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Abstract

Recent advances in artificial intelligence (AI)001
have produced highly capable and controllable002
systems. This creates unprecedented opportu-003
nities for structured reasoning as well as col-004
laboration among multiple AI systems and hu-005
mans. To fully realize this potential, it is es-006
sential to develop a principled way of design-007
ing and studying such structured interactions.008
For this purpose, we introduce the conceptual009
framework Flows. Flows are self-contained010
building blocks of computation, with an iso-011
lated state, communicating through a standard-012
ized message-based interface. This modular013
design allows Flows to be recursively com-014
posed into arbitrarily nested interactions, with015
a substantial reduction of complexity. Cru-016
cially, any interaction can be implemented us-017
ing this framework, including prior work on018
AI–AI and human–AI interactions, prompt en-019
gineering schemes, and tool augmentation. We020
demonstrate the potential of Flows on competi-021
tive coding, a challenging task on which even022
GPT-4 struggles. Our results suggest that struc-023
tured reasoning and collaboration substantially024
improve generalization, with AI-only Flows025
adding +21 and human–AI Flows adding +54026
absolute points in terms of solve rate. To sup-027
port rapid and rigorous research, we introduce028
the aiFlows library embodying Flows.029

1 Introduction030

The success of large language models (LLMs)031

largely lies in their remarkable emergent ability032

to adapt to information within their context (i.e.,033

prompt) (Brown et al., 2020; Wei et al., 2022; Ko-034

jima et al., 2022). By strategically crafting the035

context, LLMs can be conditioned to perform com-036

plex reasoning (Wei et al., 2022; Nye et al., 2021)037

and effectively utilize external tools (Schick et al.,038

2023), significantly enhancing their capabilities.039

Some of the most exciting recent developments040

involve defining control flows, wherein an LLM041

controls a set of tools, orchestrated to solve increas- 042

ingly complex tasks. Examples of such control 043

flows include ReAct (Yao et al., 2023b), AutoGPT 044

(Richards, 2023), or BabyAGI (Nakajima, 2023). 045

However, these represent but a few of the many 046

conceivable control flows, offering only a glimpse 047

into the vast potential of structured LLM interac- 048

tions. To realize this potential, we need to develop 049

ways for systematically studying such interactions. 050

Currently, no general yet efficient abstraction ex- 051

ists for effectively modeling structured interactions. 052

Previous work and existing frameworks, such as 053

LangChain (Chase, 2022), Chameleon (Lu et al., 054

2023), and HuggingGPT (Shen et al., 2023), have 055

converged on modeling agents as entities that use 056

LLMs to select and execute actions towards spe- 057

cific tasks, where the set of possible actions is pre- 058

defined by the available tools. In this view, tools 059

serve a narrow, well-defined goal and can perform 060

sophisticated tasks (e.g., querying a search engine 061

or executing code). However, their behavior is 062

limited to a single interaction. To highlight the im- 063

plications of this limitation, consider the following 064

scenario: Alice wants to apply for a job at Hap- 065

pyCorp. If Alice is an agent, she would need to 066

explicitly plan the entire process, including prepar- 067

ing the application, sending it, and evaluating it, 068

which may involve a background check, organiz- 069

ing an interview, and more. Alice would need the 070

knowledge and the “computational” ability to plan 071

every detail. Furthermore, unforeseen events may 072

arise (e.g., the interviewer being on parental leave), 073

requiring Alice to adapt. In reality, most of the com- 074

plexity is hidden from Alice behind an interface 075

to HappyCorp’s hiring process that might itself be 076

composed of sub-processes involving many other 077

agents and tools. The hiring process, carefully de- 078

signed by experts, can be reused by many agents, 079

and its sub-processes can be modified or improved 080

with minimal or no impact on the other components. 081

This makes it evident that agents and tools should 082

1



Tools

…

GPT-4

Search engine

Fixed reply

Code executor

Vector DB

Human input

Agent Flow
Prompt: few-shot,CoT… 

Web Search Flow

Code Testing
Flow

Vector DB Flow

Human Flow

Atomic	Flows
Wrap	tools	into	message-exchanging	

entities

… …

Composite	Flows
Orchestrate	the	interaction	between	

other	Flows
Plan-Code Flow

(Circular)

Code Generator 

Code Feedback 

Code Feedback 
(Sequential)

Code Testing

Code Flow
(Generator-Critic)

Plan Generator 

Plan Feedback 

Plan Flow
(Generator-Critic)

Example	
Coding	Flow

Fixed Reply Flow
e.g., ”Are you sure?”

Generator Flow
can be any Flow

Generator-Critic Flow

Critic Flow
can be any Flow

Sequential Flow

…

Flow 1
can be any Flow

Flow 2
can be any Flow

Flow n
can be any Flow

Monitoring Flow

Example
Meta-Reasoning	Flow

Memory FLow

Any Flow

Control Flow

Execution Flow

…

Memory FLow

Any Flow

…

Memory FLow

Any Flow

…

Autonomous Flow

Figure 1: Flows framework exemplified. The first column depicts examples of tools. The second column depicts
Atomic Flows constructed from the example tools. The third column depicts examples of Composite Flows defining
structured interaction between Atomic or Composite Flows. The fourth column illustrates a specific Composite
competitive coding Flow as those used in the experiments. The fifth column outlines the structure of a hypothetical
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be able to interact in complex, dynamic or static,083

ways as parts of nested, modular processes, and084

the distinction between the two becomes blurred as085

they both serve as computational units in a complex086

computational process.087

Starting from the observation that everything088

is a (control) flow defining a potentially complex089

interaction between many diverse components, we090

introduce a conceptual framework where Flows are091

the fundamental building blocks of computation.092

Flows are independent, self-contained, goal-driven093

entities able to complete semantically meaningful094

units of work. To exchange information, Flows095

communicate via a standardized message-based096

interface. The framework is depicted in Fig. 1.097

The Flows abstraction ensures modularity. Alice,098

a higher-level meta-reasoning Flow that can sup-099

port autonomous behavior, does not need to know100

anything beyond how to interface with Happy-101

Corp’s hiring Flow. This substantially reduces com-102

plexity (Alice is interacting with a deeply nested,103

compositional structured interaction through a sim-104

ple interface) and provides flexibility, allowing sub-105

Flows to be swapped without consequences as long106

as they have the same interface. Indeed, Happy-107

Corp’s pre-filtering Flow can be swapped from a108

rule-based system to an AI model or even a human109

Flow without affecting the structure of the overall110

process. The abstraction also enables reusability111

and the composition of sub-Flows into new Flows112

for different tasks. Furthermore, the framework113

1For more details on meta-reasoning Flows see Sec. 7

shares key design choices with the Actor model, 114

one of the most prominent models of concurrent 115

computation (cf. Sec. 3). Certainly, once Alice sub- 116

mits her application to HappyCorp, she does not 117

need to wait for the response; she can move to her 118

next goal while the other Flows run concurrently. 119

We showcase the potential of the proposed 120

framework and library by investigating complex 121

collaborative and structured reasoning patterns on 122

the challenging task of competitive coding, a mind 123

sport involving participants trying to solve prob- 124

lems defined by a natural language description. 125

Contributions. (i) We propose Flows, a conceptual 126

framework providing an abstraction that enables 127

the design and implementation of arbitrarily nested 128

interactions with a substantial reduction of com- 129

plexity and increase in flexibility in comparison 130

to existing frameworks. Flows can represent any 131

interaction and provides a common framework for 132

reasoning about interaction patterns, specifying hy- 133

potheses, and structuring research, more broadly. 134

(ii) We open-source the aiFlows library, which 135

embodies Flows, together with the visualization 136

toolkit FlowViz and FlowVerse, a repository of 137

Flows that can be readily used, extended, and com- 138

posed into novel, more complex Flows. (iii) We 139

leverage Flows and the accompanying library to 140

systematically investigate the benefits of complex 141

interactions for solving competitive coding prob- 142

lems and develop AI-only Flows adding +21 and 143

human–AI Flows adding +54 absolute points in 144

terms of solve rate. 145
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2 Related Work146

