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Abstract

Online movie review platforms are providing001
crowdsourced feedback for the film industry002
and the general public, while spoiler reviews003
greatly compromise user experience. Although004
preliminary research efforts were made to au-005
tomatically identify spoilers, they merely fo-006
cus on the review content itself, while robust007
spoiler detection requires putting the review008
into the context of facts and knowledge re-009
garding movies, user behavior on film review010
platforms, and more. In light of these chal-011
lenges, we first curate a large-scale network-012
based spoiler detection dataset LCS and a com-013
prehensive and up-to-date movie knowledge014
base UKM. We then propose MVSD, a novel015
spoiler detection model that takes into account016
the external knowledge about movies and user017
activities on movie review platforms. Specifi-018
cally, MVSD constructs three interconnecting019
heterogeneous information networks to model020
diverse data sources and their multi-view at-021
tributes, while we design and employ a novel022
heterogeneous graph neural network architec-023
ture for spoiler detection as node-level classi-024
fication. Extensive experiments demonstrate025
that MVSD advances the state-of-the-art on026
two spoiler detection datasets, while the intro-027
duction of external knowledge and user interac-028
tions help ground robust spoiler detection.029

1 Introduction030

Movie review websites such as IMDB and Rot-031

ten Tomato have become popular avenues for032

movie commentary, discussion, and recommenda-033

tion (Cao et al., 2019). Among user-generated034

movie reviews, some of them contain spoilers,035

which reveal major plot twists and thus negatively036

affect people’s enjoyment (Loewenstein, 1994). As037

a result, automatic spoiler detection has become an038

important task to safeguard users from unwanted039

exposure to potential spoilers.040

Existing spoiler detection models mostly focus041

on the textual content of the movie review. Chang042
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Figure 1: An example of a movie review and its con-
text. The review mentions Tim Robbins and Morgan
Freeman, which are the names of the actors. Guided
by external movie knowledge, the names can be recog-
nized as the roles in the movie. Moreover, by incorpo-
rating user networks, it is discovered that User 1 likes
to post spoilers on some specific genres of movies such
as drama and comedy. Thus the review is more likely to
be a spoiler.

et al. (2018) propose the first automatic spoiler de- 043

tection approach by jointly encoding the review 044

text and the movie genre. Wan et al. (2019) extend 045

the hierarchical attention network with item (i.e., 046

the subject to the review) information and introduce 047

user bias and item bias. Chang et al. (2021) pro- 048

pose a relation-aware attention mechanism to incor- 049

porate the dependency relations between context 050

words in movie reviews. Combined with several 051

open-source datasets (Boyd-Graber et al., 2013; 052

Wan et al., 2019), these works have made impor- 053

tant progress toward curbing the negative impact 054

of movie spoilers. 055

However, robust spoiler detection requires more 056

than just the textual content of movie reviews, 057

and we argue that two additional information 058

sources are among the most helpful for reliable 059

and well-grounded spoiler detection. Firstly, ex- 060

ternal knowledge of films and movies (e.g. direc- 061

tor, cast members, genre, plot summary, etc.) are 062

essential in putting the review into the movie con- 063

text. Without knowing what the movie is all about, 064
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Table 1: Statistics of LCS and existing dataset Kaggle.

KB # Review # Cast # Metadata Year

KAGGLE 573,913 0 5 2018
LCS (Ours) 1,860,715 494,221 15 2022

it is hard, if not impossible, to accurately assess065

whether the reviews give away major plot points or066

surprises and thus contain spoilers. Secondly, user067

activities of online movie review platforms help in-068

corporate the user- and movie-based spoiler biases.069

For example, certain users might be more inclined070

to share spoilers and different movie genres are071

disproportionally suffering from spoiler reviews072

while existing approaches simply assume the uni-073

formity of spoiler distribution. As a result, robust074

spoiler detection should be guided by external film075

knowledge and user interactions on movie review076

platforms, putting the review content into context077

and promoting reliable predictions.078

In light of these challenges, this work greatly079

advances spoiler detection research through both080

resource curation and method innovation. We081

first propose a large-scale spoiler detection dataset082

LCS and an extensive movie knowledge base083

(KB) UKM. LCS is 114 times larger than ex-084

isting datasets (Boyd-Graber et al., 2013) and is085

the first to provide user interactions on movie re-086

view platforms, while UKM presents an up-to-date087

movie KB with entries of modern movies compared088

to existing resources (Misra, 2019). In addition089

to resource contributions, we propose MVSD, a090

graph-based spoiler detection framework that in-091

corporates external knowledge and user interaction092

networks. Specifically, MVSD constructs hetero-093

geneous information networks (HINs) to jointly094

model diverse information sources and their multi-095

view features while proposing a novel heteroge-096

neous graph neural network (GNN) architecture097

for robust spoiler detection.098

We compare MVSD against three types of base-099

line methods on two spoiler detection datasets.100

Extensive experiments demonstrate that MVSD101

significantly outperforms all baseline models by102

at least 2.01 and 3.22 in F1-score on the Kaggle103

(Misra, 2019) and LCS dataset (ours). Further anal-104

yses demonstrate that MVSD empowers external105

movie KBs and user networks on movie review106

platforms to produce accurate, reliable, and well-107

grounded spoiler predictions.108

Table 2: Statistics of UKM and existing movie KBs.

