
NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Sequentially Adaptive Experimentation for Learning Optimal Options

subject to Unobserved Contexts

Hongju Park HP97161@UGA.EDU

Department of Statistics, University of Georgia

Athens, GA 30602, USA

Mohamad Kazem Shirani Faradonbeh MOHAMADKSF@SMU.EDU

Department of Mathematics, Southern Methodist University

Dallas, TX 75205, USA

Abstract

Contextual bandits constitute a classical framework for interactive learning of best decisions sub-

ject to context information. In this setting, the goal is to sequentially learn arms of highest reward

subject to the contextual information, while the unknown reward parameters of each arm need to

be learned by experimenting it. Accordingly, a fundamental problem is that of balancing such ex-

perimentation (i.e., pulling different arms to learn the parameters), versus sticking with the best

arm learned so far, in order to maximize rewards. To study this problem, the existing literature

mostly considers perfectly observed contexts. However, the setting of partially observed contexts

remains unexplored to date, despite being theoretically more general and practically more versa-

tile. We study bandit policies for learning to select optimal arms based on observations, which are

noisy linear functions of the unobserved context vectors. Our theoretical analysis shows that adap-

tive experiments based on samples from the posterior distribution efficiently learn optimal arms.

Specifically, we establish regret bounds that grow logarithmically with time. Extensive simulations

for real-world data are presented as well to illustrate this efficacy.

Keywords: Contextual Bandits, Partial Observability, Posterior Sampling, Regret Bounds

1. Introduction

Contextual bandits have emerged in the recent literature as widely-used decision-making models

involving time-varying information. In this setup, a policy takes action after (perfectly or partially)

observing the context(s) at each time. The data collected thus far is utilized, aiming to maximize

cumulative rewards determined by both the context(s) and unknown parameters. So, any desir-

able policy needs to manage the delicate trade-off between learning the best (i.e., exploration) and

earning the most (i.e., exploitation). For this purpose, Thompson sampling stands-out among vari-

ous competitive algorithms, thanks to its strong performance as well as computationally favorable

implementations. However, comprehensive studies are currently missing for imperfectly observed

contexts, which is adopted as the focus of this work.

Letting the time-varying components of the decision options (e.g., contexts) to be observed only

partially, is known to be advantageous. On the other hand, overlooking imperfectness of observa-

tions can lead to compromised decisions. For example, if disregarding uncertainty in medical pro-

files of septic patients, clinical decisions end up with worse consequences (Gottesman et al., 2019).

Accordingly, partial observation models are studied in canonical settings such as linear systems
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(Kargin et al., 2023), bandit monitoring (Kirschner et al., 2020; Lattimore, 2022; Tsuchiya et al.,

2023), and Markov decision processes (Bensoussan, 2004; Krishnamurthy and Wahlberg, 2009).

The above have recently motivated some work on contextual bandit policies with partially observed

contexts (Park and Faradonbeh, 2021, 2022a,b).

In this paper, we study algorithms to balance exploration and exploitation for contextual bandits

with partially observable contexts via Thompson sampling. We consider a linear reward, which

is the common bandit setting, where the expected reward of each arm is the inner product of con-

text(s) and reward parameter(s). The latter can be either arm-specific (Agrawal and Goyal, 2013;

Bastani and Bayati, 2020), or shared across all arms (Dani et al., 2008; Abeille and Lazaric, 2017).

We focus more on challenging one of the former and establish a worst-case (poly-)logarithmic regret

bounds for both settings with the supplement using numerical experiments.

2. Problem Formulation

In this section, we express the technicalities of the partially observable linear contextual bandit

problem. The decision-maker tries to maximize their cumulative reward by selecting from N arms,

the reward of arm i ∈ {1, · · · , N} being

ri(t) = xi(t)
⊤µi + εi(t), (1)

where xi(t) is the unobserved dx dimensional stochastic context of the ith arm generated indepen-

dently at time t with E [xi(t)] = 0dx and Cov(xi(t)) = Σx, µi is the arm-specific reward parameter

of the ith arm in R
dy , and εi(t) is the reward R1-subgaussian noise.

The decision-making policy observes yi(t); a transformed noisy function of the context

yi(t) = Axi(t) + ξi(t), (2)

where A is a dy × dx sensing matrix, and ξi(t) is the sensing (or measurement) noise, its covari-

ance matrix being denoted by Σy. We assume that each element of ξi(t) is subgaussian as well.

At each time t, the decision-maker chooses an arm, denoted by a(t), given the history of actions

{a(τ)}1≤τ≤t−1, rewards {ra(τ)(τ)}1≤τ≤t−1, and past observations {ya(τ)(τ)}1≤τ≤t−1, as well as

the current one {yi(t)}i∈[N ]. Once choosing the arm a(t), the decision-maker gets a reward ra(t)(t)
according to (1). Note that rewards of other arms are not realized.

Now, we look into the optimal arm identification. Note that the optimal arm i maximizes

xi(t)
⊤µi based on (1). Under the linear structure (2) with unknown stochastic contexts, the Best

Linear Unbiased Prediction (BLUP) (Harville, 1976; Robinson, 1991) is the best approximate value

of context x(t) in terms of the unbiasedness and minimal variance, denoted by x̂i(t) := Dyi(t),
where D = (A⊤Σ−1

y A+Σ−1
x )−1A⊤Σ−1

y . Accordingly, the prediction of xi(t)
⊤µi is x̂i(t)

⊤µi.

Next, we examine the estimation of xi(t)
⊤µi from the perspective of a decision-maker, who

does not know the true value of µ⋆. From (1), we get

ri(t) = yi(t)
⊤D⊤µi + ζi(t), (3)

where ζi(t) = (xi(t)
⊤µi − yi(t)

⊤D⊤µi) + εi(t) is a noise centered at 0. ζi(t) is independent of

others because of the independence of the prediction error, xi(t)
⊤µi − yi(t)

⊤D⊤µi. Here, µi is

not estimable based on the equation (3), since the space spanned by {Dyi(τ)}tτ=1:a(τ)=i does not
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Algorithm 1 : Thompson sampling algorithm for contextual bandits with imperfect context obser-

vations

1: Set Bi(1) = Idy , η̂i(1) = 0dy for i = 1, 2, . . . , N
2: for t = 1, 2, . . . , do

3: for i = 1, 2, . . . , N do

4: Sample η̃i(t) from N (η̂i(t), v
2B−1

i (t))
5: end for

6: Select arm a(t) = argmaxi∈[N ]yi(t)
⊤η̃i(t)

7: Gain reward ra(t)(t) = xa(t)(t)
⊤µa(t) + εa(t)(t)

8: Update Bi(t+ 1) and η̂i(t+ 1) by (7), (8) and (9) for i = 1, 2, . . . , N
9: end for

generally include µi, if dy < dx. Thus, instead of µi, we estimate D⊤µi defined as the transformed

parameter of the arm i, denoted by

ηi := D⊤µi. (4)

Thus, using (3) and (4), we get

ri(t) = yi(t)
⊤ηi + ζi(t). (5)

Despite the inestimability of µi, ηi is always guaranteed to be estimable because {yi(τ)}tτ=1:a(τ)=i

span R
dy , thanks to the full rank Var(yi(t)). Given that even the optimal policy cannot make a

better unbiased prediction of xi(t)
⊤µi than the BLUP yi(t)

⊤ηi by taking advantage of any other

information, the optimal arm at time t is given as a⋆(t) = argmax
1≤i≤N

yi(t)
⊤ηi.

Regret is a performance measure, quantifying the cumulative reward decrease by the actions of

a decision-maker as compared to the actions taken by the optimal policy. In accordance with the

optimal arm above, regret is expressed as Regret(T ) =
∑T

t=1

(
ya⋆(t)(t)

⊤ηa⋆(t) − ya(t)(t)
⊤ηa(t)

)
,

where a(t) is the chosen arm by the decision maker at time t.