Existing libraries for modeling structured inter-147

actions. LangChain (Chase, 2022) has become the148

go-to library for creating applications using large149

language models. However, most recent works in-150

volving structured interaction, such as Cameleon151

(Lu et al., 2023), Camel (Li et al., 2023), Hug-152

gingGPT (Shen et al., 2023), AutoGPT (Richards,153

2023), and BabyAGI (Nakajima, 2023) come with154

their own library. We argue that the reason why re-155

searchers opt to implement bespoke solutions is the156

lack of a general yet efficient abstraction for model-157

ing structured interactions that makes it easy to ex-158

plore novel ideas. Flows, with its modular design,159

provides such an abstraction (cf. Appendix A.3).160

Competitive coding (CC). With the advent of161

transformers, Li et al. (2022) finetuned an LLM162

on GitHub code repositories and a dataset scraped163

from Codeforces. Recently, Zelikman et al. (2022)164

proposed decomposing CC problems into function165

descriptions and, for each function description, us-166

ing an LLM to generate the implementation in a167

modular way. While these methods yield promising168

results, CC remains a challenging task far from be-169

ing solved (OpenAI, 2023). This is why it presents170

itself as an ideal testbed for studying collaborative171

and structured reasoning interactions.172

3 Flows173

This section introduces Flows as a conceptual174

framework, describes its benefits, and presents the175

aiFlows library, which embodies the framework.176

3.1 Flows as a Conceptual Framework177

The framework is centered around Flows and mes-178

sages. Flows represent the fundamental building179

block of computation. They are independent, self-180

contained, goal-driven entities able to complete a181

semantically meaningful unit of work. To exchange182

information, Flows communicate via a standard-183

ized message-based interface. Messages can be of184

any type the recipient Flow can process.185

We differentiate between two types of Flows:186

Atomic and Composite.2 Atomic Flows complete187

the work directly by leveraging tools. Tools can188

be as simple as a textual sequence specifying a189

(simple) Flow’s fixed response or as complex as190

a compiler, a search engine, powerful AI systems191

2The concept of a Flow is sufficient for modeling any
interaction. We introduce this distinction as it improves the
exposition and simplifies the implementation.

like LLaMA (Touvron et al., 2023a,b), Stable Dif- 192

fusion (Rombach et al., 2021), and GPT-4; or even 193

a human. Notably, in the Flows framework, AI 194

systems correspond to tools. An Atomic Flow is 195

effectively a minimal wrapper around a tool and 196

achieves two things: (i) it fully specifies the tool 197

(e.g., the most basic Atomic Flow around GPT-4 198

would specify the prompts and the generation pa- 199

rameters); and (ii) it abstracts the complexity of 200

the internal computation by exposing only a stan- 201

dard message-based interface for exchanging in- 202

formation with other Flows. Examples of Atomic 203

Flows include wrappers around chain-of-thought 204

prompted GPT-4 for solving math reasoning prob- 205

lems, few-shot prompted LLaMA for question an- 206

swering, an existing chatbot, a search engine API, 207

or an interface with a human. 208

Composite Flows accomplish more challenging, 209

higher-level goals by leveraging and coordinating 210

other Flows. Crucially, thanks to their local state 211

and standardized interface, Composite Flows can 212

readily invoke Atomic Flows or other Composite 213

Flows as part of compositional, structured interac- 214

tions of arbitrary complexity. Enabling research 215

on effective patterns of interaction is one of the 216

main goals of our work. General examples of such 217

patterns include (i) factorizing the problem into 218

simpler problems (i.e., divide and conquer); (ii) 219

evaluating (sub-)solutions at inference time (i.e., 220

feedback); and (iii) incorporating external infor- 221

mation or a tool. Importantly, Flows can readily 222

invoke other, potentially heavily optimized, special- 223

ized Flows to complete specific (sub-)tasks as part 224

of an interaction, leading to complicated behavior. 225

One example of a Composite Flow is ReAct (Yao 226

et al., 2023b). ReAct is a sequential Flow that struc- 227

tures the problem-solving procedure in two steps: 228

a Flow selects the next action out of a predefined 229

set of actions, and another Flow executes it. The 230

two steps are performed until an answer is obtained. 231

Another prominent example, AutoGPT, extends the 232

ReAct Flow with a Memory Flow and an optional 233

Human Feedback Flow. More generally, our frame- 234

work provides a unified view of prior work, which 235

we make explicit in Appendix A.3. 236

Importantly, as illustrated in Fig. 1, Composite 237

Flows can script an arbitrarily complex pattern (i) 238

precisely specifying an interaction (e.g., generate 239

code, execute tests, brainstorm potential reasons 240

for failure, etc.); or (ii) defining a high-level, meta- 241

reasoning process in which a Flow could bring 242

about dynamic unconstrained interactions. 243
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Key properties. The proposed framework is char-244

acterized by the following key properties:245

• Flows are the compositional building blocks246

of computation.247

• Flows encapsulate a local, isolated state.248

• Flows interact only via messages.249

• Flows’ behaviour depends only on their inter-250

nal state and the input message.251

• Flows can send messages to other Flows and252

create new Flows.253

Connection to the Actor model. Flows is funda-254

mentally a framework modeling the computation255

underlying interactions. As such, it shares key de-256

sign principles with the Actor model (Hewitt et al.,257

1973) — a mathematical model of concurrent com-258

putation. Similarly to Flows, in the Actor model,259

an Actor is a concurrent computation entity that260

can communicate with other Actors exclusively261

through an asynchronous message-passing inter-262

face. By encapsulating the state and the computa-263

tion within individual Actors, the model provides264

a high-level abstraction for effectively managing265

and reasoning about complex concurrent and dis-266

tributed systems, completely avoiding issues asso-267

ciated with shared states, race conditions, and dead-268

locks. These benefits are similar in nature to those269

observed in the domain of interactions. The main270

distinction between the proposed framework and271

the Actor model lies in their respective communica-272

tion protocols. Concretely, while the Actor model273

prescribes purely asynchronous communication,274

Flows natively supports synchronous communica-275

tion, which is essential for the implementation of276

structured reasoning. Interestingly, a similar devia-277

tion from the “pure” Actor model can be identified278

in the implementation of Erlang, a concurrent pro-279

gramming language based on it (Armstrong, 2003).280

Overall, the shared design choices still make Flows281

inherently concurrency-friendly from the practical282

perspective and are sufficient for important results283

from the five decades of extensive studies of the284

Actor model, such as the fact that every physically285

possible computation can be directly implemented286

using Actors (Hewitt, 2010), to transfer to Flows.287

3.2 Why Flows?288

Modularity. Flows introduces a higher-level ab-289

straction that isolates the state of individual Flows290

and specifies message-based communication as the291

only interface through which Flows can interact. 292

This ensures perfect modularity by design. 293

Reduction of complexity. The framework ensures 294

the complexity of the computation performed by 295

a Flow is fully abstracted behind the universal 296

message-based interface. This enables an intuitive 297

and simple design of arbitrarily complex interac- 298

tions from basic building blocks. 299

Systematicity, flexibility, and reusability. The 300

separation of responsibility allows for modules to 301

be developed and studied systematically in isola- 302

tion or as part of different interactions. Once the 303

correctness and the benefits of a Flow have been es- 304

tablished, it can be readily used in developing novel 305

Flows or as a drop-in replacement for less effective 306

Flows leveraged in completing similar goals. 307

Concurrency. The proposed framework’s design 308

is consistent with the Actor model, one of the most 309

prominent models of concurrent computation. As a 310

consequence, Flows can readily support any setting 311

in which Flows run concurrently. 312

3.3 The aiFlows Library 313

Accompanying Flows, we release the aiFlows li- 314

brary, which embodies the framework. In addition 315

to the inherent benefits that come with the frame- 316

work, the library comes with the following add-ons: 317

(i) FlowVerse: a repository (to which anyone can 318

contribute) of Flows that can be readily used, ex- 319

tended, or composed into novel, more complex 320

Flows. Flows allows for existing “tools” (as well 321

as “models”, “chains”, “agents”, etc.) to be read- 322

ily incorporated by wrapping them in an Atomic 323

Flow; (ii) a detailed logging infrastructure enabling 324

transparent debugging, analysis, and research in op- 325

timizing (i.e., learning or fine-tuning) Flows; (iii) 326

FlowViz: a visualization toolkit to examine the 327

Flows’ execution through an intuitive interface. 328

4 Competitive Coding Flows 329

This work investigates the potential of structured 330

interactions for solving competitive coding (CC) 331

problems. In CC, given a natural language descrip- 332

tion and a few input–output examples, the task is to 333

generate code that will produce the expected output 334

for all of the hidden input–output test cases associ- 335

ated with the problem. Fig. 4 provides examples. 336

We focus the analysis on three canonical dimen- 337

sions of interactions: (i) problem decomposition 338

as structured reasoning; (ii) human-AI collabora- 339
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Figure 2: Competitive coding Flows. At the highest level, we consider planning as a specific structured reasoning
pattern for problem decomposition. In particular, the Plan Flow generates a solution strategy and passes it to the
Code Flow, which implements it, as depicted in A). B) and C) depict the different choices of sub-Flows used as Plan
and Code Flows in the experiments. Notably, we explore the impact of human-AI collaboration at the plan level and
refinement with different types of feedback: i) fixed reply encouraging reflection; ii) AI generated feedback; iii)
code testing results as feedback; iv) AI generated feedback grounded in code testing results.

