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Abstract
With the rapid growth of data in modern appli-
cations, parallel algorithms for maximizing non-
monotone submodular functions have gained sig-
nificant attention. In the parallel computation
setting, the state-of-the-art approximation ratio of
1/e is achieved by a continuous algorithm (Ene &
Nguyen, 2020) with adaptivityO (log(n)). In this
work, we focus on size constraints and present
the first combinatorial algorithm matching this
bound – a randomized parallel approach achieving
1/e− ε approximation ratio. This result bridges
the gap between continuous and combinatorial
approaches for this problem. As a byproduct, we
also develop a simpler (1/4− ε)-approximation
algorithm with high probability (≥ 1 − 1/n).
Both algorithms achieve O (log(n) log(k)) adap-
tivity and O (n log(n) log(k)) query complexity.
Empirical results show our algorithms achieve
competitive objective values, with the (1/4− ε)-
approximation algorithm particularly efficient in
queries.

1. Introduction
Submodular Optimization. Submodular optimization is
a powerful framework for solving combinatorial optimiza-
tion problems that exhibit diminishing returns (Nemhauser
et al., 1978; Feige & Goemans, 1995; Cornuejols et al.,
1977). In a monotone setting, adding more elements to
a solution always increases its utility, but at a decreasing
rate. On the other hand, non-monotone objectives may
have elements that, when added, can reduce the utility of a
solution. This versatility makes submodular optimization
widely applicable across various domains. For instance,
in data summarization (Mirzasoleiman et al., 2018; Tschi-
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atschek et al., 2014) and feature selection (Bilmes, 2022),
it helps identify the most informative subsets efficiently. In
social network analysis (Kempe et al., 2003), it aids in in-
fluence maximization by selecting a subset of individuals
to maximize information spread. Additionally, in machine
learning (Bairi et al., 2015; Elenberg et al., 2017; Prajapat
et al., 2024), submodular functions are used for diverse
tasks like active learning, sensor placement, and diverse set
selection in recommendation systems. These applications
demonstrate the flexibility and effectiveness of submodular
optimization in addressing real-world problems with both
monotone and non-monotone objectives.

Problem Definition and Greedy Algorithms. In this
work, we consider the size-constrained maximization of
a submodular function: given a submodular function f
on ground set of size n, and given an integer k, find
arg maxS⊆U,|S|≤k f(S). If additionally f is assumed to be
monotone, we refer to this problem as SM-MON; otherwise,
we call the problem SM-GEN. For SM-MON, a standard
greedy algorithm gives the optimal1 approximation ratio
of 1− 1/e ≈ 0.63 (Nemhauser et al., 1978) in at most kn
queries2 to f . In contrast, standard greedy can’t achieve any
constant approximation factor in the non-monotone case;
however, an elegant, randomized variant of greedy, the RAN-
DOMGREEDY of Buchbinder et al. (2014) obtains the same
greedy ratio (in expectation) of 1− 1/e for monotone objec-
tives, and 1/e ≈ 0.367 for the general, non-monotone case,
also in at most kn queries. However, as modern instance
sizes in applications have become very large, kn queries is
too many. In the worst case, k = Ω(n), and the time com-
plexity of these greedy algorithms becomes quadratic. To
improve efficiency, Buchbinder et al. (2017) leverage sam-
pling technique to get FASTRANDOMGREEDY, reducing
the query complexity to O (n) when k ≥ 8ε−2 log(2ε−1).

Parallelizable Algorithms. In addition to reducing the
number of queries, recently, much work has focused on
developing parallelizable algorithms for submodular opti-

1Optimal in polynomially many queries to f in the value query
model (Nemhauser & Wolsey, 1978).

2Typically, queries to f dominate other parts of the computa-
tion, so in this field time complexity of an algorithm is usually
given as oracle complexity to f .
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Table 1. Theoretical comparison of greedy algorithms and parallel algorithms with sublinear adaptivity.
Algorithm Ratio Queries Adaptivity

FASTRANDOMGREEDY (Buchbinder et al., 2017) 1/e− ε O (n) k
ANM (Fahrbach et al., 2023) 0.039− ε O (n log(k)) O (log(n))

Ene & Nguyen (2020) 1/e− ε O
(
k2n log2(n)

)
‡ O (log(n))

PARKNAPSACK(Amanatidis et al., 2021) 0.172− ε O (kn log(n) log(k)) ‖O
(
n log(n) log2(k)

)
O (log(n)) ‖O (log(n) log(k))

AST (Chen & Kuhnle, 2024) 1/6− ε O (n log(k)) O (log(n))
ATG (Chen & Kuhnle, 2024) 0.193− ε O (n log(k)) O (log(n) log(k))
PARSKP (Cui et al., 2023) 0.125− ε O

(
kn log2(n)

)
‖O
(
n log2(n) log(k)

)
O (log(n)) ‖O (log(n) log(k))

PARSSP (Cui et al., 2023) 0.25− ε O
(
kn log2(n)

)
‖O
(
n log2(n) log(k)

)
O
(
log2(n)

)
‖O
(
log2(n) log(k)

)
PARALLELINTERLACEGREEDY (Alg. 6) 0.25− ε† O (n log(n) log(k)) O (log(n) log(k))

PARALLELINTERPOLATEDGREEDY (Alg. 11) 1/e− ε O (n log(n) log(k)) O (log(n) log(k))

‡ The parallel algorithm in Ene & Nguyen (2020) queries to the continuous oracle.
† The approximation ratio is achieved with high probability (at least 1− 1/n).

mization. One measure of parallelizability is the adaptive
complexity of an algorithm. That is, the queries to f are
divided into adaptive rounds, where within each round the
set queried may only depend on the results of queries in
previous rounds; the queries within each round may be arbi-
trarily parallelized. Thus, the lower the adaptive complexity,
the more parallelizable an algorithm is. Although the initial
algorithms with sublinear adaptivity were impractical, for
the monotone case, these works culminated in two practi-
cal algorithms: FAST (Breuer et al., 2020) and LS+PGB
(Chen et al., 2021), both of which achieve nearly the opti-
mal ratio in nearly linear time and nearly optimal adaptive
rounds. For the nonmonotone case, the best approxima-
tion ratio achieved in sublinear adaptive rounds is 1/e (Ene
& Nguyen, 2020). However, this algorithm queries to a
continuous oracle, which needs to be estimated through a
substantial number of queries to the original set function
oracle. Although practical, sublinearly adaptive algorithms
have also been developed, the best ratio achieved in nearly
linear time is nearly 1/4 (Cui et al., 2023), significantly
worse than the state-of-the-art3, this 1/4 ratio also stands as
the best even for superlinear time parallel algorithms. Fur-
ther references to parallel algorithms and their theoretical
guarantees are provided in Table 1.

Greedy Variants for Parallelization. To enhance the ap-
proximation ratios for combinatorial sublinear adaptive al-
gorithms, it is crucial to develop practical parallelizable
algorithms that serve as universal frameworks for such par-
allel approaches. Among existing methods, INTERLACE-
GREEDY (Kuhnle, 2019), with an approximation ratio of
1/4, and INTERPOLATEDGREEDY (Chen & Kuhnle, 2023),
with an expected approximation ratio of 1/e, have emerged
as promising candidates due to their unique and determinis-
tic interlacing greedy procedures.

INTERLACEGREEDY (Alg. 1) operates by first guessing
whether the maximum singleton a0 = arg maxx∈U f (x) is

3The best known ratio in polynomial time was very recently
improved from close to 1/e to 0.401 (Buchbinder & Feldman,
2024)

Algorithm 1: INTERLACEGREEDY(f, k): The INTER-
LACEGREEDY Algorithm (Kuhnle, 2019)

Input: evaluation oracle f : 2U → R≥0, constraint k
Initialize :a0 ← arg maxx∈U f (x), A← B ← ∅,

D ← E ← {a0}, add 2k dummy elements
to the ground set

1 for i← 0 to k − 1 do
2 A← A+ arg maxx∈U\(A∪B) ∆ (x |A)

3 B ← B + arg maxx∈U\(A∪B) ∆ (x |B)

4 for i← 1 to k − 1 do
5 D ← D + arg maxx∈U\(D∪E) ∆ (x |D)

6 E ← E + arg maxx∈U\(D∪E) ∆ (x |E)

7 return C ← arg max{f (A) , f (B) , f (D) , f (E)}

contained within the optimal solution O. Based on this hy-
pothesis, the algorithm initializes two solution pools differ-
ently: if a0 is not inO, the pools begin empty (A = B = ∅);
otherwise, they are initialized with a0 (D = E = {a0}).
The algorithm then proceeds by alternately selecting ele-
ments for each pool in a greedy fashion, ultimately returning
the best solution found. We provide its theoretical guaran-
tees below.