KB # Entity # Relation # Triple Year

MOVIELENS 14,708 20 434,189 2019
RIPPLENET 182,011 12 1,241,995 2018
UKM (Ours) 641,585 15 1,936,710 2022

2 Resource Curation 109

We first curate a large-scale spoiler detection 110

dataset LCS based on IMDB, providing rich in- 111

formation such as review text, movie metadata, 112

user activities, and more. Motivated by the suc- 113

cess of external knowledge in related tasks (Hu 114

et al., 2021; Yao et al., 2021; Li and Xiong, 2022), 115

we construct a comprehensive movie knowledge 116

base UKM with important movie information and 117

up-to-date entries. 118

2.1 The LCS Dataset 119

We first collect the user id of 259,705 users from 120

a user list presented in the Kaggle dataset (Misra, 121

2019). We then retrieve the most recent 300 movie 122

reviews by each user and collect the information 123

of users, movies, and cast members based on the 124

IMDB website. Since IMDB allows users to self- 125

report whether its review contains spoilers, we 126

adopt these labels provided by IMDB as annota- 127

tions. We provide the comparison of our dataset 128

to the Kaggle dataset in Table 1. As illustrated in 129

Table 1, the LCS dataset has a much larger scale, 130

more up-to-date information, and more comprehen- 131

sive data. 1 132

2.2 The UKM Knowledge Base 133

Based on the LCS dataset, we then curate UKM, 134

a comprehensive knowledge base of movie knowl- 135

edge. We first assign each movie in the LCS dataset 136

as an entity in the KB. We then collect all cast mem- 137

bers and directors of these movies, de-duplicating 138

them, representing each individual as an entity, and 139

connecting movie entities with cast members based 140

on their roles in the movie. After that, we further 141

represent years, genres, and ratings as entities, con- 142

necting them to movie and cast member entities 143

according to the information in the dataset. 144

We compare UKM against two existing movie 145

knowledge bases (RippleNet (Wang et al., 2018) 146

and MoviesLen-1m (Cao et al., 2019)) and present 147

the results in Table 2, which demonstrates that 148

1Details and statistics of the LCS datasets are presented in
Appendix D.
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Figure 2: The architecture of MVSD, which incorporates external knowledge and social network interactions,
leverages multi-view data and facilitates interaction between multi-view data.

UKM presents the largest and most up-to-date col-149

lection of movie and film knowledge to the best150

of our knowledge. UKM has great potential for151

numerous related tasks such as spoiler detection,152

movie recommender systems, and more.153

3 Methodology154

We propose MVSD, a Multi-View Spoiler155

Detection framework. To leverage external movie156

knowledge and user activities that are essential in157

robust spoiler detection, MVSD constructs het-158

erogeneous information networks to jointly rep-159

resent diverse information sources. Specifically,160

we build three subgraphs: movie-review subgraph,161

user-review subgraph, and knowledge subgraph,162

each modeling one aspect of the spoiler detection163

process. MVSD first separately encodes the multi-164

view features of these subgraphs through heteroge-165

neous GNNs, then fuses the learned representations166

of the three subgraphs through subgraph interac-167

tion. MVSD conducts spoiler detection with a168

node classification setting based on the learned rep-169

resentations of review nodes.170

3.1 Heterogeneous Graph Construction171

Graphs and graph neural networks have become172

increasingly involved in NLP tasks such as mis-173

information detection (Hu et al., 2021) and ques-174

tion answering (Yu et al., 2022). In this paper, we175

construct heterogeneous graphs to jointly model176

textual content, metadata, and external knowledge177

in spoiler detection. Specifically, we first construct 178

the three subgraphs modeling different information 179

sources: movie-review subgraph GK = {VK , EK}, 180

user-review subgraph GM = {VM , EM}, and 181

knowledge subgraph GU = {VU , EU}. We mainly 182

explain the compositions of the graph in the follow- 183

ing and elaborate on the details about all the nodes 184

and relations in Appendix C. 185

Movie-Review Subgraph The movie-review 186

subgraph models the bipartite relation between 187

movies and user reviews. We first define the nodes 188

denoted as VM , which include movie nodes, rating 189

nodes, and review nodes. 190

User-Review Subgraph The user-review sub- 191

graph is responsible for modeling the heterogeneity 192

of user behavior on movie review platforms. The 193

nodes in this subgraph, denoted as VU , include 194

review nodes, user nodes, and year nodes. 195

Knowledge Subgraph The knowledge subgraph 196

is responsible for incorporating movie knowledge 197

in external KBs. Nodes in this subgraph, denoted as 198

VK , include movie nodes, genre nodes, cast nodes, 199

year nodes, and rating nodes. 200

Note that the most vital nodes, movie nodes and 201

review nodes, both appear in two subgraphs. These 202

shared nodes then serve as bridges for information 203

exchange across subgraphs, which is enabled by 204

the MVSD model architecture in Section 3.3. 205

3



3.2 Multi-View Feature Extraction206

The entities in the heterogeneous information graph207

have diverse data sources and multi-view attributes.208

In order to model the rich information of these enti-209

ties, we propose a taxonomy of the views, dividing210

them into three categories.211

Semantic View The semantic view reflects the212

semantics contained in the text. We pass movie re-213

view documents, movie plot descriptions, user bio,214

and cast bio to pre-trained RoBERTa, averaging215

all tokens, and produce node embeddings vs as the216

semantic view.217

Meta View The meta view is the numerical and218

categorical feature. We utilize metadata of user219

accounts, movie reviews, movies, and cast, and220

calculate the z-score as node embeddings vm to221

get the meta view. Details about metadata can be222

found in Appendix D.2.223

Knowledge View The knowledge view captures224

the external knowledge of movies. Following previ-225

ous works (Hu et al., 2021; Zhang et al., 2022), we226

use TransE (Bordes et al., 2013) to train KG embed-227

dings for the UKM knowledge base and use these228

embeddings as node features vk for the external229

knowledge view.230

Based on these definitions, each subgraph has231

two feature views, thus nodes in each subgraph232

have two sets of feature vectors. Specifically, the233

knowledge subgraph GK has the external knowl-234

edge view and the semantic view, the movie-review235

subgraph GM and the user-review subgraph GU236

has the meta view and the semantic view. We then237

employ one MLP layer for each feature view to238

encode the extracted features and obtain the initial239

node features xsi , x
m
i , xki for the semantic, meta,240

and knowledge view.241

3.3 MVSD Layer242

After obtaining the three subgraphs and their ini-243

tial node features under the textual, meta, and244

knowledge views, we employ MVSD layers to245

conduct representation learning and spoiler detec-246

tion. Specifically, an MVSD layer first separately247

encodes the three subgraphs, then adopts hierarchi-248

cal attention to enable feature interaction and the249

information exchange across various subgraphs.250

Subgraph Modeling We first model each sub-251

graph independently, fusing the two view features252

for each node. We then fuse node embeddings253

from different subgraphs to facilitate interaction be- 254

tween the three subgraphs. For simplicity, we adopt 255

relational graph convolutional networks (R-GCN) 256

(Schlichtkrull et al., 2018) to encode each subgraph. 257

For the l-th layer of R-GCN, the message passing 258

is as follows: 259

x
(l+1)
i = Θself ·x(l)

i +
∑
r∈R

∑
j∈Nr(i)