tion; and (iii) refinement with various feedback340

types. By providing a common language for clearly341

specifying interactions as well as the capability to342

flexibly compose, exchange, and extend them, the343

framework makes it possible to study the space of344

complex interactions in a principled fashion. In the345

rest of the section, we describe the specific Flows346

used in the experiments, depicted in Fig. 2.347

Problem decomposition. Planning has been an348

integral intermediate step in recent work (Lu et al.,349

2023; Shen et al., 2023; Yao et al., 2023b). Similar350

decomposition is natural in the context of CC as351

well. In particular, we approach the task in two352

steps: generating a solution strategy by a Plan Flow353

and then generating the corresponding code by a354

Code Flow. This is depicted by panel A in Fig. 2.355

Human-AI collaboration. When designing356

human-AI collaborations, it is essential to take the357

costs of human interaction into account (Horvitz,358

1999; Amershi et al., 2019; Mozannar et al., 2023).359

By providing immense flexibility, Flows can sup-360

port research in the design of interactions involving361

humans as computational building blocks in a way362

that maximizes the utility of the overall computa-363

tion with a minimal human effort. In the context of364

CC, we hypothesize that a human can be effectively365

incorporated at the plan level to provide a short “or-366

acle” plan in natural language. We operationalize367

this by an (Atomic) Human Flow, illustrated in368

Panel B of Fig. 2 as the Oracle Plan Flow.369

Refinement with various feedback types. It-370

erative refinement is a general problem-solving371

strategy successfully deployed across various dis-372

ciplines (Perrakis et al., 1999; Reid and Neubig, 373

2022; Schick et al., 2022; Saharia et al., 2021). The 374

strategy revolves around the idea that a solution 375

can be gradually improved through a mechanism 376

for analysis, modification, and re-evaluation. The 377

design of this “feedback” mechanism is critical 378

for the effectiveness of the problem-solving strat- 379

egy. The conceptual framework, paired with the 380

accompanying library, provides the infrastructure 381

to support the design, implementation, and princi- 382

pled research of effective refinement strategies and 383

feedback mechanisms. In this work, we consider 384

a canonical iterative refinement setup where a gen- 385

erator Flow is tasked with generating the solution, 386

and a critic Flow provides feedback on the pro- 387

posed solution. We consider two feedback types in 388

the context of both the Plan and the Code Flow: (i) 389

Reflection Flow: the feedback consists of a fixed 390

message encouraging the model to reflect on im- 391

portant aspects of the proposed solution; (ii) Col- 392

laboration Flow: the feedback is provided by an AI 393

system that “evaluates” the proposed solution. Fur- 394

thermore, we explore two more code-specific feed- 395

back types: (i) Debug Flow: the feedback message 396

corresponds to the results from executing the code 397

and testing it against the examples provided in the 398

problem description; (ii) Debug–Collab Flow: the 399

feedback is provided by an AI system with access 400

to the code testing results, effectively, grounding 401

the feedback and allowing more systematic reason- 402

ing about the potential causes of failure. 403

We refer to Flows using the following conven- 404

tion: CodeFlowName when no plan is generated 405

and PlanFlowName-CodeFlowName otherwise. 406
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5 Experimental Setup407

Data. We scrape publicly available problems from408

one of the most popular websites hosting CC con-409

tests, Codeforces (Mirzayanov, 2023), and Leet-410

Code (LeetCode, 2023), which cover a broad spec-411

trum of problems ranging from easy interview412

questions to hard CC problems (see Appendix A.1413

for more details). The datasets cover problems414

from 2020-August-21 to 2023-March-26 for Code-415

Forces, and from 2013-October-25 to 2023-April-416

09 for LeetCode. Importantly, to study the effect417

of structured interactions (i.e., different Flows) in a418

principled manner, it is crucial to account for the419

possibility of data contamination, i.e., that some of420

the test data has been seen during training (Magar421

and Schwartz, 2022). Containing problems pub-422

lished over an extended period up to a few months423

ago (at the time of writing), our datasets allow for424

reliable identification of the training data cutoff425

date that can help with addressing this issue. Prior426

code evaluation datasets like APPS (Hendrycks427

et al., 2021), HumanEval (Chen et al., 2021), and428

CodeContests (Li et al., 2022) lack problem release429

dates, and considering the lack of publicly avail-430

able information about LLMs’ training data, can431

likely lead to confounded evaluation of models’432

memorization and generalization abilities.433

Code testing and solution evaluation. Just like434

a human participant, the Debug Flow has access435

only to the input–output example pairs contained436

in the problem description and, at inference time,437

uses a local code testing infrastructure to evaluate438

(intermediate) solution candidates. Crucially, these439

examples cover only a few simple cases, and gener-440

ating outputs consistent with them does not imply441

the code corresponds to a correct solution. A solu-442

tion is considered correct if it passes all the hidden443

test cases. To determine correctness, we leverage444

online evaluators that submit candidate solutions445

to the websites’ online judges, ensuring authorita-446

tive results. For many of the Codeforces problems,447

we also support local evaluation based on a com-448

prehensive set of hidden test cases we managed to449

scrape. For more details, see Appendix A.2.450

Models and Flows. We experiment with the451

competitive coding Flows described in Sec. 4, and452

GPT-4 (OpenAI, 2023) as the LLM tool of choice.453

See Appendix A.4 for the specific prompts. Also,454

the code to reproduce the experiments in the paper455

is available in the project’s GitHub repository.456

Evaluation metrics. The most common evalu- 457

ation metric for code generation is pass@k, corre- 458

sponding to the probability that in a set of k sam- 459

pled candidates, there will be at least one correct 460

solution (Chen et al., 2021). To better align with 461

practical use cases, we focus on pass@1, i.e. the 462

solve rate when averaged across the problem set. 463

We report a point estimate and a 95% confidence in- 464

terval constructed from 1000 bootstrap resamples. 465

Compute and cost. All the experiments, includ- 466

ing the most complex Flows, can be performed on 467

commodity hardware relatively cheaply. For in- 468

stance, the costs associated with querying the Ope- 469

nAI API for generating Table 1 amount to $1000. 470

6 Experimental Results 471

We first study the generalization ability of repre- 472

sentative Flows and empirically identify GPT-4’s 473

knowledge-cutoff date. Next, we perform a focused 474

analysis along the dimensions described in Sec. 4. 475

6.1 Performance of Coding Flows on Pre- vs. 476

Post-Knowledge-Cutoff-Date Data 477
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Figure 3: Temporal analysis. Performance is averaged
over a sliding window of two months. The substantial
drop in performance around the reported knowledge
cutoff date for GPT-3/4 (the crimson vertical line) re-
veals limited generalization ability that can be alleviated
through structured interactions.

In this experiment, we consider three representa- 478

tive Flows: (i) Code: the simplest Code Generator 479

Flow corresponding to a single GPT-4 API call; 480

(ii) Code_Debug_Collab: the most complex code 481

Flow; (iii) Plan_Oracle-Code_Debug_Collab: the 482

most complex code Flow with human guidance at 483

the plan level. We perform the analysis by running 484

the three Flows on Codeforces problems released 485

from October 2020 to April 2023 and averaging the 486

performance over a sliding window of two months. 487

The results are reported in Fig. 3. 488
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We observe a substantial drop in performance489