Theorem 1.1. Let f : 2U → R≥0 be submodular, let
k ∈ U , let O = arg max|S|≤k f (S), and let C =
INTERLACEGREEDY(f, k). Then

f (C) ≥ f (O) /4,

and INTERLACEGREEDY makes O (kn) queries to f .

The key to this guarantee lies in the alternating selection
strategy between the two pools. For any disjoint pools
{S, T}, it holds that

f (S) + f (T ) ≥ f (O ∪ S) + f (O ∪ T ) ≥ f (O) ,

where the first inequality follows from the alternating se-
lection strategy, and the second inequality follows from
submodularity and monotonicity.
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Building on this, INTERPOLATEDGREEDY (Chen & Kuhnle,
2023) generalizes the approach by maintaining ` sets, each
containing k/` elements at each iteration (see pseudocode
and theoretical guarantees in Appendix C). However, in their
original formulations, both algorithms require an initial step
to guess whether the first element added to each solution
belongs to the optimal set O. This results in repeated for
loop with different initial values in INTERLACEGREEDY
and a success probability of (`+ 1)−`.

1.1. Contributions

InterlaceGreedy
Kuhnle (2019)

ParallelInterlaceGreedy 
(Alg. 6)

Simplified InterlaceGreedy 
(Alg. 8)

1/4 1/e

InterpolatedGreedy
Chen & Kuhnle (2023)

ParallelInterpolatedGreedy 
(Alg. 11)

Simplified InterpolatedGreedy 
(Alg. 2)

Alternating Selection

Blended Marginal Gain

Threshold Sampling

Figure 1. This figure illustrates strategies employed by each al-
gorithm. The three leftmost algorithms achieve an asymptotic
approximation ratio of 1/4, while the three rightmost algorithms
attain an asymptotic ratio of 1/e.

Technical Contributions: Blended Marginal Gains
Strategy. Our first contribution is a novel method of analy-
sis for interlaced greedy-based algorithms, such as INTER-
POLATEDGREEDY (Chen & Kuhnle, 2023). The core in-
novation introduces multiple upper bounds on the marginal
gain of the same element regarding the solution, offering
greater flexibility in the analysis. This approach yields
three notable advances: First, we present Alg. 2 (Section 3)
with O (kn) query complexity, achieving an expected ap-
proximation ratios of 1/e− ε, eliminating the probabilistic
guessing step that limited prior method to (1 + `)−` success
probability. Second, as a byproduct, we also provide a sim-
plified version of INTERLACEGREEDY (Kuhnle, 2019) that
preserves its theoretical guarantees in Appendix D. Most im-
portantly, these simplified variants establish the theoretical
foundation for parallel algorithms. By removing branching
dependencies and probabilistic guesswork, our framework
enables the first efficient parallelization of these interlaced
greedy approaches while preserving their approximation
guarantees.

Parallel Algorithms with Logarithmic Adaptivity and

Nearly-linear Query Complexity Using a Unified Sub-
routine. In Section 4, we present two sublinear adaptive al-
gorithms, PARALLELINTERLACEGREEDY (PIG) and PAR-
ALLELINTERPOLATEDGREEDY (PITG) that share a unified
subroutine, PIG. The core innovation of PIG lies in its
novel threshold sampling procedure, which simultaneously
preserves the crucial alternating selection property of in-
terlaced greedy methods while enabling efficient parallel
implementation.

Like prior parallel algorithms, PIG maintains descending
thresholds for each solution, adding elements whose average
marginal gain exceeds the current threshold. However, PIG
introduces two critical modifications to maintain the inter-
laced greedy structure: 1) strict synchronization of batch
sizes across all ` parallel solutions, and 2) coordinated ele-
ment selection to maintain sufficient marginal gain for each
solution.

This design achieves three fundamental properties. First,
it preserves the essential alternating selection property of
the interlaced greedy methods. Second, through threshold
sampling, it geometrically reduces the size of candidate
sets - crucial for achieving sublinear adaptivity. Third, its
efficient batch selection ensures each added batch provides
sufficient marginal contribution to the solution. Together,
these properties allow PIG to match the approximation
guarantees of the vanilla interlaced greedy method while
achieving parallel efficiency.

Leveraging this unified framework, a single call to PIG
achieves an approximation ratio of (1/4 − ε) with high
probability. Repeated calls to PIG yields PITG, further
enhance the approximation ratio to an expected (1/e −
ε). Both algorithms achieve O (log(n) log(k)) adaptivity
and O (n log(n) log(k)) query complexity, making them
efficient for large-scale applications.

Empirical Evaluation. Finally, we evaluate the perfor-
mance of our parallel algorithms in Section 5 and Ap-
pendix H across two applications and four datasets. The
results demonstrate that our algorithms achieve competitive
objective values. Notably, PARALLELINTERLACEGREEDY
outperforms other algorithms in terms of query efficiency,
highlighting its practical advantages.

2. Preliminary
Notation. We denote the marginal gain of adding A to B
by ∆ (A |B) = f (A ∪B) − f (B). For every set S ⊆ U
and an element x ∈ U , we denote S ∪ {x} by S + x and
S \ {x} by S − x.

Submodularity. A set function f : 2U → R≥0 is sub-
modular, if ∆ (x |S) ≥ ∆ (x |T ) for all S ⊆ T ⊆ U and
x ∈ U \ T , or equivalently, for all A,B ⊆ U , it holds
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that f (A) + f (B) ≥ f (A ∪B) + f (A ∩B). With a size
constraint k, let O = arg maxS⊆U,|S|≤k f (S).

In Appendix B, we provide several key propositions derived
from submodularity that streamline the analysis.

Organization. In Section 3, the blending technique is in-
troduced and applied to INTERLACEGREEDY and INTER-
POLATEDGREEDY, with detailed analysis provided in Ap-
pendix D and E. Section 4 discusses their fast versions with
pseudocodes and comprehensive analysis in Appendix F.
Subsequently, Section 4 delves into our sublinear adaptive al-
gorithms, with further technical details and proofs available
in Appendix G. Finally, we provide the empirical evaluation
in Section 5, with its detailed setups and additional results
in Appendix H.

3. A Parallel-Friendly Greedy Variant via
Blending Technique

In this section, we present a simplified and practical variant
of INTERPOLATEDGREEDY (Chen & Kuhnle, 2023) that
retains its theoretical guarantees while improving its success
probability from (`+1)−` to 1. This simplification serves as
a key step toward developing efficient parallel submodular
maximization algorithms (Section 4). As a byproduct, we
also show that INTERLACEGREEDY (Kuhnle, 2019) can be
simplified (Appendix D) and parallelized (Section 4).

3.1. An Overview of Prior Work and Its Limitation

INTERLACEGREEDY (Alg. 1) employs a two-branch ini-
tialization strategy conditioned on differently based on
the guessing of whether the maximum singleton a0 =
arg maxx∈U f (x) is contained within the optimal solution
O. The algorithm initializes two solution pools either as
empty sets if a0 6∈ O, or both containing a0 otherwise. It
then alternates between two greedy procedures, growing
solutions pools one by one until they reach size k. The
algorithm returns the best solution, achieving a 1/4 − ε
approximation. This structure is necessary to handle the
uncertainty about whether the maximum singleton a0 coin-
cides with omax = arg maxo∈O f (o).

