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ABSTRACT

Large language models (LLMs) have recently demonstrated the ability to act
as function call agents by invoking external tools, enabling them to solve tasks
beyond their static knowledge. However, existing agents typically call tools step
by step at a time without a global view of task structure. As tools depend on
each other, this leads to error accumulation and limited scalability, particularly
when scaling to thousands of tools. To address these limitations, we propose
NaviAgent, a novel bilevel architecture that decouples task planning from tool
execution through graph-based modeling of the tool ecosystem. At the task-
planning level, the LLM-based agent decides whether to respond directly, clarify
user intent, invoke a toolchain, or execute tool outputs, ensuring broad coverage of
interaction scenarios independent of inter-tool complexity. At the execution level, a
continuously evolving Tool World Navigation Model (TWNM) encodes structural
and behavioral relations among tools, guiding the agent to generate scalable and
robust invocation sequences. By incorporating feedback from real tool interactions,
NaviAgent supports closed-loop optimization of planning and execution, moving
beyond tool calling toward adaptive navigation of large-scale tool ecosystems.
Experiments show that NaviAgent achieves the best task success rates across
models and tasks, and integrating TWMN further boosts performance by up to 17
points on complex tasks, underscoring its key role in toolchain orchestration.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed as function call agents, moving beyond
single utilities toward complex multi-stage workflows (Shen et al., 2023; Yang et al., 2023; Qu
et al., 2025). However, real-world environments contain thousands of heterogeneous tools that are
continually updated, while tasks demand long sequences of coordinated invocations. Agents built
around fixed tool descriptions or rigid workflows fail to adapt, making API drift, continual updates,
and unseen tool compositions key challenges for function call agents.

Existing approaches attempt to mitigate brittleness but remain incomplete. Some embed tool knowl-
edge directly into model parameters (Wang et al., 2024), which reduces context demands but requires
costly retraining when APIs change. Others derive static graphs from invocation logs (Liu et al.,
2024b), yet sparse traces and missing parameter relations hinder generalization. Policy-adaptation
methods adjust individual tools with feedback (Chen et al., 2024), while clustering-based planners
enable substitutions (Liu et al., 2024c). Taken together, existing methods can be broadly categorized
into two camps: either structured but static, failing to evolve with the ecosystem, or adaptive but
unstructured, lacking the representations needed to capture composability and complementarity.

Underlying these challenges is the complexity of the tool ecosystem: it spans thousands of hetero-
geneous tools, exhibits interdependencies such as parameter flows and functional complementarity,
and evolves continually through addition, update, and deprecation. Such properties reveal why
step-by-step invocation without global awareness cannot achieve reliable tool composition. The
difficulty is compounded by the fact that API documentation is written for humans and often misaligns
with how models interpret and use individual tools (Qu et al., 2024), while flat catalogues provide
little information on how tools compose, substitute, or adapt as the ecosystem changes. What is
needed is a structured representation learned from execution traces that makes these dependencies
explicit and continually adapts with feedback.

1
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We propose NaviAgent, a bilevel planning framework that decouples high-level task reasoning from
low-level execution. At the planning level, NaviAgent defines a four-dimensional decision space
(direct response, intent clarification, toolchain retrieval, tool execution) covering core tool invocation
scenarios, allowing the agent to operate without reasoning over complex inter-tool connections. At
the execution level, it constructs the Tool World Navigation Model (TWNM), which encodes both
structural and behavioral dependencies learned from execution traces. By coupling these graph-based
representations with navigation strategies, TWNM enables retrieval, substitution, and multi-tool
composition as the ecosystem evolves. Execution feedback continually updates both TWNM and the
decision policy, forming a closed loop for robust adaptation to changing APIs.

Our main contributions are as follows: i) NaviAgent Architecture. The first bilevel agent framework
that decouples high-level task planning from low-level tool execution, enabling scalable task com-
position across thousands of tools while preserving efficiency. ii) Tool World Navigation Model.
A unified model that captures inter-tool structures and behavioral dependencies from execution
traces, and supports navigation and flexible search in large-scale tool ecosystems. iii) Closed-loop
Evolution. A feedback mechanism where execution traces continuously refine TWNM and decision
strategies, driving the co-evolution of representation and decision-making.

2 RELATED WORK

Single-Tool Invocation. Early research focused on enhancing LLMs’ single-tool invocation capa-
bilities. TALM (Parisi et al., 2022) established foundational paradigms through predefined template
chains, while EasyTool (Yuan et al., 2024) introduced structured tool descriptions to reduce se-
mantic parsing overhead. For long-context scenarios, tool documentation compression techniques
preserved critical semantics via summarization, enabling low-resource tool usage (Xu et al., 2024).
Toolformer (Schick et al., 2023) innovatively embedded tool invocation APIs in pre-training, al-
lowing self-supervised learning of usage patterns from unlabeled data. In multimodal settings,
GPT4Tools (Yang et al., 2023) improved visual tool generalization (e.g. object detection) by aligning
vision-language instructions with tool descriptions.

Multi-Tool Orchestration. As tool libraries expanded, HuggingGPT (Shen et al., 2023) proposed
a four-stage pipeline (plan, select, execute, respond) for standardized multi-tool workflows, while
Chameleon (Lu et al., 2023) integrated heterogeneous tools (13+ types) via modular composition.
Similarly, α-UMI (Shen et al., 2024) decomposes the tool-use process into planning, invocation, and
summarization, but uniquely assigns each stage to a dedicated lightweight LLM, enabling modular
updates and improved performance, especially for smaller models. For small toolkits, TRICE (Qiao
et al., 2023) optimized single tool policies via execution feedback, and ToolFactory (Ni et al.,
2025) automated tool adaptation through domain-guided code synthesis. However, these approaches
struggled with dynamic collaboration. For large-scale toolkits, Confucius (Gao et al., 2024) addressed
combinatorial explosion via hierarchical tool classification, and ToolVerifier (Mekala et al., 2024)
improved selection robustness through self-verification mechanisms.

Dynamic Planning & Adaptation. Static frameworks faltered under open-domain task complexity,
prompting dynamic decision mechanisms. ReAct (Yao et al., 2023b) pioneered the decoupling of
reasoning from tool calls through chain-of-thought planning. Building on this, Reflexion (Shinn et al.,
2023) enhanced error recovery by introducing iterative self-reflection, significantly improving fault
tolerance in complex tasks. For long-horizon tasks, path search techniques became pivotal: Tree-of-
Thoughts (ToT) (Yao et al., 2023a) formalized tool invocation as searchable reasoning trees with
dynamic branching, while ToolLLM (Qin et al., 2023) optimized search efficiency through functional
hierarchy-guided DFS. ToolChain (Zhuang et al., 2023) further advanced this by employing heuristic
cost estimation to prioritize high-success-rate branches. Yet, these methods assumed static tool
relationships, failing to adapt to API drift or cross-domain tasks. ControlLLM (Liu et al., 2024d) built
static dependency graphs for task decomposition, whereas ToolNet (Liu et al., 2024b) dynamically
updated tool relations from historical calls, both limited by sparse multi-hop interaction data. This
gap motivates our TWNM that jointly models structural dependencies and behavioral adaptations to
capture evolving tool relations, aligning with findings that graph learning enhance LLM planning (Wu
et al., 2024; Besta et al., 2024).

2
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3 METHODOLOGY

Figure 1: Conventional function call agents vs. NaviAgent.

A key challenge in function call agents is that API calls usually have interdependent parameters and
strict invocation orders. NaviAgent addresses this challenge by retrieving the entire toolchain before
execution, rather than calling APIs step by step. This global reasoning allows the agent to plan an
end-to-end path from the user query to the target API once and execute it directly. As illustrated in
Figure 1, NaviAgent avoids repeated retrievals and automatically discards unreliable APIs, leading to
more efficient and robust execution.

3.1 A FOUR-DIMENSIONAL DECISION AGENT

3.1.1 DEFINITION

The architecture achieves end-to-end decision-making through LLMs, formally modeled as a quin-
tuple (H,O,G,A, F ) where H = {(ot−i, at−i)}ni=1 represents historical states (containing state
sequence {oi} and action sequence {ai}), O denotes the observation, G represents the tool depen-
dency graph, A = {Direct Response, Intent Clarification, ToolChain Retrieval, Tool Execution}
defines the four dimensional decision space, where each action corresponds to directly answering the
user, requesting clarification, retrieving candidate tool dependency subgraph via graph pruning, or
execute selected toolchains, respectively. F : H×O × G → A specifies the decision function. At
each time step t, the agent constructs its decision context as follows. The historical context Ht is
defined as

Ht = ⟨(ot−3, at−3), . . . , (ot−1, at−1)⟩ (1)
where a sliding window maintains the most recent three1 observation-action pairs, capturing the
agent’s recent decision trajectory. The pruned tool dependency subgraph G′t−1 = (V,E,W ) is
computed from the agent’s state at the previous time step t− 1, where V is the node set, E is the edge
set, and W denotes the edge weights indicating dependency strengths. The subgraph is serialized
into a tree-structured textual format, ensuring a simplified yet sufficient representation for selected
toolchains. The overall decision function is then formulated as

at = F (Ht,Ot,G′t−1) (2)

1Our experiments demonstrate that utilizing the most recent three observation-action pairs achieves the best
balance between accuracy and efficiency.