3. Thompson Sampling Policy

In this section, we outline the Thompson sampling algorithm for partially observable contextual

bandits. Thompson sampling takes action as if samples generated from a posterior distribution given

the data thus far are the true values. In order to calculate a (hypothetical) posterior distribution, a

decision-maker assumes that the reward of the ith arm at time t is generated as follows: ri(t) =
yi(t)

⊤ηi + ψi(t), where ψi(t) has the normal distribution with the mean 0 and variance v2 = R2
1.

In the beginning, the decision-maker starts with the initial value η̂i(1) = 0dy and Bi(1) = Idy
for all i ∈ [N ], which are the mean and (unscaled) covariance matrix of a prior distribution of ηi,
respectively. The posterior distribution of ηi at time t is given as N (η̂i(t), v

2Bi(t)
−1).

Then, we sample from the following posterior distribution of the transformed parameters ηi:

η̃i(t) ∼ N (η̂i(t), v
2Bi(t)

−1), (6)

for i = 1, 2 . . . , N . Accordingly, the decision-maker pulls the arm a(t) such that a(t) =
argmax
1≤i≤N

yi(t)
⊤η̃i(t). Then, once the decision-maker gains the reward of the chosen arm a(t), it
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can update η̂i(t) and Bi(t) based on the recursions below:

Bi(t+ 1) = Bi(t) + yi(t)
⊤yi(t), (7)

η̂i(t+ 1) = Bi(t+ 1)−1 (Bi(t)η̂i(t) + yi(t)ri(t)) , (8)

if i = a(t),

Bi(t+ 1) = Bi(t), η̂i(t+ 1) = η̂i(t), (9)

otherwise. The pseudocode for the algorithm is provided in Algorithm 1.

4. Theoretical Performance Analyses

In this section, we establish the theoretical result of Algorithm 1 for partially observable contextual

bandits with arm-specific parameters. The following result provides a high probability regret upper

bound for Algorithm 1.

Theorem 1 The regret of Algorithm 1 satisfies the following with probability at least 1− δ:

Regret(T ) = O
(
Nd3y log

4

(
TNdy
δ

))
.

The above theorem demonstrates that the regret upper bound scales at most log4 T with respect

to the time. A poly-logarithmic regret bounds are unprecedented to the best of our knowledge.

Specifically, a high probability poly-logarithmic regret bound of Thompson sampling with respect

to the time horizon has not been shown for stochastic contextual bandits with arm-specific param-

eters, even though the previously available regret bounds are shown for Thompson sampling for

adversarial contextual bandits (Agrawal and Goyal, 2013) and the greedy first algorithm for the

stochastic contextual bandits (Bastani et al., 2021).

5. Numerical Experiments

5.1 Simulation Experiments

In this section, we numerically show the results in Section 4 with synthetic data. First, to explore the

relationships between the regret and dimension of observations and contexts, we simulate various

scenarios for the model with arm-specific parameters with N = 5 arms and different dimensions of

the observations dy = 10, 20, 40, 80 and context dimension dx = 10, 20, 40, 80. Each case is

repeated 50 times and the average and worst quantities amongst all 50 scenarios are reported. Figure

1 presents the regret, normalized by (log t)2, which represents the actual regret growth because the

(log t)2 term in the regret bound of Theorem 1 is attributed to the minimum sample size.

Moving on, Figure 2 provides insights into the average and worst-case regrets of Thompson

sampling compared to the Greedy algorithm, with variations in the number of arms (N = 10, 20, 30).

It is worth noting that the Greedy algorithm is considered optimal for the model with a shared

parameter, but the worst-case regret of it exhibits linear growth in the model with arm-specific

parameters. In Figure 2, the plots represent the average and worst-case regrets of the models with

arm-specific parameters, showing that the greedy algorithm has greater worst-case regret for the

model with arm-specific parameters, especially for the case with a large number of arms.
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Figure 1: Plots of Regret(t)/(log t)2 over time for the different dimensions of context at N = 5
and dy = 10, 20, 40, 80. The solid and dashed lines represent the average-case and worst-case regret

curves, respectively.

5.2 Real Data Experiments

In this sub-section, we assess the performance of the proposed algorithm using two healthcare

datasets: Eye movement and EGG1. These two datasets are analyzed in previous studies by

Bastani and Bayati (2020); Bietti et al. (2021) via contextual bandits with arm-specific parameters

and shared context. These datasets involve classification tasks based on patient information. The

Eye movement and EGG data sets are comprised of 26 and 14-dimensional contexts with the cor-

responding patient class categories of 3 and 2, respectively. Each category of patient class is con-

sidered an arm in the perspective of the bandit problem, where a decision-maker gets a reward of

1 for successful classification and 0 otherwise. We calculate the average correct decision rate of

100 scenarios defined as t−1
∑t

τ=1 I(a(τ) = l(τ)), where l(t) is the true label of the patient ran-

domly chosen at time t. We compare the suggested algorithm against the regression oracle with the

estimates trained on the entire data in hindsight. We artificially create observations of the patients’

contexts based on the structure given in (2) with a sensing matrix A consisting of 0 and 1 only. We

1. The datasets can be found at: https://www.openml.org/
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Figure 2: Plots of regrets over time with the different number of armsN = 10, 20, 30 for Thomson

sampling versus the Greedy algorithm. The solid and dashed lines represent the average-case and

worst-case regret curves, respectively.
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Figure 3: Plots of average correction decision rates of the regression oracle and Thompson sampling

for Eye movement (left) and EGG dataset (right).

reduce the dimension of the patient contexts from 26 to 13 for the Eye movement dataset and from

14 to 10 for the EGG dataset.

Figure 3 displays the average correct decision rates of the regression oracle and Thompson

sampling for the two real datasets. We evaluate the mean correct decision rates over every 100

patients and then average them across 100 scenarios. Accordingly, each dot represents a sample

mean of 10,000 results. For the Eye movement data set, the correct decision rate of Thompson

sampling converges to that of the regression oracle over time. In addition, for the EGG dataset,

Thompson sampling outperforms the regression oracle over time. To the best of our knowledge, this

can be caused by biased estimation with complex reasons such as non-linearity in the data and arm

sampling bias incurred by actions with higher optimal probabilities.
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6. Concluding Remarks

We studied Thompson sampling for partially observable stochastic contextual bandits under relaxed

assumptions with a particular focus on the arm-specific parameter setup. Indeed, the suggested

model is versatile, encompassing a wide range of possible observation structures and offering es-

timation methods suitable for stochastic contexts. Lastly, we showed that Thompson sampling

guarantees regret bounds scaling poly-logarithmically.
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Appendices

The appendices are organized as follows. First, Appendix A provides the notations used in this

paper. Second, Appendix B and C explain the necessary assumptions for the theoretical analysis

in Section 4 and the relationship between the suggested framework and original contextual bandits,

respectively. Then, Appendix D presents the theoretical results for the general model, with the

comprehensive proofs found in Appendix H, I, and J. Following this, Appendix E provides the worst-

case regret upper bounds for the model with a shared parameter, accompanied by its proof detailed

in Appendix L. Next, Appendix G illustrates the estimation accuracy of transformed parameters.

Lastly, Appendix establishes the square-root estimation accuracy of parameters supplemented by

the proof in Appendix M followed by the complete proof for Theorem1 in Appendix N.

Appendix A. Notations

The following notation will be used. We use M⊤ to refer to the transpose of the matrix M ∈ C
p×q,

and C(M) is employed to denote the column space of M . For a vector v ∈ C
d, we use the notation

‖v‖ =
(∑d

i=1 |vi|2
)1/2

for the ℓ2 norm. Finally, PC(M) is projection on C(M), and λmin(·) and

λmax(·) are the minimum and maximum eigenvalues.

Appendix B. Technical Assumptions

We describe two assumptions for the theoretical analyses in Section 4. These assumptions, which are

commonly adopted in regret analyses, are presented in the antecedent literature (Dani et al., 2008;

Goldenshluger and Zeevi, 2013; Bastani et al., 2021; Kargin et al., 2023). The first assumption is

about the boundedness of the parameter space.