Later on, INTERPOLATEDGREEDY (Alg. 7, Appendix C)
generalizes this idea by interlacing ` greedy procedures,
each adding k/` elements to intermediate solutions. Crit-
ically, the algorithm must account for uncertainty in the
position of omax. Since omax could be one of the top-` el-
ements in marginal gain (or none of them), the algorithm
must consider `+ 1 possible cases. To handle this, it main-
tains `+ 1 solution families (a set of multiple potential so-
lutions), each corresponding to a distinct guess about where
omax appears. The algorithm then returns a random solution
from the solution families, achieving a 1/e − ε approxi-
mation with success probability (` + 1)−`. To guarantee

success probability 1, all possible solution branches must be
checked, increasing the query complexity by a prohibitive
O
(
(`+ 1)`

)
factor. While asymptotically efficient (O (nk)

queries), INTERPOLATEDGREEDY suffers from either low
success probability or impractical computational overhead,
making it unsuitable for parallelization.

3.2. Motivation for Simplification

The primary challenge in parallelizing INTERPOLATED-
GREEDY stems from its inherent branching structure -
specifically, the need to make `+ 1 guesses, each resulting
in an independent construction path for solution pools. This
complex architecture naturally raises a fundamental ques-
tion: Can we develop an alternative analysis framework
that eliminates the need to explicitly guess the position of
omax?

To address this, we introduce a novel blended marginal
gains strategy. Our key insight demonstrates that by care-
fully tracking combined marginal gains across iterations,
we can effectively work with just a single solution family of
pairwise disjoint solutions while preserving all theoretical
guarantees.

This simplification not only boosts the success probability
to 1 but also enables a more efficient parallel implementa-
tion. We present the pseudocode of the simplified INTER-
POLATEDGREEDY in Alg. 2, with theoretical guarantees in
Theorem 3.1.

Algorithm 2: A simplified INTERPOLATEDGREEDY
with a randomized 1/e approximation ratio andO (nk`)
query complexity.

Input: evaluation oracle f : 2U → R≥0, constraint k,
size of solution `, error ε

Initialize :G← ∅, V ← U , m←
⌊
k
`

⌋
, add 2k dummy

elements to the ground set.
1 for i← 1 to ` do
2 Al ← G,∀l ∈ [`]
3 for j ← 1 to m do
4 for l← 1 to ` do
5 a← arg maxx∈V ∆ (x |Al)
6 Al ← Al + a, V ← V − a
7 G← a random set in {Al}l∈[`]

8 return G

Theorem 3.1. With input instance (f, k, `, ε) such that ` =

O
(
ε−1
)
≥ 2

eε and k ≥ 2(e`−2)

eε− 2
`

, Alg. 2 returns a set G with
O (kn/ε) queries such that E [f (G)] ≥ (1/e− ε) f (O).
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3.3. Technical Overview of Blended Marginal Gains
Strategy for INTERPOLATEDGREEDY

In INTERPOLATEDGREEDY, each iteration maintains `+ 1
solution families, each containing ` nearly pairwise disjoint
sets. Among these solution families, only one is right which
satisfies the following key inequality:

∆ (O |Au,i) ≤ `∆ (Au,i |G) ,∀i ∈ [`], (1)

where G is the intermediate solution at the start of this
iteration, and Au,i is the i-th solution in the u-th solution
families at the end of this iteration.

The right solution families guarantees that elements added
in the first round do not belong to O \Au,i for any i ∈ [`].
This property enables a partition of the optimal solution O
into k/` subsets of size `, where each subset’s marginal gain
is dominated by a corresponding element in Au,i. Conse-
quently, ∆ (O |Au,i) depends solely on ∆ (Au,i |G).

In what follows, we introduce a novel blended marginal
gains approach to analyze INTERPOLATEDGREEDY using
only a single interlaced greedy step (Alg. 2). This approach
leverages a mixture of marginal gains across solutions to
derive tighter bounds for each ∆ (O |Al). The analysis
proceeds in four steps:

Step 1: Partitioning the Optimal Solution O. Our anal-
ysis begins by establishing a correspondence between the
algorithm’s solutions and partitions of the optimal set O.
Claim 3.1 provides the foundation for this pairing:
Claim 3.1. At an iteration i of the outer for loop in Alg. 2,
let Gi−1 be G at the start of this iteration, and Al be the set
at the end of this iteration, for each l ∈ [`]. The setO\Gi−1

can then be split into ` pairwise disjoint sets {O1, . . . , O`}
such that |Ol| ≤ k

` and (O \Gi−1) ∩ (Al \Gi−1) ⊆ Ol,
for all l ∈ [`].

This partition enables us to decompose the marginal gains of
O with respect to each solution Al. Specifically, we express
the total marginal gain as:∑

l∈[`]

∆ (O |Al) ≤
∑
l∈[`]

∑
i∈[`]

∆ (Oi |Al) (Proposition B.1)

=
∑

1≤l1<l2≤`

(∆ (Ol1 |Al2) + ∆ (Ol2 |Al1))

+
∑
l∈[`]

∆ (Ol |Al) . (2)

The decomposition consists of two types of terms: 1) self-
interaction term ∆ (Ol |Al) for each l ∈ [`], and 2) cross-
interaction terms ∆ (Ol1 |Al2)+∆ (Ol2 |Al1) for each 1 ≤
l1 < l2 ≤ `. Below we establish upper bounds for each
term type, with detailed analysis to follow.
Lemma 3.2. Fix on Gi−1 for an iteration i of the outer for
loop in Alg. 2. Following the definition in Claim 3.1, it
holds that

1) ∆ (Al |Gi−1) ≥ ∆ (Ol |Al) , ∀1 ≤ l ≤ `,

2)
(

1 +
1

m

)
(∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1))

≥ ∆ (Ol2 |Al1) + ∆ (Ol1 |Al2) , ∀1 ≤ l1 < l2 ≤ `.

Step 2: Self-Interaction Term Bounding. The partition
from Claim 3.1 immediately yields our first bound. For any
l ∈ [`], elements in Ol \Al were available but not selected
by the greedy procedure, directly implying the first required
bound.

Step 3: Cross-Interaction Term Bounding. The primary
technical challenge lies in effectively bounding the cross-
interaction terms ∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1). Rather
than relying on original greedy selection bounds, we develop
a more sophisticated approach through our blended marginal
gains technique, formalized in the following proposition:
Proposition 3.3 (Blended Marginal Gains). For any sub-
modular function f : 2U → R≥0 and S, T,O ∈ U , Let Si
be a prefix of S with size i such that Si ⊆ O. Similarly,
define Tj . It satisfies that,

∆ (O |T ) ≤ ∆ (Si |T ) + ∆ (O \ Si |T ) , (3)
∆ (O |S) ≤ ∆ (Tj |S) + ∆ (O \ Tj |S) , (4)

The key insight involves strategically partitioning O into
two components: 1) a subset keeps the original greedy se-
lection bound, and 2) a residual subset where we apply
submodularity only.

Applying this proposition to each solution pair (Al1 , Al2)
with carefully chosen prefixes yields the second inequality
in Lemma 3.2.

Step 4: Final Composition. By applying Inequality (2) and
Lemma 3.2, we derive a result analogous to Inequality (1)
achieved by INTERPOLATEDGREEDY,∑

l∈[`]

∆ (O |Al) ≤ `
(

1 +
1

m

)∑
l∈[`]

∆ (Al |Gi−1) . (5)

This forms the key property necessary to establish the 1/e−
ε approximation ratio while requiring only a single pool of
solutions. The detailed analysis of the approximation ratio
is provided in Appendix E.

4. Sublinear Adaptive Algorithms
In this section, we present the main subroutine for our
parallel algorithms, PARALLELINTERLACEGREEDY (PIG,
Alg. 6). A single execution of PIG achieves an approx-
imation ratio of 1/4 − ε with high probability, while re-
peatedly running PIG, as in PARALLELINTERPOLATED-
GREEDY (PITG, Alg. 11 in Appendix G.3), guarantees a
randomized approximation ratio of 1/e − ε. Below, we
outline the theoretical guarantees, with the detailed analysis
provided in Appendix G.
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Theorem 4.1. With input (f, k, 2, εMk , ε), where
M = maxx∈U f (x), PIG (Alg. 6) returns {A′1, A′2}
with O

(
ε−4 log(n) log(k)

)
adaptive rounds and

O
(
ε−5n log(n) log(k)

)
queries with a probability of

1 − 1/n. It satisfies that max{f (A′1) , f (A′2)} ≥
(1/4− ε)f (O).

