6375 1775 27.84% 219 41401 10 585.63
UK 2556 215 8.41% 10 9805 10 207.08
HK 2688 1367 50.86% 98 6995 10 217.5

D SUPPLEMENTARY EXPERIMENTAL RESULTS

D.1 COMPARISON ON DIFFERENT DATASETS

Table 10 shows the performance of different models across four large-cap stock universes. It can be
seen models show higher variances in returns and Sharpe ratio on CSI300 than on other datasets, in-
dicating more diversified patterns captured by different models than on others. Besides the negative
return on HSI may be due to the smaller size of the universe (only 50), making the portfolio strategy
deteriorating to the index itself.

D.2 MODEL CORRELATION
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Figure 6: Comparison of diffrent models on CSI300 dataset.

Figure 6b illustrates the correlation matrix of model predictions on CSI300. A low correlation
among models can be observed and indicates potential for ensembling different model outputs. We
also illustrate the variances among different repeated runs of a single MLP-Mixer model in Figure
5. The superior performance of the ensemble indicates that even for the same model, it may capture
different views of the same dataset that all contributes to better predictions.

D.3 THE EFFECT OF ADDING MORE INFORMATION

Incorporating diverse information sources is increasingly prevalent in quantitative finance. This
experiment evaluates whether adding more information enhances predictive accuracy. We used five
information sources: volume-price (VP), fundamental (F), news (N), industry (I), and Wikidata (W),
applying two modeling techniques: XGBoost (tree-based) and a DNN. In XGBoost, all sources were
used as features, while in the DNN, industry and Wikidata were represented as graphs. The data used
was from the US stock market. As seen in Table 11 and Table 12, raw volume-price data had weak
predictive power. Adding fundamental, news, and industry data improved performance for both
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Table 10: Main results. Red represents negative value.

Method
SP 500 CSI 300 HSI FTSE100

IC ICIR AR SR IC ICIR AR SR IC ICIR AR SR IC ICIR AR SR
LSTM 0.12 1.20 0.17 0.61 0.05 1.28 (0.07) (0.55) 0.10 1.33 (0.02) (0.21) 0.08 1.35 0.33 1.94
SFM 0.12 1.21 0.18 0.68 0.11 1.28 0.12 0.39 0.14 1.30 (0.00) (0.16) 0.12 1.28 0.31 1.69
Mixer 0.11 1.23 0.17 0.70 0.12 1.30 0.13 0.46 0.12 1.18 (0.00) (0.15) 0.12 1.25 0.30 1.67
TCN 0.12 1.22 0.18 0.70 0.13 1.34 0.18 0.62 0.16 1.30 (0.01) (0.18) 0.12 1.27 0.30 1.72

Linear 0.13 1.26 0.16 0.61 0.14 1.37 0.08 0.20 0.13 1.21 (0.01) (0.16) 0.13 1.30 0.26 1.49
Pyraformer 0.09 1.17 0.14 0.60 0.11 1.25 (0.00) (0.17) 0.17 1.32 (0.02) (0.23) 0.10 1.27 0.33 1.89
PatchTST 0.09 1.14 0.13 0.50 0.07 1.24 0.00 (0.15) 0.11 1.25 (0.01) (0.18) 0.10 1.30 0.33 1.87

GAT 0.16 1.31 0.16 0.62 0.15 1.37 (0.01) (0.20) 0.14 1.26 (0.01) (0.16) 0.16 1.32 0.32 1.70
GCN 0.05 1.36 0.17 0.73 0.06 1.40 0.07 0.21 0.12 1.46 (0.01) (0.18) 0.07 1.26 0.28 1.62

RGCN 0.13 1.14 0.18 0.69 0.16 1.39 (0.00) (0.16) 0.13 1.23 (0.01) (0.19) 0.15 1.32 0.30 1.65
HATS 0.04 1.27 0.19 0.87 0.04 1.24 0.08 0.25 0.08 1.26 (0.01) (0.19) 0.06 1.16 0.26 1.50

STHGCN 0.05 1.36 0.17 0.73 0.06 1.40 0.07 0.21 0.12 1.46 (0.01) (0.18) 0.07 1.26 0.28 1.62

Table 11: Performance of deep neural network model on different combinations of information
sources

Info
DNN

IC (%) ICIR (%) Ret (%) SR
VP 3.43 ± 0.09 77.05 ± 5.73 -0.29 ± 3.61 -0.0193 ± 0.1961
VPF 3.56 ± 0.23 85.77 ± 7.44 30.89 ± 4.04 1.5592 ± 0.2115
VPFN 4.07 ± 0.21 90.86 ± 7.07 31.97 ± 10.74 1.6825 ± 0.4451
VPFNI 1.97 ± 1.32 46.85 ± 23.49 13.51 ± 5.97 0.9173 ± 0.4189
VPFNW 3.80 ± 0.18 76.58 ± 5.27 18.06 ± 17.81 0.9607 ± 0.9431

Table 12: Performance of XGBoost model on different combinations of information sources

Info
Tree Model

IC (%) ICIR (%) Ret (%) SR
VP 0.78 ± 0.00 18.69 ± 0.00 -5.87 ± 0.87 -0.2939 ± 0.0438
VPF 1.16 ± 0.00 28.21 ± 0.00 -4.65 ± 0.97 -0.2213 ± 0.0468
VPFN 1.10 ± 0.00 26.35 ± 0.00 -6.19 ± 2.51 -0.2901 ± 0.1188
VPFNI 1.07 ± 0.00 28.29 ± 0.00 1.74 ± 0.11 0.0833 ± 0.0048
VPFNW -

models, though DNN performance suffered when industry data was structured as graphs due to the
limitations of RGCN. Wikidata improved IC performance but reduced returns, suggesting GNNs
may be more suited to portfolio optimization than direct return prediction. In summary, while more
information generally improves model performance, the method of integration (features vs. graphs)
is crucial. Future work should focus on optimizing models to better leverage diverse data sources.
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