centered around September 2021, consistent with490

the knowledge cutoff date reported by OpenAI,491

and denote it by a vertical line on the plot. With492

Codeforces problems appearing in contexts outside493

of the contest itself (e.g., editorials), it is reasonable494

to assume the model has been exposed to older495

problems more frequently during training. This496

would explain why the drop spans multiple months,497

from May 2021 to November 2021, depending on498

when which data was published and crawled.499

Notably, there is a stark difference in the perfor-500

mance of the Code Flow on problems published501

before and after the knowledge cutoff data, with502

the solve rate decreasing from around 80% to 23%.503

While still experiencing a substantial performance504

drop, the Code_Debug_Collab Flow doubles the505

solve rate on novel problems to around 45%. Pro-506

vided with human input at the plan level, the same507

Flow reaches 85%. Overall, this highlights that508

GPT-4 performs poorly on novel complex reason-509

ing problems, but structured interactions have the510

potential to enhance its generalization capabilities.511

As both GPT-4 (i.e., the Code Flow) and the more512

complex interactions (Flows) exhibit qualitatively513

different behavior on novel data, to draw accurate514

conclusions, it is critical that data contamination515

is taken into serious consideration when designing516

experiments and interpreting results.517

6.2 Comparing Competitive Coding Flows518

Table 1 reports the performance of the sys-519

tematically chosen set of Flows described in520

Sec. 4. Rows 6–10 correspond to Flows comprising521

planning and coding , while rows 1–5 perform the522

coding directly . In line with the findings of the523

previous section, we separately consider the perfor-524

mance on problems published before and after the525

knowledge cutoff date of September 2021.526

Problem decomposition. The idea behind plan-527

ning before implementing the solution is to decou-528

ple the high-level reasoning from the code imple-529

mentation. To analyze the effectiveness of this530

pattern, we compare the Code and the Plan-Code531

Flow. Looking at the point estimates, in the pre-532

cutoff problems, introducing the plan Flow leads533

to decreased performance (-1.6 for Codeforces534

and -3.1/2.3/-9.2 for LeetCode easy/medium/hard).535

However, in the post-cutoff problems, incorporat-536

ing a plan Flow leads to gains for Codeforces (+8)537

and LeetCode easy and medium (+2.3 and +3.2).538

While these trends are consistent, considering the 539

confidence intervals, we see that they are not sta- 540

tistically significant. Crucially, these results do 541

not imply that this specific problem decomposition 542

is not valuable as it creates a lot of potential in 543

designing an effective human-AI collaboration. 544

Human-AI collaboration. After every contest, the 545

Codeforces community publishes an editorial that, 546

in addition to the code implementation, provides a 547

short natural language description of the solution. 548

To simulate a Flow where a human provides high- 549

level guidance at the core of the reasoning process, 550

we scrape the solution descriptions and pass them 551

as human-generated plans. The results are striking: 552

despite being only a few sentences long, human- 553

provided plans lead to a substantial performance 554

increase (from 26.9% to 74.5% and from 47.5% to 555

80.8% on novel problems, when the code is gener- 556

ated by Code and Code_Debug_Collab Flows, re- 557

spectively). First and foremost, these results show- 558

case the opportunities created by Flows for de- 559

signing, implementing, and studying Human-AI 560

collaboration as a key component of structured 561

interactions. Second, specific to the problem of 562

competitive coding, they validate the hypothesis 563

that high-quality plans are important, suggesting 564

that the design of more effective plan Flows is a 565

promising direction to explore in the future. Last 566

but not least, the results highlight the necessity of 567

more systematic research, as patterns seemingly 568

not valuable in one Flow, such as the simple plan- 569

code structured reasoning problem decomposition, 570

can provide immense value as part of another Flow. 571

Refinement with various feedback types. Among 572

the code Flows, we find that Code_Reflection 573

and Code_Collaboration lead to limited improve- 574

ments. The two exceptions are Codeforces pre- 575

cutoff (+9.3) for the former and Codeforces post- 576

cutoff (+9.6) for the latter pattern. While close, 577

these results are not statistically significant. On 578

the other hand, the Flows providing grounded feed- 579

back, Code_Debug and Code_Debug_Collab, lead 580

to consistent and statistically significant improve- 581

ments, most notable on the novel Codeforces prob- 582

lems where performance increases from 26.9, with- 583

out feedback, to 47.5, when the refinement is based 584

on AI-generated feedback grounded in tests. On 585

LeetCode these improvements are smaller in mag- 586

nitude. We suspect this is a consequence of the 587

examples provided with the problem description 588

being more simplistic than those in Codeforces, 589
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Codeforces Leetcode
Pre-cutoff Post-cutoff Pre-cutoff Post-cutoff

Easy Medium Hard Easy Medium Hard

Code 71.8 ±11.0 26.9 ±11.0 97.8 ±3.1 93.4 ±5.4 66.7 ±10.9 76.3 ±8.6 25.1 ±8.9 8.0 ±5.5

Code_Reflection 81.1 ±9.7 26.9 ±10.6 97.8 ±3.1 93.4 ±5.4 67.9 ±10.6 77.4 ±8.1 30.5 ±9.4 11.5 ±6.6

Code_Collaboration 76.6 ±10.5 36.5 ±11.8 97.8 ±3.1 91.1 ±6.0 66.6 ±10.9 73.1 ±8.7 25.1 ±8.7 9.2 ±5.9

Code_Debug 84.5 ±8.6 34.8 ±11.6 97.8 ±3.1 94.5 ±5.0 73.6 ±10.0 84.0 ±7.3 32.8 ±9.6 10.4 ±6.3

Code_Debug_Collab 84.4 ±8.9 47.5 ±12.1 97.8 ±3.1 93.4 ±5.4 72.2 ±10.4 83.8 ±7.4 34.9 ±9.7 9.2 ±6.0

Plan-Code 70.2 ±11.0 34.9 ±11.6 94.7 ±4.5 91.1 ±5.9 57.0 ±11.2 78.6 ±8.3 28.3 ±9.1 4.6 ±4.3

Plan_Reflection-Code 68.5 ±11.6 31.7 ±11.6 95.7 ±4.1 88.9 ±6.6 63.6 ±10.7 77.5 ±8.3 21.8 ±8.5 8.0 ±5.5

Plan_Collaboration-Code 67.0 ±11.5 33.2 ±11.4 96.7 ±3.7 91.1 ±6.1 59.5 ±11.2 74.3 ±8.6 25.2 ±9.0 9.2 ±5.8

Plan_Oracle-Code 82.8 ±9.4 74.5 ±10.7 – – – – – –

Plan_Oracle-Code_
Debug_Collab 95.4 ±5.2 80.8 ±9.5 – – – – – –

Table 1: Main Results. Performance of competitive coding Flows on Codeforces and LeetCode.

leading to false positives and, thereby, incorrect590

grounding, affecting the feedback quality. This591

could be addressed by generating additional tests592

with a Test_Case_Generator Flow, a direction we593

leave for future work to explore. Finally, in the plan594

Flows, where we consider Reflection and Collabo-595

ration (without grounding), we find that refinement596

does not provide statistically significant benefits.597

Overall, our findings offer several important in-598

sights: (i) the direct benefit of problem decom-599

position hinges on the quality of the intermediate600

steps; (ii) involving humans at the core high-level601

reasoning process yields major improvements as602

humans can easily provide high-quality, grounded603

feedback; (iii) strategic problem decomposition is604

a powerful strategy for creating opportunities for605

effective Human–AI collaboration; (iv) the effec-606

tiveness from refinement patterns is not universal607

and depends on the quality of the starting solu-608

tion and the feedback (e.g., the level of grounding),609

and the model’s ability to incorporate that feed-610

back modulated through the feedback’s specificity611

and the model’s capabilities. The analysis paints612

a substantially more complex picture than what is613

reported by prior work for simple interactions.614

7 Discussion and Conclusion615

Simplicity and systematicity. Thanks to its key616

properties, Flows, together with aiFlows, pro-617

vides an infrastructure that greatly simplifies the618

design and implementation of open-ended interac-619

tions, with a capability to flexibly isolate, compose,620

replace, or modify sub-Flows. The experiments621

demonstrate that carefully designed interactions622

can substantially improve generalization. How-623

ever, our analysis also reveals that the effective-624

ness of particular interaction patterns is not uni-625

versal; instead, there are many factors at play. As626

researchers, we need to clearly specify the patterns 627

we are studying, clearly communicate our hypothe- 628

ses, and study them both in isolation and as sub- 629

parts of other interactions across different datasets 630

or/and tasks. Furthermore, it is critical that data 631

contamination is taken into serious consideration 632

when designing experiments and drawing conclu- 633

sions, and error bars become a standard in the field. 634

Cost and Performance Optimization. In our ex- 635

periments, we used “off-the-shelf” LLMs that have 636

not been specifically optimized for collaboration. 637

We posit that we can substantially improve perfor- 638

mance and/or compute cost by fine-tuning mod- 639

els to collaborate more effectively, generally or to- 640

ward specialized roles (e.g., controller or critic). To 641

support research in this direction, aiFlows imple- 642

ments detailed logging mechanisms of Flow runs. 643

Meta-reasoning Flows. Cognitive science re- 644

search in metacognition and meta-reasoning sug- 645

gests the existence of meta-level monitoring and 646

control processes underlying cognition (Ackerman 647

and Thompson, 2017). Exploring the development 648

of similar mechanisms in the context of powerful 649

autonomous AI systems and moving beyond a sin- 650

gle LLM call serving as a controller (Nakajima, 651

2023; Richards, 2023) could be a promising area 652

of research. Flows can support such research in 653

higher-level meta-reasoning patterns of interaction. 654

On the one hand, Flows provides a high-level 655

abstraction enabling the design and implementa- 656

tion of interactions of arbitrary complexity. On the 657

other, it offers a common framework for reasoning 658

about interaction patterns, specifying hypotheses, 659

and structuring research. We hope the framework 660

will serve as a solid basis for practical and theoreti- 661

cal innovations, paving the way toward ever more 662

useful AI, similar to the Actor model’s role for 663

concurrent and distributed systems. 664
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Limitations665