Theorem 4.2. With input (f, k, ε) such that ` = O
(
ε−1
)
≥

4
eε and k ≥ (2−ε)2`

eε`−4 , PITG (Alg. 11) returns G such that
E [f (G)] ≥ (1/e − ε)f (O) with O

(
ε−5 log(n) log(k)

)
adaptive rounds and O

(
ε−6n log(n) log(k)

)
queries with

a probability of 1−O (1/(εn)).

The remainder of this section is organized as follows. In Sec-
tion 4.1, we present the key subroutines that form the build-
ing blocks of PIG. Section 4.2 then provides a high-level
overview of the algorithm, and introduces several critical
properties that must be preserved throughout the process.

4.1. Subroutines for PIG

DISTRIBUTE (Alg. 3) constructs pairwise disjoint subsets
{Vl : l ∈ [`]} from candidate pools {Vl : l ∈ [`]}, preparing
for the subsequent threshold sampling phase. This crucial
preprocessing step ensures that all elements added to the
solution maintain disjointness across different solution sets.
We provide its theoretical guarantee in Lemma 4.3.

Lemma 4.3. With input {Vl}l∈[`], where |Vl| ≥ 2` for
each l ∈ [`], DISTRIBUTE returns ` pairwise disjoint sets
{Vl}l∈[`] s.t. Vl ⊆ Vl and |Vj | ≥ |Vj |2` .

Algorithm 3: Return ` pairwise disjoint subsets where
|Vj | ≥ |Vj |2` for any j ∈ [`] if |Vj | ≥ 2`

1 Procedure DISTRIBUTE ({Vl : l ∈ [`]}):
Input: V1, V2, . . . , V` ⊆ U
Initialize :V1,V2, . . . ,V` ← ∅, I ← [`]

2 for i← 1 to ` do
3 j ← arg minj∈I |Vj |
4 Vj ← randomly select

⌊
|Vj |
`

⌋
elements in

Vj \
(⋃

l∈[`] Vj
)

5 I ← I − j
6 return {Vl : l ∈ [`]}

PREFIX-SELECTION (Alg. 4) serves as the fundamental
building block for threshold sampling procedure. It achieves
two critical objectives simultaneously: 1) it identifies a pre-
fix Ti∗ that provides sufficient marginal gain to the solution,
and 2) with probability at least 1/2, it guarantees that a
constant fraction of candidate elements have low marginal
gain (< τ ) relative to the augmented solution.

Our implementation of PREFIX-SELECTION follows Lines

Algorithm 4: Select a prefix of V s.t. its average
marginal gain is greater than (1− ε)τ , and with a prob-
ability of 1/2, more than an ε/2-fraction of V has a
marginal gain less than τ relative to the prefix.

1 Procedure PREFIX-SELECTION (f,V, s, τ, ε):
Input: evaluation oracle f : 2U → R≥0, maximum

size s, threshold τ , error ε, candidate pool V
where ∆ (x | ∅) ≥ τ for any x ∈ V

Initialize :B[1 : s]← [none, . . . ,none]
2 V ← {v1, v2, . . .} ← random-permutation(V)
3 for i← 1 to s in parallel do
4 Ti−1 ← {v1, . . . , vi−1}
5 if ∆ (vi |Ti−1) ≥ τ then B[i]← true
6 else if ∆ (vi |Ti−1) < 0 then B[i]← false
7 i∗ ← max{i : #trues in B[1 : i] ≥ (1− ε)i}
8 return i∗, B

8-15 of THRESHSEQ (Chen & Kuhnle, 2024), and conse-
quently inherits similar theoretical guarantees (Lemma 4
and 5) as follows.

Lemma 4.4. In PREFIX-SELECTION, given V af-
ter random-permutation in Line 2, let Di =
{x ∈ V : ∆ (x |Ti) < τ}. It holds that |D0| = 0, |D|V|| =
|V|, and |Di−1| ≤ |Di|.
Lemma 4.5. In PREFIX-SELECTION, following the defini-
tion of Di in Lemma 4.4, let t = min{i : |Di| ≥ ε|V|/2}.
It holds that P [i∗ < min{s, t}] ≤ 1/2.

Algorithm 5: Update candidate set V with threshold
value τ

1 Procedure UPDATE (f, V, τ, ε):
Input: evaluation oracle f : 2U → R≥0, candidate

set V , threshold value τ , error ε
2 for j ← 1 to ` in parallel do
3 V ← {x ∈ V : ∆ (x | ∅) ≥ τ}
4 while |V | = 0 do
5 τ ← (1− ε)τ
6 V ← {x ∈ U : ∆ (x | ∅) ≥ τ}
7 return V, τ

UPDATE maintains the candidate set V for a solution using
threshold τ . If V becomes empty, it decrease the threshold
and regenerate V until it is not empty. This is a common
component of threshold sampling algorithms.

4.2. Algorithm Overview

PIG synthesizes threshold sampling techniques with inter-
laced solution construction to achieve both parallel effi-
ciency and strong approximation guarantees. It begins by
initializing ` empty solutions {Aj : j ∈ [`]}, with corre-

6
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sponding threshold values set to the maximum singleton
marginal gain M = maxx∈U ∆ (x | ∅).

At each iteration, PIG dynamically switches between two
distinct operational modes based on candidate set sizes.
When any candidate set Vj (maintained by UPDATE, Alg. 5)
contains fewer than 2` elements, the algorithm enters an
alternating addition phase where single elements are sequen-
tially distributed across solutions. This preserves the alter-
nating selection property crucial for maintaining approxi-
mation guarantees while ensuring progress when candidate
pools are limited.

For cases where all candidate sets contain sufficient number
of elements (|Vj | ≥ 2` for each j ∈ [`]), PIG employs an
efficient batch processing approach. First, DISTRIBUTE con-
structs pairwise disjoint candidate subsets, enabling parallel
processing while maintaining solution quality. PREFIX-
SELECTION then simultaneously looks for blocks with high-
marginal-gain elements. At last, the block size and the
elements added to each solution are carefully chosen to
maintain both solution quality parity and the equivalent
alternating selection effect.

This dual-mode architecture combines the strengths of
threshold sampling and interlaced greedy methods. The
threshold sampling components (UPDATE and PREFIX-
SELECTION) ensure efficient element filtering and geomet-
ric threshold reduction, while the interlaced construction
maintains the crucial alternating marginal gain properties.
This allows PIG to achieve sublinear adaptivity without
compromising its approximation guarantee.

Below, we further analyze three fundamental properties that
the algorithm must maintain throughout execution.

4.2.1. MAINTAINING ALTERNATING ADDITIONS
DURING PARALLEL ALGORITHMS

This property is crucial to interlaced greedy variants intro-
duced in prior sections. Below, we demonstrate that PIG
preserves this property.

During an iteration of the while loop in Alg. 6, after updating
the candidate sets in Lines 3-5, two scenarios arise. In the
first scenario, there exists a candidate set satisfies |Vj | < 2`,
Lines 7-14 are executed, and elements are appended to
solutions one at a time in turn. In this case, the alternating
property is maintained immediately.

In the second scenario, Lines 16-24 are executed. Here,
a block of elements with average marginal gain approxi-
mately exceeding τj is added to each solution Aj . These
blocks Sj are of the same size i∗ (Line 21) selected from
Vj , and guaranteed to be pairwise disjoint by Lemma 4.3
(for DISTRIBUTE, Alg. 3). Crucially, threshold values τj
remain unchanged during this step. While a small fraction

of elements in the blocks may have marginal gains below
τj , the process retains the alternating property at a structural
level: the uniform block sizes, and disjoint selection mimic
the alternating addition of elements, even when processing
multiple elements in parallel.

