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Abstract

Recently, path-based Graph Neural Networks
(GNNs) achieve promising performance of
the link prediction task on benchmark Knowl-
edge Graphs (KGs). However, there is no re-
search on leveraging path-based GNNs to pro-
mote the more general case of KGs, namely
hyper-relational KGs (HKGs). To bridge
this research gap, we study the path-based
GNNs and discover that existing path-based
GNNss fail to handle HKGs because they can-
not well explore the external information (i.e.,
qualifiers) stored in HKGs. In this paper,
we propose a novel framework, Hyper Path-
based Graph Neural Network (HyperPGNN)
for HKGs. Specifically, we propose a novel
Hyper2Tri conversion and hyper query learner
to better enable the path-based GNNs to un-
derstand qualifiers in HKG, then capture them
into the graph learning. Results show our
method achieve good performance in both
transductive and inductive settings. Codes
are available at https://anonymous.4open.
science/r/Path_based_LP_HKG.

1 Introduction

Hyper-relational Knowledge Graphs (HKGs) al-
low equipping the main triplet (h,r,t) with qual-
ifiers {(qrx : gex)}, providing contextual infor-
mation for (h,r,t). As the example in Fig. 1,
the fact (Albert Einstein, employer, University of
Zurich) with qualifiers {(start time: 1909), (end
time: 1911)} can be distinguished from the fact
(Albert Einstein, employer, Swiss Federal Institute
of Intellectual Property) with qualifiers {(start time:
1902), (end: 1909)}. Like KG, link prediction is
a fundamental task in HKGs that predicts miss-
ing facts based on known ones. Recently, a se-
ries of methods extends the classic KG embedding
models from KGs to HKGs, e.g., m-TransH (Wen
et al., 2016) from TransH (Wang et al., 2014),
GETD (Liu et al., 2020) from TuckER (Balaze-
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Figure 1: [llustration of hyper-relational facts in HKGs.

vic et al., 2019), StarE (Galkin et al., 2020) from
CompGCN (Vashishth et al., 2020).

Despite the success of existing methods for
HKGs, those powerful path-based graph neural net-
works (GNNs) (Zhu et al., 2021, 2022; Zhang et al.,
2023) that achieved outstanding performance on
benchmark KGs have not been explored on the
more general HKGs. Different from aggregating
the information from neighbors (Schlichtkrull et al.,
2018; Vashishth et al., 2020), path-based GNNs5s
leverage the information from the possible paths
between head and tail entities to predict the link.
Inspired by their success, the path-based idea may
also work on HKGs. From the main facts (Albert
Einstein, employer, University of Zurich) with qual-
ifiers {(start time: 1909), (end time: 1911)} and
(University of Zurich, location, Zurich), we can
infer Albert Einstein work on Zurich between year
1909 to 1911 as shown in Figure 1.

However, it is a non-trivial task to extend ex-
isting path-based GNNs to HKGs. Current path-
based works can only traverse and leverage the
main triplets without qualifiers in HKGs. Thus,
they will miss the important information stored in
the qualifiers, like the working period in Figure 1.
Therefore, to leverage the capability of path-based
GNNs on HKGs, we propose a new model named
Hyper Path-based Graph Neural Network (Hyper-
PGNN) in this paper. More concretely, we propose
a conversion method Hyper2Tri to covert the topol-
ogy of the hyper-relational facts into the structures
that can be incorporated with existing path-based
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GNNs. After the topology conversion, we design
a query learner to encode qualifiers to further cap-
ture the information of qualifiers. Empirical results
show that HyperPGNN achieves good performance
on benchmark HKG datasets under both transduc-
tive and inductive settings.

2 Proposed Method

A HKG can be defined as G = (V, R, D), where
V is the set of entities, R represents the set of rela-
tions and D contains a set of hyper-relational facts.
Each hyper-relational fact consists of a main triplet
(h,r,t) and a list of qualifiers {(qry : ger)}}i_;,
where h,t,qe;, € V and r,qry € R. Link pre-
diction on HKGs aims to predict missing head
or tail entities in the query hyper-relational fact
{(?,7“, t)v (qu’ qek)zzl)} or {(ha T, ?)7 (qu:
ger)i_,)}. For simplicity, we use the notation of
the tail prediction in the following part.