1

|Nr(i)|
Θr ·x(l)

j 260

where Θself is the projection matrix for the node it- 261

self while Θr is the projection matrix for the neigh- 262

bor of relation r. By applying R-GCN, nodes in 263

subgraph GK get features from the knowledge and 264

semantic view, denoting as xK
k and xK

s , respec- 265

tively. Nodes in subgraph GM get features from 266

the semantic and meta view, denoting as xM
s ,xM

m , 267

while nodes in subgraph GU get the same views of 268

feature, denoting as xU
s ,x

U
m. 269

Aggregation and Interaction Given the repre- 270

sentation of nodes from different feature views, we 271

adopt hierarchical attention layers to aggregate and 272

mix the representations learned from different sub- 273

graphs. Our hierarchical attention contains two 274

parts: view-level attention and subgraph-level at- 275

tention. Considering movie node and review node 276

are shared nodes of subgraphs and are of the most 277

significance, we utilize these two kinds of nodes to 278

implement our hierarchical attention. 279

We first conduct view-level attention to aggre- 280

gate the multi-view information for each type of 281

node. For each node in a specific subgraph, it 282

has embeddings learned from two types of feature 283

views. We first adopt our proposed view-level atten- 284

tion to fuse the information learned from different 285

views for each node. We learn a weight for each 286

view of features in a specific subgraph. Specifi- 287

cally, the learned weight for each view in a specific 288

subgraph G, (αG
v1 , α

G
v2) can be formulated as 289

(αG
v1 , α

G
v2) = attnv(X

G
v1 ,X

G
v2), 290

where attnv denotes the layer that implements the 291

view-level attention, and XG
vi is the node embed- 292

dings from view vi in subgraph G. To learn the 293

importance of each view, we first transform view- 294

specific embedding through a fully connected layer, 295

then we calculate the similarity between trans- 296

formed embedding and a view-level attention vec- 297

tor qG . We then take the average importance of 298

all the view-specific node embedding as the impor- 299

tance of each view. The importance of each view, 300

4



denoted as wvi , can be formulated as:301

wvi =
1

|VG |
∑
j∈VG

qT
G · tanh(W · xG

vij
+ b),302

where qG is the view-level attention vector for each303

view of feature, VG is the nodes of subgraph G, and304

xG
vij

is the embedding of node j in subgraph G from305

view vi. Then the weight of each view in subgraph306

G can be calculated by307

αvi =
exp(wvi)

exp(wv1) + exp(wv2)
.308

It reflects the importance of each view in our spoiler309

detection task. Then the fused embeddings of dif-310

ferent views can be shown as:311

XG = αv1 ·XG
v1 + αv2 ·XG

v2 ,312

Thus we get the subgraph-specific node embedding,313

denoted as XK ,XM ,XU .314

We then conduct subgraph-level attention to fa-315

cilitate the flow of information between the three316

information sources. Generally, nodes in different317

subgraphs only contain information from one sub-318

graph. To learn a more comprehensive representa-319

tion and facilitate the flow of information between320

subgraphs, we enable the information exchange321

across various subgraphs using the movie nodes322

and the review nodes, both appearing in two sub-323

graphs, as the information exchange ports. Specifi-324

cally, we propose a novel subgraph-level attention325

to automatically learn the weight of each subgraph326

and fuse the information learned for different sub-327

graphs. To be specific, the learned weight of each328

subgraph (βK ,βM ,βU ) can be computed as:329

(βK ,βM ,βU ) = attng(X
K ,XM ,XU ),330

where attng denotes the subgraph-level attention331

layer. To learn the importance of each subgraph, we332

transform subgraph-specific embedding through a333

feedforward layer and then calculate the similarity334

between transformed embedding and a subgraph-335

level attention vector q. Furthermore, we take the336

average importance of all the subgraph-specific337

node embedding as the importance of each sub-338

graph. Taking GK and GM as an example, the339

shared nodes of these two subgraphs are movie340

nodes. The importance of each subgraph, denoted341

as wK , wM , can be formulated as:342

wV =
1

|VV
mv|

∑
j∈VV

mv

qT · tanh(W · xV
j + b)343

where V ∈ {K,M}, q is the subgraph-level atten- 344

tion vector for each subgraph. Then the weight of 345

each subgraph can be shown as: 346

βK = exp(wK)
exp(wK)+exp(wM )

, βM = exp(wM )
exp(wK)+exp(wM )

347

After obtaining the weight, the subgraph-specific 348

embedding can be fused, formulated as: 349

Xmv = βK ·XK
mv + βM ·XM

mv 350

Similarly, for review nodes, we can get the fused 351

representation Xrv. Our proposed subgraph-level 352

attention enables the information to flow across 353

different views and subgraphs. 354

3.4 Overall Interaction 355

One layer of our proposed MVSD layer, however, 356

cannot enable the information interaction between 357

all information sources (e.g. the user-review sub- 358

graph and the knowledge subgraph). In order to 359

further facilitate the interaction of the information 360

provided by each view in each subgraph, we em- 361

ploy ℓ MVSD layers for node representation learn- 362

ing. The representation of movie nodes and review 363

nodes is updated after each layer, incorporating 364

information provided by different views and neigh- 365

boring subgraphs. This process can be formulated 366

as follows: 367

X(i) = MVSD(X(i−1)), 368

where 369

X(i) = [X
GK(i)
k ,X

GK(i)
s ,X

GM(i)
m ,X

GM(i)
s ,X

GU (i)
m ,X

GU (i)
s ] 370

We use h(i) to denote the representation of reviews 371

after adopting the i-th MVSD layer. 372

3.5 Learning and Optimization 373

After a total of ℓ MVSD layers, we ob- 374

tain the final movie review node representa- 375

tion denoted as h(ℓ). Given a document la- 376

bel a ∈ {SPOILER, NOT SPOILER}, the pre- 377

dicted probabilities arer calculated as p(a|d) ∝ 378

exp
(
MLPa(h

(ℓ))
)
. We then optimize MVSD with 379

the cross entropy loss function. At inference time, 380

the predicted label is argmaxap(a|d). 381

4 Experiment 382

4.1 Experiment Settings 383

Datasets. We evaluate MVSD and baselines on 384

two spoiler detection datasets: 385

5



Table 3: Accuracy, AUC, and binary F1-score of MVSD and three types of baseline methods on two spoiler
detection datasets. We run all experiments five times to ensure a consistent evaluation and report the average
performance as well as standard deviation. MVSD consistently outperforms the three types of methods on both
benchmarks. * denotes that the results are significantly better than the second-best under the student t-test.