4.2.2. ENSURING SUBLINEAR ADAPTIVITY THROUGH
THRESHOLD SAMPLING

The core mechanism for achieving sublinear adaptivity lies
in iteratively reducing the pool of high-quality candidate el-
ements (those with marginal gains above the threshold) by a
constant factor within a constant number of adaptive rounds.
This progressive reduction ensures efficient convergence.

At every iteration of the while loop in Alg. 6, after updating
the candidate sets, if there exists Vj such that |Vj | < 2`,
the following occurs after the for loop (Lines 7-13): If the
threshold τj remains unchanged, one element from Vj is
added to the solution. If τj is reduced, Vj is repopulated with
high-quality elements. This implies that a 1/(2`)-fraction
of Vj is filtered out after per iteration, or even further, it
becomes empty and the threshold value is updated.

In the second case, where Lines 16-24 are executed, the
algorithm employs PREFIX-SELECTION (Alg. 4) in Line 18,
inspired by THRESHSEQ (Chen & Kuhnle, 2024). Then, the
smallest prefix size i∗ is selected in Line 19. For the solution
where its corresponding call to PREFIX-SELECTION returns
i∗, the entire prefix with size i∗ is added to it. This ensures
that a constant fraction of elements in Vj can be filtered
out by Lemma 4.5 with probability at least 1/2. Moreover,
Lemma 4.3 guarantees that |Vj | ≥ 1

` |Vj | for each candidate
set. As a result, with constant probability, at least one candi-
date set will filter out a constant fraction of the elements.

4.2.3. ENSURING MOST ADDED ELEMENTS
SIGNIFICANTLY CONTRIBUTE TO THE
SOLUTIONS

In THRESHSEQ, the selection of a good prefix inherently
ensures this property immediately. However, when interlac-
ing ` threshold sampling processes, prefix sizes selected in
Line 18 by each solution may vary. To preserve the alternat-
ing addition property introduced in Section 4.2.1, subsets
of equal size are selected instead of variable-length good
prefixes. This raises the question: How can a good subset
be derived from a good prefix? The solution lies in Line 21
of Alg. 6.

For any j ∈ I , if i∗j = i∗, Sj is directly the good prefix
Vj [1 : i∗j ]. Otherwise, if i∗j ≥ i∗, i∗ elements are selected
from Vj [1 : i∗j ] in three sequential passes until the size limit
is reached:

First pass: Iterate through the prefix, selecting those with
marginal gains strictly greater than τj (marked as true in

7
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Algorithm 6: A highly parallelized algorithm with O
(
`2ε−2 log(n) log

(
M
τmin

))
adaptivity and

O
(
`3ε−2n log(n) log

(
M
τmin

))
query complexity.

1 Procedure PARALLELINTERLACEGREEDY (f,m, `, τmin, ε):
Input: evaluation oracle f : 2U → R≥0, constraint m, constant `, minimum threshold value τmin, error ε
Initialize :M ← maxx∈U ∆ ({x} | ∅), I = [`], m0 ← m, Aj ← A′j ← ∅, τj ←M , Vj ← U ,∀j ∈ [`]

2 while I 6= ∅ and m0 > 0 do
3 for j ∈ I in parallel do /* Update candidate sets with high-quality elements */

4 {Vj , τj} ← UPDATE(fAj �U\(
⋃
l∈[`] Al)

, Vj \
(⋃

l∈[`]

)
Al, τj , ε)

5 if τj < τmin then I ← I − j
6 if ∃i ∈ I s.t. |Vi| < 2` then /* Add 1 element to each solution alternately */
7 for j ∈ I in sequence do
8 if |Vj | = 0 then {Vj , τj} ← UPDATE(fAj �U\(

⋃
l∈[`] Al)

, Vj , τj , ε)

9 if τj < τmin then I ← I − j
10 else
11 xj ← randomly select one element from Vj
12 Aj ← Aj + xj , A

′
j ← A′j + xj

13 Vl ← Vl − xj ,∀l ∈ [`]

14 m0 ← m0 − 1

15 else /* Add an equal number of elements to each solution */
16 {Vl : l ∈ I} ← DISTRIBUTE({Vl : l ∈ I}) // Create pairwise disjoint candidate sets
17 s← min{m0,min{|Vl| : l ∈ I}}
18 for j ∈ I in parallel do i∗j , Bj ← PREFIX-SELECTION(fAj ,Vj , s, τj , ε)
19 i∗ ← min{i∗1, . . . , i∗`}
20 for j ← 1 to ` in parallel do /* Add i∗ high-quality elements to each set */
21 Sj ← select i∗ elements from Vj [1 : i∗l ] in three passes, prioritizing Bj [i] = true, then Bj [i] = none,

and finally Bj [i] = false
22 S′j ← Sj ∩ {vi ∈ Vj : Bj [i] 6= false}
23 Aj ← Aj ∪ Sj , A′j ← A′j ∪ S′j
24 m0 ← m0 − i∗
25 return {A′l : l ∈ [`]}

Bj).

Second pass: From the remaining elements in the prefix,
select those with marginal gains between 0 and τj (marked
as none in Bj).

Third pass: Fill any remaining slots with remaining ele-
ments from the prefix (marked as false in Bj).

This approach, combined with submodularity, ensures that
any element marked as true in the selected subset has a
marginal gain greater than τj . By prioritizing the addition of
these true elements, the selected subset remain high-quality
while adhering to the alternating addition framework.

5. Empirical Evaluation
To evaluate the effectiveness of our algorithms, we con-
ducted experiments on 2 applications of SM-GEN, compar-

ing its performance to 5 baseline algorithms. We measured
the objective value (normalized by ATG (Chen & Kuhnle,
2024)) achieved by each algorithm, the number of queries
made, and the number of adaptive rounds required. The re-
sults showed that our algorithm achieved competitive objec-
tive value, number of queries and adaptive rounds compared
to nearly linear time algorithms. 4

Applications and Datasets. The algorithms were evaluated
on 2 applications: Maximum Cut (maxcut) and Revenue
Maximization (revmax), with er (n = 99, 997), a synthetic
random graph, web-Google (n = 875, 713), musae-github
(n = 37, 700) and twitch-gamers (n = 168, 114) datasets,
the rest of which are real-world social network datasets from
Stanford Large Network Dataset Collection (Leskovec &
Krevl, 2014). See Appendix H.1 and H.2 for more details.

4Our code is available at https://gitlab.com/luciacyx/size-
constraints-parallel-algorithms.git.
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Figure 2. Results for maxcut on er with n = 99, 997, and revmax on twitch-gamers with n = 168, 114.

We provide the result of er and twitch-gamers in the main
paper, while the other results can be found in Appendix H.3.

Baselines and their Setups. We compare our algorithms
with FASTRANDOMGREEDY (Buchbinder et al., 2017),
ADAPTIVENONMONOTONEMAX (Fahrbach et al., 2023),
AST (Chen & Kuhnle, 2024), ATG (Chen & Kuhnle, 2024),
and PARSSP (Cui et al., 2023) using binary search. For
those algorithms who required an UNCONSTRAINEDMAX
algorithm, a random subset was employed instead. For all
algorithms, the accuracy parameter ε and the failure proba-
bility parameter δ were both set to 0.1. Whenever smaller
ε and δ values were specified by the algorithm, we substi-
tuted them with the input values. FASTRANDOMGREEDY
samples each element in the ground set U with a probability
p = 8k−1ε−2 log(2ε−1). If p > 1, RANDOMGREEDY in
Buchbinder et al. (2014) was implemented instead. As for
THRESHOLD-SAMPLING in ADAPTIVENONMONOTONE-
MAX, 100 samples were used to estimate an indicator. In
the implementation of PITG, ` was set to 5. All randomized
algorithms were repeated with 5 runs, and the mean is re-
ported. The standard deviation is represented by a shaded
region in the plots.

Overview of Results. On the er dataset (Fig. 2(a)), PIG
and PITG achieve highest objective values, followed by
ATG, FASTRANDOMGREEDY and PARSSP. For the twitch-
gamers dataset (Fig. 2(d)), PIG and PITG demonstrate
greater robustness, particularly for larger values of k.

