Under review as a conference paper at ICLR 2026

NAVIAGENT: BILEVEL PLANNING ON TOOL NAVIGA-
TION GRAPH FOR LARGE-SCALE ORCHESTRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently demonstrated the ability to act
as function call agents by invoking external tools, enabling them to solve tasks
beyond their static knowledge. However, existing agents typically call tools step
by step at a time without a global view of task structure. As tools depend on
each other, this leads to error accumulation and limited scalability, particularly
when scaling to thousands of tools. To address these limitations, we propose
NaviAgent, a novel bilevel architecture that decouples task planning from tool
execution through graph-based modeling of the tool ecosystem. At the task-
planning level, the LLM-based agent decides whether to respond directly, clarify
user intent, invoke a toolchain, or execute tool outputs, ensuring broad coverage of
interaction scenarios independent of inter-tool complexity. At the execution level, a
continuously evolving Tool World Navigation Model (TWNM) encodes structural
and behavioral relations among tools, guiding the agent to generate scalable and
robust invocation sequences. By incorporating feedback from real tool interactions,
NaviAgent supports closed-loop optimization of planning and execution, moving
beyond tool calling toward adaptive navigation of large-scale tool ecosystems.
Experiments show that NaviAgent achieves the best task success rates across
models and tasks, and integrating TWMN further boosts performance by up to 17
points on complex tasks, underscoring its key role in toolchain orchestration.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed as function call agents, moving beyond
single utilities toward complex multi-stage workflows (Shen et al.| [2023; [Yang et al., [2023; |Qu
et al.,|2025). However, real-world environments contain thousands of heterogeneous tools that are
continually updated, while tasks demand long sequences of coordinated invocations. Agents built
around fixed tool descriptions or rigid workflows fail to adapt, making API drift, continual updates,
and unseen tool compositions key challenges for function call agents.

Existing approaches attempt to mitigate brittleness but remain incomplete. Some embed tool knowl-
edge directly into model parameters (Wang et al., [2024), which reduces context demands but requires
costly retraining when APIs change. Others derive static graphs from invocation logs (Liu et al.|
2024b)), yet sparse traces and missing parameter relations hinder generalization. Policy-adaptation
methods adjust individual tools with feedback (Chen et al.l|2024), while clustering-based planners
enable substitutions (Liu et al., [2024c). Taken together, existing methods can be broadly categorized
into two camps: either structured but static, failing to evolve with the ecosystem, or adaptive but
unstructured, lacking the representations needed to capture composability and complementarity.

Underlying these challenges is the complexity of the tool ecosystem: it spans thousands of hetero-
geneous tools, exhibits interdependencies such as parameter flows and functional complementarity,
and evolves continually through addition, update, and deprecation. Such properties reveal why
step-by-step invocation without global awareness cannot achieve reliable tool composition. The
difficulty is compounded by the fact that API documentation is written for humans and often misaligns
with how models interpret and use individual tools (Qu et al., 2024)), while flat catalogues provide
little information on how tools compose, substitute, or adapt as the ecosystem changes. What is
needed is a structured representation learned from execution traces that makes these dependencies
explicit and continually adapts with feedback.

Under review as a conference paper at ICLR 2026

We propose NaviAgent, a bilevel planning framework that decouples high-level task reasoning from
low-level execution. At the planning level, NaviAgent defines a four-dimensional decision space
(direct response, intent clarification, toolchain retrieval, tool execution) covering core tool invocation
scenarios, allowing the agent to operate without reasoning over complex inter-tool connections. At
the execution level, it constructs the Tool World Navigation Model (TWNM), which encodes both
structural and behavioral dependencies learned from execution traces. By coupling these graph-based
representations with navigation strategies, TWNM enables retrieval, substitution, and multi-tool
composition as the ecosystem evolves. Execution feedback continually updates both TWNM and the
decision policy, forming a closed loop for robust adaptation to changing APIs.

Our main contributions are as follows: i) NaviAgent Architecture. The first bilevel agent framework
that decouples high-level task planning from low-level tool execution, enabling scalable task com-
position across thousands of tools while preserving efficiency. ii) Tool World Navigation Model.
A unified model that captures inter-tool structures and behavioral dependencies from execution
traces, and supports navigation and flexible search in large-scale tool ecosystems. iii) Closed-loop
Evolution. A feedback mechanism where execution traces continuously refine TWNM and decision
strategies, driving the co-evolution of representation and decision-making.

2 RELATED WORK

Single-Tool Invocation. Early research focused on enhancing LLMs’ single-tool invocation capa-
bilities. TALM (Parisi et al.| [2022) established foundational paradigms through predefined template
chains, while EasyTool (Yuan et al., [2024) introduced structured tool descriptions to reduce se-
mantic parsing overhead. For long-context scenarios, tool documentation compression techniques
preserved critical semantics via summarization, enabling low-resource tool usage (Xu et al., 2024)).
Toolformer (Schick et al., [2023)) innovatively embedded tool invocation APIs in pre-training, al-
lowing self-supervised learning of usage patterns from unlabeled data. In multimodal settings,
GPT4Tools (Yang et al.l 2023) improved visual tool generalization (e.g. object detection) by aligning
vision-language instructions with tool descriptions.

Multi-Tool Orchestration. As tool libraries expanded, HuggingGPT (Shen et al., |2023)) proposed
a four-stage pipeline (plan, select, execute, respond) for standardized multi-tool workflows, while
Chameleon (Lu et al., [2023) integrated heterogeneous tools (13+ types) via modular composition.
Similarly, a-UMI (Shen et al.|[2024) decomposes the tool-use process into planning, invocation, and
summarization, but uniquely assigns each stage to a dedicated lightweight LLM, enabling modular
updates and improved performance, especially for smaller models. For small toolkits, TRICE (Qiao
et al., 2023)) optimized single tool policies via execution feedback, and ToolFactory (Ni et al.|
2025)) automated tool adaptation through domain-guided code synthesis. However, these approaches
struggled with dynamic collaboration. For large-scale toolkits, Confucius (Gao et al.|[2024)) addressed
combinatorial explosion via hierarchical tool classification, and Tool Verifier (Mekala et al., [2024)
improved selection robustness through self-verification mechanisms.

Dynamic Planning & Adaptation. Static frameworks faltered under open-domain task complexity,
prompting dynamic decision mechanisms. ReAct (Yao et al.||2023b) pioneered the decoupling of
reasoning from tool calls through chain-of-thought planning. Building on this, Reflexion (Shinn et al.
2023)) enhanced error recovery by introducing iterative self-reflection, significantly improving fault
tolerance in complex tasks. For long-horizon tasks, path search techniques became pivotal: Tree-of-
Thoughts (ToT) (Yao et al., [2023a) formalized tool invocation as searchable reasoning trees with
dynamic branching, while ToolLLM (Qin et al.| 2023)) optimized search efficiency through functional
hierarchy-guided DFS. ToolChain (Zhuang et al.| 2023) further advanced this by employing heuristic
cost estimation to prioritize high-success-rate branches. Yet, these methods assumed static tool
relationships, failing to adapt to API drift or cross-domain tasks. ControlLLM (Liu et al.,|2024d) built
static dependency graphs for task decomposition, whereas ToolNet (Liu et al.,2024b)) dynamically
updated tool relations from historical calls, both limited by sparse multi-hop interaction data. This
gap motivates our TWNM that jointly models structural dependencies and behavioral adaptations to
capture evolving tool relations, aligning with findings that graph learning enhance LLM planning (Wu
et al., |2024; Besta et al., [2024).

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

[What is the menu of Qfresh restaurant at 123 Fifth Avenue, Manhattan, New York, on October 1, 20257]

=] Conventional Function Call Agent

tool_retrieval

First, retrieval the most relevant target APIs:

API1: GetShopDetail(), with time known, but weather, shop_id, and user_key parameters missing.
API2: GetShopAlIDetail (), with time known, but shop_id and user_key parameters missing.

Since GetShopAllDetail() requires fewer parameters, it is called first.

@

tool_retrieval toolchain_retrieval

Retrieval the API that can provide shop_id: GetShoplnfo() s e T BT G
API1: GetShopDetail(), the correspond toolchain is
0> 0o 0> 0

tool_retrieval

Retrieval the API that can provide user_key: GetUserInfo(), user login token is available internally. (__GetShopAllDetail() is discarded due to a high failure rate.)

tool_execution tool_execution

Execute GetUserInfo() Execute GetUserInfo()

tool_execution tool_execution

Execute GetShoplnfo() Execute GetShoplnfo()

tool_execution tool_execution

GetShopAllDetail() is unavailable. Need to call GetShopDetail() instead, but first obtain weather Execute GetWeather()

parameters. .
tool_execution

tool_retrieval .
- Execute GetShopDetail()

Retrieve the API that can provide weather: GetWeather(). Latitude and longitude are missing,
but were returned earlier by GetShoplInfof).

tool_execution
Execute GetWeather()
Oo—

tool_execution

d
Execute GetShopDetail() O/ O

filtéred

Figure 1: Conventional function call agents vs. NaviAgent.

A key challenge in function call agents is that API calls usually have interdependent parameters and
strict invocation orders. NaviAgent addresses this challenge by retrieving the entire toolchain before
execution, rather than calling APIs step by step. This global reasoning allows the agent to plan an
end-to-end path from the user query to the target API once and execute it directly. As illustrated in
Figure[I] NaviAgent avoids repeated retrievals and automatically discards unreliable APIs, leading to
more efficient and robust execution.