Model Kaggle LCS

F1 AUC Acc F1 AUC Acc

BERT (Devlin et al., 2019) 44.02 (±1.09) 63.46 (±0.46) 77.78 (±0.09) 46.14 (±2.84) 64.82 (±1.36) 79.96 (±0.38)

ROBERTA (Liu et al., 2019) 50.93 (±0.76) 66.94 (±0.40) 79.12 (±0.10) 47.72 (±0.44) 65.55 (±0.22) 80.16 (±0.03)

BART (Lewis et al., 2020) 46.89 (±1.55) 64.88 (±0.71) 78.47 (±0.06) 48.18 (±1.22) 65.79 (±0.62) 80.14 (±0.07)

DEBERETA (He et al., 2021a) 49.94 (±1.13) 66.42 (±0.59) 79.08 (±0.09) 47.38 (±2.22) 65.42 (±1.08) 80.13 (±0.08)

GCN (Kipf and Welling, 2016) 59.22 (±1.18) 71.61 (±0.74) 82.08 (±0.26) 62.12 (±1.18) 73.72 (±0.89) 83.92 (±0.23)

R-GCN (Schlichtkrull et al., 2018) 63.07 (±0.81) 74.09 (±0.60) 82.96 (±0.09) 66.00 (±0.99) 76.18 (±0.72) 85.19 (±0.21)

SIMPLEHGN (Lv et al., 2021) 60.12 (±1.04) 71.61 (±0.74) 82.08 (±0.26) 63.79 (±0.88) 74.64 (±0.64) 84.66 (±1.61)

DNSD (Chang et al., 2018) 46.33 (±2.37) 64.50 (±1.11) 78.44 (±0.12) 44.69 (±1.63) 64.10 (±0.74) 79.76 (±0.08)

SPOILERNET (Wan et al., 2019) 57.19 (±0.66) 70.64 (±0.44) 79.85 (±0.12) 62.86 (±0.38) 74.62 (±0.09) 83.23 (±1.63)

MVSD (Ours) 65.08∗ (±0.69) 75.42∗ (±0.56) 83.59∗ (±0.11) 69.22∗ (±0.61) 78.26∗ (±0.63) 86.37∗ (±0.08)

0% 20% 40% 60% 80% 100%
(a) Removing Rate of User Edges

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

65.04
61.15 59.54

55.06 53.61

47.17

AUC F1

0% 20% 40% 60% 80% 100%
(b) Removing Rate of KG Edges

0.55

0.60

0.65

0.70

0.75

0.80

65.04 65.04 64.71 63.72 63.00
61.66

AUC F1

Figure 3: MVSD performance when randomly remov-
ing the edges in the user interaction network and exter-
nal knowledge subgraph. Performance declines with the
gradual edge ablations, indicating the contribution of
external knowledge and user networks.

• LCS is our proposed large-scale automatic386

spoiler detection dataset. We randomly create387

a 7:2:1 split for training, validation, and test sets.388

• Kaggle is a publicly available movie review389

dataset presented in a Kaggle challenge (Misra,390

2019). We present more details about this dataset391

in Appendix D.392

Baselines. We compare MVSD against 9 baseline393

methods in three categories: pretrained language394

models, GNN-based models, and task-specific395

baselines. For pretrained language models, we eval-396

uate BERT (Devlin et al., 2019), RoBERTa (Liu397

et al., 2019), BART (Lewis et al., 2020), and De-398

BERETa (He et al., 2021a). For GNN-based mod-399

els, we evaluate GCN (Kipf and Welling, 2016),400

R-GCN (Schlichtkrull et al., 2018), and Simple-401

HGN (Lv et al., 2021). For task-specific baselines,402

we evaluate DNSD (Chang et al., 2018) and Spoil-403

erNet (Wan et al., 2019).404

4.2 Overall Performance 405

Table 3 presents the performance of MVSD base- 406

line methods on the two datasets. Bold and 407

underline indicate the best and second best per- 408

formance. Table 3 demonstrates that: 409

• MVSD achieves state-of-the-art on both datasets, 410

outperforming all baselines by at least 2.01 in F1- 411

score. This demonstrates that our various techni- 412

cal contributions, such as incorporating external 413

knowledge and user networks, multi-view feature 414

extraction, and the cross-context information ex- 415

change mechanism, resulted in a more accurate 416

and robust spoiler detection system. 417

• Graph-based models are generally more effec- 418

tive than other types of baselines. This suggests 419

that in addition to the textual content of reviews, 420

graph-based modeling could bring in additional 421

information sources, such as external knowledge 422

and user interactions, to enable better grounding 423

for spoiler detection. 424

• Among the two task-specific baselines, Spoil- 425

erNet (Wan et al., 2019) outperforms DNSD 426

(Chang et al., 2018), in part attributable to the in- 427

troduction of the user bias. Our method further in- 428

corporates external knowledge and user networks 429

while achieving better performance, suggesting 430

that robust spoiler detection requires models and 431

systems to go beyond the mere textual content of 432

movie reviews. 433

4.3 External Knowledge and User Networks 434

We hypothesize that external movie knowledge and 435

user interactions on movie review websites are es- 436

sential in spoiler detection, providing more context 437
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Table 4: Ablation study concerning multi-view data and
the graph structure on Kaggle Dataset. The semantic
view, knowledge view, and meta view are denoted as
S, K, and M respectively. The knowledge subgraph,
movie-review subgraph, and user-review subgraph are
denoted as GK , GM and GU .

