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Abstract

Recently, path-based Graph Neural Networks001
(GNNs) achieve promising performance of002
the link prediction task on benchmark Knowl-003
edge Graphs (KGs). However, there is no re-004
search on leveraging path-based GNNs to pro-005
mote the more general case of KGs, namely006
hyper-relational KGs (HKGs). To bridge007
this research gap, we study the path-based008
GNNs and discover that existing path-based009
GNNs fail to handle HKGs because they can-010
not well explore the external information (i.e.,011
qualifiers) stored in HKGs. In this paper,012
we propose a novel framework, Hyper Path-013
based Graph Neural Network (HyperPGNN)014
for HKGs. Specifically, we propose a novel015
Hyper2Tri conversion and hyper query learner016
to better enable the path-based GNNs to un-017
derstand qualifiers in HKG, then capture them018
into the graph learning. Results show our019
method achieve good performance in both020
transductive and inductive settings. Codes021
are available at https://anonymous.4open.022
science/r/Path_based_LP_HKG.023

1 Introduction024

Hyper-relational Knowledge Graphs (HKGs) al-025

low equipping the main triplet (h, r, t) with qual-026

ifiers {(qrk : qek)}, providing contextual infor-027

mation for (h, r, t). As the example in Fig. 1,028

the fact (Albert Einstein, employer, University of029

Zurich) with qualifiers {(start time: 1909), (end030

time: 1911)} can be distinguished from the fact031

(Albert Einstein, employer, Swiss Federal Institute032

of Intellectual Property) with qualifiers {(start time:033

1902), (end: 1909)}. Like KG, link prediction is034

a fundamental task in HKGs that predicts miss-035

ing facts based on known ones. Recently, a se-036

ries of methods extends the classic KG embedding037

models from KGs to HKGs, e.g., m-TransH (Wen038

et al., 2016) from TransH (Wang et al., 2014),039

GETD (Liu et al., 2020) from TuckER (Balaze-040

Figure 1: Illustration of hyper-relational facts in HKGs.

vic et al., 2019), StarE (Galkin et al., 2020) from 041

CompGCN (Vashishth et al., 2020). 042

Despite the success of existing methods for 043

HKGs, those powerful path-based graph neural net- 044

works (GNNs) (Zhu et al., 2021, 2022; Zhang et al., 045

2023) that achieved outstanding performance on 046

benchmark KGs have not been explored on the 047

more general HKGs. Different from aggregating 048

the information from neighbors (Schlichtkrull et al., 049

2018; Vashishth et al., 2020), path-based GNNs 050

leverage the information from the possible paths 051

between head and tail entities to predict the link. 052

Inspired by their success, the path-based idea may 053

also work on HKGs. From the main facts (Albert 054

Einstein, employer, University of Zurich) with qual- 055

ifiers {(start time: 1909), (end time: 1911)} and 056

(University of Zurich, location, Zurich), we can 057

infer Albert Einstein work on Zurich between year 058

1909 to 1911 as shown in Figure 1. 059

However, it is a non-trivial task to extend ex- 060

isting path-based GNNs to HKGs. Current path- 061

based works can only traverse and leverage the 062

main triplets without qualifiers in HKGs. Thus, 063

they will miss the important information stored in 064

the qualifiers, like the working period in Figure 1. 065

Therefore, to leverage the capability of path-based 066

GNNs on HKGs, we propose a new model named 067

Hyper Path-based Graph Neural Network (Hyper- 068

PGNN) in this paper. More concretely, we propose 069

a conversion method Hyper2Tri to covert the topol- 070

ogy of the hyper-relational facts into the structures 071

that can be incorporated with existing path-based 072
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GNNs. After the topology conversion, we design073