3.1 A FOUR-DIMENSIONAL DECISION AGENT

3.1.1 DEFINITION

The architecture achieves end-to-end decision-making through LLMs, formally modeled as a quin-
tuple (H, O, G, A, F') where H = {(0¢—;, a;—;)}_, represents historical states (containing state
sequence {o;} and action sequence {a;}), O denotes the observation, G represents the tool depen-
dency graph, A = {Direct Response, Intent Clarification, ToolChain Retrieval, Tool Execution}
defines the four dimensional decision space, where each action corresponds to directly answering the
user, requesting clarification, retrieving candidate tool dependency subgraph via graph pruning, or
execute selected toolchains, respectively. F': H x O x G — A specifies the decision function. At
each time step ¢, the agent constructs its decision context as follows. The historical context #, is
defined as

He = ((01-3,a:-3),...,(0t—1,01-1)) (D
where a sliding window maintains the most recent threeﬂ observation-action pairs, capturing the
agent’s recent decision trajectory. The pruned tool dependency subgraph G;_; = (V, E, W) is
computed from the agent’s state at the previous time step ¢ — 1, where V' is the node set, F is the edge
set, and W denotes the edge weights indicating dependency strengths. The subgraph is serialized
into a tree-structured textual format, ensuring a simplified yet sufficient representation for selected
toolchains. The overall decision function is then formulated as

ay :F(Ht,ot,géq))

!Our experiments demonstrate that utilizing the most recent three observation-action pairs achieves the best
balance between accuracy and efficiency.

Under review as a conference paper at ICLR 2026

where O; is the current observation, and a; € A is the action selected at time ¢.

3.1.2 MODEL TRAINING

For supervised fine-tuning, we adopt the standard language modeling objective, computing the
loss exclusively over the response or action generation segments. During training, the LLM-based
agent receives as input the most recent historical state-action pairs H;, the current observation Oy,
and the pruned tool dependency subgraph Gg,1,. The model is trained to maximize the likelihood
of the ground-truth action a; at step ¢, which is derived from high-quality, curated datasets (see
Appendix [E2]for details):

N
1
LspT = N ZInge(aZ‘ | He, O, Gsun) 3)

i=1

where N is the number of training samples and pg denotes the agent’s predicted probability over the
action space.

3.2 TooL WORLD NAVIGATION MODEL

Orequired 77 optional n structural —, behaivoral i
param ' param

api . .
P chain — = chain
AddTo
-

By Userld
Login

H 14 Jlogingycode
H By PW .

: _ = = = — — _ vt Lognayrw

H Db iogneycode

password ; |
product i quantity ! inventory
Login id situation

By Code

phone Check

Find
number CartidBy Inventory
Userld
AddTo
Cart
By Cartld

Graph Structure Graph Evolution
Figure 2: Tool dependency graph and its temporal evolution in TWNM. The left part shows the
overall dependency relations, while the right part illustrates the pruning and evolution of executable
subgraphs across time steps.

3.2.1 GRAPH CONSTRUCTION AND REPRESENTATION

While tool standardization frameworks (e.g., Anthropic’s MCP) help normalize basic API metadata,
challenges remain due to inconsistent parameter naming and undocumented tool dependencies. In
our framework, each tool consists of one or more APIs. We address these issues by applying semantic
similarity clustering to unify functionally equivalent parameters (see details in Appendix [A).

Definition. We construct a directed weighted graph G = (V, E, W) with API and parameter
nodes. Edges include structural chains, defined by API schemas (e.g., parameter-to-API and API-
to-parameter connections), as well as behavioral chains, derived from historical usage data (e.g.,
API-to-API and parameter-to-parameter dependencies) , as illustrated in Figure 2] (left). Each edge is
assigned a statistical weight w;; reflecting empirical invocation patterns.

N(’Ui — ’Uj)
N(vj)

where N (v; — v;) counts the number of successful invocations from v; to v;, and N (v;) is the total
number of invocations involving v;.

“

wij =

We formulate tool dependency discovery as a link prediction problem [Hamilton et al.| (2017)); Zhang
& Chen| (2018)); Zhou et al.| (2020); |Wu et al.|(2024). To model this, we employ a Heterogeneous
Graph Transformer (HGT) that integrates node-level feature fusion, type-specific encoding, and

Under review as a conference paper at ICLR 2026

relation-aware message passing. Each node is initialized with both semantic (BGE-based) and
structural features (including invocation statistics and degree information), and projected into a
unified embedding space. We stack two multi-head HGT layers to aggregate information from the
2-hop neighborhood. Notably, the attention mechanism incorporates a statistical edge weight w,,, to
reflect empirical call patterns:

(W k)T (Wi hl)

v

0482;7') = softmaxue_,\/r(v) (V. + bfak) + ﬁhw) (@)

where ;. (v) denotes the set of neighbors of node v under relation -, and h!,, h are the type-specific
encoded representations of nodes v and v (see Appendixfor details). W; ") and W(I];’T) are the

query and key projection matrices for head & and relation r, bgk) is an edge-type-specific bias, and

dy, = d/8 is the dimension per head. Then the concatenated head outputs are projected to obtain the
final node embeddings, which are then used for link prediction.

3.2.2 GRAPH TRAINING OBJECTIVE

The graph model is trained with a hybrid loss that combines cross-entropy and adaptive margin
objectives, both leveraging edge weights w,,, to capture graded dependencies.

Cross-entropy.
1
€

where p,,, is the predicted link probability, w,,,, is the statistical edge weight serving as a soft label,
and & denotes the set of all edges in the graph.

Lop === Y [Wulogpus + (1 — @y log(l = puy)] (6)

(u,v)€E

Adaptive margin. It assigns larger separation to higher-weight edges(i.e., w,, — 1), focus-
ing learning on critical dependencies. For each positive edge (u,v)™ € €T, k negative edges
{(u;, v)};?: , are sampled to construct positive and negative pairs for the margin loss.

Myy = Mo (]- + U(wuv)) (7)

k
1 1 _
EMargin = ﬁ % Z [mu’u - S(Ua 1})+ + S(Uj7 U) }+ (8)

(up)test j=1

where my is a base margin, o(-) denotes the sigmoid function, w,,, is the statistical edge weight,
s(u, v) measures the embedding similarity, (u,v)™ represents a positive edge, (u;,v)~ denotes a
negative sample, and [-], is the hinge function, and £7 is the set of positive edges.

The final training objective is a weighted sum of the two losses:
pe=po 7", 7 €(0,1))

L= Mt * EC’E + (1 - ,Uff) . [:Margin (10)

where p; is the weight for the cross-entropy loss at epoch ¢, 1 is the initial weight, and ~ is a decay
factor controlling the rate at which the contribution of the cross-entropy loss decreases over training.
This curriculum strategy first emphasizes accuracy, then discrimination, yielding accurate predictions
and structured embeddings.

3.2.3 GRAPH SEARCH

At inference time, the predicted link probabilities p,, are used as edge weights w,,,, in the tool
graph, forming the basis for weighted-graph search and toolchain planning. We adopt two representa-
tive search strategies adapted to this setting: an Alpha-Beta Pruning method that eliminates weak
toolchains using dynamic thresholds, and a heuristic search that evaluates candidate toolchains with a
composite fitness balancing connectivity, depth, and cumulative weights. Complete algorithms and
parameter details are provided in Appendix

Under review as a conference paper at ICLR 2026

3.2.4 GRAPH EVOLUTION

The tool world is inherently dynamic, evolving as new tools are introduced, obsolete ones are
deprecated, and usage patterns shift. As shown at the right of Figure [2f Attime T" — 1, selectable
paths are relatively uniform (similar line shades), indicating multiple equally viable routes. By 7,
the TWINM has learned to prefer a more optimal path (the top, darker line). At T + 1, when the
upper-left API becomes unavailable, the TWNM adapts by recomputing and selecting the lower route
as the new optimal path. This demonstrates the TWNM’s ability to learn from feedback and flexibly
adjust its planning in response to runtime changes. To systematically support such adaptability, we
design a graph evolution framework with three key mechanisms:

Incremental Node Integration. To accommodate newly introduced tools, we incrementally add
new nodes via semantic similarity clustering, initializing their parameters (e.g., Ngycc(v) = 0,
Nyqir(v) = 0 for successful and failed invocation counts) and the statistical weights of associated
edges (e.g., Wy, = 0) to ensure consistency with existing graph features.

Targeted Subgraph Pruning. Obsolete or rarely used tools are selectively pruned based on a
weighted combination of failure rates and invocation frequencies:

Prune(v) o< A - o(frai(v)) + (1 = A) - U(ffreq(v)_l) (11)

where A € [0, 1] controls the trade-off between failure rates and invocation frequencies, and fy,;
and fy..q denote failure rates and invocation frequencies, respectively.

Edge Attribute Propagation. Long-term stability and short-term adaptation are balanced by
updating the statistical edge weights w,,,, through a combination of historical trends and recent
invocation success rates:

N o NNrecent T days(y)
w(t) =7- wl(ttv 1) +(1 — 77) . SX/;ecent T dayS(v)

12)

succ
long—term weight

recent success rate

where 7 € [0, 1] balances long-term memory and recent observations, and Necent 7 days denotes
successful invocations within a sliding window of 7 days. These dynamically updated statistical

edge weights w,, are subsequently used as soft labels for supervising model training, as described in

Section[3.2.21

3.3 DYNAMIC EXECUTION & PATH RECOMBINATION

Robust and adaptive toolchain orchestration is achieved through a bilevel dynamic planning frame-
work, in which the agent manages action selection and the TWNM is responsible for toolchain
planning.

NaviAgent Workflow. When a user query arrives, NaviAgent decides whether it can respond
directly, clarify the user’s intent, or rely on external tools. For more complex queries, NaviAgent
decomposes the task into sub-tasks and categorizes them into two types: those that can be answered
or clarified immediately, and those that demand toolchain retrieval. Unlike traditional agents that
fetch tools sequentially, NaviAgent searches the existing tool dependency graph for a task-relevant
subgraph and selects a feasible execution path for subsequent execution. More detailed cases can be
found in the Appendix [C}

Path Recombination. During execution, if a fool execution action fails due to an an API is
unavailable or malfunctioning, the agent switches from execution to toolchain retrieval and invokes
its TWNM module. TWNM searches the current tool dependency graph to recombine nodes and
identify an alternative toolchain, which the agent then executes. This adaptive loop can be repeated
until completion or infeasibility, enabling dynamic path recombination that improves robustness and
task success in complex tool environments.