Assumption 1 (Parameter Set) For transformed parameter ηi, there exists a positive constant cη
such that ‖ηi‖ ≤ cη, for all i = 1, . . . , N .

To proceed, we define exhaustive and exclusive sets in the observation space to represent the event

of each arm being optimal.

Definition 1 Let y(t) = (y1(t)
⊤, y2(t)

⊤, . . . , yN (t)⊤)⊤ and A⋆
i ⊂ R

Ndy be the region in the space

of y(t) that makes arm i optimal: a⋆(t) = i. Then, denote the optimality probability of arm i by

pi = P(y(t) ∈ A⋆
i ) = P(a⋆(t) = i).

The definition holds for a normalized observation because the norm of an observation does not affect

optimality. The next assumption is the margin condition of observations, which is slightly modified

based on Definition 2 and Assumption 2 in the work of Bastani et al. (2021).

Assumption 2 (Margin Condition) Consider the observation y(t) =
(y1(t)

⊤, y2(t)
⊤, . . . , yN (t)⊤)⊤ and the transformed parameters {ηi}i∈[N ] as defined in (4).

Then, given the event {y(t) ∈ A⋆
i }, we assume that there is C ′ > 0, such that for all u > 0;

∀i 6= j, P

(
0 < yi(t)

⊤ηi − yj(t)
⊤ηj ≤ u

∣∣y(t) ∈ A⋆
i

)
≤ C ′u.
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As a result of Assumption 2, for all i, j ∈ [N ], there exist a subset Ai ⊆ A⋆
i and κ > 0 such that

P(y(t) ∈ Ai) >
1

2
P(y(t) ∈ A⋆

i ) and P(yi(t)
⊤ηi − yj(t)

⊤ηj > κ|y(t) ∈ Ai) = 1. (10)

We refer κ to a suboptimality gap with a positive probability, which is dependent on problems. Using

this gap, we can analyze the stochastic contextual bandit problem in a similar way to analyses of the

conventional multi-armed bandit problem with the suboptimality gap κ.

Appendix C. Relation to Contextual Bandits

The framework suggested in this section is generalized contextual bandits considering the uncer-

tainty of contexts. An observation y(t) presented in this framework can be considered a perfect ob-

served context, if the context is observed without noise and transformation. That is, the model with

the identity sensing matrix A = Idx and the covariance of observation Σy = 0dy×dy is reduced to

the conventional contextual bandits, which are commonly discussed in the literature. Consequently,

the following algorithm and theoretical results suggested in the remaining sections are valid for the

conventional contextual bandits.

Appendix D. Results for the general model

We show the results for the general model with any cases of weight matrices. Lemma 1 presents that

reward errors given observations have the sub-Gaussian property when observations and rewards

have sub-Gaussian distributions, and thereby, a confidence ellipsoid is constructed for the estimator

in (8). This result came from Theorem 1 of Abbasi-Yadkori et al. (2011) with some modifications.

Lemma 1 Let wt = ra(t)(t) − x̂a(t)(t)
⊤ηa(t) and Ft−1 = σ{{y(τ)}tτ=1, {a(τ)}tτ=1}. Then, wt is

Ft−1-measurable and conditionally R-sub-Gaussian for some R > 0 such that

E[eνwt |Ft−1] ≤ exp

(
ν2R2

2

)
.

In addition, for any δ > 0, assuming that ‖µ⋆‖ ≤ h and B(1) = λI , λ > 0, with probability at

least 1− δ, we have

‖η̂i(t)− ηi‖Bi(t) =

∥∥∥∥∥∥

t−1∑

τ=1:a(τ)=i

yi(τ)wτ

∥∥∥∥∥∥
Bi(t)

≤ R

√
dy log

(
1 + L2ni(t)

δ

)
+ cη,

where λM = λmax(AΣxA
⊤ +Σy).

The next lemma guarantees the linear growth of eigenvalues of covariance matrices {Bi(t)}i∈[N ]

defined in (7). This is a cornerstone for the results presented in the remaining part of this section.

Lemma 2 Let ni(t) be the count of ith arm chosen up to the time t. For Bi(t)
−1 in (7), with

probability at least 1− δ, if N (1)(δ, T ) ≤ ni(t) ≤ T for given T > 0, we have

λmax

(
Bi(t)

−1
)
≤ 2

λm
ni(t)

−1,

where N (1)(δ, T ) = 8 log(T/δ)/λ2m.

11



Lemma 3 Let η̂i(t) be the estimate in (8). Then, if N (1)(δ, T ) < ni(t) ≤ T , with probability at

least 1− δ, for all i ∈ [N ], we have

‖η̂i(t)− ηi‖ ≤
√

2

λm

(
R

(√
dy log

(
1 + TL2

δ

)
+ cη

))
ni(t)

−1/2.

Lemma 4 Let η̃i(t) be a sample in (6). Then, if N (1)(δ, T ) < ni(t) ≤ T , with probability at least

1− δ, for all i ∈ [N ], we have

‖η̃i(t)− ηi‖ ≤
√

2

λm

(
v

√
2dy log

2TN

δ
+R

(√
dy log

(
1 + TL2

δ

)
+ cη

))
ni(t)

−1/2.

The next lemma provides a piece of theoretical evidence that the frequency of the i arm of

being chosen scales linearly with the time horizon when the arm has a positive probability of being

the optimal arm. As a consequence, the estimation errors of arm-specific transformed parameters

decrease with the rate t−0.5 for all arms with non-zero P(a⋆(t) = i).

Lemma 5 Let the minimum sample size be

N (2)(δ, T, κ) = max

(
N (1)(δ, T ), 16L2λ−1

m

(
R
√
dy log (1 + L2T/δ) + cη

)2

κ−2

)
.

If ni(t), nj(t) > N (2)(δ, T, κ) for j 6= i,

P(a(t) = i|Ft−1)

≥ P(a⋆(t) = i)

2


1−

∑

j 6=i

(
exp

(
−ni(t)λmκ

2

32v2L2

)
+ exp

(
−nj(t)λmκ

2

32v2L2

))
 ,

where κ is the positive constant defined in (10) and Ft−1 is the filtration defined in Lemma 1.

The results above can be applied to all partially observable contextual bandits with any type of

parameter setup.

Appendix E. Results for the model with a shared parameter

In this sub-section, we present the theoretical results of the model with a shared parameter. For

the model with a single shared parameter, ηi = η⋆ and ni(t) = t for all i ∈ [N ]. This means

that a decision-maker can learn the shared parameter regardless of the chosen arm. The proof of

the following theorems is in L. The next theorem provides a high probability regret upper bound of

Thompson sampling for partially observable contextual bandits with a shared parameter.

Theorem 2 Assume that Algorithm 1 is used in partially observable contextual bandits with a

shared parameter. Then, with probability at least 1− δ, Regret(T ) is of the order

Regret(T ) = O
(
Nd3y log

4

(
TNdy
δ

))
.

12



The regret bound scales at most log4 T with respect to the time horizon and linearly with N .√
dy log(T/δ) and

√
dy log(TNdy/δ) are incurred by the estimation errors and the minimum sam-

ple size, respectively.

Note that a high probability upper regret bound under the normality assumption has been found

for the model with a shared parameter by Park and Faradonbeh (2022b). As compared to the setting

in the work of Park and Faradonbeh (2022b), the result above is constructed based on less strict as-

sumptions, in which contexts, observation noise, and reward noise have sub-Gaussian distributions

for observation noise, contexts, and reward noise.

Appendix F. Results for the model with arm-specific parameters

The following results provide estimation error bounds of the estimators defined in (9) and a high

probability regret upper bound for Algorithm 1. It is worth noting that the accuracy of parameter

estimation and regret growth are closely related because higher estimation accuracy leads to lower

regret. Thus, we build the accuracy of estimation first and then construct a regret bound based on it.