a query learner to encode qualifiers to further cap-074

ture the information of qualifiers. Empirical results075

show that HyperPGNN achieves good performance076

on benchmark HKG datasets under both transduc-077

tive and inductive settings.078

2 Proposed Method079

A HKG can be defined as G = (V,R,D), where080

V is the set of entities,R represents the set of rela-081

tions and D contains a set of hyper-relational facts.082

Each hyper-relational fact consists of a main triplet083

(h, r, t) and a list of qualifiers {(qrk : qek)}nk=1,084

where h, t, qek ∈ V and r, qrk ∈ R. Link pre-085

diction on HKGs aims to predict missing head086

or tail entities in the query hyper-relational fact087

{(?, r, t), (qrk : qek)nk=1)} or {(h, r, ?), (qrk :088

qek)nk=1)}. For simplicity, we use the notation of089

the tail prediction in the following part.090

The overall framework of the model is shown091

in Figure 2. We propose a Hyper2Tri conversion092

to utilize the qualifier information in known facts093

(section 2.1). We design a hyper query learner to094

incorporate the qualifiers in the query (section 2.2).095

Then, we adopt an advanced path-based GNN to096

get an expressive representation of possible hyper-097

relational facts (in Appx. A).098

2.1 Hyper Facts Conversion099

Intuitively, we may convert the qualifiers into col-100

lections of triplets to facilitate path-based embed-101

ding with the restricting information from state-102

ment qualifiers. Existing conversion approaches,103

e.g., Star-to-Clique proposed by m-TransH (Wen104

et al., 2016), generally treat qualifier entities105

equally with triplet entities. They first reformu-106

late the statement as a set of relation-entity pairs107

P = ({rh : h}, {rt : t}, {qri : qei}ni=1), then form108

a triplet (e1, r1-r2, e2), for every {r1 : e1}, {r2 :109

e2} ∈ P . It has two major defects: 1) losing the se-110

mantic difference between triplet entities and qual-111

ifier entities, 2) introducing too much noise while112

expanding possible path formulation.113

Thus, we propose the following Hyper2Tri114

(Hyper-relation to Triangle relations) conversion.115

Given a statement {(h, r, t), (qrk : qek)nk=1)}, ev-116

ery (qrk : qek) is converted to two labeled edges117

(h, r-qrk, qek) and (t, r-qrk, qek). Here, r-qrk is118

the new type of relation representing qualifier rela-119

tion qrk of relation r, and we denoted its type as120

the pair of r and qrk. See the Hyper Facts Conver-121

Figure 2: An overview of our pipeline

sion part of Figure 2 for an illustration. In other 122

words, a statement with n qualifiers will be decom- 123

posed into 2n+1 triplets, including the main triplet 124

and 2n triplets derived from the qualifiers. Hence, 125

the original HKG is transformed into a knowledge 126

graph that can be processed by previous path-based 127

link prediction frameworks without losing informa- 128

tion in qualifiers. Note that the newly constructed 129

triplets will form new paths together with existing 130

main triplets, providing more information about the 131

qualifiers. As shown in Figure 3, the proposed con- 132

version produce new paths related to the Argentina 133

national association football team, making it pos- 134

sible to infer that the nationality of Lionel Messi is 135

Argentina, and he won the 2022 FIFA World Cup. 136

Compared with Star-to-Clique (Wen et al., 2016) 137

Hyper2Tri strengthens the connection between the 138

primal entity and qualifier entities while weaken- 139

ing the bonds among qualifier entities. And Hy- 140

per2Tri creates no new bonds between qualifier 141

entities, thus reducing information noise. Besides, 142

another possible design is to directly encode the 143

hyper-relations in the paths and using these repre- 144

sentations to conduct predictions. However, the per- 145

formance will be limited without collecting path- 146

based information about qualifiers. 147

2.2 Hyper Query Learner 148

Existing path-based GNNs on KGs initialize the 149

head node with the embedding of query relation, 150

and use the embedding of candidate nodes after 151
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message passing to compute the scores of candi-152