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Our experiments are based on two public API benchmarks: API-Bank|L1 et al.|(2023)
and ToolBench |Qin et al.[(2023). As real-time API execution is currently unavailable, evaluation
tasks are constructed in a simulated environment based on the extensive API lists and conversational
trajectories provided by these datasets. Tasks are categorized into three levels of complexity: Easy
(at most one API call or directly answerable), Medium (two API calls), and Hard (three or more
APIs). Details of task generation are provided in Appendix [D} For model fine-tuning, Qwen2.5-14B
is trained on 3,500+ examples sampled from our generated task set, with strict separation between
fine-tuning and evaluation data to prevent leakage.

Baselines and Models. The evaluation considers frameworks for real-world tool invocation, where
managing large tool sets and enabling autonomous planning are critical. We select representative
baselines in three major categories: (i) ReAct-based single-agent frameworks, where ReAct|Yao
et al.|(2023b) serves as the foundational approach alternating reasoning and tool use; (ii) enhanced
single-agent frameworks, where ToolLLM |Qin et al.| (2023) incorporates DFSDT-based planning
with a dynamic backtracking mechanism; and (iii) multi-agent frameworks, where a-UMI [Shen
et al.|(2024) organizes modular tool-use stages via lightweight LLMs. Experiments are conducted
across multiple foundation models, including open-source models (Qwen2.5-14B |Yang et al.| (2024),
Qwen2.5-32B [Tahmid & Sarker| (2024), DeepSeek-R1-Distill-Qwen-32B(DeepSeek-R1-32B) |Guo
et al.| (2025)) and closed-source models (DeepSeek-V3|Liu et al.|(2024a), GPT-40|Hurst et al.| (2024)),
as well as a fine-tuned lightweight model (Qwen2.5-14B).

Metrics. Our evaluation framework considers three metrics: task success rate (TSR), execution
steps (Steps), and task completion rate (TCR). TSR and Steps are the primary indicators, with TSR
measuring output quality by evaluating whether the system’s response fully satisfies the user’s request
(via LLM-based comparison with the ground truth), and Steps reflecting execution efficiency as the
total number of LLM calls required to solve a task, counted only for successfully completed tasks.
TCR serves as a supplementary metric, indicating whether the system produces a final output without
prematurely terminating. Tasks are considered incomplete if they exceed the maximum allowed
attempts, encounter parsing errors, or fail due to input token limits. Both TCR and TSR are reported
as percentages over all evaluation tasks. All experiments details of training and inference setup
provided in Appendix [E.2]

4.2 RESULTS

In this section, we present the main results on ToolBench, comparing NaviAgent with strong baselines
across various model sizes and task difficulties.

Model Method Easy Medium Hard All
TCR TSR Steps TCR TSR Steps TCR TSR Steps TCR TSR Steps
ReAct 324 263 352 245 168 3.67 248 200 3.64 271 206 3.61
Qwen2.5-14B ToolLLM 56.1 304 401 538 197 4.02 381 114 406 510 213 4.03
a-UMI 77177 392 553 779 250 588 676 133 6.07 755 269 574
Dynamic+H 642 503 4.18 60.1 323 438 61.1 224 468 61.6 358 438
ReAct 331 250 350 356 245 3,60 305 190 395 336 234 3.63
Qwen2.5-32B ToolLLM 405 318 3.67 486 303 385 495 238 410 462 293 3.83
a-UMI 784 493 566 788 260 6.02 77.1 229 658 783 328 594
Dynamic+H 88.1 611 429 817 415 460 794 308 531 832 454 4.66
ReAct 466 365 352 587 385 350 48.6 238 374 525 345 354
Deepseek-V3 ToolLLM 562 474 380 588 300 392 297 248 390 513 344 386
a-UMI 80.8 59.7 595 894 329 595 730 295 6.64 829 40.7 6.06

Dynamic+H 979 71.8 440 963 485 445 970 449 519 970 552 460

Table 1: Comparison of Baseline Frameworks on ToolBench. TCR and TSR are reported as percentages (%),
and lower Steps indicates higher efficiency. The best results are marked in bold and the second-best results are
marked with underline.

Under review as a conference paper at ICLR 2026

Qwen2.5-14B Qwen2.5-32B Deepseek-V3
100 | R

ReAct - TCR
ReAct - TSR

80 A ToolLLM - TCR
ToolLLM - TSR

60 A a-UMI - TCR
o-UMI - TSR
NaviAgent - TCR

401 NaviAgent - TSR

20 1

Easy Medium Hard Easy Medium Hard Easy Medium Hard

Figure 3: Evaluation of Frameworks on ToolBench Across Task Complexity.

Overall Performance and Efficiency. As shown in Table[I]and Figure 3] NaviAgent consistently
achieves the highest TSR across all foundation models and task complexities, with absolute values
of 35.8% on Qwen2.5-14B, 45.4% on Qwen2.5-32B, and 55.2% on Deepseek-V3. Compared to
the average performance of the baselines on all tasks, NaviAgent achieves substantial gains of 12.9,
16.9, and 18.7 percentage points on Qwen2.5-14B, Qwen2.5-32B, and Deepseek-V3, respectively.
Meanwhile, its execution steps remain close to those of the most efficient baseline, with differences
typically within one step, thereby maintaining a strong balance between solution quality and execution
efficiency. Consistent performance is also observed in our real-world API tests, with detailed results
provided in Appendix [FI}

Relative Improvement and Robustness. NaviAgent achieves an average TSR improvement of
over 10 percentage points compared to a-UMI, tthe strongest among the three baselines, across all
difficulty levels, with the most significant gain of 15.4 percentage points on Deepseek-V3 for Hard
tasks. We further observe that the relative drop in TSR from Easy to Hard tasks is substantially
smaller for NaviAgent than for most baselines, particularly on larger foundation models. For example,
on Deepseek-V3, NaviAgent’s TSR decreases by only 37.5% from Easy to Hard, while ToolLLM
and a-UMI experience drops of 47.7% and 50.6%, respectively.

Adaptability through Fine-tuning. Notably, with supervised E
fine-tuning, the smaller Qwen2.5-14B model achieves per- w
formance comparable to the larger 32B model (TCR 81.2% %o

vs 83.2%, TSR 51.3% vs 45.4%, see Figure] and Table [2]
D+N(Heur) row), indicating that fine-tuning can effectively
close the gap between model sizes.

Easy Medium Hard

4.3 ABLATION STUDY Figure 4: Effect of SFT on TSR.

To further validate the effectiveness of each component in our framework, we conduct two sets of
ablation studies.

Effect of base Components. We analyze the NaviAgent (Base) configuration, focusing on its
four-dimensional decision space in successful ToolBench cases with the Deepseek-V3 model. Specif-
ically, we categorize the proportion of cases resolved via Clarification (intent clarification to seek
additional details from the user), Re-retrieval (recovering from initial toolchain retrieval failures by
invoking alternative APIs), and Normal (tasks completed successfully in a single attempt without clar-
ification or re-retrieval). Results are summarized in Figure[5] demonstrating that the four-dimensional
decision space of the agent enables robust error recovery and flexible intent handling, contributing to
overall performance gains.

Effect of TWNM Components. Table[2]shows clear gains from each design choice. Compared
with the Base (agent only), NaviAgent (DynamicH) improves TSR by +11.8 points on average,
confirming the value of graph-based planning with search. Dynamic graphs further outperform static
ones on hard tasks (e.g., +5.1 on Qwen2.5-32B, +2.0 on GPT-40), and replacing Alpha-Beta with
heuristic search brings the best results, adding 2—3 points on all tasks and about 8 points on hard

Under review as a conference paper at ICLR 2026

0.7 Method Path

06 B ReAct =3 Normal
. ToollLM ZN Clarification
05 = UMl a0 Re-retrieval

NaviAgent(base]
& 04 = gent(base)

0.2
0.1

0.0
Easy Medium Hard Al

Figure 5: Comparison of TSR Distribution Between NaviAgent(base) and Baselines.