3
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where Ot is the current observation, and at ∈ A is the action selected at time t.

3.1.2 MODEL TRAINING

For supervised fine-tuning, we adopt the standard language modeling objective, computing the
loss exclusively over the response or action generation segments. During training, the LLM-based
agent receives as input the most recent historical state-action pairsHt, the current observation Ot,
and the pruned tool dependency subgraph Gsub. The model is trained to maximize the likelihood
of the ground-truth action a∗t at step t, which is derived from high-quality, curated datasets (see
Appendix E.2 for details):

LSFT = − 1

N

N∑
i=1

log pθ(a
∗
t | Ht,Ot,Gsub) (3)

where N is the number of training samples and pθ denotes the agent’s predicted probability over the
action space.

3.2 TOOL WORLD NAVIGATION MODEL

Figure 2: Tool dependency graph and its temporal evolution in TWNM. The left part shows the
overall dependency relations, while the right part illustrates the pruning and evolution of executable
subgraphs across time steps.

3.2.1 GRAPH CONSTRUCTION AND REPRESENTATION

While tool standardization frameworks (e.g., Anthropic’s MCP) help normalize basic API metadata,
challenges remain due to inconsistent parameter naming and undocumented tool dependencies. In
our framework, each tool consists of one or more APIs. We address these issues by applying semantic
similarity clustering to unify functionally equivalent parameters (see details in Appendix A).

Definition. We construct a directed weighted graph G = (V,E,W ) with API and parameter
nodes. Edges include structural chains, defined by API schemas (e.g., parameter-to-API and API-
to-parameter connections), as well as behavioral chains, derived from historical usage data (e.g.,
API-to-API and parameter-to-parameter dependencies) , as illustrated in Figure 2 (left). Each edge is
assigned a statistical weight w̃ij reflecting empirical invocation patterns.

w̃ij =
N(vi → vj)

N(vj)
(4)

where N(vi → vj) counts the number of successful invocations from vi to vj , and N(vj) is the total
number of invocations involving vj .

We formulate tool dependency discovery as a link prediction problem Hamilton et al. (2017); Zhang
& Chen (2018); Zhou et al. (2020); Wu et al. (2024). To model this, we employ a Heterogeneous
Graph Transformer (HGT) that integrates node-level feature fusion, type-specific encoding, and

4
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relation-aware message passing. Each node is initialized with both semantic (BGE-based) and
structural features (including invocation statistics and degree information), and projected into a
unified embedding space. We stack two multi-head HGT layers to aggregate information from the
2-hop neighborhood. Notably, the attention mechanism incorporates a statistical edge weight w̃uv to
reflect empirical call patterns:

α(k,r)
uv = softmaxu∈Nr(v)

(
(W

(k,r)
Q h′

u)
⊤(W

(k,r)
K h′

v)√
dk

+ b(k)
r + w̃uv

)
(5)

whereNr(v) denotes the set of neighbors of node v under relation r, and h′
u, h′

v are the type-specific
encoded representations of nodes u and v (see Appendix B.1 for details). W(k,r)

Q and W
(k,r)
K are the

query and key projection matrices for head k and relation r, b(k)
r is an edge-type-specific bias, and

dk = d/8 is the dimension per head. Then the concatenated head outputs are projected to obtain the
final node embeddings, which are then used for link prediction.

3.2.2 GRAPH TRAINING OBJECTIVE

The graph model is trained with a hybrid loss that combines cross-entropy and adaptive margin
objectives, both leveraging edge weights w̃uv to capture graded dependencies.

Cross-entropy.

LCE = − 1

|E|
∑

(u,v)∈E

[w̃uv log puv + (1− w̃uv) log(1− puv)] (6)

where puv is the predicted link probability, w̃uv is the statistical edge weight serving as a soft label,
and E denotes the set of all edges in the graph.

Adaptive margin. It assigns larger separation to higher-weight edges(i.e., w̃uv → 1), focus-
ing learning on critical dependencies. For each positive edge (u, v)+ ∈ E+, k negative edges
{(uj , v)}kj=1 are sampled to construct positive and negative pairs for the margin loss.

muv = m0 (1 + σ(w̃uv)) (7)

LMargin =
1

|E+|
∑

(u,v)+∈E+

1

k

k∑
j=1

[
muv − s(u, v)+ + s(uj , v)

−]
+

(8)

where m0 is a base margin, σ(·) denotes the sigmoid function, w̃uv is the statistical edge weight,
s(u, v) measures the embedding similarity, (u, v)+ represents a positive edge, (uj , v)

− denotes a
negative sample, and [·]+ is the hinge function, and E+ is the set of positive edges.

The final training objective is a weighted sum of the two losses:

µt = µ0 · γt, γ ∈ (0, 1) (9)

L = µt · LCE + (1− µt) · LMargin (10)

where µt is the weight for the cross-entropy loss at epoch t, µ0 is the initial weight, and γ is a decay
factor controlling the rate at which the contribution of the cross-entropy loss decreases over training.
This curriculum strategy first emphasizes accuracy, then discrimination, yielding accurate predictions
and structured embeddings.

3.2.3 GRAPH SEARCH

At inference time, the predicted link probabilities puv are used as edge weights wuv in the tool
graph, forming the basis for weighted-graph search and toolchain planning. We adopt two representa-
tive search strategies adapted to this setting: an Alpha-Beta Pruning method that eliminates weak
toolchains using dynamic thresholds, and a heuristic search that evaluates candidate toolchains with a
composite fitness balancing connectivity, depth, and cumulative weights. Complete algorithms and
parameter details are provided in Appendix B.2.

5
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3.2.4 GRAPH EVOLUTION

The tool world is inherently dynamic, evolving as new tools are introduced, obsolete ones are
deprecated, and usage patterns shift. As shown at the right of Figure 2: At time T − 1, selectable
paths are relatively uniform (similar line shades), indicating multiple equally viable routes. By T ,
the TWNM has learned to prefer a more optimal path (the top, darker line). At T + 1, when the
upper-left API becomes unavailable, the TWNM adapts by recomputing and selecting the lower route
as the new optimal path. This demonstrates the TWNM’s ability to learn from feedback and flexibly
adjust its planning in response to runtime changes. To systematically support such adaptability, we
design a graph evolution framework with three key mechanisms:

Incremental Node Integration. To accommodate newly introduced tools, we incrementally add
new nodes via semantic similarity clustering, initializing their parameters (e.g., Nsucc(v) = 0,
Nfail(v) = 0 for successful and failed invocation counts) and the statistical weights of associated
edges (e.g., w̃uv = 0) to ensure consistency with existing graph features.

Targeted Subgraph Pruning. Obsolete or rarely used tools are selectively pruned based on a
weighted combination of failure rates and invocation frequencies:

Prune(v) ∝ λ · σ(ffail(v)) + (1− λ) · σ(ffreq(v)−1) (11)

where λ ∈ [0, 1] controls the trade-off between failure rates and invocation frequencies, and ffail
and ffreq denote failure rates and invocation frequencies, respectively.

Edge Attribute Propagation. Long-term stability and short-term adaptation are balanced by
updating the statistical edge weights w̃uv through a combination of historical trends and recent
invocation success rates:

w̃(t)
uv = η · w̃(t−1)

uv︸ ︷︷ ︸
long−term weight

+(1− η) · N
recent τ days
succ (u→ v)

N recent τ days
succ (v)︸ ︷︷ ︸

recent success rate

(12)

where η ∈ [0, 1] balances long-term memory and recent observations, and N recent τ days
succ denotes

successful invocations within a sliding window of τ days. These dynamically updated statistical
edge weights w̃uv are subsequently used as soft labels for supervising model training, as described in
Section 3.2.2.

3.3 DYNAMIC EXECUTION & PATH RECOMBINATION

Robust and adaptive toolchain orchestration is achieved through a bilevel dynamic planning frame-
work, in which the agent manages action selection and the TWNM is responsible for toolchain
planning.

NaviAgent Workflow. When a user query arrives, NaviAgent decides whether it can respond
directly, clarify the user’s intent, or rely on external tools. For more complex queries, NaviAgent
decomposes the task into sub-tasks and categorizes them into two types: those that can be answered
or clarified immediately, and those that demand toolchain retrieval. Unlike traditional agents that
fetch tools sequentially, NaviAgent searches the existing tool dependency graph for a task-relevant
subgraph and selects a feasible execution path for subsequent execution. More detailed cases can be
found in the Appendix C.

Path Recombination. During execution, if a tool execution action fails due to an an API is
unavailable or malfunctioning, the agent switches from execution to toolchain retrieval and invokes
its TWNM module. TWNM searches the current tool dependency graph to recombine nodes and
identify an alternative toolchain, which the agent then executes. This adaptive loop can be repeated
until completion or infeasibility, enabling dynamic path recombination that improves robustness and
task success in complex tool environments.

6
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. Our experiments are based on two public API benchmarks: API-Bank Li et al. (2023)
and ToolBench Qin et al. (2023). As real-time API execution is currently unavailable, evaluation
tasks are constructed in a simulated environment based on the extensive API lists and conversational
trajectories provided by these datasets. Tasks are categorized into three levels of complexity: Easy
(at most one API call or directly answerable), Medium (two API calls), and Hard (three or more
APIs). Details of task generation are provided in Appendix D. For model fine-tuning, Qwen2.5-14B
is trained on 3,500+ examples sampled from our generated task set, with strict separation between
fine-tuning and evaluation data to prevent leakage.