dates. Zhang et al. (2021) shows that this initializa-153

tion can be considered as a labeling trick, making154

the network highly expressive. Likewise, we design155

a hyper query learner to achieve the embedding q156

of a given query {(h, r, ?), (qrk : qek)nk=1)} 1:157

q← γ(r,Wr · Σkφ(qrk,qek)), (1)158

where qrk,qek and r are the learned embedding159

of qrk, qek and r respectively/ φ(·) is the function160

to composite the embedding of qualifier keys and161

qualifier values, and can be any function of the form162

IRn× IRn → IRn. We sum the composition results163

of all qualifiers to get the embedding of qualifiers,164

and then transform with a relation-specific matrix165

Wr. γ(·) is another composition function.166

In this way, we integrate the information from167

the qualifiers included in the query into the embed-168

dings, enabling the final prediction results to better169

satisfy the constraints imposed by the qualifiers.170

Note that the above process does not need the em-171

bedding of the head entity h , which is crucial for172

applying to the inductive setting.173

2.3 Path-based GNN174

Given a HKG G, we convert it to a knowledge175

graph G̃ as described in Section 2.1. For a query176

{(h, r, ?), (qrk : qek)nk=1)}, we initialize the rep-177

resentation on node h with the hyper query em-178

bedding q obtained in Equation 1. The representa-179

tions of other nodes are initialized with zero vec-180

tors. Then the initial representations are fed into181

a Path-based GNN. The two modules proposed182

above can be integrated with any path-based meth-183

ods designed for KGs. We adopt the NBFNet (Zhu184

et al., 2021) as the backbone path-based GNN.185

3 Experiment186

We use a 24GB NVIDIA GTX 3090 GPU to con-187

duct the experiments. The reported results are aver-188

aged over five runs.189

3.1 Dataset190

Experiments are conducted under both transduc-191

tive and inductive settings. For the transductive192

setting, we use Wikipeople (Guan et al., 2019a),193

JF17K (Rosso et al., 2020), and WD50K (Galkin194

et al., 2020). For the inductive setting, we use WP-195

IND, JF-IND, and MFB-IND proposed by Yadati196

1We use the same notation for the query facts here to
maintain symbol simplicity.

Figure 3: Hyper2Tri will form new paths for qualifiers

(2020). In a transductive setting during testing, all 197

the entities and relations in the main triplet and 198

qualifiers are limited to those that have occurred in 199

the training set. However, in the inductive setting, 200

the model is required to predict query facts that 201

may involve new head entities and new tail entities 202

as potential candidates. 203

3.2 Experimental Setup 204

Base models. For the transductive setting, We 205

compare the proposed method with StarE (Galkin 206

et al., 2020), Hy-Transformer (Yu and Yang, 2021), 207

GRAN (Wang et al., 2021) and QUAD (Shomer 208

et al., 2022). For the inductive setting, we compare 209

our results with GMPNN (Yadati, 2020). 210

Metric. We report the mean reciprocal rank- 211

ing(MRR) and Hit@1,10 for the transductive set- 212

ting for comparison with previous work. For induc- 213

tive setting, we report MRR and Hit@1,3 to keep 214

in line with existing work. 215

Hyperparameter Setting. We employ 216

Adam (Kingma and Ba, 2014) to train our 217

model for a maximum number of 1000 epochs, the 218

learning rate is set to 0.001. We set the embedding 219

size to be 32. For the hyper query learner, we use 220

the rotate function in RotateE (Sun et al., 2019) as 221

the φ(·) in Equation 1 and γ(·) is a weighted sum 222

function with the weight of qualifiers is set to 0.4. 223

In the path-based GNN part, we use a GNN with 6 224

layers to compute the embedding. We use the mult 225

function proposed by DisMult (Yang et al., 2015) 226

as the message function and the pna (Corso et al., 227

2020) as the aggregation function. A two-layer 228

MLP with a hidden layer of size 32 is used to 229

compute the score of each candidate. 230
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Table 1: Comparison on transductive datasets. The best results are in bold. the second-best results are underlined

Method
WD50K WikiPeople JF17K

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10
m-TransH - - - 0.063 0.063 0.300 0.206 0.206 0.463

StarE 0.349 0.271 0.496 0.491 0.398 0.648 0.574 0.496 0.725
Hy-Transformer 0.356 0.281 0.498 0.501 0.426 0.634 0.582 0.501 0.742

GRAN-hete - - - 0.503 0.438 0.620 0.617 0.539 0.770
QUAD 0.348 0.270 0.497 0.466 0.365 0.624 0.582 0.502 0.740

QUAD(Parallel) 0.349 0.275 0.489 0.497 0.431 0.617 0.596 0.519 0.751
Ours 0.362 0.283 0.505 0.501 0.430 0.648 0.657 0.585 0.771

Table 2: Comparison on inductive datasets, The best results are in bold. the second-best results are underlined

Method
WP-IND JF-IND MFB-IND

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10
G-MPNN-sum 0.010 0.051 0.185 0.240 0.188 0.331 0.292 0.203 0.479
G-MPNN-mean 0.093 0.029 0.189 0.146 0.084 0.221 0.242 0.151 0.416
G-MPNN-max 0.160 0.093 0.293 0.224 0.159 0.315 0.268 0.191 0.283