Model Method Easy Medium Hard All
TCR TSR Steps TCR TSR Steps TCR TSR Steps TCR TSR Steps
Base 464 360 538 505 229 539 620 163 576 51.8 25.6 5.47
Qwen2.5-14B Static+A 573 437 437 612 29.0 454 53.0 14.0 4.59 58.1 30.3 4.50

Dynamic+A 58.8 48.0 431 615 31.7 449 533 162 4.61 588 334 446
Dynamic+H 64.2 50.3 4.18 60.1 32.3 438 61.1 224 4.68 61.6 35.8 4.38

Base 7177 4777 542 758 327 6.00 869 19.0 7.04 789 344 6.05
Static+A 82.8 50.7 4.47 833 40.6 5.07 79.7 263 530 823 40.6 4.93
Dynamic+A 83.1 514 441 85.1 413 5.03 80.0 314 537 833 423 4091
Dynamic+H 88.1 61.1 429 81.7 41.5 4.60 794 30.8 531 832 454 4.66

Base 895 322 6.16 85.0 258 6.64 838.6 19.7 6.65 87.3 26.5 6.49
Static+A 923 458 5.14 925 358 539 915 20.8 599 922 356 545
Dynamic+A 92.6 514 5.06 933 38.0 533 914 219 593 926 38.6 5.38
Dynamic+H 935 512 482 924 381 523 87.8 332 546 91.7 412 5.15

Base 937 663 526 938 39.7 6.00 94.7 31.1 6.22 940 463 5.81
Static+A 929 705 431 958 474 466 934 31.1 505 943 51.1 4.64
Dynamic+A 932 71.6 436 957 50.5 4.68 933 333 497 944 534 4.64
Dynamic+H 97.9 71.8 440 963 48.5 445 97.0 449 519 97.0 552 4.60

Base 920 62.7 507 91.0 352 567 945 27.8 626 92.1 423 5.61
Static+A 99.5 721 421 983 43.6 535 97.8 379 5.85 98.6 515 5.10
Dynamic+A 99.9 764 4.18 99.5 453 540 98.1 414 592 993 544 5.13
Dynamic+H 99.6 753 4.01 945 489 471 989 483 5.12 97.1 572 458

Base 709 49.1 594 728 42.1 594 71.0 245 699 71.8 403 6.18
Qwen2.5-14B(SFT) Static+A 84.6 614 450 781 38.6 4.69 77.8 356 5.65 80.1 453 4.85
Dynamic+A 85.8 64.9 4.58 784 399 475 78.1 39.0 559 80.7 47.7 4.89
Dynamic+H 82.7 64.6 459 81.4 489 4.67 785 374 574 812 513 4.89

Qwen2.5-32B

Deepseek-R1-32B

Deepseek-V3

GPT-40

Table 2: Impact of Naviagent Variants on ToolBench. Base retains only the core agent; StaticA augments
with a static graph and Alpha-Beta pruning; DynamicA augments with a dynamic graph and Alpha-Beta pruning;
DynamicH augments with a dynamic graph and heuristic pruning, which corresponds to our proposed NaviAgent.
Metrics are reported as in Table[T] We also evaluate runtime, with detailed results reported in Appendix [F2}
cases for large models such as Deepseek-V3 and GPT-40, highlighting that dynamic graph planning
and efficient heuristic search are crucial for unlocking the reasoning and compositional potential of
frontier models. Consistent results are also observed on API-Bank (see Table[7). Additional statistics
on tool graph structure and link prediction are provided in Table|[§]

5 CONCLUSION

We presented NaviAgent, a bilevel planning framework that separates high-level decision making
from low-level execution over a tool world model, achieving robust gains on ToolBench and API-Bank.
It scales to thousands of tools with competitive efficiency and excels in complex, multi-tool tasks and
larger models. Remaining challenges include handling heterogeneous tool interfaces and dynamic
conditions, which may be tackled via unified protocols and adaptive graph construction. Beyond tool
reasoning, NaviAgent points to broader applications: by abstracting tools as agents, its evolving graph
and decision space can naturally extend to multi-agent collaboration. This perspective underscores
both the challenges of building adaptive, robust systems and the opportunities for advancing toward
more collaborative Al ecosystems.

Under review as a conference paper at ICLR 2026

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17682-17690, 2024.

Guoxin Chen, Zhong Zhang, Xin Cong, Fangda Guo, Yesai Wu, Yankai Lin, Wenzheng Feng,
and Yasheng Wang. Learning evolving tools for large language models. arXiv preprint
arXiv:2410.06617, 2024.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, Xin Xin, Pengjie Ren, Zhumin Chen,
Jun Ma, and Zhaochun Ren. Confucius: Iterative tool learning from introspection feedback by
easy-to-difficult curriculum. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 18030-18038, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671-680, 1983.

Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial intelligence, 6
(4):293-326, 1975.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, Lirong Xiang, Yuchen Liu, and Dongkuan Xu.
Toolnet: Connecting large language models with massive tools via tool graph. arXiv preprint
arXiv:2403.00839, 2024b.

Yanming Liu, Xinyue Peng, Jiannan Cao, Yuwei Zhang, Xuhong Zhang, Sheng Cheng, Xun Wang,
Jianwei Yin, and Tianyu Du. Tool-planner: Task planning with clusters across multiple tools. arXiv
preprint arXiv:2406.03807, 2024c.

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui, Ziheng Li, Xizhou Zhu, Lewei Lu, Qifeng
Chen, Yu Qiao, Jifeng Dai, et al. Controlllm: Augment language models with tools by searching
on graphs. In European Conference on Computer Vision, pp. 89—-105. Springer, 2024d.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
Advances in Neural Information Processing Systems, 36:43447-43478, 2023.

Dheeraj Mekala, Jason Weston, Jack Lanchantin, Roberta Raileanu, Maria Lomeli, Jingbo Shang, and
Jane Dwivedi-Yu. Toolverifier: Generalization to new tools via self-verification. arXiv preprint
arXiv:2402.14158, 2024.

Xinyi Ni, Qiuyang Wang, Yukun Zhang, and Pengyu Hong. Toolfactory: Automating tool generation
by leveraging llm to understand rest api documentations. arXiv preprint arXiv:2501.16945, 2025.

10

Under review as a conference paper at ICLR 2026

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai Jia, Huajun Chen, and Ningyu Zhang. Making
language models better tool learners with execution feedback. arXiv preprint arXiv:2305.13068,
2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. From exploration to mastery: Enabling llms to master tools via self-driven interactions.
arXiv preprint arXiv:2410.08197, 2024.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu, and
Ji-Rong Wen. Tool learning with large language models: A survey. Frontiers of Computer Science,
19(8):198343, 2025.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
3505-3506, 2020.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—68551,
2023.

Jonathan Shapiro. Genetic algorithms in machine learning. In Advanced course on artificial
intelligence, pp. 146—168. Springer, 1999.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and
Fei Huang. Small llms are weak tool learners: A multi-llm agent. arXiv preprint arXiv:2401.07324,
2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154-38180, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Saad Tahmid and Sourav Sarker. Qwen?2. 5-32b: Leveraging self-consistent tool-integrated reasoning
for bengali mathematical olympiad problem solving. arXiv preprint arXiv:2411.05934, 2024.

Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall, Michael B
Gotway, and Jianming Liang. Convolutional neural networks for medical image analysis: Full
training or fine tuning? IEEE transactions on medical imaging, 35(5):1299-1312, 2016.

Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timothy Baldwin, and Haonan Li. Toolgen: Unified
tool retrieval and calling via generation, 2024a. URL https://arxiv. org/abs/2410.03439, 2024.

Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Siwei Wang, Bohang Zhang, Jiarui Feng, Hong
Cheng, Wei Chen, Yun Xiong, et al. Can graph learning improve planning in llm-based agents? In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Yang Xu, Yunlong Feng, Honglin Mu, Yutai Hou, Yitong Li, Xinghao Wang, Wanjun Zhong,

Zhongyang Li, Dandan Tu, Qingfu Zhu, et al. Concise and precise context compression for
tool-using language models. arXiv preprint arXiv:2407.02043, 2024.

11

Under review as a conference paper at ICLR 2026

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction. Advances in Neural Information Processing
Systems, 36:71995-72007, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809—-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dongsheng Li, and
Deqing Yang. Easytool: Enhancing llm-based agents with concise tool instruction. arXiv preprint
arXiv:2401.06201, 2024.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
Al open, 1:57-81, 2020.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with a* search. arXiv preprint arXiv:2310.13227, 2023.

12

Under review as a conference paper at ICLR 2026

A GRAPH CONSTRUCTION

Original API Original Parameter | Parameter Description Standardized Pa- | Cluster ID
rameter
get_locations name Name of the city. city_name 1
get_hospital_list city The city where the hospital is | city_name 1
located.
get_hospital_list name Name of the hospital. hospital_name 2
find_cheapest_prescription | city_name The name of the city where the | city_name 1

user wants to search for the med-
ication.

Table 3: Standardization of API Parameter
B DETAILS OF GRAPH METHOD

B.1 HGT NETWORK

This section provides a detailed description of the feature construction, network architecture, and link
prediction head used in our heterogeneous graph transformer (HGT) for tool dependency modeling,
supplementing the main text.

Feature Fusion. Each node v is initialized by its semantic and structural features:

h, = BGE(x,) ® 0(ni*®) @ o(rs") @ o(deg'™) & o (deg?™") (13)

v v

where BGE(x,) encodes the node description d, using BGE-Large-en-V1.5, n5%“°® and nf%" are
the counts of successful and failed invocations for node v (computed from historical invocation logs),
psuce = psuce [(psuce 4 plail) denotes the successful ratio, and deg’™ and deg2"* are the in-degree

and out-degree of node v, respectively.

Node Encoder. To project heterogeneous nodes into a unified embedding space, we apply type-
specific linear transformations, followed by non-linear activation and normalization:

h, = LayerNorm (LeakyReLU (W, (,)hy + b.(1))) (14)

where W_ ;) and b, are the learnable weight matrix and bias for node type 7(v) € {api, param},
respectively.

WeightedHGTConv Layer. We stack two multi-head heterogeneous graph transformer (HGT)
layers (each with 8 attention heads) to aggregate information from the 2-hop neighborhood. For a
center node v and its neighbor u € N,.(v) under edge type r, the attention coefficient at head k is
computed as:

k,r k,r
SR T(WETn))
NG

\%\%
all) = softmaz,cp. () ((+b) + wu> (15)

where Wg) and ng’r) are the query and key projection matrices for head & and relation r, bgk)

is an edge-type-specific bias, W, is the statistical edge weight from node to v (see Eq.[d] where
w;; is defined for nodes v; and v;), and dj, = d/8 is the dimension per head. The normalization
s0ftmaz, ¢ v, () is performed over all neighbors u of v under relation . The output embedding for
node v:

8
h!' = LayerNorm | h) + LeakyReLU | W, - Concat Z Z a,(,ff)’r>W§}“”')h1L/
reER ueN, (v) k=1
(16)
where Wg/k) is the value projection for head k and relation 7, W, € R8> ig the output projection,
and Concat[-]3_, denotes concatenation of outputs from all heads.