The first theorem presents the estimation error bound, which scales with the rate of the inverse of

the square root of t.

Theorem 3 Let ηi and η̂i(t) be the transformed true parameter in (4) and its estimate in (8), respec-

tively. Then, with probability at least 1− δ, Algorithm 1 guarantees

‖η̂i(t)− ηi‖2 = O
(
dy
pit

log

(
dyT

δ

))
,

for all times t in the range τi < t ≤ T , where τi = O(p−1
i κ−2Nd2y log

3(TNdy/δ)) is the minimum

sample size.

Appendix G. Numerical illustration of Estimation Accuracy
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Figure 4: Plots of normalized estimation errors
√
t‖η̂i(t) − ηi‖ of Algorithm 1 over time for par-

tially observable stochastic contextual bandits with five arm-specific parameters and dimensions of

observations and contexts dy = 20, dx = 10, 20, 40.
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Figure 4 showcases the average estimation errors of the estimates in (9) for five different arm-

specific parameters defined in (4), changing dimensions of observations and contexts. These errors

are normalized by t−0.5 based on Theorem 3. Since the error decreases with a rate t−0.5, the normal-

ized errors for all the arms are flattened over time. This demonstrates that the square-root accuracy

estimations of {ηi}Ni=1 are available regardless of whether the dimension of observations is greater

or less than that of contexts.

Appendix H. Proof of Lemma 1

Lemma 1 provides a sub-Gaussian tail property of the reward estimation error wt given µ and

shows a self-normalized bound for vector-valued martingale by using the sub-Gaussian property.

The reward estimation error wt can be decomposed into two parts. The one is the reward error

εi(t) given (1) due to the randomness of rewards. This error is created even if the context xi(t) is

known. The other is the context estimation error (xi(t)−x̂i(t))⊤µi caused by unknown contexts. To

show the sub-Gaussian property of reward estimation error, the next lemma provides a sub-Gaussian

property of context estimation errors.

Lemma 6 The context estimate x̂i(t)
⊤µi has the mean xi(t)

⊤µi and a sub-Gaussian tail property

such as

E

[
eν(x̂i(t)−xi(t))

⊤µi

∣∣∣ y(t)
]
≤ e

ν2R2
2

2 ,

for any ν > 0 and some R2 > 0.

Proof Since x̂i(t) is the BLUP of xi(t), we have E[(x̂i(t)− xi(t))
⊤µi] = 0 and

Var((x̂i(t)− xi(t))
⊤µi|yi(t)) = µ⊤i (A

⊤Σ−1
y A+Σ−1

x )−1µi

based on the results of the work of Robinson (1991). Because ‖µi‖ ≤ 1 for all i ∈ [N ], we can find

R2 > 0 such that

µ⊤i (A
⊤Σ−1

y A+Σ−1
x )−1µi ≤ λmax((A

⊤Σ−1
y A+Σ−1

x )−1) = R2
2, (11)

for any i = 1, . . . , N . Therefore, since ζi(t) has a sub-Gaussian density, we get

E

[
eν(x̂i(t)−xi(t))

⊤µi

∣∣∣ y(t)
]
≤ e

ν2R2
2

2 .

Lemma 7 For any ν > 0, we have

E

[
eν(ri(t)−yi(t)

⊤ηi)
∣∣∣ y(t)

]
≤ e

ν2R2

2 .

where R2 = R2
1 +R2

2 for R1 from R1-subgaussian property of reward errors and R2 in (11).
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Proof By (5),

ri(t)− yi(t)
⊤ηi = (xi(t)

⊤µi − yi(t)
⊤ηi) + εi(t),

which implies E[ri(t)− x̂i(t)
⊤µi|yi(t), a(t)] = 0, since yi(t)

⊤ηi is the BLUP of xi(t)
⊤µi. Due to

Var(xi(t)
⊤µi − y(t)⊤ηi|y(t)) ≤ R2

2 by (11), we can find R > 0 such that

Var(ri(t)− x̂i(t)
⊤µi|yi(t)) = Var(εi(t)) + Var(xi(t)

⊤µi − yi(t)
⊤ηi|yi(t)) ≤ R2

1 +R2
2 = R2

Since εi(t) and xi(t)
⊤µi − yi(t)

⊤ηi have a sub-Gaussian distribution, ri(t) − x̂i(t)
⊤µi has a sub-

Gaussian distribution as well. Thus,

E[eν(ri(t)−x̂i(t)
⊤µi)|y(t)] = E[eνζi(t)|y(t)] ≤ e

ν2R2

2 .

Lemma 8 Let

Dη
it = exp

(
(ri(t)− yi(t)

⊤η)yi(t)
⊤η

R
− 1

2
(yi(t)

⊤η)2
)
I(a(t) = i),

and Mη
it =

∏t
τ=1D

η
iτ . Then, E[Mη

iτ ] ≤ 1.

Proof First, we take the expected value of Dη
it conditioned on Ft−1 and arranged it as follows:

E[Dη
it|Ft−1] = E

[
exp

(
(ri(t)− yi(t)

⊤η)yi(t)
⊤η

R
− 1

2
(yi(t)

⊤η)2
)∣∣∣∣ y(t), a(t)

]

= E

[
exp

(
ζi(t)yi(t)

⊤η

R

)∣∣∣∣ y(t), a(t)
]
exp

(
−1

2
(yi(t)

⊤η)2
)
.

Then, by Lemma 7, we have

E

[
exp

(
ζi(t)yi(t)

⊤η

R

)∣∣∣∣ y(t), a(t)
]
exp

(
−1

2
(yi(t)

⊤η)2
)

≤ exp

(
1

2
(yi(t)

⊤η)2
)
exp

(
−1

2
(yi(t)

⊤η)2
)

= 1.

Therefore,

E[Mη
it|Ft−1] = E[Mη

i1D
η
i2 · · ·D

η
i(t−1)D

η
it|Ft−1] = Dη

1 · · ·Dη
i(t−1)E[D

η
it|Ft−1] ≤Mη

t−1.

Now, we continue the proof of Lemma 1. Let φη be the probability density function of multi-

variate Gaussian distribution of η with the mean 0dy and the covariance matrix Idy . By Lemma 9 of

the work of Abbasi-Yadkori et al. (2011), for Mt = E[Mη
it|F∞], we have

Pφµ

(
‖Sit‖2Bi(t)−1 > 2R2 log

(
det(Bi(t))

1/2

δ

))
≤ E[Mit] ≤ δ, (12)
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where Pφη
is the probability measure based on φη, and Sit =

∑t
τ=1 y(τ)wτ I(a(τ) = i). Lemma 7

, Lemma 8 and (12) are sufficient conditions for the following inequality

Pφη

(
‖Sit‖2Bi(t)−1 > 2R2 log

(
det(Bi(t))

1/2

δ

)
, ∀ t > 0

)
≤ δ,

by Theorem 1 of the work of Abbasi-Yadkori et al. (2011). By Lemma 10 of the work of

Abbasi-Yadkori et al. (2011), we have

det(Bi(t)) ≤ (1 + ni(t)L
2/dy)

dy ,

and subsequently we have

2 log

(
det(Bi(t))

1/2

δ

)
≤ dy log

(
1 + L2ni(t)

δ

)
.

Therefore, with probability of at least 1− δ, we have

‖η̂i(t)− ηi‖Bi(t) = ‖Sit‖Bi(t)−1 ≤ R

√
dy log

(
1 + L2ni(t)

δ

)
+ cη,

which is a similar result to Theorem 2 of the work of Abbasi-Yadkori et al. (2011).

Appendix I. Proof of Lemma 2

First, to find the bound for ‖y(t)‖, for δ > 0, we define WT such that

WT =

{
max

{i∈[N ],τ∈[T ]}
||yi(τ)||∞ ≤ vT (δ)

}
, (13)

where vT (δ) = (2λM log(2TNdy/δ))
1/2 and λM = λmax(AΣxA

⊤ +Σy).