The overall framework of the model is shown
in Figure 2. We propose a Hyper2Tri conversion
to utilize the qualifier information in known facts
(section 2.1). We design a hyper query learner to
incorporate the qualifiers in the query (section 2.2).
Then, we adopt an advanced path-based GNN to
get an expressive representation of possible hyper-
relational facts (in Appx. A).

2.1 Hyper Facts Conversion

Intuitively, we may convert the qualifiers into col-
lections of triplets to facilitate path-based embed-
ding with the restricting information from state-
ment qualifiers. Existing conversion approaches,
e.g., Star-to-Clique proposed by m-TransH (Wen
et al.,, 2016), generally treat qualifier entities
equally with triplet entities. They first reformu-
late the statement as a set of relation-entity pairs
P = ({rn:h},{re : t},{qri : qe;}}—,), then form
a triplet (e1,r1-r9, e2), for every {r1 : e1},{rs :
es} € P. It has two major defects: 1) losing the se-
mantic difference between triplet entities and qual-
ifier entities, 2) introducing too much noise while
expanding possible path formulation.

Thus, we propose the following Hyper2Tri
(Hyper-relation to Triangle relations) conversion.
Given a statement {(h,r, 1), (¢ : ger)}_,)}, ev-
ery (qry : gey) is converted to two labeled edges
(h,r-qry, qex) and (t,r-qry, ger). Here, r-qry is
the new type of relation representing qualifier rela-
tion gry of relation r, and we denoted its type as
the pair of r and gr;. See the Hyper Facts Conver-
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Figure 2: An overview of our pipeline

sion part of Figure 2 for an illustration. In other
words, a statement with n qualifiers will be decom-
posed into 2n+1 triplets, including the main triplet
and 2n triplets derived from the qualifiers. Hence,
the original HKG is transformed into a knowledge
graph that can be processed by previous path-based
link prediction frameworks without losing informa-
tion in qualifiers. Note that the newly constructed
triplets will form new paths together with existing
main triplets, providing more information about the
qualifiers. As shown in Figure 3, the proposed con-
version produce new paths related to the Argentina
national association football team, making it pos-
sible to infer that the nationality of Lionel Messi is
Argentina, and he won the 2022 FIFA World Cup.

Compared with Star-to-Clique (Wen et al., 2016)
Hyper2Tri strengthens the connection between the
primal entity and qualifier entities while weaken-
ing the bonds among qualifier entities. And Hy-
per2Tri creates no new bonds between qualifier
entities, thus reducing information noise. Besides,
another possible design is to directly encode the
hyper-relations in the paths and using these repre-
sentations to conduct predictions. However, the per-
formance will be limited without collecting path-
based information about qualifiers.

2.2 Hyper Query Learner

Existing path-based GNNs on KGs initialize the
head node with the embedding of query relation,
and use the embedding of candidate nodes after



message passing to compute the scores of candi-
dates. Zhang et al. (2021) shows that this initializa-
tion can be considered as a labeling trick, making
the network highly expressive. Likewise, we design
a hyper query learner to achieve the embedding q

of a given query {(h,7,?), (qrx : qer)?_)}
q < ’}/(I‘, Wr : Ek(z)(quu qek))? (1)

where qr;, qe;, and r are the learned embedding
of gry, ge;, and r respectively/ ¢(-) is the function
to composite the embedding of qualifier keys and
qualifier values, and can be any function of the form
R"™ x R"™ — IR"™. We sum the composition results
of all qualifiers to get the embedding of qualifiers,
and then transform with a relation-specific matrix
Wi.. v(+) is another composition function.

In this way, we integrate the information from
the qualifiers included in the query into the embed-
dings, enabling the final prediction results to better
satisfy the constraints imposed by the qualifiers.
Note that the above process does not need the em-
bedding of the head entity h , which is crucial for
applying to the inductive setting.