13

Under review as a conference paper at ICLR 2026

Link Prediction. Given the final node embeddings, the link probability between node u and node v
is computed as:

Puv = 0 (W, - Concat(hy,, hy) + b) (a7)

u’
where W, and b are learnable parameters, and o(-) denotes the sigmoid function.

This completes the detailed description of our HGT-based network architecture.

B.2 GRAPH SEARCH ALGORITHM

This section provides detailed descriptions of the Alpha-Beta pruning and hybrid heuristic search
algorithms, including all parameter settings, dynamic thresholding strategies, and algorithmic pseu-
docode.

Alpha-Beta Pruning. This algorithm |[Knuth & Moore|(1975)) is adapted for backward search over
the tool dependency graph G = (V, E, W), parameterized by a quintuple («, 5, H, D,C), where
a € R (initialized as oy = 0.4) is the lower-bound threshold for acceptable path scores, and
B € R (with By = 0.9) is the upper-bound for candidate evaluation. The dynamic threshold
function H(d) = max(0.3,0.5 x 0.9%) applies exponential decay to balance search depth d and
semantic relevance. The depth attenuation factor D(d) = 1/(1 + v/d) penalizes longer paths. The
connectivity constraint C(u, v;) = PathLength(u, v;) < 5 ensures that generated subgraphs remain
compact, where v; denotes the target node (either an API node or a parameter node). The parametric
scoring function is defined as:
Wy + H(U — Uapi)wu 2P +]I(’U, — ’Uparam)wu pparam
Sup = — e 3 : X D(d) (18)
where w,,,, is the direct edge weight from node u to its predecessor v (see Section @), w,
and w,,_,,param denote the edge weights from u to the target API node vfpi and target parameter node

™™ respectively, included only if the corresponding indicator function I(-) is active.

api
—vpP

During reverse depth-first search, we apply two pruning rules: Alpha-pruning is triggered at parameter
nodes when S, < H(d) and Sy, < «, while Beta-pruning is triggered at API nodes when
Suv > B. To further improve efficiency, the pruning thresholds are dynamically adjusted via
o/ = max(a, Sy, % 0.85) and 8 = min(f5, Sy, x 1.15), reducing the search time complexity from
O(b*) to O((v/b)*) Knuth & Moore| (1975), where b is the branching factor and k is the maximum
search depth. See Algorithm [T[for details.

Heuristic Graph Search with Dynamic Pruning. Our hybrid heuristic search algorithm combines
simulated annealing Kirkpatrick et al.|(1983) and genetic algorithm strategies Shapiro| (1999)). It
is parameterized by a sextuple (7o, 7, P, dmax, Mg, F,) (see Algorithm , where 7y = 200 is the
initial temperature that determines the probability of accepting suboptimal solutions and balances
exploration and exploitation, 7 = 0.7 is the cooling rate that controls the annealing schedule
Tresr = 0 TF/5T;, P = 20 is the population size, dpax = 4 is the maximum search depth, and
My is a temperature-sensitive mutation operator with adaptive intensity § = |7 /100]. Candidate
solutions are evaluated using a composite fitness function:

Foo = 0.35C, + 0.151og(1 + p,) + 0.3D, + 0.15W,, + 0.05C, (19)

where C, (node compactness) measures the closeness centrality of API nodes, p,, (parameter density)
is the ratio of parameter nodes within the subgraph to promote concise yet informative solutions, D, =
0.2¢~4/10 4 0.8¢="/3 (depth penalty) penalizes overly deep or complex dependency structures, with
d as the average depth and n as the total node count, W,, (weight quantification) encourages solutions
with higher cumulative edge weights, and C, (path complexity) evaluates structural simplicity,
favoring solutions with less intricate connectivity.

We parallelize the subgraph search for different target APIs in Algorithm[2] This approach processes
the population evolution tasks independently and concurrently, thereby eliminating the computational
bottleneck of the original algorithm’s serial loops.

14

Under review as a conference paper at ICLR 2026

Algorithm 1 Alpha-Beta Backward Pruning
InplIt G, Vtargets Qinit = 0.4, Binit =0.9, dmaz =5
Output Gp
Initialize queue @ With Vigrget, Viisitea = (Ut}
while Q not empty do
v =Q.pop()
for p € predecessors(v) do
if p not in V,;5;¢cq then
s = 5007”6(]9 — UuU,p — Utarget, P — 'Utargetfparam)
d = current_depth(p)
H(d) = max(0.3,0.5 x 0.9%)
if p € Vparam then

if s <H(d) A s < o then
continue
end if
if s > (5 then
break
end if
end if
a = maz(a, s x 0.85)
B = maz(B,s x 1.15)
Vvisited-add(p)
Q.append(p)
end if
end for
end while
V;ub = {U|U S Vuisited A PathLength(ua vtarget) S 5}
return Gy, = (Vsup, B

Figure 6: Alpha-Beta Backward Pruning
C CASES

The following three cases exemplify the bilevel planning mechanism through four core actions: 1)
Direct Response: resolves user queries using pre-trained knowledge. 2) Intent Clarification: initiates
interactive dialogue to disambiguate vague requests. 3) ToolChain Retrieval: works with the TWNM
to construct a pruned tool dependency subgraph, which is then returned as an executable toolchain.
4) Tool Execution: executes the required APIs based on the dependency subgraph, with parameter
validation and state monitoring. This design achieves centralized decision control through the agent’s
orchestration authority while enabling dynamic resource optimization via the TWNM'’s graph-based
toolchain generation, ensuring both efficiency and robustness of the our framework in complex task
environments.

C.1 CASE1

QUERY
* Could you provide me with information about gastroenteritis? Additionally, please help me
log my health data from March 5, 2025.
FIRST ROUND: INTENT ANALYSIS

1. Gastroenteritis Inquiry

ACTION: Direct Response
CONTEXT:

{

"analysis": "1. Common sense judgment: Gastroenteritis is a

15

Under review as a conference paper at ICLR 2026

Algorithm 2 Hybrid Heuristic Pruning Algorithm

Require: Dependency graph G, target API set A, initial temperature 7y = 200, cooling rate = 0.7,
population size P = 20, maximum search depth d,,q, = 4
Ensure: Optimized dependency subgraph G*
Initialize optimized subgraph set S <)
2: for each target APl a € A do
Set temperature T « T
4: Generate initial population Pop (size P) for APl a
Set iteration count k < 0
6: while 7 > 1and £ < 10 do
Evaluate fitness F,, for each chromosome in Pop

8: Select elite chromosomes (top 60% based on fitness)
Generate offspring via crossover operation
10: Apply temperature-sensitive mutation My with intensity § = |7 /100
Update population Pop with offspring
12: Update temperature: 7 < n'+t%/5T

Increment iteration count k <— k + 1

14: end while

Select best chromosome from Pop based on F,,
16: Decode chromosome and build API-specific subgraph G,

Add subgraph G, to optimized subgraph set .S
18: end for

Merge all subgraphs in S into final optimized subgraph G*

20: return G*

Figure 7: Hybrid Heuristic Pruning Algorithm

medical condition within general knowledge. 2. No API
required for definition explanation. 3. Parameter
verification not applicable",

"action": "direct_answer",

"intent": "1. Provide medical definition of gastroenteritis
2. User’s explicit request for condition explanation",
"target_api" H mw ",

"params": {1},

"recall_description": "",

"answer": "Gastroenteritis is inflammation of the stomach

and intestines,

typically resulting from bacterial toxins or viral
infection. Common

symptoms include diarrhea, vomiting, and abdominal cramps."

}

2. Health Data Logging

ACTION: TooChain Retrieval
CONTEXT:

{

"analysis": "1. Health data recording requires specialized
API 2. No matching API in candidate list 3. Critical
parameters provided:

user_1id=12345, blood_pressure=130/80, heart_rate=90,
timestamp=2025-03-05",

"action": "retrieve_api",

"intent": "1. Store user health metrics 2. Provided
parameters: blood pressure, heart rate, user ID, timestamp",
"target_api m.e o wn ,

"params": {1},

16

Under review as a conference paper at ICLR 2026

"recall_description": "HealthDataAPI (description: Records
user health

metrics, input: user_id:string/unique identifier,
blood_pressure:string/systolic & diastolic,
heart_rate:integer/bpm,

timestamp:datetime/measurement time; output:
record_id:string/new entry identifier)",

"answer": "I need to retrieve a health data recording API to
complete this action. Should I proceed with API retrieval?"

}

Then, the BGE model retrieves two candidate APIs (api-RecordHealthData, api-
QueryRegistration) based on the recall description above, after which the TWNM is invoked
to acquire the corresponding call chains for these APIs (see Figure[g).

API Dependency Tree

param-patient_name
[Type] str
Patient name

[
[

api-QueryRegistration
tin] Queries paint regstraton

Fur
param-start_time

param-date
[Type] str
Date of stock price
- api-GetToday (Similarity:0.52)

[Type] str
Start time (%Y-%m-%d %H:%M:%S)

param-end_time
api-QueryHealthData param-health_data

[Type] str
End time (%Y-%m-%d %H:%M:%S) [Function] Queries health cta by time span

Health data format; [..]
api-QueryHealthData (Similarity:1.00)

param-user_id "
[Type] str S
User ID —_—

‘api-RecordHealthData
unclion] Records user healt data

param-time.
[Type] str
Time for alarm

Figure 8: Pruned Tool Dependency Subgraph of Casel
SECOND ROUND: ITERATIVE API CHAIN EXECUTION

In this round, the agent selects and executes the optimal API chain, with api-RecordHealthData
designated as the target API.