Cost and latency. aiFlows is fundamentally a666

framework modeling the computation that under-667

lies structured reasoning and collaboration, which668

inherently involves multiple calls. Naturally, this669

will result in higher latency, which impacts the user670

experience, and cost in comparison to a single call.671

Evaluation limitations.. This work provides the672

infrastructure to support a systematic study of struc-673

tured interactions, and demonstrates its utility by674

providing a thorough evaluation using a single675

model and a specific subset of interactions on the676

task of competitive coding. However, as discussed677

in Sec. 7, many factors determine the effectiveness678

of structured interactions, and future work should679

continue exploring the vast space of models and680

conceivable interactions across the many complex681

tasks that can be addressed in this setup.682

Risk and biases associated with tools. Flows rely683

on the computation performed by the tools (e.g.,684

LLMs, search engines, etc.) and, therefore, will685

be exposed to the risks and biases associated with686

their usage.687

Cost and performance optimization. As dis-688

cussed in Sec. 7, the "off-the-shelf" LLM used in689

the experiments has not been specifically optimized690

for effectiveness in structured interactions. Albeit691

for the better, fine-tuning with aiFlows in mind692

would substantially affect cost and performance.693
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A Appendix925

A.1 Data926

Example Codeforces and LeetCode problems are927

provided in Fig. 4.928

In the first experiment, the temporal analysis, we929

use 239 Codeforces problems ranging from Octo-930

ber 2020 to April 2023. In the second experiment,931

we have 136 problems for Codeforces (some prob-932

lems are dropped in order to keep the pre-cutoff933

and post-cutoff buckets equal to 68) and 558 prob-934

lems for LeetCode (93 for each of the six buckets).935

Additionally, to support research in the area, we936

set up an AI competitive coding challenge based937

on a dataset of Codeforces problems of various938

difficulties published after the knowledge cutoff939

date. More details about the CC competition are940

available in Appendix A.5.941

A.2 Code Testing and Solution Evaluation942

The solution evaluation requires a set of input–943

output pairs, hidden from the user, that comprehen-944

sively test the behavior of the program. To compute945

the final results, we have implemented an online946

evaluation infrastructure that submits the candidate947

solutions to the websites’ online judges and auto-948

matically scrapes the judgment. This mechanism949

ensures authoritative results.950

For many of the Codeforces problems, we man-951

aged to scrape (sometimes a subset) of the hidden952

tests, allowing us to use a faster, local infrastruc-953

ture for evaluating candidate solutions. On the954

other hand, LeetCode does not expose any of the955

hidden tests publicly.956

For code testing at inference time, just like a957

human would, we rely on tests constructed from958

the (public) input–output example pairs contained959

in the problem description.960

A.3 Concurrent and Previous Works as961

Specific Instances of Flows962

The introduction of LLMs such as BARD, GPT-3,963

ChatGPT, and its latest version, GPT-4, has led964

to a breakthrough in AI. This has enabled many965

exciting developments like CoT, HuggingGPT, Au-966

toGPT, AgentGPT, and BabyAGI. In this section,967

we demonstrate how Flows provides a unified view968

encompassing concurrent and previous work as spe-969

cific Flow instances. The details are provided in970

Figure 5 and Table. 2.971

1. Few shot Prompting (FS) (Brown et al.,972

2020) consists in providing a few input-output973

examples within the prompt, acting as demon- 974

strations to enable the LLM to perform a spe- 975

cific task. This technique relies on the LLM’s 976

emergent in-context learning ability to extrap- 977

olate from these limited examples and infer 978

how to solve the task in general. 979

2. Chain of Thoughts (CoT) (Wei et al., 2022) is 980

a prompting method (atomic Flow) that allows 981

LLMs to generate a series of intermediate nat- 982

ural language reasoning steps that lead to the 983

final output. 984

3. Tree of Thoughts (ToT) (Yao et al., 2023a) 985

is a framework that enables (orchestra- 986

tion) exploration over coherent units of text 987

(thoughts) that serve as intermediate steps to- 988

ward problem-solving. ToT allows LLMs to 989

perform deliberate decision-making by con- 990

sidering multiple different reasoning paths 991

and self-evaluating choices to decide the next 992

course of action, as well as looking ahead or 993

backtracking when necessary to make global 994

choices. 995

4. Program of Thoughts (PoT) (Chen et al., 996

2022) is a prompting method that allows lan- 997

guage models (mainly Codex) to express the 998

reasoning process as a program. The computa- 999

tion is relegated to an external program, which 1000

executes the generated programs to derive the 1001

answer. 1002

5. Mutimodal CoT (M-CoT) (Zhang et al., 1003

2023) is a method that incorporates language 1004

(text) and vision (images) modalities into a 1005

two-stage framework that separates rationale 1006

generation and answer inference. To facilitate 1007

the interaction between modalities in M-CoT, 1008

smaller language models (LMs) are fine-tuned 1009

by fusing multimodal features. 1010

6. ToolFormer (Schick et al., 2023) is a model 1011

that is trained to decide which APIs to call, 1012

when to call them, what arguments to pass, 1013

and how to incorporate the results into future 1014

tokens prediction. 1015

7. ReAct (Yao et al., 2023b) is a framework 1016

that uses LLMs to generate reasoning traces 1017

and task-specific actions sequentially. The 1018

framework allows for greater synergy between 1019

the two: reasoning traces help the model in- 1020

duce, track, and update action plans and han- 1021
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You have received data from a Bubble bot. You know your task is to make factory facilities, but 
before you even start, you need to know how big the factory is and how many rooms it has. When you 
look at the data you see that you have the dimensions of the construction, which is in rectangle 
shape: N x M.
Then in the next N lines you have M numbers. These numbers represent factory tiles and they can go 
from 0 to 15. Each of these numbers should be looked in its binary form. Because from each number you 
know on which side the tile has walls. For example number 10 in it's binary form is 1010, which means 
that it has a wall from the North side, it doesn't have a wall from the East, it has a wall on 
the South side and it doesn't have a wall on the West side. So it goes North, East, South, West.
It is guaranteed that the construction always has walls on it's edges. The input will be correct.
Your task is to print the size of the rooms from biggest to smallest.

Example 1:
Input: 4 5 
       9 14 11 12 13 
       5 15 11 6 7 
       5 9 14 9 14 
       3 2 14 3 14
Output: 9 4 4 2 1 

CodeForces 

LeetCode (Hard)

Given an input string (s) and a pattern (p), implement wildcard pattern matching with support 
for '?' and '*' where:
•'?' Matches any single character.
•'*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).

Example 1:
Input: s = "aa", p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Figure 4: Examples of competitive coding problems from Codeforces and LeetCode.

dle exceptions, while actions allow it to inter-1022

face with external sources, such as knowledge1023

bases or environments, to gather additional1024

information.1025

8. Parsel (Zelikman et al., 2022) is a framework1026

that enables the automatic implementation and1027

validation of complex algorithms with code1028

LLMs. The framework first synthesizes an in-1029

termediate representation based on the Parsel1030

language and can then apply a variety of post-1031

processing tools. Code is generated in a next1032

step.1033

9. REFINER (Paul et al., 2023) is a framework1034

for LMs to explicitly generate intermediate1035

reasoning steps while interacting with a critic1036

model that provides automated feedback on1037

the reasoning.1038

10. Self-Refine (Madaan et al., 2023) is a frame-1039

work for LLMs to generate coherent outputs.1040

The main idea is that an LLM will initially1041

generate an output while the same LLM pro-1042

vides feedback for its output and uses it to1043

refine itself iteratively.1044

11. Recursively Criticize and Improve (RCI)1045

(Kim et al., 2023) showed that a pre-trained1046

large language model (LLM) agent could1047

execute computer tasks guided by natural1048

language using a simple prompting scheme1049

where the agent Recursively Criticizes and1050

Improves its output (RCI). Unlike Self-refine,1051

this method uses two separate LLMs (Chat-1052

GPT), one for performing the task and another 1053

for criticizing. 1054

12. Self-Correct (Welleck et al., 2023) is a frame- 1055

work that decouples a flawed base generator 1056

(an LLM) from a separate corrector that learns 1057

to iteratively correct imperfect generations. 1058

The imperfect base generator can be an off- 1059

the-self LLM or a supervised model, and the 1060

corrector model is trained. 1061

13. Self-Debug (Chen et al., 2023) is a framework 1062

that relies on external tools (SQL application 1063

or Python interpreter) to help large language 1064

models revise and debug SQL commands or 1065

Python code with bugs. 1066

14. Reflexion (Shinn et al., 2023) is a framework 1067

that provides a free-form reflection on whether 1068

a step was executed by LLM correctly or 1069

not and potential improvements. Unlike self- 1070

refine and self-debug, Reflexion builds a per- 1071

sisting memory of self-reflective experiences, 1072

which enables an agent to identify its own er- 1073

rors and self-suggest lessons to learn from its 1074

mistakes over time. 1075

15. Meta-Reasoner (Yoran et al., 2023) is an ap- 1076

proach which prompts large language models 1077

to meta-reason over multiple chains of thought 1078

rather than aggregating their answers. This ap- 1079

proach included two steps: (i) ask LLM to 1080

generate multiple reasoning chains, (ii) ask 1081

another LLM (meta-reasoner) to reason over 1082

the multiple reasoning chains to arrive at the 1083

correct answer. 1084
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Figure 5: Previous works are specific Flows. We depict a selected subset of previous works incorporating structured
reasoning and/or interactions between AI agents, tools, and humans, through the lens of the Flows framework.
This demonstrates that Flows is a powerful language for describing, conceptualizing, and disseminating structured
interaction patterns.