Baselines and Models. The evaluation considers frameworks for real-world tool invocation, where
managing large tool sets and enabling autonomous planning are critical. We select representative
baselines in three major categories: (i) ReAct-based single-agent frameworks, where ReAct Yao
et al. (2023b) serves as the foundational approach alternating reasoning and tool use; (ii) enhanced
single-agent frameworks, where ToolLLM Qin et al. (2023) incorporates DFSDT-based planning
with a dynamic backtracking mechanism; and (iii) multi-agent frameworks, where α-UMI Shen
et al. (2024) organizes modular tool-use stages via lightweight LLMs. Experiments are conducted
across multiple foundation models, including open-source models (Qwen2.5-14B Yang et al. (2024),
Qwen2.5-32B Tahmid & Sarker (2024), DeepSeek-R1-Distill-Qwen-32B(DeepSeek-R1-32B) Guo
et al. (2025)) and closed-source models (DeepSeek-V3 Liu et al. (2024a), GPT-4o Hurst et al. (2024)),
as well as a fine-tuned lightweight model (Qwen2.5-14B).

Metrics. Our evaluation framework considers three metrics: task success rate (TSR), execution
steps (Steps), and task completion rate (TCR). TSR and Steps are the primary indicators, with TSR
measuring output quality by evaluating whether the system’s response fully satisfies the user’s request
(via LLM-based comparison with the ground truth), and Steps reflecting execution efficiency as the
total number of LLM calls required to solve a task, counted only for successfully completed tasks.
TCR serves as a supplementary metric, indicating whether the system produces a final output without
prematurely terminating. Tasks are considered incomplete if they exceed the maximum allowed
attempts, encounter parsing errors, or fail due to input token limits. Both TCR and TSR are reported
as percentages over all evaluation tasks. All experiments details of training and inference setup
provided in Appendix E.2.

4.2 RESULTS

In this section, we present the main results on ToolBench, comparing NaviAgent with strong baselines
across various model sizes and task difficulties.

Model Method Easy Medium Hard All

TCR TSR Steps TCR TSR Steps TCR TSR Steps TCR TSR Steps

Qwen2.5-14B
ReAct 32.4 26.3 3.52 24.5 16.8 3.67 24.8 20.0 3.64 27.1 20.6 3.61
ToolLLM 56.1 30.4 4.01 53.8 19.7 4.02 38.1 11.4 4.06 51.0 21.3 4.03
α-UMI 77.7 39.2 5.53 77.9 25.0 5.88 67.6 13.3 6.07 75.5 26.9 5.74
Dynamic+H 64.2 50.3 4.18 60.1 32.3 4.38 61.1 22.4 4.68 61.6 35.8 4.38

Qwen2.5-32B
ReAct 33.1 25.0 3.50 35.6 24.5 3.60 30.5 19.0 3.95 33.6 23.4 3.63
ToolLLM 40.5 31.8 3.67 48.6 30.3 3.85 49.5 23.8 4.10 46.2 29.3 3.83
α-UMI 78.4 49.3 5.66 78.8 26.0 6.02 77.1 22.9 6.58 78.3 32.8 5.94
Dynamic+H 88.1 61.1 4.29 81.7 41.5 4.60 79.4 30.8 5.31 83.2 45.4 4.66

Deepseek-V3
ReAct 46.6 36.5 3.52 58.7 38.5 3.50 48.6 23.8 3.74 52.5 34.5 3.54
ToolLLM 56.2 47.4 3.80 58.8 30.0 3.92 29.7 24.8 3.90 51.3 34.4 3.86
α-UMI 80.8 59.7 5.95 89.4 32.9 5.95 73.0 29.5 6.64 82.9 40.7 6.06
Dynamic+H 97.9 71.8 4.40 96.3 48.5 4.45 97.0 44.9 5.19 97.0 55.2 4.60

Table 1: Comparison of Baseline Frameworks on ToolBench. TCR and TSR are reported as percentages (%),
and lower Steps indicates higher efficiency. The best results are marked in bold and the second-best results are
marked with underline.
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Figure 3: Evaluation of Frameworks on ToolBench Across Task Complexity.

Overall Performance and Efficiency. As shown in Table 1 and Figure 3, NaviAgent consistently
achieves the highest TSR across all foundation models and task complexities, with absolute values
of 35.8% on Qwen2.5-14B, 45.4% on Qwen2.5-32B, and 55.2% on Deepseek-V3. Compared to
the average performance of the baselines on all tasks, NaviAgent achieves substantial gains of 12.9,
16.9, and 18.7 percentage points on Qwen2.5-14B, Qwen2.5-32B, and Deepseek-V3, respectively.
Meanwhile, its execution steps remain close to those of the most efficient baseline, with differences
typically within one step, thereby maintaining a strong balance between solution quality and execution
efficiency. Consistent performance is also observed in our real-world API tests, with detailed results
provided in Appendix F.1.

Relative Improvement and Robustness. NaviAgent achieves an average TSR improvement of
over 10 percentage points compared to α-UMI, tthe strongest among the three baselines, across all
difficulty levels, with the most significant gain of 15.4 percentage points on Deepseek-V3 for Hard
tasks. We further observe that the relative drop in TSR from Easy to Hard tasks is substantially
smaller for NaviAgent than for most baselines, particularly on larger foundation models. For example,
on Deepseek-V3, NaviAgent’s TSR decreases by only 37.5% from Easy to Hard, while ToolLLM
and α-UMI experience drops of 47.7% and 50.6%, respectively.

Easy Medium Hard
20

30

40

50

60

70

TS
R

Model
Qwen2.5-14B
Qwen2.5-32B
Deepseek-R1-32B
Deepseek-V3
GPT-4o
Qwen2.5-14B(SFT)

Figure 4: Effect of SFT on TSR.

Adaptability through Fine-tuning. Notably, with supervised
fine-tuning, the smaller Qwen2.5-14B model achieves per-
formance comparable to the larger 32B model (TCR 81.2%
vs 83.2%, TSR 51.3% vs 45.4%, see Figure 4 and Table 2,
D+N(Heur) row), indicating that fine-tuning can effectively
close the gap between model sizes.

4.3 ABLATION STUDY

To further validate the effectiveness of each component in our framework, we conduct two sets of
ablation studies.

Effect of base Components. We analyze the NaviAgent (Base) configuration, focusing on its
four-dimensional decision space in successful ToolBench cases with the Deepseek-V3 model. Specif-
ically, we categorize the proportion of cases resolved via Clarification (intent clarification to seek
additional details from the user), Re-retrieval (recovering from initial toolchain retrieval failures by
invoking alternative APIs), and Normal (tasks completed successfully in a single attempt without clar-
ification or re-retrieval). Results are summarized in Figure 5, demonstrating that the four-dimensional
decision space of the agent enables robust error recovery and flexible intent handling, contributing to
overall performance gains.

Effect of TWNM Components. Table 2 shows clear gains from each design choice. Compared
with the Base (agent only), NaviAgent (DynamicH) improves TSR by +11.8 points on average,
confirming the value of graph-based planning with search. Dynamic graphs further outperform static
ones on hard tasks (e.g., +5.1 on Qwen2.5-32B, +2.0 on GPT-4o), and replacing Alpha-Beta with
heuristic search brings the best results, adding 2–3 points on all tasks and about 8 points on hard
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Figure 5: Comparison of TSR Distribution Between NaviAgent(base) and Baselines.

Model Method Easy Medium Hard All

TCR TSR Steps TCR TSR Steps TCR TSR Steps TCR TSR Steps

Qwen2.5-14B

Base 46.4 36.0 5.38 50.5 22.9 5.39 62.0 16.3 5.76 51.8 25.6 5.47
Static+A 57.3 43.7 4.37 61.2 29.0 4.54 53.0 14.0 4.59 58.1 30.3 4.50
Dynamic+A 58.8 48.0 4.31 61.5 31.7 4.49 53.3 16.2 4.61 58.8 33.4 4.46
Dynamic+H 64.2 50.3 4.18 60.1 32.3 4.38 61.1 22.4 4.68 61.6 35.8 4.38

Qwen2.5-32B

Base 77.7 47.7 5.42 75.8 32.7 6.00 86.9 19.0 7.04 78.9 34.4 6.05
Static+A 82.8 50.7 4.47 83.3 40.6 5.07 79.7 26.3 5.30 82.3 40.6 4.93
Dynamic+A 83.1 51.4 4.41 85.1 41.3 5.03 80.0 31.4 5.37 83.3 42.3 4.91
Dynamic+H 88.1 61.1 4.29 81.7 41.5 4.60 79.4 30.8 5.31 83.2 45.4 4.66

Deepseek-R1-32B

Base 89.5 32.2 6.16 85.0 25.8 6.64 88.6 19.7 6.65 87.3 26.5 6.49
Static+A 92.3 45.8 5.14 92.5 35.8 5.39 91.5 20.8 5.99 92.2 35.6 5.45
Dynamic+A 92.6 51.4 5.06 93.3 38.0 5.33 91.4 21.9 5.93 92.6 38.6 5.38
Dynamic+H 93.5 51.2 4.82 92.4 38.1 5.23 87.8 33.2 5.46 91.7 41.2 5.15