Ours 0.312 0.262 0.419 0.463 0.412 0.487 0.507 0.432 0.531

3.3 Performance Comparison231

Table 1 and Table 2 show the performance com-232

parison in the transductive setting and inductive233

setting respectively. The results of the baselines234

were gathered from the original literature, and "-"235

indicates the results were not reported. We omit the236

comparison with RAE (Zhang et al., 2018), NaLP-237

Fix (Guan et al., 2019b), HINGE (Rosso et al.,238

2020) in Table 1 since StarE consistently obtains239

better results than them. We select the GRAN-hete240

For GRAN (Wang et al., 2021) since it consistently241

outperforms other variants, namely GRAN-homo242

and GRAN-complete. For the comparison with243

G-MPNN, the results in the original literature take244

the prediction of values in qualifiers into considera-245

tion. we retrain the model to predict head and tail246

entities in main triplets with the reported hyperpa-247

rameters and get slightly better results. It can be248

seen that our model consistently outperforms the249

state-of-the-art.250

3.4 Ablation Study251

We compare with multiple variants of our method252

to demonstrate the effectiveness of our design.253

(i) BaseModel eliminates the Hyper2Tri conver-254

sion, dropping all qualifiers in the known facts,255

and removes the Hyper Query Learner, relying256

solely on the main relation r for the query embed-257

ding. (ii) NoConversion utilize the hyper query258

learner but removes the Hyper2Tri conversion. (iii)259

Star2Clique substitute the Hyper2Tri conversion260

with Star2Clique conversion while keeping the Hy-261

per Query Learner. (iv) NoQueryLeaner keeps the262

Table 3: Abation study in transductive setting, here we
use H@10 as abbreviation for Hit@10 to save space

Method WD50K WP JF17K
MRR H@10 MRR H@10 MRR H@10

BaseModel 0.153 0.295 0.251 0.468 0.341 0.570
NoConversion 0.203 0.345 0.322 0.477 0.419 0.619

Star2Clique 0.297 0.425 0.416 0.508 0.543 0.748
NoQueryLeaner 0.276 0.462 0.383 0.471 0.597 0.763

FullModel 0.362 0.505 0.499 0.648 0.657 0.771

Hyper2Tri conversion and elimates Hyper Query 263

Learner. (v) FullModel represent exactly the pro- 264

posed method. 265

Table 3 presents the results of the variants in 266

transductive setting. By comparing the FullModel, 267

the NoConversion and the Star2Clique, we show 268

the efficiency of the proposed Hyper2Tri conver- 269

sion. By Comparing the FullModel and the No 270

queryLearner, we show the importance of the hy- 271

per query learner. By comparing the Basemodel 272

with Noconversion and NoQueryLearner, we show 273

the two module contribute to performance indepen- 274

dently. 275

4 Conclusion 276

We introduce a path-based link prediction model 277

for HKGs. Our model uses a Hyper2Tri conversion 278

to incorporate the information of the qualifiers in 279

the known facts and utilizes a hyper query learner 280

to embed the qualifiers in the query fact. Experi- 281

ments conducted on multiple datasets demonstrate 282

that the proposed model achieves state-of-the-art 283

performance in both the inductive and transductive 284

settings. 285
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A Supplementary Materials for the394

Method395

In this section, we briefly describe the396

NBFNet (Zhu et al., 2021) to make the pa-397

per self-contained. The message passing process398

of layer l is defined as:399

e
(l)
i ← agg({msg(e

(l−1)
j , wr,q)} ∪ e

(0)
i ). (2)400

The agg represents the aggregation function and401

the msg is the massage function. ej is the node402

in the neighborhood of node ei. The edge embed-403

ding wr,q is related to the type of edge between404

them(denoted by r) and the embedding of query405

q. By utilizing this message passing scheme, the406

final embedding of the node ei only depends on the407

query embedding and the embedding of edges in408

the paths between h and ei. Note the final embed-409

ding is also independent on the embedding of node410

h and ei, making it possible to apply our model to411

inductive setting.412

After message passing, the representation of413

the pair (h, ei) for the query is the embedding of414

ei in the last layer, i.e. eLi . Then the score of415

{(h, r, ei), (qrk : qek)nk=1)} is computed using an416

MLP:417

score←MLP (eLi ). (3)418
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