16. HuggingGPT (Shen et al., 2023) is a frame-1085

work that leverages LLMs (e.g., ChatGPT) to1086

connect various AI models in machine learn-1087

ing communities (e.g., Hugging Face) to solve1088

numerous sophisticated AI tasks in different1089

modalities (such as language, vision, speech)1090

and domains.1091

17. Camel (Li et al., 2023) is a communicative1092

agent framework involving inception prompt-1093

ing to guide chat agents toward task comple-1094

tion while maintaining consistency with hu-1095

man intentions.1096

18. Chameleon (Lu et al., 2023) is a plug-and-1097

play compositional reasoning framework that1098

augments external tools with LLMs in a plug-1099

and-play manner. The core idea is that an1100

LLM-based planner assembles a sequence of1101

tools to execute to generate the final response.1102

The assumption is that this will be less error-1103

prone, easily expandable to new modules, and1104

user-friendly.1105

19. AutoGPT (Richards, 2023) is an experimen-1106

tal open-source application that leverages the1107

capabilities of large language models (LLMs)1108

and Chatbots such as OpenAI’s GPT-4 and1109

Chat-GPT to create fully autonomous and cus-1110

tomizable AI agents. It has internet access,1111

long-term and short-term memory manage- 1112

ment. 1113

20. BabyAGI (Nakajima, 2023) is an intelligent 1114

agent capable of generating and attempting 1115

to execute tasks based on a given objective. 1116

BabyAGI operates based on three LLM flows: 1117

Task creation flow, Task prioritization flow, 1118

and Execution flow. 1119

A.4 Prompting 1120

We provide the prompts used to obtain the results in 1121

Section 6. Our evaluation is made possible thanks 1122

to the modular and compositional nature of Flows. 1123

Some of the experimental setups are deeply nested, 1124

and in cases where Flows build on each other, we 1125

avoid repetition. Note that the project’s GitHub 1126

repository provides the code and data to reproduce 1127

all of the experiments in the paper. 1128

Direct prompting for a solution is shown in List- 1129

ing 1. To add reflection, we use a Generator-Critic 1130

Flow to combine the code generation with a fixed 1131

reply, as shown in Listing 2. In the collaboration 1132

setting, we use Listing 3 as the generator and List- 1133

ing 4 as the critic. 1134

Debugging is incorporated via a testing Flow that 1135

adds formatting to the output of a code executor. 1136

The formatting templates are shown in Listing 6. 1137

To respond to the debug output, we rely on an 1138

14



Flows Flow Type Interactions Reasoning Patterns Feedback Learning

Self Multi-Ag. Human Tools Struct. Plan

FS (Brown et al., 2020) Atomic ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
CoT (Wei et al., 2022) Atomic ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
ToT (Yao et al., 2023a) Circular ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗
PoT (Chen et al., 2022) Seq. ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
M-CoT (Zhang et al., 2023) Seq. ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
ToolFormer (Wei et al., 2022) Seq. ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓
ReAct (Yao et al., 2023b) Circular ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
Parsel (Zelikman et al., 2022) Seq. ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
REFINER (Paul et al., 2023) Gen-Crit ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Self-Refine (Madaan et al., 2023) Gen-Crit ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
RCI (Kim et al., 2023) Gen-Crit ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗
Self-Correct (Welleck et al., 2023) Gen-Crit ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗
Self-Debug (Chen et al., 2023) Gen-Crit ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗
Reflexion (Shinn et al., 2023) Gen-Crit ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗
Meta-Reasoner (Yoran et al., 2023) Seq. ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗
HuggingGPT (Shen et al., 2023) Seq. ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
Camel (Li et al., 2023) Circular ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Chameleon (Lu et al., 2023) Seq. ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
AutoGPT (Richards, 2023) Circular ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗
BabyAGI (Nakajima, 2023) Circular ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Table 2: Previous work. We compare previous work across relevant dimensions.

adjusted coding Flow 5. Adding collaboration in1139

the debugging setting is done by introducing a critic1140

that provides feedback grounded in the test results.1141

This Flow is detailed in Listing 3.1142

The scenarios explained above also support the1143

addition of a planning Flow. An example of plan1144

generation is shown in Listing 8.1145

Listing 1: Prompts for Code Flow (Codeforces)

" prompt t e m p l a t e s " :1146

" sys tem_message " : | −1147

Your g o a l i s t o p r o v i d e1148

e x e c u t a b l e Python code1149

t h a t s o l v e s a c o m p e t i t i v e1150

programming problem . The1151

code s h o u l d c o r r e c t l y1152

h a n d l e a l l c o r n e r c a s e s i n1153

o r d e r t o p a s s t h e h idd en1154

t e s t c a s e s , which a r e used1155

t o e v a l u a t e t h e1156

c o r r e c t n e s s o f t h e1157

s o l u t i o n .1158

1159

The u s e r w i l l s p e c i f y t h e1160

problem by p r o v i d i n g you1161

wi th :1162

− t h e problem s t a t e m e n t1163

− i n p u t d e s c r i p t i o n1164

− o u t p u t d e s c r i p t i o n1165

− example t e s t c a s e s1166

− ( o p t i o n a l ) e x p l a n a t i o n o f1167

t h e t e s t c a s e s1168

1169

The u s e r w i l l p r o v i d e you 1170

wi th a t a s k and an o u t p u t 1171

f o r m a t t h a t you w i l l 1172

s t r i c t l y f o l l o w . 1173

" query_message " : | − 1174

# Problem s t a t e m e n t 1175

{{ p r o b l e m _ d e s c r i p t i o n }} 1176

1177

# I n p u t d e s c r i p t i o n 1178

{{ i n p u t _ d e s c r i p t i o n }} 1179

1180

# Outpu t d e s c r i p t i o n 1181

{{ o u t p u t _ d e s c r i p t i o n }} 1182

1183

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n 1184

}} 1185

1186

1187

The i n p u t s h o u l d be r e a d from 1188

t h e s t a n d a r d i n p u t and 1189

t h e o u t p u t s h o u l d be 1190

p a s s e d t o t h e s t a n d a r d 1191

o u t p u t . 1192

Re tu rn Python code t h a t 1193

s o l v e s t h e problem . Reply 1194

i n t h e f o l l o w i n g f o r m a t : 1195

``` py thon 1196

{{ c o d e _ p l a c e h o l d e r }} 1197

``` 1198

" human_message " : | − 1199

{{ que ry }} 1200
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Listing 2: Prompts for Fixed-Reply Flow

" prompt t e m p l a t e s " :1201

" f i x e d _ r e p l y " : | −1202

C o n s i d e r t h e problem1203

s t a t e m e n t and t h e l a s t1204

p r o p o s e d s o l u t i o n . Are you1205

s u r e t h a t t h e s o l u t i o n i s1206

p r o v i d e d i n t h e r e q u e s t e d1207

fo rmat , and c r u c i a l l y ,1208

s o l v e s t h e problem ?1209

I f t h a t i s n o t t h e case ,1210

p r o v i d e t h e c o r r e c t e d1211

v e r s i o n o f t h e code i n t h e1212

f o l l o w i n g f o r m a t :1213

``` py thon1214

{{ py thon_code }}1215

```1216

o t h e r w i s e , r e p l y :1217

" F i n a l answer . "1218

Listing 3: Prompts for Code-Collab Flow (Codeforces)