Deepseek-V3

Base 93.7 66.3 5.26 93.8 39.7 6.00 94.7 31.1 6.22 94.0 46.3 5.81
Static+A 92.9 70.5 4.31 95.8 47.4 4.66 93.4 31.1 5.05 94.3 51.1 4.64
Dynamic+A 93.2 71.6 4.36 95.7 50.5 4.68 93.3 33.3 4.97 94.4 53.4 4.64
Dynamic+H 97.9 71.8 4.40 96.3 48.5 4.45 97.0 44.9 5.19 97.0 55.2 4.60

GPT-4o

Base 92.0 62.7 5.07 91.0 35.2 5.67 94.5 27.8 6.26 92.1 42.3 5.61
Static+A 99.5 72.1 4.21 98.3 43.6 5.35 97.8 37.9 5.85 98.6 51.5 5.10
Dynamic+A 99.9 76.4 4.18 99.5 45.3 5.40 98.1 41.4 5.92 99.3 54.4 5.13
Dynamic+H 99.6 75.3 4.01 94.5 48.9 4.71 98.9 48.3 5.12 97.1 57.2 4.58

Qwen2.5-14B(SFT)

Base 70.9 49.1 5.94 72.8 42.1 5.94 71.0 24.5 6.99 71.8 40.3 6.18
Static+A 84.6 61.4 4.50 78.1 38.6 4.69 77.8 35.6 5.65 80.1 45.3 4.85
Dynamic+A 85.8 64.9 4.58 78.4 39.9 4.75 78.1 39.0 5.59 80.7 47.7 4.89
Dynamic+H 82.7 64.6 4.59 81.4 48.9 4.67 78.5 37.4 5.74 81.2 51.3 4.89

Table 2: Impact of Naviagent Variants on ToolBench. Base retains only the core agent; StaticA augments
with a static graph and Alpha-Beta pruning; DynamicA augments with a dynamic graph and Alpha-Beta pruning;
DynamicH augments with a dynamic graph and heuristic pruning, which corresponds to our proposed NaviAgent.
Metrics are reported as in Table 1. We also evaluate runtime, with detailed results reported in Appendix F.2.
cases for large models such as Deepseek-V3 and GPT-4o, highlighting that dynamic graph planning
and efficient heuristic search are crucial for unlocking the reasoning and compositional potential of
frontier models. Consistent results are also observed on API-Bank (see Table 7). Additional statistics
on tool graph structure and link prediction are provided in Table 8.

5 CONCLUSION

We presented NaviAgent, a bilevel planning framework that separates high-level decision making
from low-level execution over a tool world model, achieving robust gains on ToolBench and API-Bank.
It scales to thousands of tools with competitive efficiency and excels in complex, multi-tool tasks and
larger models. Remaining challenges include handling heterogeneous tool interfaces and dynamic
conditions, which may be tackled via unified protocols and adaptive graph construction. Beyond tool
reasoning, NaviAgent points to broader applications: by abstracting tools as agents, its evolving graph
and decision space can naturally extend to multi-agent collaboration. This perspective underscores
both the challenges of building adaptive, robust systems and the opportunities for advancing toward
more collaborative AI ecosystems.
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A GRAPH CONSTRUCTION

Original API Original Parameter Parameter Description Standardized Pa-
rameter

Cluster ID

get_locations name Name of the city. city_name 1
get_hospital_list city The city where the hospital is

located.
city_name 1

get_hospital_list name Name of the hospital. hospital_name 2
find_cheapest_prescription city_name The name of the city where the

user wants to search for the med-
ication.

city_name 1

Table 3: Standardization of API Parameter

B DETAILS OF GRAPH METHOD

B.1 HGT NETWORK

This section provides a detailed description of the feature construction, network architecture, and link
prediction head used in our heterogeneous graph transformer (HGT) for tool dependency modeling,
supplementing the main text.

Feature Fusion. Each node v is initialized by its semantic and structural features:

hv = BGE(xv)⊕ σ(nsucc
v )⊕ σ(rsuccv )⊕ σ(deginv )⊕ σ(degoutv ) (13)

where BGE(xv) encodes the node description dv using BGE-Large-en-V1.5, nsucc
v and nfail

v are
the counts of successful and failed invocations for node v (computed from historical invocation logs),
rsuccv = nsucc

v /(nsucc
v + nfail

v ) denotes the successful ratio, and deginv and degoutv are the in-degree
and out-degree of node v, respectively.

Node Encoder. To project heterogeneous nodes into a unified embedding space, we apply type-
specific linear transformations, followed by non-linear activation and normalization:

h′
v = LayerNorm

(
LeakyReLU

(
Wτ(v)hv + bτ(v)

))
(14)

where Wτ(v) and bτ(v) are the learnable weight matrix and bias for node type τ(v) ∈ {api, param},
respectively.

WeightedHGTConv Layer. We stack two multi-head heterogeneous graph transformer (HGT)
layers (each with 8 attention heads) to aggregate information from the 2-hop neighborhood. For a
center node v and its neighbor u ∈ Nr(v) under edge type r, the attention coefficient at head k is
computed as:

α(k,r)
uv = softmaxu∈Nr(v)

(
(W

(k,r)
Q h′

u)
⊤(W

(k,r)
K h′

v)√
dk

+ b(k)
r + w̃uv

)
(15)

where W
(k,r)
Q and W

(k,r)
K are the query and key projection matrices for head k and relation r, b(k)

r

is an edge-type-specific bias, w̃uv is the statistical edge weight from node u to v (see Eq. 4, where
w̃ij is defined for nodes vi and vj), and dk = d/8 is the dimension per head. The normalization
softmaxu∈Nr(v) is performed over all neighbors u of v under relation r. The output embedding for
node v:

h′′
v = LayerNorm

h′
v + LeakyReLU

Wo · Concat

∑
r∈R

∑
u∈Nr(v)

α(k,r)
uv W

(k,r)
V hu′

8

k=1




(16)
where W(k,r)

V is the value projection for head k and relation r, Wo ∈ R8dk×d is the output projection,
and Concat[·]8k=1 denotes concatenation of outputs from all heads.
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Link Prediction. Given the final node embeddings, the link probability between node u and node v
is computed as:

puv = σ (Wp · Concat(h′′
u,h

′′
v) + b) (17)

where Wp and b are learnable parameters, and σ(·) denotes the sigmoid function.

This completes the detailed description of our HGT-based network architecture.

B.2 GRAPH SEARCH ALGORITHM

This section provides detailed descriptions of the Alpha-Beta pruning and hybrid heuristic search
algorithms, including all parameter settings, dynamic thresholding strategies, and algorithmic pseu-
docode.

Alpha-Beta Pruning. This algorithm Knuth & Moore (1975) is adapted for backward search over
the tool dependency graph G = (V,E,W ), parameterized by a quintuple (α, β,H,D, C), where
α ∈ R+ (initialized as α0 = 0.4) is the lower-bound threshold for acceptable path scores, and
β ∈ R+ (with β0 = 0.9) is the upper-bound for candidate evaluation. The dynamic threshold
function H(d) = max(0.3, 0.5 × 0.9d) applies exponential decay to balance search depth d and
semantic relevance. The depth attenuation factor D(d) = 1/(1 +

√
d) penalizes longer paths. The

connectivity constraint C(u, vt) = PathLength(u, vt) ≤ 5 ensures that generated subgraphs remain
compact, where vt denotes the target node (either an API node or a parameter node). The parametric
scoring function is defined as:

Suv =
wuv + I(u→ vapit )wu→vapi

t
+ I(u→ vparamt )wu→vparam

t

3
×D(d) (18)

where wuv is the direct edge weight from node u to its predecessor v (see Section 3.2.2), wu→vapi
t

and wu→vparam
t

denote the edge weights from u to the target API node vapit and target parameter node
vparamt , respectively, included only if the corresponding indicator function I(·) is active.

During reverse depth-first search, we apply two pruning rules: Alpha-pruning is triggered at parameter
nodes when Suv < H(d) and Suv < α, while Beta-pruning is triggered at API nodes when
Suv > β. To further improve efficiency, the pruning thresholds are dynamically adjusted via
α′ = max(α, Suv × 0.85) and β′ = min(β, Suv × 1.15), reducing the search time complexity from
O(bk) to O((

√
b)k) Knuth & Moore (1975), where b is the branching factor and k is the maximum

search depth. See Algorithm 1 for details.

Heuristic Graph Search with Dynamic Pruning. Our hybrid heuristic search algorithm combines
simulated annealing Kirkpatrick et al. (1983) and genetic algorithm strategies Shapiro (1999). It
is parameterized by a sextuple (T0, η,P, dmax,Mθ,Fω) (see Algorithm 2), where T0 = 200 is the
initial temperature that determines the probability of accepting suboptimal solutions and balances
exploration and exploitation, η = 0.7 is the cooling rate that controls the annealing schedule
Tk+1 = η1+k/5Tk, P = 20 is the population size, dmax = 4 is the maximum search depth, and
Mθ is a temperature-sensitive mutation operator with adaptive intensity θ = ⌊T /100⌋. Candidate
solutions are evaluated using a composite fitness function:

Fω = 0.35Cc + 0.15 log(1 + ρp) + 0.3Dc + 0.15Wn + 0.05Cp (19)

where Cc (node compactness) measures the closeness centrality of API nodes, ρp (parameter density)
is the ratio of parameter nodes within the subgraph to promote concise yet informative solutions,Dc =
0.2e−d/10 + 0.8e−n/8 (depth penalty) penalizes overly deep or complex dependency structures, with
d as the average depth and n as the total node count,Wn (weight quantification) encourages solutions
with higher cumulative edge weights, and Cp (path complexity) evaluates structural simplicity,
favoring solutions with less intricate connectivity.