Lemma 9 For the event WT defined in (13), we have P(WT ) ≥ 1− δ.

Proof Note that y(t) has the mean 0dy and the covariance AΣxA
⊤ + Σy without knowing x(t).

Using the sub-Gaussian tail property, we have

P

(
‖(AΣxA

⊤ +Σy)
−1/2yi(t)‖∞ ≥ ε

)
≤ 2dy · e−

ε2

2 .

Accordingly, we have

P

(
‖yi(t)‖∞ ≥ λ

1
2
Mε

)
≤ 2dy · e−

ε2

2 .

By taking the union of the events over time, we get

P

(
max

i∈[N ],τ∈[T ]
‖y(t)‖∞ ≥ λ

1
2
Mε

)
≤ 2TNdy · e−

ε2

2
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By plugging (2 log(2TNdy/δ))
1/2 in ε, we have

P

(
max
1≤t≤T

‖y(t)‖∞ ≥ (2λM log(2TNdy/δ))
1/2

)
≤ 2TNdy · exp

(
−2 log(2TNdy/δ)

2

)
= δ.

Thus,

P(WT ) ≥ 1− P

(
max
1≤t≤T

‖y(t)‖ ≥ vT (δ)

)
≥ 1− δ.

Then, by Lemma 9, we have

‖y(t)‖ ≤
√
dyvT (δ) := L = O

(√
dy log(TNdy/δ)

)
, (14)

for all 1 ≤ t ≤ T with probability at least 1− δ.

Lemma 10 (Azuma Inequality) Consider the sequence {Xt}1≤t≤T random variables adapted to

some filtration {Gt}1≤t≤T , such that E[Xt|Gt−1] = 0. Assume that there is a deterministic sequence

{ct}1≤t≤T that satisfies X2
t ≤ c2t , almost surely. Let σ2 =

∑
1≤t≤T c

2
t . Then, for all ε ≥ 0, it holds

that

P

(
T∑

t=1

Mt ≥ ε

)
≤ e−ε2/2σ2

.

The proof of Lemma 10 is provided in the work of Azuma (1967). Now, we construct a martin-

gale and its different sequence to find an upper bound of a sum of random variables with Lemma

10. Let the sigma field generated by the contexts and chosen arms by time t

Gt−1 = σ{x(1), a(1), x(2), a(2), . . . , xi(t), a(t)}.

Consider Vt = ya(t)(t)ya(t)(t)
⊤ in order to study the behavior of Bi(t). Note that

E[Vt|Gt−1] = Var(yi(t)|Gt−1) +Axi(t)xi(t)
⊤A⊤

� λmIdy , (15)

where λm = λmin(Σy). For all t > 0 and ‖z‖ = 1, it holds that

z⊤

(
t−1∑

τ=1

E[Vτ |Gτ−1]

)
z ≥ z⊤




t−1∑

τ=1:a(τ)=i

E[Vτ |Gτ−1]


 z ≥ λmni(t). (16)

Now, we focus on a high probability lower bound for the smallest eigenvalue of Bi(t). To proceed,

define the martingale difference Xi
t and martingale Y i

t such that

Xi
t = (Vt − E[Vt|Gτ−1])I(a(τ) = i), (17)

Y i
t =

t∑

τ=1

(Vτ − E[Vτ |Gτ−1]) I(a(τ) = i). (18)

17



Then, Xi
τ = Y i

τ − Y i
τ−1 and E

[
Xi

τ |Gτ−1

]
= 0. Thus, z⊤Xi

τz is also a martingale difference

sequence. Here, we are interested in the minimum eigenvalue of
∑t−1

τ=1 Vτ I(a(τ) = i). Because

(z⊤Xi
τz)

2 ≤ ‖yi(t)‖4 ≤ L4 and thereby
∑t−1

τ=1

(
z⊤Xi

τz
)2 ≤ ni(t)L

4, using Lemma 10, we get the

following inequality

P

(
z⊤

(
t−1∑

τ=1

Xi
τ

)
z ≤ ε

)
≤ exp

(
− ε2

2ni(t)L4

)
,

for ε ≤ 0. By plugging ni(t)ε into ε above, we have

P

(
z⊤

(
t−1∑

τ=1

Xi
τ

)
z ≤ ni(t)ε

)
≤ exp

(
−ni(t)ε

2

2L4

)

for ε ≤ 0. Now, using (15), we have the following inequality

P

(
z⊤

(
t−1∑

τ=1

(V (τ)− E[Vt|Gτ−1]) I(a(τ) = i)

)
z ≤ ni(t)ε

)

≥ P

(
z⊤

(
t−1∑

τ=1

(
V (τ)− λmIdy

)
I(a(τ) = i)

)
z ≤ ni(t)ε

)
. (19)

Putting (16), (17), (18) and (19) together, we obtain

P

(
z⊤

(
t−1∑

τ=1

V (τ)I(a(τ) = i)

)
z ≤ ni(t)(λm + ε)

)
≤ exp

(
−ni(t)ε

2

2L4

)
, (20)

where −λm ≤ ε ≤ 0 is arbitrary. Indeed, using Bi(t) �
∑t−1

τ=1 V (τ)I(a(τ) = i), we have

P

(
z⊤Bi(t)z ≤ ni(t)(λm + ε)

)
≤ exp

(
−ni(t)ε

2

2L4

)
, (21)

for −λm ≤ ε ≤ 0. In other words, by putting exp
(
−ni(t)ε2/(2L4)

)
= δ/T , (21) can be written as

z⊤Bi(t)z ≥ ni(t)

(
λm −

√
2L4

ni(t)
log

T

δ

)
,

for all 1 ≤ t ≤ T with the probability at least 1− δ. If ni(t) ≥ N (1)(δ, T ) := 8L4 log(T/δ)/λ2m =
O(d2y log

3(TNdy/δ)), we have

λmax

(
Bi(t)

−1
)
≤ 2

λm
ni(t)

−1.

Appendix J. Proof of Lemma 5

For simplicity, let the event of the ith arm of being optimal at time t Ait = {a⋆(t) = i}. Then, we

aim to have a lower bound of the probability P(a(t) = i|Ft−1) to find a lower bound of ni(t) with

P(a(t) = i|Ft−1) ≥ P(a(t) = i|Ait,Ft−1)P(Ait)

≥


1−

∑

j 6=i

P(yi(t)
⊤η̃i(t) < yj(t)

⊤η̃j(t)|Ait,Ft−1)


P(Ait).
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Using the relationship below,

{yi(t)⊤η̃i(t) < y(t)⊤η̃j(t)}

⊂
{
yj(t)

⊤(η̃j(t)− ηj) >
1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

}⋃{
yi(t)

⊤(η̃i(t)− ηi) < −1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

}
,

(22)

we have

P

(
yi(t)

⊤η̃i(t) < yj(t)
⊤η̃j(t)|Ait,Ft−1

)

≤ P

(
yj(t)

⊤(η̃j(t)− η̂j(t)) > yj(t)
⊤(η̂j(t)− ηj) +

1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

∣∣∣∣Ait,Ft−1

)

+ P

(
yi(t)

⊤(η̃i(t)− η̂i(t)) < yi(t)
⊤(η̂i(t)− ηi)−

1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

∣∣∣∣Ait,Ft−1

)
.

Since yi(t)
⊤(η̂i(t)− ηi) ≤ L‖η̂i(t)− ηi‖, by Lemma 1 and 2, if ni(t), nj(t) ≥ N (1)(δ, T ), we

have

|yi(t)⊤(η̂i(t)− ηi)| ≤ L

√
2

λm

(
R

√
dy log

(
1 +

L2T

δ

)
+ cη

)
1

ni(t)1/2
. (23)

Similarly,

|yj(t)⊤(η̂j(t)− ηj)| ≤ L

√
2

λm

(
R

√
dy log

(
1 +

L2T

δ

)
+ cη

)
1

nj(t)1/2
. (24)

To lower the value on the RHS of (23) less than κ/4, we need the minimum samples

ni(t), nj(t) > 32L2λ−1
m

(
R
√
dy log (1 + L2T/δ) + cη

)2
κ−2, for the arm i and j. Then, we

have

yi(t)
⊤(η̂i(t)− ηi)−

1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj) ≤ −κ

4
,

because yi(t)
⊤ηi − yj(t)

⊤ηj ≥ κ given Ait by (10). Similarly, we have

yj(t)
⊤(η̂j(t)− ηj) +

1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj) ≥

κ

4
.