" prompt t e m p l a t e s " :1219

" sys tem_message " : | −1220

Your g o a l i s t o p r o v i d e1221

e x e c u t a b l e Python code1222

t h a t s o l v e s a c o m p e t i t i v e1223

programming problem . The1224

code s h o u l d c o r r e c t l y1225

h a n d l e a l l c o r n e r c a s e s i n1226

o r d e r t o p a s s t h e h idd en1227

t e s t c a s e s , which a r e used1228

t o e v a l u a t e t h e1229

c o r r e c t n e s s o f t h e1230

s o l u t i o n .1231

1232

The u s e r w i l l s p e c i f y t h e1233

problem by p r o v i d i n g you1234

wi th :1235

− t h e problem s t a t e m e n t1236

− i n p u t d e s c r i p t i o n1237

− o u t p u t d e s c r i p t i o n1238

− example t e s t c a s e s1239

− ( o p t i o n a l ) e x p l a n a t i o n o f1240

t h e t e s t c a s e s1241

1242

The u s e r w i l l p r o v i d e you1243

wi th a t a s k and an o u t p u t1244

f o r m a t t h a t you w i l l1245

s t r i c t l y f o l l o w .1246

" query_message " : | −1247

# Problem s t a t e m e n t1248

{{ p r o b l e m _ d e s c r i p t i o n }} 1249

1250

# I n p u t d e s c r i p t i o n 1251

{{ i n p u t _ d e s c r i p t i o n }} 1252

1253

# Outpu t d e s c r i p t i o n 1254

{{ o u t p u t _ d e s c r i p t i o n }} 1255

1256

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n 1257

}} 1258

1259

1260

The i n p u t s h o u l d be r e a d from 1261

t h e s t a n d a r d i n p u t and 1262

t h e o u t p u t s h o u l d be 1263

p a s s e d t o t h e s t a n d a r d 1264

o u t p u t . 1265

Re tu rn Python code t h a t 1266

s o l v e s t h e problem . Reply 1267

i n t h e f o l l o w i n g f o r m a t : 1268

``` py thon 1269

{{ c o d e _ p l a c e h o l d e r }} 1270

``` 1271

" human_message " : | − 1272

# Feedback on t h e l a s t 1273

p r o p o s e d s o l u t i o n 1274

{{ c o d e _ f e e d b a c k }} 1275

1276

1277

C o n s i d e r t h e o r i g i n a l problem 1278

s t a t e m e n t , t h e l a s t 1279

p r o p o s e d s o l u t i o n and t h e 1280

p r o v i d e d f e e d b a c k . Does 1281

t h e s o l u t i o n need t o be 1282

u p d a t e d ? I f so , p r o v i d e 1283

t h e c o r r e c t e d v e r s i o n o f 1284

t h e code i n t h e f o l l o w i n g 1285

f o r m a t : 1286

``` py thon 1287

{{ c o d e _ p l a c e h o l d e r }} 1288

``` 1289

o t h e r w i s e , r e p l y : 1290

" F i n a l answer . " 1291

Listing 4: Prompts for Code-Collab-Critic Flow (Code-
forces)

" prompt t e m p l a t e s " : 1292

" sys tem_message " : | − 1293

Your g o a l i s t o i d e n t i f y 1294

p o t e n t i a l i s s u e s wi th a 1295

c o m p e t i t i v e programming 1296

s o l u t i o n a t t e m p t . 1297
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1298

The u s e r w i l l s p e c i f y t h e1299

problem by p r o v i d i n g you1300

wi th :1301

− t h e problem s t a t e m e n t1302

− i n p u t d e s c r i p t i o n1303

− o u t p u t d e s c r i p t i o n1304

− example t e s t c a s e s1305

− ( o p t i o n a l ) e x p l a n a t i o n o f1306

t h e t e s t c a s e s1307

− a Python s o l u t i o n a t t e m p t1308

1309

C r u c i a l l y , your g o a l i s t o1310

c o r r e c t l y i d e n t i f y1311

p o t e n t i a l i s s u e s wi th t h e1312

s o l u t i o n a t t e m p t , and n o t1313

t o p r o v i d e t h e code1314

i m p l e m e n t a t i o n y o u r s e l f .1315

The u s e r w i l l p r o v i d e you1316

wi th a t a s k and an o u t p u t1317

f o r m a t t h a t you w i l l1318

s t r i c t l y f o l l o w .1319

" query_message " : | −1320

# Problem s t a t e m e n t1321

{{ p r o b l e m _ d e s c r i p t i o n }}1322

1323

# I n p u t d e s c r i p t i o n1324

{{ i n p u t _ d e s c r i p t i o n }}1325

1326

# Outpu t d e s c r i p t i o n1327

{{ o u t p u t _ d e s c r i p t i o n }}1328

1329

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n1330

}}1331

1332

# Python s o l u t i o n a t t e m p t :1333

``` py thon1334

{{ code }}1335

```1336

1337

1338

C o n s i d e r t h e problem1339

s t a t e m e n t and t h e s o l u t i o n1340

a t t e m p t . Are t h e r e any1341

i s s u e s wi th t h e p r o p o s e d1342

s o l u t i o n o r i t i s c o r r e c t ?1343

E x p l a i n your r e a s o n i n g1344

ve ry c o n c i s e l y , and do n o t1345

p r o v i d e code .1346

" human_message " : | −1347

{{ query }}1348

Listing 5: Prompts for Code-Debug Flow (Codeforces)

" prompt t e m p l a t e s " : 1349

" sys tem_message " : | − 1350

Your g o a l i s t o p r o v i d e 1351

e x e c u t a b l e Python code 1352

t h a t s o l v e s a c o m p e t i t i v e 1353

programming problem . The 1354

code s h o u l d c o r r e c t l y 1355

h a n d l e a l l c o r n e r c a s e s i n 1356

o r d e r t o p a s s t h e h idd en 1357

t e s t c a s e s , which a r e used 1358

t o e v a l u a t e t h e 1359

c o r r e c t n e s s o f t h e 1360

s o l u t i o n . 1361

1362

The u s e r w i l l s p e c i f y t h e 1363

problem by p r o v i d i n g you 1364

wi th : 1365

− t h e problem s t a t e m e n t 1366

− i n p u t d e s c r i p t i o n 1367

− o u t p u t d e s c r i p t i o n 1368

− example t e s t c a s e s 1369

− ( o p t i o n a l ) e x p l a n a t i o n o f 1370

t h e t e s t c a s e s 1371

1372

The u s e r w i l l p r o v i d e you 1373

wi th a t a s k and an o u t p u t 1374

f o r m a t t h a t you w i l l 1375

s t r i c t l y f o l l o w . 1376

" query_message " : | − 1377

# Problem s t a t e m e n t 1378

{{ p r o b l e m _ d e s c r i p t i o n }} 1379

1380

# I n p u t d e s c r i p t i o n 1381

{{ i n p u t _ d e s c r i p t i o n }} 1382

1383

# Outpu t d e s c r i p t i o n 1384

{{ o u t p u t _ d e s c r i p t i o n }} 1385

1386

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n 1387

}} 1388

1389

1390

The i n p u t s h o u l d be r e a d from 1391

t h e s t a n d a r d i n p u t and 1392

t h e o u t p u t s h o u l d be 1393

p a s s e d t o t h e s t a n d a r d 1394

o u t p u t . 1395

Re tu rn Python code t h a t 1396

s o l v e s t h e problem . Reply 1397

i n t h e f o l l o w i n g f o r m a t : 1398
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``` py thon1399

{{ c o d e _ p l a c e h o l d e r }}1400

```1401

" human_message " : | −1402

{{ t e s t i n g _ r e s u l t s _ s u m m a r y }}1403

1404

1405

C o n s i d e r t h e problem1406

s t a t e m e n t , t h e l a s t1407

p r o p o s e d s o l u t i o n , and i t s1408

i s s u e . P r o v i d e a1409

c o r r e c t e d v e r s i o n o f t h e1410

code t h a t s o l v e s t h e1411

o r i g i n a l problem and1412

r e s o l v e s t h e i s s u e ,1413

w i t h o u t any e x p l a n a t i o n ,1414

i n t h e f o l l o w i n g f o r m a t :1415

``` py thon1416

{{ c o d e _ p l a c e h o l d e r }}1417

```1418

Listing 6: Formatting templates for Code-Testing Flow
(Codeforces)

" f o r m a t t i n g t e m p l a t e s " :1419

" no e r r o r t e m p l a t e " : | −1420

$ { . i s s u e _ t i t l e }1421

A l l o f t h e e x e c u t e d t e s t s1422

p a s s e d .1423

" a l l t e s t s h e a d e r " : | −1424

$ { . i s s u e _ t i t l e }1425

The Python code does n o t1426

s o l v e t h e problem i n t h e1427

problem d e s c r i p t i o n due t o1428

l o g i c a l e r r o r s . I t f a i l s1429

on t h e f o l l o w i n g t e s t s .1430

" c o m p i l a t i o n e r r o r t e m p l a t e " :1431

| −1432

$ { . i s s u e _ t i t l e }1433

The e x e c u t i o n r e s u l t e d i n a1434

c o m p i l a t i o n e r r o r .1435

## C o m p i l a t i o n e r r o r message :1436

{{ e r r o r _ m e s s a g e }}1437

" t i m e o u t e r r o r t e m p l a t e " : | −1438

$ { . i s s u e _ t i t l e }1439

The e x e c u t i o n t imed out , t h e1440

s o l u t i o n i s n o t e f f i c i e n t1441

enough .1442

" r u n t i m e e r r o r t e m p l a t e " : | −1443

$ { . i s s u e _ t i t l e }1444

The e x e c u t i o n r e s u l t e d i n a1445

r u n t i m e e r r o r on t h e1446

f o l l o w i n g t e s t .1447

## [ F a i l e d t e s t ] I n p u t 1448