We parallelize the subgraph search for different target APIs in Algorithm 2. This approach processes
the population evolution tasks independently and concurrently, thereby eliminating the computational
bottleneck of the original algorithm’s serial loops.
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Algorithm 1 Alpha-Beta Backward Pruning
Input G, vtarget, αinit = 0.4, βinit = 0.9, dmax = 5
Output Gsub

Initialize queue Q with vtarget, Vvisited = {vt}
while Q not empty do

v = Q.pop()
for p ∈ predecessors(v) do

if p not in Vvisited then
s = Score(p→ u, p→ vtarget, p→ vtarget_param)
d = current_depth(p)
H(d) = max(0.3, 0.5× 0.9d)
if p ∈ Vparam then

if s < H(d) ∧ s < α then
continue

end if
if s > β then

break
end if

end if
α = max(α, s× 0.85)
β = max(β, s× 1.15)
Vvisited.add(p)
Q.append(p)

end if
end for

end while
Vsub = {v|v ∈ Vvisited ∧ PathLength(u, vtarget) ≤ 5}
return Gsub = (Vsub, E)

Figure 6: Alpha-Beta Backward Pruning

C CASES

The following three cases exemplify the bilevel planning mechanism through four core actions: 1)
Direct Response: resolves user queries using pre-trained knowledge. 2) Intent Clarification: initiates
interactive dialogue to disambiguate vague requests. 3) ToolChain Retrieval: works with the TWNM
to construct a pruned tool dependency subgraph, which is then returned as an executable toolchain.
4) Tool Execution: executes the required APIs based on the dependency subgraph, with parameter
validation and state monitoring. This design achieves centralized decision control through the agent’s
orchestration authority while enabling dynamic resource optimization via the TWNM’s graph-based
toolchain generation, ensuring both efficiency and robustness of the our framework in complex task
environments.

C.1 CASE 1

QUERY

• Could you provide me with information about gastroenteritis? Additionally, please help me
log my health data from March 5, 2025.

FIRST ROUND: INTENT ANALYSIS

1. Gastroenteritis Inquiry
ACTION: Direct Response
CONTEXT:

{
"analysis": "1. Common sense judgment: Gastroenteritis is a
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Algorithm 2 Hybrid Heuristic Pruning Algorithm
Require: Dependency graph G, target API set A, initial temperature T0 = 200, cooling rate η = 0.7,

population size P = 20, maximum search depth dmax = 4
Ensure: Optimized dependency subgraph G∗

Initialize optimized subgraph set S ← ∅
2: for each target API a ∈ A do

Set temperature T ← T0
4: Generate initial population Pop (size P) for API a

Set iteration count k ← 0
6: while T > 1 and k ≤ 10 do

Evaluate fitness Fω for each chromosome in Pop
8: Select elite chromosomes (top 60% based on fitness)

Generate offspring via crossover operation
10: Apply temperature-sensitive mutationMθ with intensity θ = ⌊T /100⌋

Update population Pop with offspring
12: Update temperature: T ← η1+k/5T

Increment iteration count k ← k + 1
14: end while

Select best chromosome from Pop based on Fω

16: Decode chromosome and build API-specific subgraph Ga

Add subgraph Ga to optimized subgraph set S
18: end for

Merge all subgraphs in S into final optimized subgraph G∗

20: return G∗

Figure 7: Hybrid Heuristic Pruning Algorithm

medical condition within general knowledge. 2. No API
required for definition explanation. 3. Parameter
verification not applicable",
"action": "direct_answer",
"intent": "1. Provide medical definition of gastroenteritis
2. User’s explicit request for condition explanation",
"target_api": "",
"params": {},
"recall_description": "",
"answer": "Gastroenteritis is inflammation of the stomach
and intestines,
typically resulting from bacterial toxins or viral
infection. Common
symptoms include diarrhea, vomiting, and abdominal cramps."
}

2. Health Data Logging
ACTION: TooChain Retrieval
CONTEXT:

{
"analysis": "1. Health data recording requires specialized
API 2. No matching API in candidate list 3. Critical
parameters provided:
user_id=12345, blood_pressure=130/80, heart_rate=90,
timestamp=2025-03-05",
"action": "retrieve_api",
"intent": "1. Store user health metrics 2. Provided
parameters: blood pressure, heart rate, user ID, timestamp",
"target_api": "",
"params": {},
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"recall_description": "HealthDataAPI(description: Records
user health
metrics, input: user_id:string/unique identifier,
blood_pressure:string/systolic & diastolic,
heart_rate:integer/bpm,
timestamp:datetime/measurement time; output:
record_id:string/new entry identifier)",
"answer": "I need to retrieve a health data recording API to
complete this action. Should I proceed with API retrieval?"
}

Then, the BGE model retrieves two candidate APIs (api-RecordHealthData, api-
QueryRegistration) based on the recall description above, after which the TWNM is invoked
to acquire the corresponding call chains for these APIs (see Figure 8).

API Dependency Tree

            api-RecordHealthData
            [Function] Records user health data        

param-time
[Type] str

Time for alarm

param-user_id
[Type] str
User ID

            param-health_data
            [Type] str

            Health data format: [...]
            ⤷ api-QueryHealthData (Similarity:1.00)        

            api-QueryHealthData
            [Function] Queries health data by time span        

param-end_time
[Type] str

End time (%Y-%m-%d %H:%M:%S)

param-start_time
[Type] str

Start time (%Y-%m-%d %H:%M:%S)

            api-QueryRegistration
            [Function] Queries patient registration        

            param-date
            [Type] str

            Date of stock price
            ⤷ api-GetToday (Similarity:0.52)        

param-patient_name
[Type] str

Patient name

            api-GetToday
            [Function] Gets current date        

Figure 8: Pruned Tool Dependency Subgraph of Case1

SECOND ROUND: ITERATIVE API CHAIN EXECUTION

In this round, the agent selects and executes the optimal API chain, with api-RecordHealthData
designated as the target API.

ACTION: Tool Execution
CONTEXT:

{
"action": "call_api",
’api_name’: ’api-QueryHealthData’
"params": {

"user_id": "12345",
"start_time": "2025-03-05",
"end_time": "2025-03-05"

}
}

TOOL RESPONSE:

{{’name’:’blood_pressure’,’value’:’130/80’}
{’name’:’heart_rate’,’value’:’90’}}

THIRD ROUND: ITERATIVE API CHAIN EXECUTION

ACTION: Tool Execution
CONTEXT:

{
"action": "call_api",
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’api_name’: ’api-RecordHealthData’
"params": {

"user_id": "12345",
"time": "2025-03-05 14:30:00",
"health_data": "[{’name’:’blood_pressure’,’value’:’130/80’},

{’name’:’heart_rate’,’value’:’90’}]"
}

}

TOOL RESPONSE:

Finished

FOURTH ROUND: API OUTPUT VERBALIZATION

ACTION: Direct Response
CONTEXT:

{
"analysis": "1. API parameters verified and complete

2. Successful data storage confirmation",
"action": "direct_answer",
"answer": "Your health data has been successfully recorded..."

}

LAST ROUND: RESPONSE SYNTHESIS

ACTION: Direct Response
CONTEXT:

1.Inflammation of gastrointestinal tract
Common causes: Viral/bacterial infections
Key symptoms: Diarrhea, vomiting, abdominal cramps
Management: Hydration and rest

2. Health Data Record Confirmation:
All parameters validated successfully through api-
RecordHealthData. No data integrity issues detected.

C.2 CASE 2

QUERY

• Is Beijing in China? What is the current weather forecast for the location at latitude 40.7128
and longitude -74.0060 in metric units?

FIRST ROUND: INTENT ANALYSIS

1. Common Sense
ACTION: Direct Response
CONTEXT:

{’dependency_rank’: 1,
’intent’: ’Is Beijing in China?’,
’analysis’: ’1. The specific problem addressed by this
action is to determine if Beijing is located within China.
2. The user input directly asks about the
geographical location of Beijing. 3. This is a common
sense question and does not require an API call. 4. No
parameters are needed for this decision.’,

18
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’action’: ’direct_answer’,
’answer’: ’Yes, Beijing is in China.’}

2. Get Weather
ACTION: TooChain Retrieval
CONTEXT:

{’dependency_rank’: 2,
’intent’: ’What is the current weather forecast for the
location at latitude 40.7128 and longitude -74.0060 in
metric units?’,
’analysis’: ’1. The specific problem addressed by this
action is to retrieve the current weather forecast for a
specific location using latitude and longitude coordinates.
2. This is not a common sense question and requires an
external API call. 3. The API matching phase will prioritize
APIs that can provide weather forecasts based on geographic
coordinates. 4. Required parameters are latitude and
longitude, which are provided in the user input.’,
’action’: ’retrieve_api’,
’recall_description’: ’WeatherAPI(description: Retrieve
current weather conditions by geographic coordinates, input:
latitude:float/latitude coordinate;
longitude:float/longitude coordinate; output:
temperature:float/current temperature;
humidity:float/current humidity;
wind_speed:float/current wind speed)’}

Then, the BGE model retrieves three candidate APIs (api-current_weather_data_of_a_loca-
tion_for_weather, api-by_geographic_coordinates_for_rapidweather, api-current_for_foreca
_weather) based on the recall description above, after which the TWNM is invoked to
acquire the corresponding call chains for these APIs (see Figure 9).