2.3 Path-based GNN

Given a HKG ¢, we convert it to a knowledge
graph G as described in Section 2.1. For a query
{(h,7,?),(qri : qer)i_,)}, we initialize the rep-
resentation on node h with the hyper query em-
bedding q obtained in Equation 1. The representa-
tions of other nodes are initialized with zero vec-
tors. Then the initial representations are fed into
a Path-based GNN. The two modules proposed
above can be integrated with any path-based meth-
ods designed for KGs. We adopt the NBFNet (Zhu
et al., 2021) as the backbone path-based GNN.

3 Experiment

We use a 24GB NVIDIA GTX 3090 GPU to con-
duct the experiments. The reported results are aver-
aged over five runs.

3.1 Dataset

Experiments are conducted under both transduc-
tive and inductive settings. For the transductive
setting, we use Wikipeople (Guan et al., 2019a),
JF17K (Rosso et al., 2020), and WD50K (Galkin
et al., 2020). For the inductive setting, we use WP-
IND, JF-IND, and MFB-IND proposed by Yadati

'We use the same notation for the query facts here to
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Figure 3: Hyper2Tri will form new paths for qualifiers

(2020). In a transductive setting during testing, all
the entities and relations in the main triplet and
qualifiers are limited to those that have occurred in
the training set. However, in the inductive setting,
the model is required to predict query facts that
may involve new head entities and new tail entities
as potential candidates.

3.2 Experimental Setup

Base models. For the transductive setting, We
compare the proposed method with StarE (Galkin
et al., 2020), Hy-Transformer (Yu and Yang, 2021),
GRAN (Wang et al., 2021) and QUAD (Shomer
et al., 2022). For the inductive setting, we compare
our results with GMPNN (Yadati, 2020).

Metric. We report the mean reciprocal rank-
ing(MRR) and Hit@1,10 for the transductive set-
ting for comparison with previous work. For induc-
tive setting, we report MRR and Hit@1,3 to keep
in line with existing work.

Hyperparameter Setting. We employ
Adam (Kingma and Ba, 2014) to train our
model for a maximum number of 1000 epochs, the
learning rate is set to 0.001. We set the embedding
size to be 32. For the hyper query learner, we use
the rotate function in RotateE (Sun et al., 2019) as
the ¢(-) in Equation 1 and +(+) is a weighted sum
function with the weight of qualifiers is set to 0.4.
In the path-based GNN part, we use a GNN with 6
layers to compute the embedding. We use the mult
function proposed by DisMult (Yang et al., 2015)
as the message function and the pna (Corso et al.,
2020) as the aggregation function. A two-layer
MLP with a hidden layer of size 32 is used to
compute the score of each candidate.



Table 1: Comparison on transductive datasets. The best results are in bold. the second-best results are underlined

Method WDS0K WikiPeople JF17K
MRR Hit@l Hit@l0 MRR Hit@l Hit@l0 MRR Hit@l Hit@10

m-TransH - - - 0.063 0.063 0300 0206 0.206 0.463
StarE 0.349  0.271 0.496 0.491 0.398  0.648 0574 0496  0.725
Hy-Transformer 0.356 0.281 0498 0.501 0426 0.634 0.582 0.501  0.742
GRAN:-hete - - - 0.503 0438 0.620 0.617 0.539 0.770
QUAD 0.348 0.270 0.497 0466 0.365 0.624 0582 0.502  0.740
QUAD(Parallel) 0.349 0.275 0489 0497 0431 0.617 0.596 0.519 0.751
Ours 0362 0.283 0.505 0.501 0430 0.648 0.657 0.585 0.771

Table 2: Comparison on inductive datasets, The best results are in bold. the second-best results are underlined

Method WP-IND JF-IND MEB-IND
MRR Hit@l Hit@l0 MRR Hit@l Hit@l0 MRR Hit@l Hit@10
G-MPNN-sum 0.010 0.051 0.185 0.240 0.188 0.331 0.292 0.203 0.479
G-MPNN-mean 0.093 0.029 0.189  0.146 0.084 0.221  0.242 0.151 0.416
G-MPNN-max 0.160 0.093 0.293 0.224 0.159 0.315 0.268 0.191 0.283
Ours 0.312 0.262 0.419 0463 0412 0.487 0507 0.432 0.531