Accordingly, we have

P(yi(t)
⊤η̃i(t) < yj(t)

⊤η̃j(t)|Ait,Ft−1)

≤ P(yi(t)
⊤(η̃i(t)− η̂i(t)) > κ/4|Ait,Ft−1) + P(yj(t)

⊤(η̃j(t)− η̂j(t)) > κ/4|Ait,Ft−1).

Based on (6), by Lemma 2, we have

P(yi(t)
⊤(η̃i(t)− η̂i(t)) > c|Ait,Ft−1) ≤ E

[
exp

(
− c2

2v2yi(t)⊤Bi(t)−1yi(t)

)∣∣∣∣Ait,Ft−1

]

≤ exp

(
−ni(t)λmc

2

2v2L2

)
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for any c ≥ 0. Thus, if ni(t), nj(t) > N (2)(δ, T, κ) for j 6= i, we have

P(yi(t)
⊤η̃i(t) < yj(t)

⊤η̃j(t)|Ait,Ft−1) ≤ exp

(
−ni(t)λmκ

2

32v2L2

)
+ exp

(
−nj(t)λmκ

2

32v2L2

)
,

and thereby

P(a(t) = i|Ait,Ft−1) ≥ 1−
∑

j 6=i

(
exp

(
−ni(t)λmκ

2

32v2L2

)
+ exp

(
−nj(t)λmκ

2

32v2L2

))
.

Therefore, if ni(t) > N (2)(δ, T, κ) and nj(t) > N (2)(δ, T, κ),

P(a(t) = i|Ft−1) ≥ P(a(t) = i|Ait,Ft−1)P(Ait)

≥ P(a⋆(t) = i)

2


1−

∑

j 6=i

(
exp

(
−ni(t)λmκ

2

32v2L2

)
+ exp

(
−nj(t)λmκ

2

32v2L2

))
 .

Appendix K. Proof of Lemma 4

Using P (‖η̃i(t)− η̂i(t)‖ > ǫ) ≤ P
(√

dyZ > ǫ
)
, where Z ∼ N

(
0, v2λmax(Bi(t)

−1)
)
, we have

P (‖η̃i(t)− η̂i(t)‖ > ǫ) < 2 · exp
(
− ǫ2

2dyv2λmax(Bi(t)−1)

)
.

By putting 2 · exp
(
−ǫ2/(2v2λmax(Bi(t)

−1))
)
= δ

TN , we have

‖η̃i(t)− η̂i(t)‖ < v

√
2dyλmax(Bi(t)−1) log

2TN

δ
.

If ni(t) > N (1)(δ, T ), by Lemma 2, we have

‖η̃i(t)− η̂i(t)‖ < v

√
2

λm

√
2dy log

2TN

δ
ni(t)

−1/2.

Therefore, by Theorem 4, for N (1)(δ, T ) < ni(t) ≤ T , we have

‖η̃i(t)− ηi‖ ≤
√

2

λm

(
v

√
2dy log

2TN

δ
+R

(√
dy log

(
1 + TL2

δ

)
+ cη

))
ni(t)

−1/2.

20



Appendix L. Proof of Theorem 2

Note that ni(t) = t for all i ∈ [N ] for the shared parameter setup. We decompose the regret as

follows:

Regret(T ) =
T∑

t=1

y(t)⊤(ηa⋆(t)(t)− ηa(t)(t))

≤
T∑

t=1

y(t)⊤(ηa⋆(t)(t)− η̃a⋆(t)(t) + η̃a(t)(t)− ηa(t)(t))I(a
⋆(t) 6= a(t))

≤ L
T∑

t=1

(‖η̃a⋆(t)(t)− ηa⋆(t)‖+ ‖η̃a(t)(t)− ηa(t)‖)I(a⋆(t) 6= a(t)),

since ‖y(t)‖ ≤ L. By Lemma 4, if t > N (1)(δ, T ), with probability at least 1− δ, we have

‖η̃a⋆(t)(t)− ηa⋆(t)‖+ ‖η̃a(t)(t)− ηa(t)‖ ≤ g(δ)t−1/2,

where

g(δ) = 2

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2/λ

δ

)
+ cη

)

= O
(√

dy log(TN/δ)

)
.

Now, we construct a martingale sequence with respect to the filtration {Ft−1}Tt=1 defined in Lemma

5. To that end, let G1 = H1 = 0,

Gτ = t−1/2
I(a⋆(t) 6= a(t))− t−1/2

P(a⋆(t) 6= a(t)|Ft−1),

and Ht =
∑t

τ=1Gτ . Since E[Gτ |Fτ−1] = 0, the above sequences {Gτ}τ≥0 and {Hτ}τ≥0 are a

martingale difference sequence and a martingale with respect to the filtration {Fτ}1≤τ≤T , respec-

tively. Let cτ = τ−1/2. Since
∑T

τ=1 |Gτ | ≤
∑T

τ=2 c
2
τ ≤ log T , by Lemma 10, we have

P(HT −H1 > ε) ≤ exp

(
− ε2

2
∑T

t=1 c
2
t

)
≤ exp

(
− ε2

2 log T

)
.

Thus, with the probability of at least 1− δ, it holds that

T∑

t=1

1√
t
I(a⋆(t) 6= a(t)) ≤

√
2 log T log δ−1 +

T∑

t=1

1√
t
P(a⋆(τ) 6= a(τ)|Fτ−1). (25)

Now, we proceed to the upper bound of the second term on the right side in (25).

Let A⋆
it = {y(t) ∈ A⋆

i }, where A⋆
i is defined in Definition 1. By using

{yi(t)⊤η̃i(t) < y(t)⊤η̃j(t)}

⊂
{
yj(t)

⊤(η̃j(t)− ηj) >
1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

}⋃{
yi(t)

⊤(η̃i(t)− ηi) < −1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

}
,

(26)
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we get

P(yj(t)
⊤η̃j(t)− yi(t)

⊤η̃i(t) > 0|Ft−1, A
⋆
it)

≤ P(yj(t)
⊤(η̃j(t)− η̂j(t)) > −yj(t)⊤(η̂j(t)− ηj) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it)

+ P(yi(t)
⊤(η̃i(t)− η̂i(t)) > −yi(t)⊤(η̂i(t)− ηi) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it).

By Lemma 3, with probability of at least 1− δ, we have

yi(t)
⊤(η̂i(t)− ηi) ≤

h(δ, T )L

t1/2
,

for all N (1)(δ, T ) < t ≤ T and i ∈ [N ], where

h(δ, T ) = R

√
2

λm

(√
dy log

(
1 + TL2

δ

)
+ cη

)
= O

(√
dy log(TNdy/δ)

)
.

Accordingly, we have

P(yi(t)
⊤η̃j(t)− yj(t)

⊤η̃i(t) > 0|Ft−1, A
⋆
it)

≤ P(yi(t)
⊤(η̃i(t)− η̂i(t)) > −h(δ, T )Lt−1/2 + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it)

+ P(yj(t)
⊤(η̃j(t)− η̂j(t)) > −h(δ, T )Lt−1/2 + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it). (27)

Let Eijt = {h(δ, T )Lt−1/2 < 0.25(yi(t)
⊤ηi − yj(t)

⊤ηj)}. Then, we can decompose the first term

on the RHS in (27) as follows:

P

(
yi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )L
t1/2

+ (yi(t)
⊤ηi − yj(t)

⊤ηj)

∣∣∣∣Ft−1, A
⋆
it

)

= P

(
yi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )L
t1/2

+ 0.5(yi(t)
⊤ηi − yj(t)

⊤ηj)

∣∣∣∣Eijt,Ft−1, A
⋆
it

)
P(Eijt|Ft−1, A

⋆
it)

+ P

(
yi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )L
t1/2

+ 0.5(yi(t)
⊤ηi − yj(t)

⊤ηj)

∣∣∣∣E
c
ijt,Ft−1, A

⋆
it

)
P(Ec

ijt|Ft−1, A
⋆
it).