API Dependency: api-current_for_foreca_weather

API Dependency: api-by_geographic_coordinates_for_rapidweather

API Dependency: api-current_weather_data_of_a_location_for_weather

            api-current_for_foreca_weather
            [Function] Everything to build weather app

Current weather estimate for location        

            param-location
            [Type] "string"

            [Description] Location        

            api-location_info_for_foreca_weather
            [Function] Metadata for location        

            api-location_search_for_foreca_weather
            [Function] Search locations by name                    param-query

            [Type] "string"
            [Description] Search query        

            api-by_geographic_coordinates_for_rapidweather
            [Function] Multi-source weather processing

Historical/current/forecast API data        

            param-lon
            [Type] integer

            [Description] Longitude (degrees)        

            param-lat
            [Type] string

            [Description] Latitude        

            api-by_city_name_for_rapidweather
            [Function] City/state/country search        

            api-one_call_api_for_rapidweather
            [Function] Complete weather data bundle        

            api-current_air_quality_for_air_quality
            [Function] Global air quality monitoring        

city_q_param
param-q

onecall_lat

onecall_lon

air_lat

air_lon

            api-current_weather_data_of_a_location_for_weather
            [Function] Basic Weatherbit.io API access        

            param-lon
            [Type] integer

            [Description] Longitude (degrees)        

            param-lat
            [Type] string

            [Description] Latitude        

Figure 9: Pruned Tool Dependency Subgraph of Case2

SECOND ROUND: ITERATIVE API CHAIN EXECUTION

In this round, the agent selects and executes the optimal API chain, with api-by_geographic
_coordinates_for_rapidweather designated as the target API.

ACTION: Tool Execution
CONTEXT:

{
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"action": "call_api",
’api_name’: ’api-by_geographic_coordinates_for_rapidweather’
’params’: {’param-lat’: ’40.7128’, ’param-lon’: ’-74.0060’}
}

TOOL RESPONSE:

{temperature:11.0°C, feels:8.0°C, wind_speed:5.1 m/s}

THIRD ROUND: API OUTPUT VERBALIZATION

ACTION: Direct Response
CONTEXT:

{
’analysis’: "1. The specific problem addressed by this
action is to retrieve the current weather forecast for a
specific location using the provided latitude and
longitude. 2. The user input directly provides the
necessary parameters (latitude and longitude) and
specifies the need for metric units.
3. The target API ’api-
current_weather_data_of_a_location_for_weather’ has
already been successfully called and its result is
available. 4. The required parameters (lat and lon) are
complete and the API call has been confirmed
successful.",
’action’: ’direct_answer’,
’answer’: ’The current weather in New York is clear sky
with a temperature of 11.0°C, feels like 8.0°C, and the
wind speed is 5.1 m/s from the west-southwest.’}

LAST ROUND: RESPONSE SYNTHESIS

ACTION: Direct Response
CONTEXT:

Beijing is in China. The current weather in New York is
clear sky with a temperature of 11.0°C, feels ike 8.0°C, and
the wind speed is 5.1 m/s from the west-southwest.

C.3 CASE 3

QUERY

• Could you tell me what the weather will be like tomorrow?

FIRST ROUND: INTENT ANALYSIS

1. Intent Clarification
ACTION: Intent Clarification
CONTEXT:

{
"analysis": "1. Weather data needs to be queried in real
time -> not common sense\n2. Required parameter (location)
is missing",
"action": "clarify_intent",
"recall_description": "",
"answer": "Which city do you want to query tomorrow’s
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weather?"
}

2. User Answer
User Answer:

I’m in BeiJing.

SECOND ROUND: INTENT ANALYSIS

1. Get Weather
ACTION: TooChain Retrieval
CONTEXT:

{’dependency_rank’: 1,
’intent’: ’1. Query the weather forecast for tomorrow in
Beijing 2. Extract location: Beijing and time: tomorrow
from user input’,
’analysis’: ’1. The specific problem addressed by this
action is to retrieve
the weather forecast for tomorrow in Beijing. 2. The user
input directly provides the location (Beijing) and the
time frame (tomorrow). 3. Since no candidate APIs are
available, the system needs to retrieve an appropriate API
for weather forecasting. 4. There are no parameters
provided by the user that can be used directly with an
API, so the system must retrieve an API that can
accept location and time as parameters.’,
’action’: ’retrieve_api’,
’recall_description’: ’WeatherForecastAPI(description:
Retrieve weather forecast for a given location and date,
input: location:string/city name;
date:date/forecast date; output: weather:string/weather
condition, temperature:float/forecast temperature)’}

Then, the BGE model retrieves three candidate APIs (api-getweatherforecast_for_apjoy_
weather_forecast, api-weather_report_for_the_weather_api, api-location_info_for_foreca
_weather) based on the recall description above, after which the TWNM is invoked to
acquire the corresponding call chains for these APIs (see Figure 10).

API Dependency: api-getweatherforecast_for_apjoy_weather_forecast

API Dependency: api-weather_report_for_the_weather_api

API Dependency: api-location_search_for_foreca_weather

            api-getweatherforecast_for_apjoy_weather_forecast
            [Function] Comprehensive weather forecasting API
Provides real-time data, hourly updates, 7/14-day predictions

Data source: OpenWeatherMap        

            param-location
            [Type] string

            [Description] Target location        

            api-weather_report_for_the_weather_api
            [Function] Provides precise weather/AQI data

City-specific weather reports        

            param-cityname
            [Type] string

            [Description] City name        

            api-get_current_weather_for_cloud_cast
            [Function] Real-time weather data API

Node.js/Express based service        

            param-city
            [Type] string

            [Description] City name for air quality        

            api-location_search_for_foreca_weather
            [Function] Location search by name

Weather app development toolkit        

            param-query
            [Type] string

            [Description] Search term        

            api-location_info_for_foreca_weather
            [Function] Location metadata provider        

            api-daily_for_foreca_weather
            [Function] Daily forecast data        

            api-current_for_foreca_weather
            [Function] Current weather estimator        

            param-location
            [Type] string

            [Description] Target location        

Figure 10: Pruned Tool Dependency Subgraph of Case3

THIRD ROUND: ITERATIVE API CHAIN EXECUTION

In this round, the agent selects and executes the optimal API chain, with api-
getweatherforecast_for_apjoy_weather_forecast designated as the target API.

ACTION: Tool Execution
CONTEXT:
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{
"action": "call_api",
’api_name’: ’api-getweatherforecast_for_apjoy_weather_forecast’
’params’: {’location’: ’Beijing’}
}

TOOL RESPONSE:

{temperature:25°C, humidity:60%}

LAST ROUND: API OUTPUT VERBALIZATION

ACTION: Direct Response
CONTEXT:

The weather forecast for tomorrow in Beijing is partly
cloudy with a temperature of 25°C and humidity of 60%.

D DATA GENERATION

Problem and API Dependency Chain Generation Prompts: Automatically construct a chain of
calls with strict parameter matching based on a randomful tree structure. This process involves
tracing initial parameters from the leaf nodes and validating results at the root node to ensure that the
generated problem aligns with the authentic API dependency logic of real-world scenarios.

1. Core Requirements:
- Generate a natural-language question where:

• Must explicitly contain initial parameters for leaf-
node APIs
• Implicitly requires chained API calls from leaf to
root node
• Root node API’s output directly resolves the user’s
problem

2. Dependency Chain Rules:
- Build parameter-passing paths where:

• Parent API outputs must exactly match child API inputs (same
parameter names & data types)

• Root node API must be called last in the chain
• The output of every leaf-node API must be utilized in
downstream

APIs or final results.
• All input values must originate from either:

Explicitly stated in the question context
Generated by previous API outputs (no synthetic values)

3. Parameter Constraints:
- Enforce strict value inheritance:

• Path/query parameters must use verbatim values from:
- User’s question text
- Preceding API response.data fields

• Prohibit value transformation/format conversion
- Root API output must contain realistic values matching
its schema

4. Validation Requirements:
- Reject generation if:

• Missing parameter dependency between APIs
• Input sources can’t be traced to question/prior responses
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• Output fields don’t fulfill next API’s input requirements

5. Response Structure:
{

"query": "<Real-world scenario requiring sequential API
calls>",
"answer": "<Solution derived from root API output>",
"call_chains": [

{
"api_name": "<Leaf-node API>",
"input": {

"<param>": "<value explicitly stated in user query
or previous API output>"

},
"output": {

"status": "success",
"data": {"<field>": "<output used by next API>"}

}
},
{

"api_name": "<Root-node API>",
"input": {

"<param>": "<value from previous API output>"
},
"output": {

"status": "success",
"data": {"<field>": "<realistic resolution to
query>"}

}
}

]
}
The API dependency tree structure is as follows:

E IMPLEMENTATION DETAILS

E.1 DATASET

This table 4 system displays the sample counts of the ToolBench and API-Bank datasets, as well as
the distribution of their difficulty levels.