Category Setting F1 AUC Acc

multi-view

-w/o S 38.47 61.37 78.15
-w/o K 62.13 73.46 82.73
-w/o M 52.99 68.07 79.46

-w/o O, K 40.05 61.97 78.25
-w/o O, M 56.44 70.05 80.66

graph
structure

-w/o GK 61.66 72.99 83.12
-w/o GU 47.17 64.93 78.00

-w/o GM , GK 56.54 69.98 81.71
-w/o GM , GK 46.65 64.89 78.03

ours MVSD 65.08 75.42 83.59

and grounding in addition to the textual content of438

movie reviews. To further examine their contribu-439

tions in MVSD, we randomly remove 20%, 40%,440

60%, 80%, or 100% edges of the knowledge sub-441

graph and user-review subgraph, creating settings442

with reduced knowledge and user information. We443

evaluate MVSD with these ablated graphs on the444

Kaggle dataset and present the results in Figure 3445

(a). It is illustrated that the performance drops sig-446

nificantly (about 10% in F1-score when removing447

60% of the edges) when we increase the number448

of removed edges in the user-review subgraph, sug-449

gesting that the user interaction network plays an450

important role in the spoiler detection task. As451

for the knowledge subgraph, the F1-score drops452

by 3.38% if we remove the whole knowledge sub-453

graph, indicating that external knowledge is helpful454

in identifying spoilers. Moreover, it can be ob-455

served in Figure3 (b) that the F1-score and AUC456

only dropouts slightly when removing part of the457

edges in the knowledge subgraph. This illustrates458

the robustness of MVSD, as it can achieve rela-459

tively high performance while utilizing a subset of460

movie knowledge.461

4.4 Ablation Study462

In order to study the effect of different views of463

data, we remove them individually and evaluate464

variants of our proposed model on the Kaggle465

Dataset. We further remove some parts of the graph466

structure to investigate, Finally, we replace our at-467

tention mechanism with simple fusion methods to468

evaluate the effectiveness of our fusion method.469

Table 5: Model performance on Kaggle when our atten-
tion mechanism is replaced with simple fusion methods.

View-level Subgraph-level F1 AUC Acc

Ours Max-pooling 53.73 68.50 79.29
Ours Mean-pooling 62.27 73.40 83.23
Ours Concat 61.07 72.63 82.97

Max-pooling Ours 63.19 74.21 82.86
Mean-pooling Ours 63.60 74.36 83.30

Concat Ours 62.90 74.00 82.83

Ours Ours 65.08 75.42 83.59

Multi-View Study We report the binary F1- 470

Score, AUC, and Acc of the ablation study in Table 471

4. Among the multi-view data, semantic view data 472

is of great significance as AUC and F1-score drop 473

dramatically when it is discarded. We can see that 474

discarding the external knowledge view or remov- 475

ing the knowledge subgraph reduces the F1-score 476

by about 3%, indicating that the external knowl- 477

edge of movies is helpful to the spoiler detection 478

task. However, external knowledge doesn’t show 479

the same importance as the directly related seman- 480

tic view or meta view. We believe this is because 481

the external knowledge is not directly related to 482

review documents, so it can only provide auxiliary 483

help to the spoiler detection task. 484

Graph Structure Study As illustrated in Table 485

4, after removing the use-review subgraph, the re- 486

duced model performs poorly, with a drop of 18% 487

in F1. This demonstrates that the user interaction 488

network is necessary for spoiler detection. 489

Aggregation and Interaction Study In order to 490

study the effectiveness of the hierarchical mech- 491

anism that enables the interaction between views 492

and sub-graphs, we replace the two components of 493

our hierarchical attention with other operations and 494

evaluate them on the Kaggle Dataset. Specifically, 495

we compare our attention module with concatena- 496

tion, max-pooling, and average-pooling. 497

In Table 5 we report the binary F1-score, AUC, 498

and Acc. We can see that our approach beats the 499

eight variants in all metrics. It is evident that our 500

approach can aggregate and fuse multi-view data 501

more efficiently than simple fusion methods. 502

4.5 Qualitative Analysis 503

We conduct qualitative analysis to investigate the 504

role of external movie knowledge and social net- 505

works for spoiler detection. As shown in Table 506

6, with the guide of external knowledge and user 507
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Table 6: Examples of the performance of three baselines and MVSD. Underlined parts indicate the plots.

Review Text Label DeBERTa R-GCN SpoilerNet MVSD

Kristen Wiig is the only reason I wanted to see this movie, and she is insanely
hilarious! (...) Wiig plays Annie, (...) becomes jealous of Lillian’s new rich friend,
Helen. Annie slowly goes crazy and constantly competes against Helen (...)

True False

%

False

%

False

%

True

"

The new director was horrible. Not even comparable to Chris Columbus. He
changed the entire format of the school (...) why was there a deer next to harry
across the lake, he didn’t mention that and yet he still put the deer in the movie (...)

False True

%

True

%

True

%

False

"

(...) This scene involves Harry getting bombarded by ugly, little squid like creatures
and is awe inspiring. And more happens. Harry is having a certain dream over and
over again. Lord Voldemort wants to return and he does.

False False

%

False

%

False

%

True

"

(...) I remember that for four years in high school, I was a high school nerd/loner,
and I liked it. I was shy, I was socially awkward, and I was one of those guys who
happened to have a thing for one of the popular girls (...)