ACTION: Tool Execution
CONTEXT:

{
"action": "call_api",
"api_name’: ’api-QueryHealthData’
"params": {

"user_id": "12345",
"start_time": "2025-03-05",
"end_time": "2025-03-05"
}
}
TOOL RESPONSE:

{{"name’ :"blood_pressure’,’value’:"130/80"}
{"name’ :"heart_rate’,’value’ :" 90’ }}

THIRD ROUND: ITERATIVE API CHAIN EXECUTION

ACTION: Tool Execution
CONTEXT:
{

"action": "call_ api",

17

Under review as a conference paper at ICLR 2026

"api_name’: ’api-RecordHealthData’

"params": {
"user_id": "12345",
"time": "2025-03-05 14:30:00",
"health_data": "[{’name’:’blood_pressure’,’value’:”7130/80"},
{"name’ : " heart_rate’,’value’ : 790" }]"
}
}
TOOL RESPONSE:
Finished

FOURTH ROUND: API OUTPUT VERBALIZATION

ACTION: Direct Response

CONTEXT
{
"analysis": "1. API parameters verified and complete
2. Successful data storage confirmation",
"action": "direct_answer",
"answer": "Your health data has been successfully recorded..."

LAST ROUND: RESPONSE SYNTHESIS

ACTION: Direct Response
CONTEXT:

l.Inflammation of gastrointestinal tract
Common causes: Viral/bacterial infections
Key symptoms: Diarrhea, vomiting, abdominal cramps
Management: Hydration and rest

2. Health Data Record Confirmation:
All parameters validated successfully through api-
RecordHealthData. No data integrity issues detected.

C.2 CASE2

QUERY

* Is Beijing in China? What is the current weather forecast for the location at latitude 40.7128
and longitude -74.0060 in metric units?

FIRST ROUND: INTENT ANALYSIS

1. Common Sense

ACTION: Direct Response
CONTEXT:

{’dependency_rank’: 1,
"intent’: ’'Is Beijing in China?’,
"analysis’: ’1. The specific problem addressed by this
action is to determine if Beijing is located within China.
2. The user input directly asks about the
geographical location of Beijing. 3. This is a common
sense question and does not require an API call. 4. No
parameters are needed for this decision.’,

18

Under review as a conference paper at ICLR 2026

"action’: ’'direct_answer’,
"answer’: ’'Yes, Beijing is in China.’}

2. Get Weather

ACTION: TooChain Retrieval
CONTEXT:

{’ dependency_rank’: 2,

"intent’: 'What is the current weather forecast for the
location at latitude 40.7128 and longitude -74.0060 in
metric units?’,

"analysis’: ’1. The specific problem addressed by this
action is to retrieve the current weather forecast for a
specific location using latitude and longitude coordinates.
2. This is not a common sense question and requires an
external API call. 3. The API matching phase will prioritize
APIs that can provide weather forecasts based on geographic
coordinates. 4. Required parameters are latitude and
longitude, which are provided in the user input.’,

"action’: 'retrieve_api’,

"recall_description’: 'WeatherAPI (description: Retrieve
current weather conditions by geographic coordinates, input:
latitude:float/latitude coordinate;
longitude:float/longitude coordinate; output:
temperature:float/current temperature;
humidity:float/current humidity;

wind_speed:float/current wind speed)’}

Then, the BGE model retrieves three candidate APIs (api-current_weather_data_of_a_loca-
tion_for_weather, api-by_geographic_coordinates_for_rapidweather, api-current_for_foreca
_weather) based on the recall description above, after which the TWNM is invoked to

acquire the corresponding call chains for these APIs (see Figure).

API Dependency: api-current weather_data_of a_location_for_weather

api-current_air_qu param-lat

[Type] string
[Description) Latitude

m
[Description] Search query

Figure 9: Pruned Tool Dependency Subgraph of Case2

SECOND ROUND: ITERATIVE API CHAIN EXECUTION

In this round, the agent selects and executes the optimal API chain, with api-by_geographic
_coordinates_for_rapidweather designated as the target API.

ACTION: Tool Execution
CONTEXT:

19

Under review as a conference paper at ICLR 2026

"action": "call_api",

"api_name’: ’"api-by_geographic_coordinates_for_rapidweather’
'params’: {’param—-lat’: "40.7128’, ’'param—-lon’: '-74.0060"}

}

TOOL RESPONSE:
{temperature:11.0°C, feels:8.0°C, wind_speed:5.1 m/s}

THIRD ROUND: API OUTPUT VERBALIZATION

ACTION: Direct Response
CONTEXT:

{
"analysis’: "1. The specific problem addressed by this
action is to retrieve the current weather forecast for a
specific location using the provided latitude and
longitude. 2. The user input directly provides the
necessary parameters (latitude and longitude) and
specifies the need for metric units.
3. The target API ’'api-
current_weather_data_of_a_location_for_weather’ has
already been successfully called and its result is
available. 4. The required parameters (lat and lon) are
complete and the API call has been confirmed
successful.",
"action’: ’"direct_answer’,
"answer’: ’'The current weather in New York is clear sky
with a temperature of 11.0°C, feels like 8.0°C, and the
wind speed is 5.1 m/s from the west-southwest.’}

LAST ROUND: RESPONSE SYNTHESIS

ACTION: Direct Response
CONTEXT:

Beijing is in China. The current weather in New York is
clear sky with a temperature of 11.0°C, feels ike 8.0°C, and
the wind speed is 5.1 m/s from the west-southwest.

C.3 CASE3

QUERY

* Could you tell me what the weather will be like tomorrow?

FIRST ROUND: INTENT ANALYSIS

1. Intent Clarification

ACTION: Intent Clarification
CONTEXT:

{

"analysis": "1. Weather data needs to be queried in real
time —-> not common sense\n2. Required parameter (location)

is missing",

"action": "clarify_intent",
"recall_description": "",
"answer": "Which city do you want to query tomorrow’s

20

Under review as a conference paper at ICLR 2026

weather?"

}

2. User Answer
User Answer:

I’'m in BeidJing.

SECOND ROUND: INTENT ANALYSIS

1. Get Weather

ACTION: TooChain Retrieval
CONTEXT:

{’dependency_rank’: 1,
"intent’: 1. Query the weather forecast for tomorrow in
Beijing 2. Extract location: Beijing and time: tomorrow
from user input’,
"analysis’: ’1. The specific problem addressed by this
action is to retrieve
the weather forecast for tomorrow in Beijing. 2.
input directly provides the location (Beijing) and the
time frame (tomorrow). 3. Since no candidate APIs are
available,
for weather forecasting. 4. There are no parameters
provided by the user that can be used directly with an
API, so the system must retrieve an API that can
accept location and time as parameters.’,
"action’: ’'retrieve_api’,
"recall_description’: ’'WeatherForecastAPI (description:
Retrieve weather forecast for a given location and date,
input: location:string/city name;
date:date/forecast date; output: weather:string/weather
condition, temperature:float/forecast temperature)’}

The user

the system needs to retrieve an appropriate API

Then, the BGE model retrieves three candidate APIs (api-getweatherforecast_for_apjoy_
weather_forecast, api-weather_report_for_the_weather_api, api-location_info_for_foreca
_weather) based on the recall description above, after which the TWNM is invoked to

acquire the corresponding call chains for these APIs (see Figure[T0).

api-current_for
Functon] Curon

param-iocation
[Type] string
[Description] Target location E— api-location_info_for_foreca_weather]
P cather. ther_api
param-cityname
2 — [Type] string
[Description] City name

vvvvv i

param-city
[Type] string
[Description] City name for air quality

API Dependency: api-getweatherforecast_for_apjoy_ws

param-location
[Type] string
[Description] Target location

Figure 10: Pruned Tool Dependency Subgraph of Case3

THIRD ROUND: ITERATIVE API CHAIN EXECUTION

In this round,

the agent

ACTION: Tool Execution

CONTEXT

21

selects and executes the optimal API chain,
getweatherforecast_for_apjoy_weather_forecast designated as the target APL

Under review as a conference paper at ICLR 2026

"action": "call_api",
"api_name’: ’"api-getweatherforecast_for_apjoy_weather_forecast’
"params’ : {’location’: ’'Beijing’}

}
TOOL RESPONSE:

{temperature:25°C, humidity:60%}

LAST ROUND: API OUTPUT VERBALIZATION

ACTION: Direct Response
CONTEXT:

The weather forecast for tomorrow in Beijing is partly
cloudy with a temperature of 25°C and humidity of 60%.

D DATA GENERATION

Problem and API Dependency Chain Generation Prompts: Automatically construct a chain of
calls with strict parameter matching based on a randomful tree structure. This process involves
tracing initial parameters from the leaf nodes and validating results at the root node to ensure that the
generated problem aligns with the authentic API dependency logic of real-world scenarios.

1. Core Requirements:
- Generate a natural-language question where:
+ Must explicitly contain initial parameters for leaf-
node APIs
« Implicitly requires chained API calls from leaf to
root node

+ Root node API’s output directly resolves the user’s
problem

2. Dependency Chain Rules:
— Build parameter-passing paths where:
« Parent API outputs must exactly match child API inputs (same
parameter names & data types)
+ Root node API must be called last in the chain

+ The output of every leaf-node API must be utilized in
downstream

APIs or final results.
«+ All input values must originate from either:
Explicitly stated in the question context
Generated by previous API outputs (no synthetic values)

3. Parameter Constraints:
- Enforce strict value inheritance:
« Path/query parameters must use verbatim values from:
— User’s question text
— Preceding API response.data fields
« Prohibit value transformation/format conversion

— Root API output must contain realistic values matching
its schema

4., Validation Requirements:
- Reject generation if:
+ Missing parameter dependency between APIs
« Input sources can’t be traced to question/prior responses

22

Under review as a conference paper at ICLR 2026

« Output fields don’t fulfill next API’s input requirements

5. Response Structure:

{

"query": "<Real-world scenario requiring sequential API
calls>",
"answer": "<Solution derived from root API output>",

"call_chains": [

{

"api_name": "<Leaf-node API>",
"input": {
"<param>": "<value explicitly stated in user query

or previous API output>"

y

"output": {
"status": "success",
"data": {"<field>": "<output used by next API>"}
}
I
{
"api_name": "<Root-node API>",
"input": {
"<param>": "<value from previous API output>"
b
"output": {
"status": "success",
"data": {"<field>": "<realistic resolution to
query>"}

}

]
}

The API dependency tree structure is as follows:

E IMPLEMENTATION DETAILS

E.1 DATASET

This table d] system displays the sample counts of the ToolBench and API-Bank datasets, as well as
the distribution of their difficulty levels.