Dataset Easy Medium Hard Total

API-Bank 57 176 211 444
ToolBench 148 208 105 461

Table 4: Dataset Samples and Difficulty Distribution

E.2 TRAINING

We fine-tuneTajbakhsh et al. (2016) our model using Qwen2.5-14B model with full parameter tuning.
The model is trained with a maximum sequence length of 8192. We utilize a learning rate of 2e-5 and
employ the AdamW optimizer with a cosine learning rate scheduler. The training process includes 10
epochs with a per-device batch size of 1 for both training and evaluation. Gradient checkpointing is
enabled to reduce memory usage, and gradient accumulation is set to 4 steps to effectively manage
smaller batch sizes. We apply a weight decay of 0.01 and set the maximum gradient norm to 1
for stable training. A warmup ratio of 0.03 is used to gradually increase the learning rate at the
beginning of training. The training is executed on 8 Ascend 910B 64G GPUs within 10 hours. The
DeepSpeedRasley et al. (2020) library is leveraged for efficient distributed training.
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E.3 INFERENCE

E.3.1 NAVIAGENT INFERENCE PROMPTS

Inference prompts are based on intent decomposition and dependency prioritization to achieve
automatic parameter completion and error handling. They generate standardized JSON responses
through hierarchical decision-making.

You are an intelligent API coordination system. Respond
strictly according to the following rules:

# Decision Architecture
1. **Intent Analysis**

- Decompose compound requests into independent ordered
sub-intents

• Sequential dependencies first, Must execute in
declared order
• Parallelizable sub-intents last
• Dependency_rank numbering for ordered execution

- Validate parallel execution eligibility:
• No overlapping data requirements
• No sequential dependencies
• Distinct parameter sets

2. **Atomic Action Formation**
• For each validated sub-intent:

- Create self-contained decision unit, action must
implement full
Decision Logic Flow
- Maintain state separation between parallel processes
- Focus analysis scope per sub-intent
- Each action’s analysis focuses only on its own
intent
- Each action analysis only solves one intent
- Must execute each action in declared order

# Decision Logic Flow
1. **Common Sense Judgment Phase**

- Input question -> Knowledge base matching
Belongs to common sense -> action=direct_answer
Requires external data -> Proceed to Phase 2

2. **API Matching Phase**
1. If candidate_apis is empty -> action=retrieve_api
2. Match intent with API list:
API prioritization:

- Complete parameters from user input
- Minimal missing parameters
- Shortest dependency chain

API matching success:
- Validate Observation in user input to confirm
target API success:

-> If successful -> action=direct_answer
-> No explicit success indication:
a) Complete parameters -> action=call_api
(execute based on 3.1 dependency resolution)

- If Rule 3.1c applies -> action=direct_answer
b) Missing parameters -> Proceed to Phase 3

API matching failed -> action=retrieve_api
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3. **Parameter Completion Phase**
- Check required parameter set:

All parameters ready -> action=call_api
The target API does not require parameters -> action=call_api
Missing parameters exist:

a) Can be completed via dependent APIs -> Execute
Rule 3.1
b) Use Retrieval APIs resolve parameter deficiencies
in API

dependencies -> action=retrieve_api
c) Requires human confirmation -> action=clarify_intent

# Technical Rule
## 3.1 Dependency Resolution Rules

a) Check required parameters of target API, first call
dependent APIs.
b) For each missing parameter, select APIs from
dependencies not marked

as failed.
c) If an input parameter of an API is unavailable, use
retrieve_api to

call another API that generates it from known parameters.
-> action=retrieve_api

d) Success propagation: Completed dependency chain
-> action=direct_answer

## 3.2 Known Failure Handling
a) Failed APIs are recorded in failed_apis
b) Prioritize non-failed candidate APIs

# Response Specification (Mandatory JSON Format)
[{

"dependency_rank": 1,
"intent": "1. <precisely describe the specific problem
addressed by the current action>

2. <extract data segments directly related to
the subtask from user input>",

"analysis":
"<Four-level reasoning:
1.Explicitly state the specific decision-making sub-
intent

addressed by this action
2.Common sense judgment basis
3.API matching logic (if applicable)
4.Parameter completeness verification>",

"action": "call_api|direct_answer|retrieve_api|clarify_intent",
"target_api": "API name (mandatory for call_api)",
"params": {"parameter": "value (mandatory for call_api)"},
"recall_description":

"When action=retrieve_api: Use ’APIName(description:
API functionality, input: param:type/description;
output:
param:type/description)’ format with only core
parameters (e.g.,
’StockAPI(description: Query stock price by symbol,
input: symbol:string/stock symbol; output:
price:float/current price)’)",

"answer": "When actionin[direct_answer,clarify_intent]:
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Natural language response (interrogative sentences
required)"

}]

# Response Specification
Added constraint:
- JSON array items MUST be sorted by dependency_rank in
ascending order
- Sibling sub-intents should have consecutive ranks

# Termination Conditions
[OR]Generate final answer
[OR]Target API must be executed successfully, as shown in
the status

# Enforcement Constraints
1. Parameter names must strictly match API documentation
2. The ’answer’ field for clarify_intent must contain
question words
3. Prioritize calling parent node APIs
4. When action in [retrieve_api]:

- The recall_description field serves exclusively as an
API retrieval identifier from predefined repositories.
- parameter descriptions must distinguish between input
and output parameters, retaining only essential
parameters
- Each recall_description can only recall one
api,multiple APIs require

multiple actions.
5. APIs absent from Candidate APIs MUST NOT be invented
6. When action=call_api is permitted only when candidate
APIs exist and the target_api is present in the candidate
APIs.
7. The "action" field must be strictly limited to one of the
following four predefined operation types: call_api,
direct_answer,retrieve_api or clarify_intent.
8. Use retrieve_api only when:

- Required parameters unavailable in call_api action
9. Use call_api only when:

- The target_api is not in the list of successfully
executed APIs

---------
# Candidate API Information:

E.3.2 INPUT GENERATION PROMPTS

Input generation prompts: Integrate current queries with observational data to formulate the final
input, ensuring informational completeness.

User input:{user_input}\nPlease generate the final response
based on the following data:
{observation} :

Requirements:
1. Integrate all available data
2. Indicate data limitations (if any failed APIs exist)
3. Use natural and fluent English
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E.3.3 API SIMULATOR PROMPTS

API simulator prompts are based on historical data reuse (Case1) and intelligent simulation gen-
eration (Case2/3). They achieve automated emulation of API chains through standardized JSON
responses. The priority strategy is as follows: historical matching > structural cloning > contextual
simulation.

Act as an API Chain Simulator to generate responses based on
historical call chains.
Follow these rules strictly:

Operation Rules:
1. Request Processing Logic

- CASE 1: Existing API + Identical Inputs
• Return historical outputs verbatim
• Set {"status": "success", "type": "success"}

- CASE 2: New API
• Create mock data matching input format using:

- Similar outputs from call chain (priority)
- Simulated values (fallback)

• Set {"status": "success", "type": "mock"}
- CASE 3: Error

• If not correct
• Set {"status": "success", "type": "error"}

2. Response Requirements:
• Strictly use JSON format only
• Never explain parameter sources or chain structure
• Never ask follow-up questions
• Maintain consistent parameter naming conventions

3. Output Format (JSON):
{

"status": "<success>", // Always ’success’ per operation
completion
"data": <output_parameters>,
"type": "<success/mock/error>"

}

Implementation Notes:
1. Priority Order:

History Match > Structural Clone > Contextual Moc

API call chain is as follows:

E.3.4 SIMULATED USER RESPONSE AGENT PROMPTS

Simulated user response agent prompts: Utilize a parameter extractor as the user response to
agent, serving as a simulated responder for follow-up questions by the agent. Strictly adhere to the
parameter records of the API call chain to return only the queried and existent original parameter
values. Automatically filter out uninvoked or null parameters to ensure that the responses include
only the actual request information from the existing chain of calls.

As an API chain parameter extractor, directly return exact
parameter values from the given API workflows without any
modification.

## Mandatory Protocols
1. Parameter Extraction Priority

Always return raw parameter values from the latest API
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call
Return empty string for blank parameters (e.g. param-
cuisines_1 -> "")

2. Response Requirements
Merge multiple parameters in single response
Example: "patient_id:[value] cuisine:[value]"

Strictly avoid explanations or disclaimers
Never reveal API structure or workflow logic

## Critical Examples
User: What’s the patient ID and dietary preferences?
API Context: [param-patient_id_10:’P123’ ...]
Response: patient_id:P123’’

User: Current trial phase and calories limit?
API Context: [param-trial_phase_1:’Phase 2’ param-
calories_max_1:’2000’...]
Response: phase:Phase 2 calories_max:2000

User: How to activate international roaming?
API Context: Relevant records
Response: I don’t Know international roaming activation
information.

## Execution Context
Current API call chain:

E.4 EVALUATION

E.4.1 EVALUATION PROMPTS

Evaluation prompts in GPT-4.1 are designed to assess the correctness of the answer generation
process, logical consistency, and accuracy of responses by analyzing the anticipated pathways and
the decision-making pathways of the agent.

As an expert in response quality evaluation, you need to
perform the following steps:
I. Core Information Comparison Requirements
1. Reference Path Analysis
- Understand the simulated nature of reference API call
paths.
- Be aware of potential discrepancies: API names/parameter
formats may differ from actual implementations.

2. Actual Path Verification
- Compare each actual call path with the reference path.
- Focus on logical coherence rather than exact matching.