In terms of query complexity, PARSSP exhibits the high-
est query complexity (O

(
n log2(n) log(k)

)
), followed by

our proposed algorithms (O (n log(n) log(k))), compared
to other algorithms (O (n log(k))). Nevertheless, PIG
achieves second-best performance across both datasets. The
top three performing algorithms consistently include PIG,
ATG and PARSSP. PITG is slightly better than ADAP-
TIVENONMONOTONEMAX on er, and both are more ef-
ficient than FASTRANDOMGREEDY on the two datasets.
FASTRANDOMGREEDY’s high query count arises from
its requirement for a large number of samples (specif-
ically, 8nk−1ε−1 log(2ε−1)) at every iteration. When
8k−1ε−1 log(2ε−1) ≥ 1, it defaults to executing RANDOM-
GREEDYinstead, which incurs O (nk) queries.

Regarding adaptive rounds (Fig. 2(c) and 2(e)), the results
align with theoretical guarantees. ADAPTIVENONMONO-
TONEMAX and AST operate with O (log(n)) adaptivity
and achieve the best performance. They are followed by
ATG, PIG, and PITG which all achieve O (log(n) log(k))
adaptivity.

PARSSP exhibits an interesting trade-off: while its binary
search procedure benefits query complexity, it significantly
increases adaptive rounds, performing worse than even FAS-
TRANDOMGREEDY (which requires k adaptive rounds) on
the twitch-gamers dataset.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Technical Lemmata
Lemma A.1.

1− 1

x
≤ log(x) ≤ x− 1, ∀x > 0

1− 1

x+ 1
≥ e− 1

x , ∀x ∈ R

(1− x)y−1 ≥ e−xy, ∀xy ≤ 1

Lemma A.2 (Chernoff bounds (Mitzenmacher & Upfal, 2017)). Suppose X1, ... , Xn are independent binary random
variables such that P [Xi = 1] = pi. Let µ =

∑n
i=1 pi, and X =

∑n
i=1Xi. Then for any δ ≥ 0, we have

P [X ≥ (1 + δ)µ] ≤ e−
δ2µ
2+δ . (6)

Moreover, for any 0 ≤ δ ≤ 1, we have

P [X ≤ (1− δ)µ] ≤ e−
δ2µ
2 . (7)

Lemma A.3 (Chen et al. (2021)). Suppose there is a sequence of n Bernoulli trials: X1, X2, . . . , Xn, where the success
probability of Xi depends on the results of the preceding trials X1, . . . , Xi−1. Suppose it holds that

P [Xi = 1|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1] ≥ η,

where η > 0 is a constant and x1, . . . , xi−1 are arbitrary.

Then, if Y1, . . . , Yn are independent Bernoulli trials, each with probability η of success, then

P

[
n∑
i=1

Xi ≤ b

]
≤ P

[
n∑
i=1

Yi ≤ b

]
,

where b is an arbitrary integer.

Moreover, let A be the first occurrence of success in sequence Xi. Then,

E [A] ≤ 1/η.

B. Propositions on Submodularity
Proposition B.1. Let {A1, A2, . . . , Am} be m pairwise disjoint subsets of U , and B ∈ U . For any submodular function
f : 2U → R≥0, it holds that

1)
∑
i∈[m]

∆ (Ai |B) ≥ ∆

 ⋃
i∈[m]

Ai

∣∣∣∣∣∣B
 ,

2)
∑
i∈[m]

f (B ∪Ai) ≥ (m− 1)f (B) .

Proposition B.2. Let A = {a1, . . . , am} and Ai = {a1, . . . , ai} for all i ∈ [m]. For any submodular function f : 2U →
R≥0, let B = arg max

B⊆A,|B|=m−1

∑
ai∈B

∆ (ai |Ai−1). It holds that f (B) ≥
(
1− 1

m

)
f (A).

Proposition B.3. For any submodular function f : 2U → R≥0, let O1 = arg maxS⊆U,|S|≤k1 f (S) and O2 =
arg maxS⊆U,|S|≤k2 f (S). It holds that

f (O1) ≥ k1

k2
f (O2) .
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C. Pseudocode and Theoretical Guarantees of INTERPOLATEDGREEDY (Chen & Kuhnle, 2023)
In this section, we provide the original greedy version of INTERPOLATEDGREEDY (Chen & Kuhnle, 2023) with its
theoretical guarantees.

Algorithm 7: INTERPOLATEDGREEDY(f, k, ε): An 1/(e+ ε)-approximation algorithm for SMCC

Input: oracle f : 2U → R≥0, constraint k, error ε
Initialize :`← 2e

ε + 1, G0 ← ∅
1 for m← 1 to ` do
2 {a1, . . . , a`} ← top ` elements in U \Gm−1 with respect to marginal gains on Gm−1

3 for u← 0 to ` in parallel do
4 if u = 0 then Au,l ← G ∪ {al}, for all 1 ≤ l ≤ `
5 else Au,l ← G ∪ {au}, for all 1 ≤ l ≤ `
6 for j ← 1 to k/`− 1 do
7 for i← 1 to ` do
8 xj,i ← arg maxx∈U\(

⋃`
l=1 Au,l)

∆ (x |Au,i)
9 Au,i ← Au,i ∪ {xj,i}

10 Gm ← a random set in {Au,i : 1 ≤ i ≤ `, 0 ≤ u ≤ `}
11 return G`

Theorem C.1. Let ε ≥ 0, and (f, k) be an instance of SMCC, with optimal solution value OPT. Algorithm INTERPOLAT-
EDGREEDY outputs a set G` withO

(
ε−2kn

)
queries such that OPT ≤ (e+ ε)E [f (G`)] with probability (`+ 1)−`, where

` = 2e
ε + 1.

D. Analysis of Simplified INTERLACEGREEDY (Alg. 8)
In this section, we present a detailed approximation analysis of the simplified INTERLACEGREEDY (Alg. 8), demonstrating
that while the algorithm removes the initial guessing step from its original formulation, it maintains the same theoretical
approximation guarantees.

Algorithm 8: A deterministic 1/4-approximation algorithm with O (nk) queries.

Input: evaluation oracle f : 2U → R≥0, constraint k
Initialize :A← B ← ∅, add 2k dummy elements to the ground set

1 for i← 1 to k do
2 a← arg maxx∈U\(A∪B) ∆ (x |A)

3 A← A+ a
4 b← arg maxx∈U\(A∪B) ∆ (x |B)

5 B ← B + b

6 return S ← arg max{f (A) , f (B)}

Theorem D.1. With input instance (f, k), Alg. 8 returns a set S with O (kn) queries such that f (S) ≥ 1/4f (O).

Proof of Theorem D.1. Notation. Let ai be the i-th element added to A, and Ai be the set containing the first i elements of
A. Similarly, define bi and Bi for the solution B.

Since the two solutions Ak and Bk are disjoint, by submodularity and non-negativity,

f (O) ≤ f (O ∪Ak) + f (O ∪Bk) .

Let i∗ = max{i ∈ [k] : Ai ⊆ O} and j∗ = max{j ∈ [k] : Bj ⊆ O}. If either i∗ = k or j∗ = k, then f (S) = f (O). In
the following, we consider i∗ < k and j∗ < k and discuss two cases of the relationship between i∗ and j∗ (Fig. 3).

Case 1: 0 ≤ i∗ ≤ j∗ < k; Fig. 3(a). First, we bound f (O ∪Ak). Consider the set Õ = O \ (Ak ∪Bi∗). Obviously, it
holds that |Õ| ≤ k − i∗. Then, order Õ as {o1, o2, . . .} such that oi 6∈ Bi+i∗−1, for all 1 ≤ i ≤ |Õ|. Thus, by the greedy

13
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selection step in Line 2, it holds that ∆ (ai+i∗ |Ai+i∗−1) ≥ ∆ (oi |Ai+i∗−1) for all 1 ≤ i ≤ |Õ|. Then,

f (O ∪Ak)− f (Ak) ≤ ∆ (Bi∗ |Ak) + ∆
(
Õ
∣∣∣Ak)

≤ f (Bi∗) +

|Õ|∑
i=1

∆ (oi |Ak)

≤ f (Bi∗) +

|Õ|∑
i=1

∆ (oi |Ai+i∗−1)

≤ f (Bi∗) +

k∑
i=i∗+1

∆ (ai |Ai−1) = f (Bi∗) + f (Ak)− f (Ai∗) ,

where the first three inequalities follow from submodularity; and the last inequality follows from ∆ (ai+i∗ |Ai+i∗−1) ≥
∆ (oi |Ai+i∗−1) for all 1 ≤ i ≤ |Õ|, and ∆ (ai |Ai−1) ≥ 0 for all i ∈ [k].