(28)

Note that

P

(
yi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )L
t1/2

+ 0.5(yi(t)
⊤ηi − yj(t)

⊤ηj)

∣∣∣∣Eijt,Ft−1, A
⋆
it

)

≤ P

(
yi(t)

⊤(η̃i(t)− η̂i(t)) > 0.25(yi(t)
⊤ηi − yj(t)

⊤ηj)
∣∣∣Ft−1, A

⋆
it

)
. (29)

By Assumption 2, if t > N (1)(δ, T ), we have

P(Ec
ijt|Ft−1, A

⋆
it) = P

(
4h(δ, T )Lt−1/2 > yi(t)

⊤ηi − yj(t)
⊤ηj

∣∣∣Ft−1, A
⋆
it

)
≤ 4h(δ, T )LC ′

t1/2
. (30)

Thus, by (29) and (30), the probability in on the LHS of (28) can be written as

P(yi(t)
⊤(η̃i(t)− η̂i(t)) > −yi(t)⊤(η̂i(t)− ηi) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it)

≤ P(yi(t)
⊤(η̃i(t)− η̂i(t)) > 0.25(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it) +

4h(δ, T )LC ′

t1/2
.
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Using yi(t)
⊤(η̃i(t)−η̂i(t)) ∼ N (0, v2yi(t)

⊤Bi(t)
−1yi(t)) given y(t), the first term on the RHS

above can be written as

P(yi(t)
⊤(η̃i(t)− η̂i(t)) > 0.25(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it) +

4h(δ, T )LC ′

t1/2

≤
∫ ∞

0
P(yi(t)

⊤(η̃i(t)− η̂i(t)) > 0.25u|y(t),Ft−1, A
⋆
it)P(yi(t)

⊤ηi − yj(t)
⊤ηj = u)du

+
4h(δ, T )LC ′

t1/2

≤
∫ ∞

0
exp

(
− tλmu

2

32v2L2

)
P(yi(t)

⊤ηi − yj(t)
⊤ηj = u|A⋆

it)du+
4h(δ, T )LC ′

t1/2
.

Since P(yi(t)
⊤ηi − yj(t)

⊤ηj = u|A⋆
it) < C ′ by Assumption 2, we have

∫ ∞

0
exp

(
− tλmu

2

32v2L2

)
P(yi(t)

⊤ηi − yj(t)
⊤ηj = u|A⋆

it)du ≤ vLC ′

√
32

λmt
.

Thus, we have

P(yi(t)
⊤(η̃i(t)− η̂i(t)) > −yi(t)⊤(η̂i(t)− ηi) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it)

≤ LC ′t−1/2

(
v

√
32

λm
+ 4h(δ, T )

)
. (31)

Similarly,

P(yj(t)
⊤(η̃j(t)− η̂j(t)) > −yj(t)⊤(η̂j(t)− ηj) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it)

≤ LC ′t−1/2

(
v

√
32

λm
+ 4h(δ, T )

)
. (32)

Using (27), we have

P(yj(t)
⊤η̃j(t)− yi(t)

⊤η̃i(t)) > 0|Ft−1, A
⋆
it)

≤ LC ′t−1/2

(
v

(√
32

λm
+

√
32

λm

)
+ 4h(δ, T ) + 4h(δ, T )

)
.

By summing the probabilities in (33) over i, j ∈ [N ], we have

N∑

i=1

N∑

j=1

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)P(A

⋆
it)

≤ LC ′

√
t

N∑

i=1

N∑

j=1

P(A⋆
it)

(
v

(√
32

λm
+

√
32

λm

)
+ 4h(δ, T ) + 4h(δ, T )

)

≤ 2cM (δ, T )LC ′N√
t

, (33)
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where cM (δ, T ) = v
√

32
λm

+ 4h(δ, T ) = O(
√
dy log(TNdy/δ)). Note that

P(a⋆(t) 6= a(t)|Ft−1) ≤
N∑

i=1

N∑

j=1

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)P(A

⋆
it), (34)

by the inclusion-exclusion formula. Putting (33), (34) and the minimal sample size N (1)(δ, T )
together, we have

T∑

t=1

1√
t
P(a⋆(t) 6= a(t)|Ft−1) ≤ N (1)(δ, T ) + 2cM (δ, T )LC ′N

T∑

t=2

1

t

≤ N (1)(δ, T ) + 2cM (δ, T )LC ′N log T.

By (25), with probability at least 1− δ, we have

T∑

t=1

1√
t
I(a⋆(t) 6= a(t)) ≤ N (1)(δ, T ) +

√
2 log T log δ−1 + 2cM (δ, T )LC ′N log T.

Therefore, since N (1)(δ, T ) = 8L4 log(T/δ)/λ2m and L =
√
2λMdy log(TNdy/δ),

Regret(T ) ≤ Lg(δ)
(
N (1)(δ, T ) +

√
2 log T log δ−1 + 2cM (δ, T )C ′N log T

)

= O
(
Nd3y log

4

(
T

δ

))
.

Appendix M. Proof of Theorem 3

Before starting the proof, we specify the constants described in the statement in Theorem 3. L is

the bound of the ℓ2-norm of observation and λM = λmax(AΣxA
⊤ + Σy). pi is the probability of

optimality of the ith arm, as defined in Definition 1. κ is the suboptimality gap defined in (10). First,

we show that the number of selections of each arm scales linearly with a high probability.

Lemma 11 For partially observable stochastic contextual bandits, with probability at least 1 − δ,

if τ (4)(δ, T, κ) < t ≤ T , Algorithm 1 guarantees

ni(t) >
pit

4
,

where τ (4)(δ, T, κ) := max(2(a1 + (4/pi)a
2
2) + 2

√
(a1 + (4/pi)a22)

2 − a21, N
(3)(δ, T, κ)) =

O(d
1/2
y log(T/δ)κ−2), a1 = N (3)(δ, T, κ) + 2N/T , a2 =

√
2 log(2/δ), N (3)(δ, T, κ) =

max(N (2)(δ, T, κ), 64(v2L2/(λmκ
2)) log T ) and N (2)(δ, T, κ) is defined in Theorem 5.

Proof By Lemma 5, if ni(t), nj(t) > N (2)(δ, T, κ),

P(a(t) = i|Ft−1)

≥ P(a⋆(t) = i)

2


1−

∑

j 6=i

(
exp

(
−ni(t)λmκ

2

32v2L2

)
+ exp

(
−nj(t)λmκ

2

32v2L2

))
 .
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If ni(t) ≥ 64(v2L2/(λmκ
2)) log T , we have exp

(
−(ni(t)λmκ

2)/(32v2L2)
)
≤ T−2. Now, we

assume ni(t) > N (3)(δ, T, κ) = max(N (2)(δ, T, κ), 64(v2L2/(λmκ
2)) log T ) for all i ∈ [N ].

Note that

P(a(t) = i|Ft−1) ≥ P(a(t) = i|Ait,Ft−1)P(Ait) ≥
P(a⋆(t) = i)

2


1−

∑

j 6=i

P(a(t) = j|Ait,Ft−1)




by (10). Thus, I(a(t) = i)− (1/2)P(a⋆(t) = i)
(
1−∑j 6=i P(a(t) = j|Ait,Ft−1)

)
is a submartin-

gale difference. Accordingly, we have

t∑

τ=1

P(a(τ) = i|Fτ−1)

≥ P(a⋆(t) = i)

2


t−N (3)(δ, T, κ)−

t∑

τ=⌈N(3)(δ,T,κ)⌉

∑

j 6=i

P

(
yj(τ)

⊤η̃j(τ)− yi(τ)
⊤η̃i(τ) > κ

∣∣∣Aiτ ,Fτ−1

)



≥ P(a⋆(t) = i)

2

(
t−N (3)(δ, T, κ)− 2N

T

)
.