False True

%

True

%

True

%

False

"

networks, MVSD successfully makes the correct508

prediction while baseline models fail. Specifically,509

in the first case, the user is a fan of Kristen Wiig.510

Guided by the information from the social network,511

MVSD finds that the user often posted spoilers512

related to the film star, and finally predicts that the513

review is a spoiler. In the second case, the user514

mentioned something done by the director of the515

movie. With the help of movie knowledge, it can516

be easily distinguished that what the director has517

done reveals nothing of the plot.518

5 Related Work519

Automatic spoiler detection aims to identify spoiler520

reviews in domains such as television (Boyd-521

Graber et al., 2013), books (Wan et al., 2019), and522

movies (Misra, 2019; Boyd-Graber et al., 2013).523

Existing spoiler detection models could be mainly524

categorized into two types: keyword matching525

and machine learning models. Keyword match-526

ing methods utilize predefined keywords to detect527

spoilers, for instance, the name of sports teams528

or sports events (Nakamura and Tanaka, 2007), or529

the name of actors (Golbeck, 2012). This type530

of method requires keywords defined by humans,531

and cannot be generalized to various application532

scenarios. Early neural spoiler detection models533

mainly leverage topic models or support vector534

machines with handcrafted features. Guo and Ra-535

makrishnan (2010) use bag-of-words representa-536

tion and LDA-based model to detect spoilers, Jeon537

et al. (2013) utilize SVM classification with four538

extracted features, while Boyd-Graber et al. (2013)539

incorporate lexical features and meta-data of the re-540

view subjects (e.g., movies and books) in an SVM541

classifier. Later approaches are increasingly neural542

methods: Chang et al. (2018) focus on modeling ex-543

ternal genre information based on GRU and CNN,544

while Wan et al. (2019) introduce item-specificity 545

and bias and utilizes bidirectional recurrent neural 546

networks (bi-RNN) with Gated Recurrent Units 547

(GRU). A recent work (Chang et al., 2021) lever- 548

ages dependency relations between context words 549

in sentences to capture the semantics using graph 550

neural networks. 551

While existing approaches have made consider- 552

able progress for automatic spoiler detection, it was 553

previously underexplored whether review text itself 554

is sufficient for robust spoiler detection, or whether 555

more information sources are required for better 556

task grounding. In this work, we make the case 557

for incorporating external film knowledge and user 558

activities on movie review websites in spoiler de- 559

tection, advancing the field through both resource 560

curation and method innovation, presenting a large- 561

scale dataset LCS, an up-to-date movie knowledge 562

base UKM, and a state-of-the-art spoiler detection 563

approach MVSD. 564

6 Conclusion 565

We make the case for incorporating external knowl- 566

edge and user networks on movie review web- 567

sites for robust and well-grounded spoiler detection. 568

Specifically, we curate LCS, the largest spoiler de- 569

tection dataset to date; we construct UKM, an up- 570

to-date knowledge base of the film industry; we 571

propose MVSD, a state-of-the-art spoiler detec- 572

tion system that takes external knowledge and user 573

interactions into account. Extensive experiments 574

demonstrate that MVSD achieves state-of-the-art 575

performance on two datasets while showcasing the 576

benefits of incorporating movie knowledge and 577

user behavior in spoiler detection. 578
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Ethics Statement579

We envision MVSD as a pre-screening tool and580

not as an ultimate decision-maker. Though achiev-581

ing the state-of-the-art, MVSD is still imperfect582

and needs to be used with care, in collaboration583

with human moderators to monitor or suspend sus-584

picious movie reviews. Moreover, MVSD may585

inherit the biases of its constituents, since it is a586

combination of datasets and models. For instance,587

pretrained language models could encode undesir-588

able social biases and stereotypes (Li et al., 2022;589

Nadeem et al., 2021). We leave to future work590

on how to incorporate the bias detection and mit-591

igation techniques developed in ML research in592

spoiler detection systems. Given the nature of the593

task, the dataset contains potentially offensive lan-594

guage which should be taken into consideration.595
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A Graph-Based Social Text Analysis885