3.3 Performance Comparison

Table 1 and Table 2 show the performance com-
parison in the transductive setting and inductive
setting respectively. The results of the baselines
were gathered from the original literature, and "-"
indicates the results were not reported. We omit the
comparison with RAE (Zhang et al., 2018), NaLP-
Fix (Guan et al., 2019b), HINGE (Rosso et al.,
2020) in Table 1 since StarE consistently obtains
better results than them. We select the GRAN-hete
For GRAN (Wang et al., 2021) since it consistently
outperforms other variants, namely GRAN-homo
and GRAN-complete. For the comparison with
G-MPNN, the results in the original literature take
the prediction of values in qualifiers into considera-
tion. we retrain the model to predict head and tail
entities in main triplets with the reported hyperpa-
rameters and get slightly better results. It can be
seen that our model consistently outperforms the
state-of-the-art.

3.4 Ablation Study

We compare with multiple variants of our method
to demonstrate the effectiveness of our design.
(i) BaseModel eliminates the Hyper2Tri conver-
sion, dropping all qualifiers in the known facts,
and removes the Hyper Query Learner, relying
solely on the main relation r for the query embed-
ding. (ii) NoConversion utilize the hyper query
learner but removes the Hyper2Tri conversion. (iii)
Star2Clique substitute the Hyper2Tri conversion
with Star2Clique conversion while keeping the Hy-
per Query Learner. (iv) NoQueryLeaner keeps the

Table 3: Abation study in transductive setting, here we
use H@10 as abbreviation for Hit@10 to save space

Method WD50K WP JF17K
MRR H@10 MRR H@10 MRR H@10
BaseModel 0.153 0.295 0.251 0.468 0.341 0.570

NoConversion 0.203 0.345 0.322 0.477 0.419 0.619
Star2Clique  0.297 0.425 0.416 0.508 0.543 0.748
NoQueryLeaner 0.276 0.462 0.383 0.471 0.597 0.763
FullModel  0.362 0.505 0.499 0.648 0.657 0.771

Hyper2Tri conversion and elimates Hyper Query
Learner. (v) FullModel represent exactly the pro-
posed method.

Table 3 presents the results of the variants in
transductive setting. By comparing the FullModel,
the NoConversion and the Star2Clique, we show
the efficiency of the proposed Hyper2Tri conver-
sion. By Comparing the FullModel and the No
queryLearner, we show the importance of the hy-
per query learner. By comparing the Basemodel
with Noconversion and NoQueryLearner, we show
the two module contribute to performance indepen-
dently.

4 Conclusion

We introduce a path-based link prediction model
for HKGs. Our model uses a Hyper2Tri conversion
to incorporate the information of the qualifiers in
the known facts and utilizes a hyper query learner
to embed the qualifiers in the query fact. Experi-
ments conducted on multiple datasets demonstrate
that the proposed model achieves state-of-the-art
performance in both the inductive and transductive
settings.
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A Supplementary Materials for the
Method

In this section, we briefly describe the
NBFNet (Zhu et al., 2021) to make the pa-
per self-contained. The message passing process
of layer [ is defined as:

o)  agg({msg(e] ™V w b Ue™). @

The agg represents the aggregation function and
the msg is the massage function. e; is the node
in the neighborhood of node e;. The edge embed-
ding w; q is related to the type of edge between
them(denoted by r) and the embedding of query
q. By utilizing this message passing scheme, the
final embedding of the node e; only depends on the
query embedding and the embedding of edges in
the paths between h and e;. Note the final embed-
ding is also independent on the embedding of node
h and e;, making it possible to apply our model to
inductive setting.

After message passing, the representation of
the pair (h, e;) for the query is the embedding of
e; in the last layer, i.e. eZL. Then the score of
{(h,r,e;:), (qry : gex)r_,)} is computed using an
MLP:

score < MLP(el). 3)



	Introduction
	Proposed Method
	Hyper Facts Conversion
	Hyper Query Learner
	Path-based GNN

	Experiment
	Dataset
	Experimental Setup
	Performance Comparison
	Ablation Study

	Conclusion
	Supplementary Materials for the Method