Dataset Easy Medium Hard Total

API-Bank 57 176 211 444
ToolBench 148 208 105 461

Table 4: Dataset Samples and Difficulty Distribution

E.2 TRAINING

We fine-tuneTajbakhsh et al.|(2016) our model using Qwen2.5-14B model with full parameter tuning.
The model is trained with a maximum sequence length of 8192. We utilize a learning rate of 2e-5 and
employ the AdamW optimizer with a cosine learning rate scheduler. The training process includes 10
epochs with a per-device batch size of 1 for both training and evaluation. Gradient checkpointing is
enabled to reduce memory usage, and gradient accumulation is set to 4 steps to effectively manage
smaller batch sizes. We apply a weight decay of 0.01 and set the maximum gradient norm to 1
for stable training. A warmup ratio of 0.03 is used to gradually increase the learning rate at the
beginning of training. The training is executed on 8 Ascend 910B 64G GPUs within 10 hours. The
DeepSpeedRasley et al.|(2020)) library is leveraged for efficient distributed training.

23

Under review as a conference paper at ICLR 2026

E.3 INFERENCE
E.3.1 NAVIAGENT INFERENCE PROMPTS

Inference prompts are based on intent decomposition and dependency prioritization to achieve
automatic parameter completion and error handling. They generate standardized JSON responses
through hierarchical decision-making.

You are an intelligent API coordination system. Respond
strictly according to the following rules:

Decision Architecture
1. x*Intent Analysisxx
— Decompose compound requests into independent ordered
sub—intents
+ Sequential dependencies first, Must execute in
declared order
+ Parallelizable sub—-intents last
+ Dependency_rank numbering for ordered execution
- Validate parallel execution eligibility:
« No overlapping data requirements
+ No sequential dependencies
+ Distinct parameter sets

2. xxAtomic Action Formationxx
+ For each validated sub-intent:
- Create self-contained decision unit, action must
implement full
Decision Logic Flow
— Maintain state separation between parallel processes
- Focus analysis scope per sub-intent
- Each action’s analysis focuses only on its own
intent
— Each action analysis only solves one intent
- Must execute each action in declared order

Decision Logic Flow

1. x*Common Sense Judgment Phasexx
- Input question —-> Knowledge base matching
Belongs to common sense —> action=direct_answer
Requires external data —-> Proceed to Phase 2

2. *xAPI Matching Phasexx
1. If candidate_apis is empty —-> action=retrieve_api
2. Match intent with API list:
API prioritization:
— Complete parameters from user input
— Minimal missing parameters
— Shortest dependency chain
API matching success:
— Validate Observation in user input to confirm
target API success:
—-> If successful -> action=direct_answer
—-> No explicit success indication:
a) Complete parameters -> action=call_api
(execute based on 3.1 dependency resolution)
— If Rule 3.1lc applies —-> action=direct_answer
b) Missing parameters —-> Proceed to Phase 3
API matching failed -> action=retrieve_api

24

Under review as a conference paper at ICLR 2026

3. xxParameter Completion Phasexx
— Check required parameter set:
All parameters ready -> action=call_api
The target API does not require parameters —-> action=call_api
Missing parameters exist:
a) Can be completed via dependent APIs —-> Execute
Rule 3.1
b) Use Retrieval APIs resolve parameter deficiencies
in API
dependencies —-> action=retrieve_api
c) Requires human confirmation —-> action=clarify_intent

Technical Rule
3.1 Dependency Resolution Rules
a) Check required parameters of target API, first call
dependent APIs.
b) For each missing parameter, select APIs from
dependencies not marked
as failed.
c) If an input parameter of an API is unavailable, use
retrieve_api to
call another API that generates it from known parameters.
—> action=retrieve_api
d) Success propagation: Completed dependency chain
—-> action=direct_answer

3.2 Known Failure Handling
a) Failed APIs are recorded in failed_apis
b) Prioritize non-failed candidate APIs

Response Specification (Mandatory JSON Format)
[{
"dependency_rank": 1,
"intent": "1. <precisely describe the specific problem
addressed by the current action>
2. <extract data segments directly related to
the subtask from user input>",
"analysis":
"<Four-level reasoning:
1.Explicitly state the specific decision-making sub-
intent
addressed by this action
2 .Common sense judgment basis
3.API matching logic (if applicable)
4 .Parameter completeness verification>",

"action": "call_apil|direct_answer|retrieve_apil|clarify_intent",
"target_api": "API name (mandatory for call_api)",
"params": {"parameter": "value (mandatory for call_api)"},

"recall_description":
"When action=retrieve_api: Use ’APIName (description:
API functionality, input: param:type/description;
output:
param:type/description)’ format with only core
parameters (e.g.,
"StockAPI (description: Query stock price by symbol,
input: symbol:string/stock symbol; output:
price:float/current price)’)",

"answer": "When actionin[direct_answer,clarify_intent]:

25

Under review as a conference paper at ICLR 2026

Natural language response (interrogative sentences
required) "

}H]

Response Specification

Added constraint:

- JSON array items MUST be sorted by dependency_rank in
ascending order

- Sibling sub-intents should have consecutive ranks

Termination Conditions

[OR]Generate final answer

[OR]Target API must be executed successfully, as shown in
the status

Enforcement Constraints
1. Parameter names must strictly match API documentation
2. The ’"answer’ field for clarify_intent must contain
question words
3. Prioritize calling parent node APIs
4. When action in [retrieve_apil]:
— The recall_description field serves exclusively as an
API retrieval identifier from predefined repositories.
- parameter descriptions must distinguish between input
and output parameters, retaining only essential
parameters
— Each recall_description can only recall one
api,multiple APIs require
multiple actions.
5. APIs absent from Candidate APIs MUST NOT be invented
6. When action=call_api is permitted only when candidate
APIs exist and the target_api is present in the candidate
APTs.
7. The "action" field must be strictly limited to one of the
following four predefined operation types: call_api,
direct_answer, retrieve_api or clarify_intent.
8. Use retrieve_api only when:
— Required parameters unavailable in call_api action
9. Use call_api only when:
- The target_api is not in the list of successfully
executed APIs

Candidate API Information:

E.3.2 INPUT GENERATION PROMPTS

Input generation prompts: Integrate current queries with observational data to formulate the final
input, ensuring informational completeness.

User input:{user_input}\nPlease generate the final response
based on the following data:
{observation}
Requirements:
1. Integrate all available data
2. Indicate data limitations (if any failed APIs exist)
3. Use natural and fluent English

26

Under review as a conference paper at ICLR 2026

E.3.3 API SIMULATOR PROMPTS

API simulator prompts are based on historical data reuse (Casel) and intelligent simulation gen-
eration (Case2/3). They achieve automated emulation of API chains through standardized JSON
responses. The priority strategy is as follows: historical matching > structural cloning > contextual
simulation.

Act as an API Chain Simulator to generate responses based on
historical call chains.
Follow these rules strictly:

Operation Rules:
1. Request Processing Logic
— CASE 1: Existing API + Identical Inputs
+ Return historical outputs verbatim
« Set {"status": "success", "type": "success"}
- CASE 2: New API
+ Create mock data matching input format using:
- Similar outputs from call chain (priority)
— Simulated values (fallback)
« Set {"status": "success", "type": "mock"}
- CASE 3: Error
« If not correct
« Set {"status": "success", "type": "error"}

2. Response Requirements:
+ Strictly use JSON format only
+ Never explain parameter sources or chain structure
« Never ask follow-up questions
+ Maintain consistent parameter naming conventions

3. Output Format (JSON) :

"status": "<success>", // Always ’'success’ per operation
completion

"data": <output_parameters>,

"type": "<success/mock/error>"

}

Implementation Notes:
1. Priority Order:
History Match > Structural Clone > Contextual Moc

API call chain is as follows:

E.3.4 SIMULATED USER RESPONSE AGENT PROMPTS

Simulated user response agent prompts: Utilize a parameter extractor as the user response to
agent, serving as a simulated responder for follow-up questions by the agent. Strictly adhere to the
parameter records of the API call chain to return only the queried and existent original parameter
values. Automatically filter out uninvoked or null parameters to ensure that the responses include
only the actual request information from the existing chain of calls.

As an API chain parameter extractor, directly return exact
parameter values from the given API workflows without any
modification.

Mandatory Protocols

1. Parameter Extraction Priority
Always return raw parameter values from the latest API

27

Under review as a conference paper at ICLR 2026

call
Return empty string for blank parameters (e.g. param-—
cuisines_1 -> "")

2. Response Requirements
Merge multiple parameters in single response
Example: "patient_id:[value] cuisine: [value]"
Strictly avoid explanations or disclaimers
Never reveal API structure or workflow logic

Critical Examples

User: What’s the patient ID and dietary preferences?
API Context: [param-patient_id_10:"P123" ...]
Response: patient_id:P123’’

User: Current trial phase and calories limit?

API Context: [param-trial_phase_1l:’Phase 2’ param-—
calories_max_1:72000"...]

Response: phase:Phase 2 calories_max:2000

User: How to activate international roaming?

API Context: Relevant records

Response: I don’t Know international roaming activation
information.