Graphs and heterogeneous information networks886

are playing an important role in the analysis of887

texts and documents on news (Mehta et al., 2022)888

and social media (Hofmann et al., 2022). In these889

approaches, graphs and graph neural networks are890

adopted to represent and encode information in ad-891

dition to textual content, such as social networks892

(Nguyen et al., 2020), external knowledge graphs893

(Zhang et al., 2022), social context (Mehta et al.,894

2022), and dependency relations between context895

words (Chang et al., 2021). With the help of addi-896

tional information sources, these graph-based ap-897

proaches enhance representation quality by cap-898

turing the rich social interactions (Nguyen et al.,899

2020), infusing knowledge reasoning into language900

representations (Zhang et al., 2022), and reinforc-901

ing nodes’ representations interactively (Mehta902

et al., 2022). As a result, graph-based social text903

analysis approaches have advanced the state-of-the-904

art on various tasks such as misinformation detec-905

tion (Zhang et al., 2022), stance detection (Liang906

et al., 2022), propaganda detection (Vijayaragha-907

van and Vosoughi, 2022), sentiment analysis (Chen908

et al., 2022), and fact verification (Arana-Catania909

et al., 2022). Motivated by the success of exist-910

ing graph-based models, we propose MVSD to911

incorporate external knowledge bases and user net-912

works on movie review platforms through graphs913

and graph neural networks.914

B Limitations915

We identify two key limitations:916

• MVSD utilizes widely-adopted RGCN to model917

each subgraph, while there are more up-to-date918

heterogeneous graph algorithms like HGT (Hu919

et al., 2020), SimpleHGN (Lv et al., 2021).920

We plan to conduct experiments that replace921

RGCN with other heterogeneous graph algo-922

rithms. Besides, considering the subgraph struc-923

ture of MVSD, we will test different heteroge-924

neous graph algorithm settings in each subgraph925

to find out the most efficient algorithm for each926

subgraph.927

• LCS is constructed based on IMDB, and the928

spoiler annotation is based on user self-report.929

Hence, it is likely that some label is false. In930

the next step of our work, we will check the la-931

bels with the help of experts and weak supervised932

learning strategy (Zhou, 2018).933

C Heterogeneous Graph Construction 934

Details 935

C.1 Movie-Review Subgraph 936

N1: movie The information about movies, espe- 937

cially the plot, is essential in spoiler detection. We 938

use one node to represent each movie. 939

N2: rating Rating is an essential part of movie re- 940

view. We use ten nodes to represent the numerical 941

ratings ranging from 1 to 10. 942

N3: review We use one node to represent each 943

movie review document. 944

We connect these nodes with three types of 945

edges, denoted as EM : 946

R1: review-movie We connect a review node with 947

a movie node if the review is about the movie. 948

R2: movie-rating We connect a movie node with a 949

rating node according to the overall rating of the 950

movie, rounded to the nearest integer. 951

R3: rating-review We connect a review node with 952

a rating node based on its numeric score. 953

C.2 User-Review Subgraph 954

N4: review We use one node to represent each re- 955

view document. Note that review nodes appear 956

both in VM (as N1) and VU (as N4). Sharing nodes 957

across subgraphs enables MVSD to model the in- 958

teraction and exchange across different contexts. 959

N5: user We use one node to represent each user. 960

N6: year We use one node to represent each year, 961

modeling the temporal distribution of spoilers. 962

We connect these nodes with three types of 963

edges, denoted as EU : 964

R4: review-user We connect a review node with a 965

user node if the user posted the review. 966

R5: review-year We connect a review node with a 967

year node if the review was posted in that year. 968

R6: user-year We connect a user node with a year 969

node if the user created the account in that year. 970

C.3 Knowledge Subgraph 971

N7: movie We use one node to represent each 972

movie. 973

N8: genre We use one node to represent each 974

movie genre. 975

N9: cast We use one node to represent each distinct 976

director and cast member. 977

N10: year We use one node to represent each year. 978

N11: rating We use ten nodes to represent the 979

numerical ratings ranging from 1 to 10. 980

981

We connect these nodes with four types of edges: 982
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Figure 4: (a) The spoiler frequency of reviews with different ratings; (b) The spoiler frequency of reviews related to
movies of different ratings; (c) The percentage of spoilers per user, spoiler review percentage intervals are divided
every 10 percent.

Table 7: Statistics of our proposed LCS dataset.

Type Number Description

review 1,860,715 The posting time is from 1998 to 2022.
user 259,705 Users that posted these reviews.

movie 147,191 The released year is from 1874 to 2022.
cast 494,221 The cast related to the movies.

spoiler 457,500 24.59% of the reviews are spoilers.

Table 8: Statistics of the Kaggle Dataset.

Type Number description

review 573,913 The posting time is from 1998 to 2018.
user 263,407 Users that posted these reviews.

movie 1,572 The released year is from 1921 to 2018.
cast 7,865 The cast related to the movies.

spoiler 150,924 25.87% of the reviews are spoilers.

R7: movie-genre We connect a movie node with a983

genre node according to the genre of the movie.984

R8: movie-cast We connect a movie node with a985

cast node if the cast is involved in the movie.986

R9: movie-year We connect a movie node with a987

year node if the movie was released in that year.988

R10: movie-rating We connect a user node with a989

rating node according to the rating of the movie.990

991

D Dataset Details992

We adopt two graph-based spoiler detection993

datasets, namely Kaggle (Misra, 2019) and our994

curated LCS. The two datasets are both in English.995

The publicly available Kaggle dataset only provides996

incomplete information. Hence, we retrieved cast997

information based on the movie ids and collected998

user metadata based on user ids. The statics details999

of Kaggle after retrieving are listed in table 8, and1000

the statics details of our LCS are listed in table 7.1001

Table 9: Details of metadata contained in the dataset.

Entity Name Metadata

Review time, helpful vote count, total vote count, score
User create at, badge count, review count

Movie year, isAdult, runtime, rating, vote count
Cast birth year, death year, involved movie count

D.1 Data Analysis 1002

We compare LCS with another popular spoiler de- 1003

tection dataset Kaggle (Misra, 2019) and presents 1004

our findings in Figure 4. We investigate the correla- 1005

tion between spoilers and individual review scores, 1006

overall movie ratings, and the behavior of differ- 1007

ent users. Firstly, we investigate the correlation 1008

between spoilers and review scores. Figure 4(a) 1009

shows that whether a review containing spoilers 1010

has a strong connection with how well the user 1011

considers the movie. Additionally, we find that 1012

whether a review contains spoilers is also related to 1013

the public opinion of the movie, which is illustrated 1014

in Figure 4(b). These findings suggest the necessity 1015

of leveraging metadata and external knowledge of 1016

movies. In addition, we study the fraction of re- 1017

views containing spoilers per user. As illustrated 1018

in Figure 4(c), the ’spoiler tendency’ varies greatly 1019

among users. This suggests that it is essential to 1020

utilize the user information and how they interact 1021

with different movies on review websites. 1022

D.2 Metadata 1023

The metadata we collected for both datasets is listed 1024

in table 9. 1025

E KG Details 1026

The types of relations, triples, and the number of 1027

them are presented in table 10. 1028
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Table 10: Statistics of UKM.

Relation Triple (head-rel.-tail) Value

show_in movie-show_in-year 147,191
rated movie-rated-rating 147,191

genre_is movie-genre_is-genre 147,191
is_director_of person-is_director_of-movie 129,483

is_actor_of person-is_actor_of-movie 379,696
is_actress_of person-is_actress_of-movie 226,775

is_producer_of person-is_producerr_of-movie 129,202
is_writer_of person-is_writer_of 169,024
is_editor_of person-is_editor_of-movie 49,817

is_composer_of person-is_composer_of-movie 89,572
is_production_designer_of person-is_production_designer_of-movie 11,838

is_archive_footage_of person-is_archive_footage_of-movie 6,328
is_cinematographer_of personcinematographer_of-movie 76,311
is_archive_sound_of person-is_archive_sound_of 205

is_self_of person-is_self_of-movie 129,483

No Spoiler
Spoiler

(a) MVSD.

No Spoiler
Spoiler

(b) R-GCN.

Figure 5: T-SNE visualization of representations of
reviews learned by MVSD and R-GCN.