A

j*
B

i*

(a) i∗ ≤ j∗

j*

i*j*
A

B

(b) i∗ > j∗

Figure 3. This figure depicts the components of solution sets A and B in Alg. 8. The black rectangle highlights a sequence of consecutive
elements from O that were added to the solution at the initial. Red circles with a cross mark signifies the first element in A or B that is
outside O.

Next, we bound f (O ∪Bk). Consider the set Õ = O \ (Ai∗ ∪Bk). Obviously, it holds that |Õ| ≤ k − i∗. Since
i∗ = max{i ∈ [k] : Ai ⊆ O}, we know that ai∗+1 6∈ O. Thus, we can order |Õ| as {o1, o2, . . .} such that oi 6∈ Ai+i∗ for
all 1 ≤ i ≤ |Õ|. Then, by the greedy selection step in Line 4, it holds that ∆ (bi+i∗ |Bi+i∗−1) ≥ ∆ (oi |Bi+i∗−1) for all
1 ≤ i ≤ |Õ|. Following the analysis for f (O ∪A), we get

f (O ∪Bk)− f (Bk) ≤ ∆ (Ai∗ |Bk) + ∆
(
Õ
∣∣∣Bk)

≤ f (Ai∗) +

|Õ|∑
i=1

∆ (oi |Bk)

≤ f (Ai∗) +

|Õ|∑
i=1

∆ (oi |Bi+i∗−1)

≤ f (Ai∗) +

k∑
i=i∗+1

∆ (bi |Bi−1) = f (Ai∗) + f (Bk)− f (Bi∗) .

Case 2: 0 ≤ j∗ < i∗ < k; Fig. 3(b). First, we bound f (O ∪Ak). Consider the set Õ = O \ (Ak ∪Bj∗), where |Õ| ≤
k − j∗ − 1. By the definition of j∗, we know that bj∗+1 6∈ O. Thus, we can order Õ as {o1, o2, . . .} such that oi 6∈ Bi+j∗
for all 1 ≤ i ≤ |Õ|. Then, by the greedy selection step in Line 2, it holds that ∆ (ai+j∗+1 |Ai+j∗) ≥ ∆ (oi |Ai+j∗) for all
1 ≤ i ≤ |Õ|. Following the above analysis, we get

f (O ∪Ak)− f (Ak) ≤ ∆ (Bj∗ |Ak) + ∆
(
Õ
∣∣∣Ak)

≤ f (Bj∗) +

|Õ|∑
i=1

∆ (oi |Ak)

14
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≤ f (Bj∗) +

|Õ|∑
i=1

∆ (oi |Ai+j∗)

≤ f (Bj∗) +

k∑
i=j∗+2

∆ (ai |Ai−1) = f (Bj∗) + f (Ak)− f (Aj∗+1) .

Next, we bound f (O ∪Bk). Consider the set Õ = O\(Aj∗+1 ∪Bk), where |Õ| ≤ k−j∗−1. Then, order Õ as {o1, o2, . . .}
such that oi 6∈ Ai+j∗ for all 1 ≤ i ≤ |Õ|. By the greedy selection step in Line 4, it holds that ∆ (bi+j∗ |Bi+j∗−1) ≥
∆ (oi |Bi+j∗−1). Then,

f (O ∪Bk)− f (Bk) ≤ ∆ (Aj∗+1 |Bk) + ∆
(
Õ
∣∣∣Bk)

≤ f (Aj∗+1) +

|Õ|∑
i=1

∆ (oi |Bk)

≤ f (Aj∗+1) +

|Õ|∑
i=1

∆ (oi |Bi+j∗−1)

≤ f (Aj∗+1) +

k∑
i=j∗+1

∆ (bi |Bi−1) = f (Aj∗+1) + f (Bk)− f (Bj∗) .

Therefore, in both cases, it holds that

f (O) ≤ f (O ∪Ak) + f (O ∪Bk) ≤ 2 (f (Ak) + f (Bk)) ≤ 4f (S) .

E. Analysis of Simplified INTERPOLATEDGREEDY (Alg. 2, Section 3)
In the section, we first provide key Lemmata and their analysis in Appendix E.1 for the case when kmod ` = 0. Then, we
conclude with an analysis of approximation ratio in Appendix E.2.

E.1. Proofs of Lemmata for Theorem 3.1

In what follows, we address the scenario where kmod ` = 0 and Alg. 2 returns a solution with size exactly k.

Notation. Let Gi−1 be G at the start of i-th iteration in Alg. 2, Al be the set at the end of this iteration, and al,j be the j-th
element added to Al during this iteration.
Lemma 3.2. Fix on Gi−1 for an iteration i of the outer for loop in Alg. 2. Following the definition in Claim 3.1, it holds that

1) ∆ (Al |Gi−1) ≥ ∆ (Ol |Al) , ∀1 ≤ l ≤ `,

2)
(

1 +
1

m

)
(∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1))

≥ ∆ (Ol2 |Al1) + ∆ (Ol1 |Al2) , ∀1 ≤ l1 < l2 ≤ `.

Proof of Lemma 3.2. Recall that Al,j is Al after j-th element is added to Al at iteration i of the outer for loop, and
c∗l = max {c ∈ [m] : Al,c \Gi−1 ⊆ Ol}.

First, we prove that the first inequality holds. For each l ∈ [`], order the elements in Ol as {o1, o2, . . .} such that oj 6∈ Al,j−1

for any 1 ≤ j ≤ |Ol|. Since each oj is either in Al or not in any solution set, it remains in the candidate pool when al,j is
considered to be added to the solution. Therefore, it holds that

∆ (al,j |Al,j−1) ≥ ∆ (oj |Al,j−1) . (8)
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Al1

c*l2
Al2

c*l1 k /ℓ

Ol1

Al1

c*l2
Al2

c*l1 k /ℓ

Ol2

Al1

c*l2
Al2

c*l1 k /ℓ

Ol1

Al1

c*l2
Al2

c*l1 k /ℓ

Ol2

c*l1 ≤ c*l2 c*l1 > c*l2

Δ (Ol1 Al2)

Δ (Ol2 Al1)

Gi−1

Gi−1

Gi−1

Gi−1

Gi−1

Gi−1

Gi−1

Gi−1

Figure 4. This figure depicts the components of the solution sets Al1 and Al2 . A blue circle with a check mark represents an element
in O, while a red circle with a cross mark represents an element outside of O. The grey rectangles indicate a sequence of consecutive
elements in O. The pink rectangles indicate the corresponding elements used to bound ∆ (Ol2 |Al1) or ∆ (Ol1 |Al2). It is illustrated
that ∆ (Ol1 |Al2) + ∆ (Ol2 |Al1) ≤ ∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1) under both cases.

Then,

∆ (Ol |Al) ≤
∑
oj∈Ol

∆ (oj |Al) ≤
∑
oj∈Ol

∆ (oj |Al,j−1) ≤
m∑
j=1

∆ (al,j |Al,j−1) = ∆ (Al |Gj−1) ,

where the first inequality follows from Proposition B.1, the second inequality follows from submodularity, and the last
inequality follows from Inequality (8).

In the following, we prove that the second inequality holds. For any 1 ≤ l1 ≤ l2 ≤ `, we analyze two cases of the
relationship between c∗l1 and c∗l2 in the following.

Case 1: c∗l1 ≤ c
∗
l2

; left half part in Fig. 4.