Using Lemma 10, we have

P

(
ni(t)−

t∑

τ=1

P(a(τ) = i|Fτ−1) < −ǫ
)

≤ e−
ǫ2

t ,

for any ǫ > 0. Accordingly, with probability at least 1− δ,

ni(t) >
P(a⋆(t) = i)

2

(
t−N (3)(δ, T, κ)− 2N

T

)
−
√
2t log(2/δ).

The following inequality

pi
2

(
t−N (3)(δ, T, κ)− 2N

T

)
−
√
2t log(2/δ) >

pi
4
t,

is satisfied, if t > 2(a1 + (4/pi)a
2
2) + 2

√
(a1 + (4/pi)a22)

2 − a21, which is defined as

τ
(4)
i (δ, T, κ), where a1 = N (3)(δ, T, κ) + 2N/T and a2 =

√
2 log(2/δ) based on the quadratic

formula. With probability at least 1− δ, we have

ni(t) >
pit

4
, (35)

if t > τ
(4)
i (δ, T, κ) = O(p−1

i d
1/2
y log(T/δ)κ−2).

Now, we are ready to prove Theorem 3. From Lemma (1), we have

‖η̂i(t)− ηi‖ ≤ R

√
2

λm

(√
dy log

(
1 + TL2

δ

)
+ cη

)
ni(t)

−1/2, (36)
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if ni(t) > N (1)(δ, T ). Thus, putting (35) and (36) together, if t > τi :=
max(τ (4)(δ, T, κ), 4p−1

i N (1)(δ, T )) = O(p−1
i κ−2d2y log

3(TNdy/δ)), with probability at least 1−δ,

we have the following estimation accuracy

‖η̂i(t)− ηi‖ ≤ R

√
8

λmpi

(√
dy log

(
1 + TL2

δ

)
+ cη

)
t−1/2.

Appendix N. Proof of Theorem 1

The regret can be written as

Regret(T ) =
T∑

t=1

(ya⋆(t)(t)
⊤ηa⋆(t)(t)− ya(t)(t)

⊤ηa(t)(t))I(a
⋆(t) 6= a(t))

≤
T∑

t=1

(ya⋆(t)(t)
⊤(ηa⋆(t)(t)− η̃a⋆(t)(t))− ya(t)(t)

⊤(ηa(t)(t)− η̃a⋆(t)(t)))I(a
⋆(t) 6= a(t)),

because ya(t)(t)
⊤η̃a(t) − ya⋆(t)(t)

⊤η̃a⋆(t)(t) ≥ 0. Since ‖y(t)‖ ≤ L for all t ∈ [T ], we have

T∑

t=1

(ya⋆(t)(t)
⊤(ηa⋆(t)(t)− η̃a⋆(t)(t))− ya(t)(t)

⊤(ηa(t)(t)− η̃a⋆(t)(t)))I(a
⋆(t) 6= a(t))

≤ L
T∑

t=1

(‖η̃a⋆(t)(t)− ηa⋆(t)‖+ ‖η̃a(t)(t)− ηa(t)‖)I(a⋆(t) 6= a(t)).

By Theorem 3 and Lemma 4 with Lemma 11, if t > maxi∈[N ] τi, we have

‖η̃a⋆(t)(t)− ηa⋆(t)‖+ ‖η̃a(t)(t)− ηa(t)‖ ≤ Rg′(δ)t−1/2,

where

g′(δ) = 2

√
8

p+minλm

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2

δ

)
+ cη

)

= O
(
(p+min)

−1/2d1/2y

√
log(TNdy/δ)

)
.

To proceed, with the probability of at least 1 − δ, we utilize the martingale constructed in

Theorem 2 with the intermediate result

T∑

t=1

1√
t
I(a⋆(t) 6= a(t)) ≤

√
2 log T log δ−1 +

T∑

t=1

1√
t
P(a⋆(τ) 6= a(τ)|Fτ−1). (37)

To find a bound P(a⋆(τ) 6= a(τ)|Fτ−1), using the same logic as (22) and (26), we decompose

the following probability as follows:

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)

≤ P(y(t)⊤(η̃j(t)− η̂j(t)) > −y(t)⊤(η̂j(t)− ηj) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it)

+ P(y(t)⊤(η̃j(t)− η̂j(t)) > −y(t)⊤(η̂j(t)− ηj) + 0.5y(t)⊤(ηi − ηj)|Ft−1, A
⋆
it). (38)
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Similarly to (31) and (32), we have

P(yi(t)
⊤(η̃i(t)− η̂i(t)) > −yi(t)⊤(η̂i(t)− ηi) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it)

≤ LC ′

√
4

pit

(
v

√
32

λm
+ 4h(δ, T )

)
, (39)

if t > τi, and,

P(yj(t)
⊤(η̃j(t)− η̂j(t)) > −yj(t)⊤(η̂j(t)− ηj) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Ft−1, A

⋆
it)

≤ LC ′

√
4

pjt

(
v

√
32

λm
+ 4h(δ, T )

)
, (40)

if t > τj . Accordingly, based on (38), (39), and (40), we obtain the following bounds for the

probabilities

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|Ft−1, A
⋆
it)

≤ 2LC ′

√
p+min

(
v

(√
32

λm
+

√
32

λm

)
+ 4h(δ, T ) + 4h(δ, T )

)
t−1/2.

By summing the probabilities up over i, j ∈ [N ], if t > τM := maxi∈[N ] τi =

O((p+min)
−1κ−2d2y log

3(TNdy/δ)), we have the following upper bound for the probability of choos-

ing a suboptimal arm

P(a⋆(t) 6= a(t)|Ft−1)

≤
N∑

i=1

N∑

j=1

P(yj(t)
⊤η̃j(t)− yi(t)η̃i(t) > 0|Ft−1, A

⋆
it)P(A

⋆
it)

≤ 2LC ′

√
p+mint

N∑

i=1

N∑

j=1

P(A⋆
it)

(
v

(√
32

λm
+

√
32

λm

)
+ 4h(δ, T ) + 4h(δ, T )

)

≤ 4cM (δ, T )LC ′N√
p+mint

, (41)

where cM (δ, T ) = maxi∈[N ]

(
v
√

32
λm

+ 4h(δ, T )
)

= O(
√
dy log(T/δ)). Putting (41) and the

minimum sample size τM together, we have

T∑

t=1

1√
t
P(a⋆(t) 6= a(t)|Ft−1) ≤ τM +

8cM (δ, T )C ′N√
p+min

T∑

t=⌈τM ⌉

1

t
≤ τM +

8cM (δ, T )C ′N√
p+min

log T,

where ⌈·⌉ is the ceiling function. By (25), with probability at least 1− δ, we have

T∑

t=1

1√
t
I(a⋆(t) 6= a(t)) ≤ τM +

√
2 log T log δ−1 +

8cM (δ, T )C ′N√
p+min

log T.
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Therefore, putting together L = O(
√
dy log(TNdy/δ)), g′(δ) =

O
(
(p+min)

−1/2d
1/2
y

√
log(TNdy/δ)

)
, cM (δ, T ) = O(

√
dy log(TNdy/δ)) τM =

O((p+min)
−1κ−2d2y log

3(TNdy/δ)),

Regret(T ) ≤ Lg′(δ)


τM +

√
2 log T log δ−1 +

2cM (δ, T )C ′

√
p+min

log T




= O
(

d3y

(p+min)
3/2κ2

log4
(
TNdy
δ

))
.
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