F Experiment Details1029

Implementation. For pre-trained LMs, we utilize1030

the pre-trained model to get the embeddings and1031

transform them through MLPs. For DNSD and1032

SpoilerNet, we follow the settings in their corre-1033

sponding papers. For GNNs, we combined the1034

three subgraphs into a whole graph and only utilize1035

the semantic view embedding. We learn a represen-1036

tation for each review, and the representations are1037

passed to an MLP for classification.1038

F.1 Baseline Details1039

We compare MVSD with pre-trained language1040

models, GNN-based models, and task-specific1041

baselines to ensure a holistic evaluation. We pro-1042

vide a brief description of each of the baseline meth-1043

ods, in the following.1044

• BERT (Devlin et al., 2019) is a language model1045

pre-trained on a large volume of natural language1046

corpus with the masked language model and next1047

sentence prediction objectives.1048

• RoBERTa (Liu et al., 2019) improves upon1049

BERT by removing the next sentence prediction1050

task and improves the masking strategies.1051

• BART (Lewis et al., 2020) is a transformer1052

encoder-decoder (seq2seq) language model with1053

Table 11: Hyperparameter settings of MVSD.

Hyperparameter Value

GNN input size 768
GNN hidden size 128
GNN layer (in each MVSD layer) 1
MVSD layer L 2
# epoch 120
batch size 1,024
dropout 0.3
learning rate 1e-3
weight decay 1e-5
lr_scheduler_patience 5
lr_scheduler_step 0.1
Optimizer AdamW

a bidirectional (BERT-like) encoder and an au- 1054

toregressive (GPT-like) decoder. 1055

• DeBERTa (He et al., 2021b) improves existing 1056

language models using disentangled attention 1057

and enhanced mask decoder. 1058

• GCN (Kipf and Welling, 2016) is short for graph 1059

convolutional networks, which enables parame- 1060

terized message passing between neighbors. 1061

• R-GCN (Schlichtkrull et al., 2018) extends GCN 1062

to enable the processing of relational networks. 1063

• SimpleHGN (Lv et al., 2021) is a simple yet 1064

effective GNN for heterogeneous graphs inspired 1065

by the GAT (Veličković et al., 2018). 1066

• DNSD (Chang et al., 2018) is a spoiler detec- 1067

tion framework using a CNN-based genre-aware 1068

attention mechanism. 1069

• SpoilerNet (Wan et al., 2019) extends the hier- 1070

archical attention network (HAN) (Yang et al., 1071

2016) with item-specificity information and item 1072

and user bias terms for spoiler detection. 1073

F.2 Hyperparameter Details 1074

We present our hyperparameter settings in Table 1075

11 to facilitate reproduction. The setting for both 1076

datasets is the same. 1077

F.3 Computational Resources 1078

Our proposed approach has a total of 0.9M learn- 1079

able parameters. It takes about 10 GPU hours to 1080

train our approach on the Kaggle dataset. We train 1081

our model on a Tesla V100 GPU. We conduct all 1082
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Figure 6: Attention weights learned by our hierarchical attention. Subscript v, r indicate the public nodes movie
and review separately. T , M , and K refer to the textual view, the meta view, and the external knowledge view,
respectively. This violin plot illustrates the different contributions of each view and subgraph and the process of
interaction.

experiments on a cluster with 4 Tesla V100 GPUs1083

with 32 GB memory, 16 CPU cores, and 377GB1084

CPU memory.1085

F.4 Experiment Runs1086

For both datasets that have relatively large scales,1087

we adopt the subsampling skill proposed in (Hamil-1088

ton et al., 2017), which has been successfully used1089

on large graphs (Velickovic et al., 2019). We con-1090

duct our approach and baselines five times on both1091

datasets and report the average F1-score, AUC, and1092

accuracy with standard deviation in Table 3. For1093

the experiments in table 4, table 5, and figure 3,1094

we only report the single-run result in the Kaggle1095

dataset due to the lack of computational resources.1096

F.5 Visualization1097

To intuitively demonstrate the effectiveness of our1098

representation method, we utilize T-SNE (Van der1099

Maaten and Hinton, 2008) to visualize the represen-1100

tations of movie reviews learned by different mod-1101

els. Specifically, we choose our proposed MVSD1102

and R-GCN (with the second highest performance)1103

and evaluate them on the validation set of the small1104

dataset. It can be observed in Figure 5b that the1105

learned representations of different kinds are rela-1106

tively mixed together. In contrast, representations1107

learned by MVSD show moderate collocation for1108

both groups of reviews. This illustrates that MVSD1109

yields improved and more comprehensive represen-1110

tation with the effective use of multi-view data and1111

user interaction networks.1112

F.6 Contribution of Views and Subgraphs1113

We introduce semantic, meta, and external knowl-1114

edge views and utilize user-review, movie-review,1115

and knowledge subgraph structures to represent1116

multi-information. To further study the contribu-1117

tion of different views and sub-graphs. We extract 1118

the attention weight from the View-level attention 1119

layers and Subgraph-level attention layers and illus- 1120

trate them in violin plots. We select representative 1121

features and present them in Figure 6. The four 1122

violin plots demonstrate that our proposed hier- 1123

archical attention can select the more important 1124

features from the variation of attention weight be- 1125

tween the first and the second layer, indicating that 1126

the contributions of certain representations are var- 1127

ied as they capture features via the graph structure 1128

and attention mechanism. 1129

G Significance Testing 1130

To further evaluate MVSD’s performance on both 1131

datasets, we apply one way repeated measures 1132

ANOVA test for the results in Table 3. The result 1133

demonstrates that the performance gain of our pro- 1134

posed model is significant on both datasets against 1135

the second-best R-GCN on all three metrics with a 1136

confidence level of 0.05. 1137

H Scientific Artifact Usage 1138

The MVSD model is implemented with the help of 1139

many widely-adopted scientific artifacts, including 1140

PyTorch (Paszke et al., 2019), NumPy (Harris et al., 1141

2020), transformers (Wolf et al., 2020), sklearn (Pe- 1142

dregosa et al., 2011), OpenKE (Han et al., 2018), 1143

PyTorch Geometric (Fey and Lenssen, 2019). We 1144

utilize data from IMDB and following the require- 1145

ment of IMDB, we acknowledge the source of the 1146

data by including the following statement: Infor- 1147

mation courtesy of IMDb (https://www.imdb.com). 1148

Used with permission. Our use of IMDb data is 1149

non-commercial, which is allowed by IMDB. We 1150

will make our code and data publicly available to 1151

facilitate reproduction and further research. 1152
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