Execution Context
Current API call chain:

E.4 EVALUATION

E.4.1 EVALUATION PROMPTS

Evaluation prompts in GPT-4.1 are designed to assess the correctness of the answer generation
process, logical consistency, and accuracy of responses by analyzing the anticipated pathways and
the decision-making pathways of the agent.

As an expert in response quality evaluation, you need to
perform the following steps:

I. Core Information Comparison Requirements

1. Reference Path Analysis

— Understand the simulated nature of reference API call
paths.

- Be aware of potential discrepancies: API names/parameter
formats may differ from actual implementations.

2. Actual Path Verification
— Compare each actual call path with the reference path.
— Focus on logical coherence rather than exact matching.

II. Error Detection Standards
1. Call Process Errors
Parameter Anomalies:
* Includes fictitious or illegal parameters.
Execution Errors:
* Returns error codes (e.g., 5xx) or invalid responses.

2. Information Integrity Errors

Deviation in Answers:
* Fails to address the core user query accurately.

28

Under review as a conference paper at ICLR 2026

Missing Key Information:
* Lacks necessary data items or explanation steps.

III. Correctness Determination Rules
1. Process Compliance
— Call sequence should be logically consistent.

2. Answer Completeness
— Covers all core elements of the user’s question.
Output provides a sufficient amount of information.

IV. Quality Rating System

[1] High-Quality Standard:

* Complete logical coherence in call paths.
* Output results are accurate and effective.
* No technical errors.

[0] Deficiency Standard (if any condition is met):
* Critical API call failures.

* Returned results do not support the answer.

* Presence of unaddressed critical errors.

Output Specifications

Detection Report Format:
1. Parameter Validation —-> Compliant/Non-compliant
2. Path Verification -> Compliant/Non-compliant
3. Result Completeness —-> Compliant/Non-compliant

=<

2. Final Conclusion Format:
{"Quality Result’: 1} or {’Quality Result’: 0}

VI. Input Data Interface
User Question: {gquestion}
[AGENT Answer Start]
{reference}

[AGENT Answer End]
[Reference Call Path]
{reference_chain}
[Reference Call Path End]
[Actual Call]
{agent_actual_chain}
[Actual Call End]

F EXPERIMENTS

F.1 EVALUATING OUR APPROACH ON REAL-WORLD APIs

To further validate our framework, we conducted real-world evaluations on 50 APIs from RapidAPI,
covering weather, air quality, restaurants, real estate, geolocation, hotels, and sports. A total of 60
queries (20 easy, 20 medium, and 20 hard) were carefully designed to ensure comprehensive coverage
across these domains. On this real-world testbed, our framework consistently outperformed the
a-UMI baseline in both effectiveness and efficiency. Metrics are reported as in Table [5]and Time is
measured in seconds (s)

29

Under review as a conference paper at ICLR 2026

Model Method TCR TSR Steps Time
ReAct 31,7 217 370 16
ToolLLM 533 233 410 19

Qwen2.5-14B | Um 767 317 580 27
Dynamic+H 65.0 36.7 4.90 25
ReAct 350 250 3.80 19
ToolLLM 483 300 4.00 23

Qwen2.5-32B | umr 783 416 604 32
Dynamic+H 86.7 533 484 27
ReAct 550 333 375 23
ToolLLM 533 350 4.05 25

DeepSeek-V3 "y 850 483 6.17 39

Dynamic+H 98.3 63.3 5.11 35
Table 5: Real-World APIs Test.

F.2 RUNTIME EXPERIMENTS

Table[6] presents the runtime (in seconds) of NaviAgent variants across different models on ToolBench.
Notably, the Dynamic+A method consistently achieves lower runtime across all models, with the
most significant improvement observed in Deepseek-V3: compared to the Base method (55.8
seconds), Dynamic+A reduces the runtime by 15 seconds, corresponding to a relative improvement
of approximately 26.9%. Among all methodological variants, Dynamic+H demonstrates the optimal
overall performance; however, it is constrained by higher runtime induced by heuristic strategies and
excessive search scale, which will be the focus of subsequent optimization efforts.

Model Method Easy Medium Hard All

Base 266 340 445 340
Static+A 216 27.1 36.1 274

Qwen2.5-148 Dynamic+A 19.8 253 344 256
Dynamic+H 229 304 39.6 30.1
Base 334 417 533 417
Owen2.5.328 StatictkA 240 330 411 320

Dynamic+A 24.0 31.0 38.6 30.5
Dynamic+H 28.1 33.8 48.4 353

Base 362 442 61.2 455
Static+A 27.5 33.7 46.8 34.7
Dynamic+A 24.6 34.6 445 33.6
Dynamic+H 31.0 36.7 49.7 37.8

Base 43.6 56.6 71.3 558
Static+A 344 445 55.5 438
Dynamic+A 30.3 41.6 53.3 40.6
Dynamic+H 37.0 473 61.6 473

Base 423 556 75.6 559
Static+A 349 441 59.8 44.7
Dynamic+A 32.6 438 56.4 43.1
Dynamic+H 369 47.1 61.5 47.1

Base 27.0 38.0 50.1 372
Static+A 223 271 37.8 28.0
Dynamic+A 199 279 359 272
Dynamic+H 24.5 314 40.6 31.3

Deepseek-R1-32B

Deepseek-V3

GPT-40

Qwen2.5-14B(SFT)

Table 6: Runtime(in Seconds) of NaviAgent Variants on ToolBench

30

Under review as a conference paper at ICLR 2026

F.3 EXPERIMENTS ON API-BANK

Table [/|demonstrates that the experimental outcomes of the API-Bank dataset are consistent with
those observed in the ToolBench-based experiments.

Model Method Easy Medium Hard All
TCR TSR Steps TCR TSR Steps TCR TSR Steps TCR TSR Steps
Base 47.8 334 540 605 248 6.09 71.6 299 647 63.1 27.6 6.06

Static+A 634 448 488 724 328 538 684 343 541 679 340 522

Qwen2.5-14B)y amic+A 649 49.1 493 727 364 532 687 360 536 683 367 5.18
Dynamic+H73.1 56.1 471 666 404 527 664 335 563 657 319 526
Base 616 466 526 786 350 684 689 307 738 704 334 678
Owenzsapp SWlc+A 886 657 463 800 343 590 846 399 629 813 395 582

Dynamic+A 89.5 684 4.57 80.1 35.8 5.86 853 450 636 81.8 42.8 5.83
Dynamic+H 90.8 74.0 454 87.0 44.7 570 842 455 5.66 84.1 472 543

Base 882 66.2 6.41 653 283 7.79 645 254 7.83 659 303 7.49
Static+tA 89.2 60.7 577 88.1 46.1 6.83 81.2 305 6.82 83.0 39.2 6.56
Dynamic+A 89.5 632 573 909 483 6.75 815 34.1 676 842 42.0 6.49
Dynamic+H 99.1 77.6 496 89.4 469 6.06 793 344 6.81 83.6 43.2 6.16

Base 863 67.0 595 863 465 6.65 854 421 7.09 839 455 6.64
Static+tA 97.7 774 484 98.6 555 6.17 988 48.1 582 964 53.1 5.72
Dynamic+A 99.9 82.5 477 989 58.5 6.21 99.1 512 587 969 563 5.76
Dynamic+H 98.8 88.9 5.00 98.0 60.0 5.74 98.6 523 588 962 58.0 5.60

Base 96.8 749 523 924 483 6.15 945 386 6.19 91.8 454 593
Static+tA 99.6 76.8 4.15 98.6 54.5 5.17 983 469 485 963 520 4.79
Dynamic+A 99.9 78.5 4.14 989 564 5.14 98.6 522 490 96.6 55.5 4.80
Dynamic+H 989 76.1 3.70 98.1 57.9 5.00 97.0 57.8 500 955 58.5 4.75

Base 76.0 454 563 749 351 635 763 406 639 740 38.0 6.15
Qwen2.5-14B(SFT) Static+A 94.1 60.6 4.69 887 413 524 879 413 528 869 424 5.08
Dynamic+A 94.7 64.3 4.67 89.8 44.1 532 882 422 534 875 443 5.14
Dynamic+H 93.2 71.0 4.61 902 483 5.17 87.6 445 5.14 873 47.8 498

Deepseek-R1-32B

Deepseek-V3

GPT-40

Table 7: Impact of NaviAgent Variants on API-Bank. Metrics are reported as in Table
G LINK PREDICTION EVALUATION

Dataset APIs Nodes Edges ACC F1 AUC

ToolBench 5501 7866 24215 764 776 0.75
API-Bank 2650 6025 10255 784 76.1 0.71

Table 8: Tool Graph Statistics and Link Prediction Evaluation. Nodes and Edges denote the number of
nodes and edges in the graph, respectively. ACC and F1 are reported as percentages (%), while AUC is reported
as a value between 0 and 1.

H USAGE OF LLM

To improve clarity and readability, we used a LLM for language polishing. All research ideas,
methods, and conclusions were developed solely by the authors.

31

	Introduction
	Related Work
	Methodology
	A Four-dimensional Decision Agent
	Definition
	Model Training

	Tool World Navigation Model
	Graph Construction and Representation
	Graph Training Objective
	Graph Search
	Graph Evolution

	Dynamic Execution & Path Recombination

	Experiments
	Experimental Settings
	Results
	Ablation Study

	Conclusion
	Graph Construction
	Details of Graph Method
	HGT Network
	Graph Search Algorithm

	Cases
	Case 1
	Case 2
	Case 3

	Data Generation
	Implementation Details
	Dataset
	Training
	Inference
	NaviAgent Inference Prompts
	Input Generation Prompts
	API Simulator Prompts
	Simulated User Response Agent Prompts

	Evaluation
	Evaluation Prompts

	Experiments
	Evaluating Our Approach on Real-World APIs
	Runtime Experiments
	Experiments on API-Bank

	Link Prediction Evaluation
	Usage of LLM