``` 1449

{{ t e s t _ i n p u t }} 1450

``` 1451

## [ F a i l e d t e s t ] Runtime 1452

e r r o r message 1453

{{ e r r o r _ m e s s a g e }} 1454

" s i n g l e t e s t e r r o r " : | − 1455

$ { . i s s u e _ t i t l e } 1456

The Python code does n o t 1457

s o l v e t h e problem i n t h e 1458

problem d e s c r i p t i o n due t o 1459

l o g i c a l e r r o r s . I t f a i l s 1460

t h e f o l l o w i n g t e s t : 1461

## [ F a i l e d t e s t ] I n p u t 1462

``` 1463

{{ t e s t _ i n p u t }} 1464

``` 1465

## [ F a i l e d t e s t ] Expec ted 1466

o u t p u t 1467

``` 1468

{{ e x p e c t e d _ o u t p u t }} 1469

``` 1470

## [ F a i l e d t e s t ] G e n e r a t e d 1471

o u t p u t 1472

``` 1473

{{ g e n e r a t e d _ o u t p u t }} 1474

``` 1475

" t e s t e r r o r " : | − 1476

## [ F a i l e d t e s t {{ i d x } } ] 1477

### [ F a i l e d t e s t {{ i d x } } ] 1478

I n p u t 1479

``` 1480

{{ t e s t _ i n p u t }} 1481

``` 1482

### [ F a i l e d t e s t {{ i d x } } ] 1483

Expec ted o u t p u t 1484

``` 1485

{{ e x p e c t e d _ o u t p u t }} 1486

``` 1487

### [ F a i l e d t e s t {{ i d x } } ] 1488

G e n e r a t e d o u t p u t 1489

``` 1490

{{ g e n e r a t e d _ o u t p u t }} 1491

``` 1492

Listing 7: Prompts for Code-Debug-Collab Flow (Code-
forces)

" prompt t e m p l a t e s " : 1493

" sys tem_message " : | − 1494

Your g o a l i s t o i d e n t i f y t h e 1495

i s s u e s wi th an i n c o r r e c t 1496
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c o m p e t i t i v e programming1497

s o l u t i o n a t t e m p t .1498

1499

The u s e r w i l l s p e c i f y t h e1500

problem by p r o v i d i n g you1501

wi th :1502

− t h e problem s t a t e m e n t1503

− i n p u t d e s c r i p t i o n1504

− o u t p u t d e s c r i p t i o n1505

− example t e s t c a s e s1506

− ( o p t i o n a l ) e x p l a n a t i o n o f1507

t h e t e s t c a s e s1508

− an i n c o r r e c t Python1509

s o l u t i o n a t t e m p t and a1510

d e s c r i p t i o n o f i t s i s s u e1511

1512

C r u c i a l l y , your g o a l i s t o1513

c o n s i d e r a l l a s p e c t s o f1514

t h e problem and p i n p o i n t1515

t h e i s s u e s wi th t h e1516

s o l u t i o n a t t e m p t , and n o t1517

t o p r o v i d e t h e code1518

i m p l e m e n t a t i o n y o u r s e l f .1519

Some a s p e c t s t o c o n s i d e r : I s1520

t h e i n p u t c o r r e c t l y p a r s e d1521

? I s t h e o u t p u t c o r r e c t l y1522

f o r m a t t e d ? Are t h e c o r n e r1523

c a s e s c o r r e c t l y h a n d l e d ?1524

I s t h e r e a l o g i c a l m i s t a k e1525

wi th t h e a l g o r i t h m i t s e l f1526

?1527

Use t h e code e x e c u t i o n1528

r e s u l t s p r o v i d e d i n t h e1529

i s s u e d e s c r i p t i o n t o g u i d e1530

your r e a s o n i n g / debugg ing .1531

" query_message " : | −1532

# Problem s t a t e m e n t1533

{{ p r o b l e m _ d e s c r i p t i o n }}1534

1535

# I n p u t d e s c r i p t i o n1536

{{ i n p u t _ d e s c r i p t i o n }}1537

1538

# Outpu t d e s c r i p t i o n1539

{{ o u t p u t _ d e s c r i p t i o n }}1540

1541

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n1542

}}1543

1544

# S o l u t i o n a t t e m p t t o be1545

f i x e d1546

``` py thon1547

{{ code }}1548

``` 1549

1550

{{ t e s t i n g _ r e s u l t s _ s u m m a r y }} 1551

1552

1553

C o n s i d e r t h e problem 1554

s t a t e m e n t , t h e s o l u t i o n 1555

a t t e m p t and t h e i s s u e . Why 1556

i s t h e s o l u t i o n a t t e m p t 1557

i n c o r r e c t ? How s h o u l d i t 1558

be f i x e d ? E x p l a i n your 1559

r e a s o n i n g ve ry c o n c i s e l y , 1560

and do n o t p r o v i d e code . 1561

" human_message " : | − 1562

{{ que ry }} 1563

Listing 8: Prompts for Plan Flow (Codeforces)

" prompt t e m p l a t e s " : 1564

" sys tem_message " : | − 1565

Your g o a l i s t o p r o v i d e a 1566

high − l e v e l c o n c e p t u a l 1567

s o l u t i o n t h a t , i f 1568

implemented , w i l l s o l v e a 1569

g i v e n c o m p e t i t i v e 1570

programming problem . 1571

1572

The u s e r w i l l s p e c i f y t h e 1573

problem by p r o v i d i n g you 1574

wi th : 1575

− t h e problem s t a t e m e n t 1576

− i n p u t d e s c r i p t i o n 1577

− o u t p u t d e s c r i p t i o n 1578

− example t e s t c a s e s 1579

− ( o p t i o n a l ) e x p l a n a t i o n o f 1580

t h e t e s t c a s e s 1581

1582

The p r o p o s e d a l g o r i t h m s h o u l d 1583

be c o m p u t a t i o n a l l y 1584

e f f i c i e n t , l o g i c a l l y 1585

c o r r e c t and h a n d l e a l l 1586

c o r n e r c a s e s . 1587

1588

The u s e r w i l l p r o v i d e you 1589

wi th a t a s k and an o u t p u t 1590

f o r m a t t h a t you w i l l 1591

s t r i c t l y f o l l o w . 1592

" query_message " : | − 1593

# Problem s t a t e m e n t 1594

{{ p r o b l e m _ d e s c r i p t i o n }} 1595

1596

# I n p u t d e s c r i p t i o n 1597

{{ i n p u t _ d e s c r i p t i o n }} 1598
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1599

# Outpu t d e s c r i p t i o n1600

{{ o u t p u t _ d e s c r i p t i o n }}1601

1602

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n1603

}}1604

1605

1606

Re tu rn a high − l e v e l1607

c o n c e p t u a l s o l u t i o n t h a t1608

would s o l v e t h e problem .1609

Be ve ry c o n c i s e , and do1610

n o t p r o v i d e code .1611

Reply i n t h e f o l l o w i n g f o r m a t1612

:1613

# C o n c e p t u a l s o l u t i o n1614

{{ p l a n _ p l a c e h o l d e r }}1615

" human_message " : | −1616

{{ query }}1617

A.5 The CC-Flows-competition: a new form1618

of competitive coding1619

Solving competitive coding challenges is an emi-1620

nently hard problem. The solve rate of only 27%1621

by directly attempting the problem and 47% by1622

the best-performing code Flow, paired with a reli-1623

able automatic evaluation metric, make competitive1624

programming an ideal benchmark for AI systems.1625

Motivated by this, we propose a competition where1626

instead of people, proposed Flows solve competi-1627

tive programming problems.1628

The competition will leverage the comprehen-1629

sive dataset of publicly available Codeforces prob-1630

lems and the open-source infrastructure for infer-1631

ence and testing used in the experiments, available1632

at anonymous . The competition will only include1633

problems published after the knowledge-cutoff date1634

of GPT-4. Furthermore, not to overload the Code-1635

forces online evaluation infrastructure, we further1636

filter this dataset to problems for which public and1637

private tests are available, and the output format1638

is compatible with our local code testing infras-1639

tructure. Codeforces ranks the difficulty of each1640

problem from 800 to 2100. At the time of publish-1641

ing, we have the following number of problems per1642

difficulty (total of 416):1643

• difficulty 800: 1491644

• difficulty 900 to 1500 (inclusive): 1851645

• difficulty 1600 to 220 (inclusive): 821646

We will curate a leaderboard of best-performing 1647

Flows that will be publicly available on FlowVerse 1648

and provide the predictions that reproduce the re- 1649

ported scores using the provided infrastructure. 1650
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