II. Error Detection Standards
1. Call Process Errors
Parameter Anomalies:
* Includes fictitious or illegal parameters.
Execution Errors:
* Returns error codes (e.g., 5xx) or invalid responses.

2. Information Integrity Errors
Deviation in Answers:
* Fails to address the core user query accurately.
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Missing Key Information:
* Lacks necessary data items or explanation steps.

III. Correctness Determination Rules
1. Process Compliance
- Call sequence should be logically consistent.

2. Answer Completeness
- Covers all core elements of the user’s question.
- Output provides a sufficient amount of information.

IV. Quality Rating System
[1] High-Quality Standard:
* Complete logical coherence in call paths.
* Output results are accurate and effective.
* No technical errors.

[0] Deficiency Standard (if any condition is met):
* Critical API call failures.
* Returned results do not support the answer.
* Presence of unaddressed critical errors.

V. Output Specifications
1. Detection Report Format:

1. Parameter Validation -> Compliant/Non-compliant
2. Path Verification -> Compliant/Non-compliant
3. Result Completeness -> Compliant/Non-compliant

2. Final Conclusion Format:
{’Quality Result’: 1} or {’Quality Result’: 0}

VI. Input Data Interface
User Question: {question}
[AGENT Answer Start]
{reference}
[AGENT Answer End]
[Reference Call Path]
{reference_chain}
[Reference Call Path End]
[Actual Call]
{agent_actual_chain}
[Actual Call End]

F EXPERIMENTS

F.1 EVALUATING OUR APPROACH ON REAL-WORLD APIS

To further validate our framework, we conducted real-world evaluations on 50 APIs from RapidAPI,
covering weather, air quality, restaurants, real estate, geolocation, hotels, and sports. A total of 60
queries (20 easy, 20 medium, and 20 hard) were carefully designed to ensure comprehensive coverage
across these domains. On this real-world testbed, our framework consistently outperformed the
α-UMI baseline in both effectiveness and efficiency. Metrics are reported as in Table 5 and Time is
measured in seconds (s)
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Model Method TCR TSR Steps Time

Qwen2.5-14B

ReAct 31.7 21.7 3.70 16
ToolLLM 53.3 23.3 4.10 19
α-UMI 76.7 31.7 5.80 27
Dynamic+H 65.0 36.7 4.90 25

Qwen2.5-32B

ReAct 35.0 25.0 3.80 19
ToolLLM 48.3 30.0 4.00 23
α-UMI 78.3 41.6 6.04 32
Dynamic+H 86.7 53.3 4.84 27

DeepSeek-V3

ReAct 55.0 33.3 3.75 23
ToolLLM 53.3 35.0 4.05 25
α-UMI 85.0 48.3 6.17 39
Dynamic+H 98.3 63.3 5.11 35

Table 5: Real-World APIs Test.

F.2 RUNTIME EXPERIMENTS

Table 6 presents the runtime (in seconds) of NaviAgent variants across different models on ToolBench.
Notably, the Dynamic+A method consistently achieves lower runtime across all models, with the
most significant improvement observed in Deepseek-V3: compared to the Base method (55.8
seconds), Dynamic+A reduces the runtime by 15 seconds, corresponding to a relative improvement
of approximately 26.9%. Among all methodological variants, Dynamic+H demonstrates the optimal
overall performance; however, it is constrained by higher runtime induced by heuristic strategies and
excessive search scale, which will be the focus of subsequent optimization efforts.

Model Method Easy Medium Hard All

Qwen2.5-14B

Base 26.6 34.0 44.5 34.0
Static+A 21.6 27.1 36.1 27.4
Dynamic+A 19.8 25.3 34.4 25.6
Dynamic+H 22.9 30.4 39.6 30.1

Qwen2.5-32B

Base 33.4 41.7 53.3 41.7
Static+A 24.0 33.0 41.1 32.0
Dynamic+A 24.0 31.0 38.6 30.5
Dynamic+H 28.1 33.8 48.4 35.3

Deepseek-R1-32B

Base 36.2 44.2 61.2 45.5
Static+A 27.5 33.7 46.8 34.7
Dynamic+A 24.6 34.6 44.5 33.6
Dynamic+H 31.0 36.7 49.7 37.8

Deepseek-V3

Base 43.6 56.6 71.3 55.8
Static+A 34.4 44.5 55.5 43.8
Dynamic+A 30.3 41.6 53.3 40.6
Dynamic+H 37.0 47.3 61.6 47.3

GPT-4o

Base 42.3 55.6 75.6 55.9
Static+A 34.9 44.1 59.8 44.7
Dynamic+A 32.6 43.8 56.4 43.1
Dynamic+H 36.9 47.1 61.5 47.1

Qwen2.5-14B(SFT)

Base 27.0 38.0 50.1 37.2
Static+A 22.3 27.1 37.8 28.0
Dynamic+A 19.9 27.9 35.9 27.2
Dynamic+H 24.5 31.4 40.6 31.3

Table 6: Runtime(in Seconds) of NaviAgent Variants on ToolBench
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F.3 EXPERIMENTS ON API-BANK

Table 7 demonstrates that the experimental outcomes of the API-Bank dataset are consistent with
those observed in the ToolBench-based experiments.

Model Method Easy Medium Hard All

TCR TSR Steps TCR TSR Steps TCR TSR Steps TCR TSR Steps

Qwen2.5-14B

Base 47.8 33.4 5.40 60.5 24.8 6.09 71.6 29.9 6.47 63.1 27.6 6.06
Static+A 63.4 44.8 4.88 72.4 32.8 5.38 68.4 34.3 5.41 67.9 34.0 5.22
Dynamic+A 64.9 49.1 4.93 72.7 36.4 5.32 68.7 36.0 5.36 68.3 36.7 5.18
Dynamic+H 73.1 56.1 4.71 66.6 40.4 5.27 66.4 33.5 5.63 65.7 37.9 5.26

Qwen2.5-32B

Base 61.6 46.6 5.26 78.6 35.0 6.84 68.9 30.7 7.38 70.4 33.4 6.78
Static+A 88.6 65.7 4.63 80.0 34.3 5.90 84.6 39.9 6.29 81.3 39.5 5.82
Dynamic+A 89.5 68.4 4.57 80.1 35.8 5.86 85.3 45.0 6.36 81.8 42.8 5.83
Dynamic+H 90.8 74.0 4.54 87.0 44.7 5.70 84.2 45.5 5.66 84.1 47.2 5.43

Deepseek-R1-32B

Base 88.2 66.2 6.41 65.3 28.3 7.79 64.5 25.4 7.83 65.9 30.3 7.49
Static+A 89.2 60.7 5.77 88.1 46.1 6.83 81.2 30.5 6.82 83.0 39.2 6.56
Dynamic+A 89.5 63.2 5.73 90.9 48.3 6.75 81.5 34.1 6.76 84.2 42.0 6.49
Dynamic+H 99.1 77.6 4.96 89.4 46.9 6.06 79.3 34.4 6.81 83.6 43.2 6.16

Deepseek-V3

Base 86.3 67.0 5.95 86.3 46.5 6.65 85.4 42.1 7.09 83.9 45.5 6.64
Static+A 97.7 77.4 4.84 98.6 55.5 6.17 98.8 48.1 5.82 96.4 53.1 5.72
Dynamic+A 99.9 82.5 4.77 98.9 58.5 6.21 99.1 51.2 5.87 96.9 56.3 5.76
Dynamic+H 98.8 88.9 5.00 98.0 60.0 5.74 98.6 52.3 5.88 96.2 58.0 5.60

GPT-4o

Base 96.8 74.9 5.23 92.4 48.3 6.15 94.5 38.6 6.19 91.8 45.4 5.93
Static+A 99.6 76.8 4.15 98.6 54.5 5.17 98.3 46.9 4.85 96.3 52.0 4.79
Dynamic+A 99.9 78.5 4.14 98.9 56.4 5.14 98.6 52.2 4.90 96.6 55.5 4.80
Dynamic+H 98.9 76.1 3.70 98.1 57.9 5.00 97.0 57.8 5.00 95.5 58.5 4.75

Qwen2.5-14B(SFT)

Base 76.0 45.4 5.63 74.9 35.1 6.35 76.3 40.6 6.39 74.0 38.0 6.15
Static+A 94.1 60.6 4.69 88.7 41.3 5.24 87.9 41.3 5.28 86.9 42.4 5.08
Dynamic+A 94.7 64.3 4.67 89.8 44.1 5.32 88.2 42.2 5.34 87.5 44.3 5.14
Dynamic+H 93.2 71.0 4.61 90.2 48.3 5.17 87.6 44.5 5.14 87.3 47.8 4.98

Table 7: Impact of NaviAgent Variants on API-Bank. Metrics are reported as in Table 2.

G LINK PREDICTION EVALUATION

Dataset APIs Nodes Edges ACC F1 AUC
ToolBench 5501 7866 24215 76.4 77.6 0.75
API-Bank 2650 6025 10255 78.4 76.1 0.71

Table 8: Tool Graph Statistics and Link Prediction Evaluation. Nodes and Edges denote the number of
nodes and edges in the graph, respectively. ACC and F1 are reported as percentages (%), while AUC is reported
as a value between 0 and 1.

H USAGE OF LLM

To improve clarity and readability, we used a LLM for language polishing. All research ideas,
methods, and conclusions were developed solely by the authors.
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