First, we bound ∆ (Ol1 |Al2). Since c∗l1 ≤ m, we know that the (c∗l1 + 1)-th element in Al1 \ Gi−1 is not in O. So, we
can order the elements in Ol1 \Al1,c∗l1 as {o1, o2, . . .} such that oj 6∈ Al1,c∗l1+j+1. (Refer to the gray block with a dotted
edge in the top left corner of Fig. 4 for Ol1 .) Since each oj is either added to Al1 or not in any solution set, it remains in the
candidate pool when al2,c∗l1+j is considered to be added to Al2 . Therefore, it holds that

∆
(
al2,c∗l1+j

∣∣∣Al2,c∗l1+j−1

)
≥ ∆

(
oj

∣∣∣Al2,c∗l1+j−1

)
,∀1 ≤ j ≤ m− c∗l1 . (9)

Then,

∆ (Ol1 |Al2) ≤ ∆
(
Al1,c∗l1

∣∣∣Al2)+
∑

oj∈Ol1\Al1,c∗l1

∆ (oj |Al2) (Proposition B.1)

≤ ∆
(
Al1,c∗l1

∣∣∣Gi−1

)
+

∑
oj∈Ol1\Al1,c∗l1

∆
(
oj

∣∣∣Al2,,c∗l1+j−1

)
(submodularity)

≤ f
(
Al1,c∗l1

)
− f (Gi−1) +

m−c∗l1∑
j=1

∆
(
al2,c∗l1+j

∣∣∣Al2,,c∗l1+j−1

)
(Inequality (9))

≤ f
(
Al1,c∗l1

)
− f (Gi−1) + f (Al2)− f

(
Al2,c∗l1

)
Similarly, we bound ∆ (Ol2 |Al1) below. Order the elements in Ol2 \Al2,c∗l1 as {o1, o2, . . .} such that oj 6∈ Al2,c∗l1+j . (See
the gray block with a dotted edge in the bottom left corner of Fig. 4 for Ol2 .) Since each oj is either added to Al2 or not in
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any solution set, it remains in the candidate pool when al1,c∗l1+j is considered to be added to Al2 . Therefore, it holds that

∆
(
al1,c∗l1+j

∣∣∣Al1,c∗l1+j−1

)
≥ ∆

(
oj

∣∣∣Al1,c∗l1+j−1

)
,∀1 ≤ j ≤ m− c∗l1 . (10)

Then,

∆ (Ol2 |Al1) ≤ ∆
(
Al2,c∗l1

∣∣∣Al1)+
∑

oj∈Ol2\Al2,c∗l1

∆ (oj |Al1) (Proposition B.1)

≤ ∆
(
Al2,c∗l1

∣∣∣Gi−1

)
+

∑
oj∈Ol2\Al2,c∗l1

∆
(
oj

∣∣∣Al1,,c∗l1+j−1

)
(submodularity)

≤ f
(
Al2,c∗l1

)
− f (Gi−1) +

m−c∗l1∑
j=1

∆
(
al1,c∗l1+j

∣∣∣Al1,,c∗l1+j−1

)
(Inequality (9))

≤ f
(
Al1,c∗l1

)
− f (Gi−1) + f (Al1)− f

(
Al1,c∗l1

)
Thus, the lemma holds in this case.

Case 2: c∗l1 > c∗l2 ; right half part in Fig. 4. First, we bound ∆ (Ol1 |Al2). Order the elements in Ol1 \ Al1,c∗l2+1 as
{o1, o2, . . .} such that oj 6∈ Al1,c∗l2+j . (Refer to the gray block with a dotted edge in the top right corner of Fig. 4 for Ol1 .)
Since each oj is either in Al1 or not in any solution set, it remains in the candidate pool when al2,c∗l2+j is considered to be
added to Al2 . Therefore, it holds that

∆
(
al2,c∗l2+j

∣∣∣Al2,c∗l2+j−1

)
≥ ∆

(
oj

∣∣∣Al2,c∗l2+j−1

)
,∀1 ≤ j ≤ m− c∗l2 − 1. (11)

Then,

∆ (Ol1 |Al2) ≤ ∆
(
Al1,c∗l2+1

∣∣∣Al2)+
∑

oj∈Ol1\Al1,c∗l2+1

∆ (oj |Al2) (Proposition B.1)

≤ ∆
(
Al1,c∗l2+1

∣∣∣Gi−1

)
+

∑
oj∈Ol1\Al1,c∗l2+1

∆
(
oj

∣∣∣Al2,,c∗l2+j−1

)
(submodularity)

≤ f
(
Al1,c∗l2+1

)
− f (Gi−1) +

m−c∗l2−1∑
j=1

∆
(
al2,c∗l2+j

∣∣∣Al2,,c∗l2+j−1

)
(Inequality (11))

≤ f
(
Al1,c∗l2+1

)
− f (Gi−1) + f (Al2)− f

(
Al2,c∗l2

)
Similarly, we bound ∆ (Ol2 |Al1) below. Since c∗l2 < c∗l2 , we know that the (c∗l2 + 1)-th element in Al2 \Gi−1 is not in O,
which implies that |Ol2 | ≤ m. So, we can order the elements in Ol2 \Al2,c∗l2 as {o1, o2, . . .} such that oj 6∈ Al2,c∗l2+j for
each 1 ≤ j ≤ m− c∗l2 . (See the gray block with a dotted edge in the bottom right corner of Fig. 4 for Ol2 .)

When 1 ≤ j < m − c∗l2 , since each oj is either in Al2 or not in any solution set, it remains in the candidate pool when
al1,c∗l2+i+1 is considered to be added to Al1 . Therefore, it holds that

∆
(
al1,c∗l2+j+1

∣∣∣Al1,c∗l2+j

)
≥ ∆

(
oj

∣∣∣Al1,c∗l2+j

)
,∀1 ≤ j < m− c∗l2 . (12)

As for the last element om−c∗l2 in Ol2 \Al2,c∗l2 , we know that om−c∗l2 is not added to any solution set. So,

∆
(
om−c∗l2

∣∣∣Al1) ≤ 1

m

m∑
j=1

∆ (al1,j |Al1,j−1) =
1

m
∆ (Al1 |Gi−1) (13)
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Then,

∆ (Ol2 |Al1) ≤ ∆
(
Al2,c∗l2

∣∣∣Al1)+
∑

oj∈Ol2\Al2,c∗l2

∆ (oj |Al1) (Proposition B.1)

≤ ∆
(
Al2,c∗l2

∣∣∣Gi−1

)
+

∑
oj∈Ol2\Al2,c∗l2

∆
(
oj

∣∣∣Al1,,c∗l2+j

)
(submodularity)

≤ f
(
Al2,c∗l2

)
− f (Gi−1) +

m−c∗l2−1∑
j=1

∆
(
al1,c∗l2+j+1

∣∣∣Al1,,c∗l2+j

)
+

1

m
∆ (Al1 |Gi−1) (Inequality (11))

≤ f
(
Al1,c∗l2

)
− f (Gi−1) + f (Al1)− f

(
Al1,c∗l2+1

)
+

1

m
∆ (Al1 |Gi−1) (|Ol2 | ≤ m)

Thus, the lemma holds in this case.

Lemma E.1. For any iteration i of the outer for loop in Alg. 2, it holds that

E [f (Gi)− f (Gi−1)] ≥ 1

`+ 1

(
1− 1

m+ 1

)
·
((

1− 1

`

)
E [f (O ∪Gi−1)]− E [f (Gi−1)]

)

Proof of Lemma E.1. Fix on Gi−1 for an iteration i of the outer for loop in Alg. 2. Let Al be the set after for loop in
Lines 3-6 ends (with m iterations). Then,∑

l∈[`]

∆ (O |Al) ≤
∑
l∈[`]

∆ (Ol |Al) +
∑

1≤l1<l2≤`

(∆ (Ol1 |Al2) + ∆ (Ol2 |Al1)) (Inequality 2)

≤
∑
l∈[`]

∆ (Al |Gi−1) +
∑

1≤l1<l2≤`

(
1 +

1

m

)
(∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1)) (Lemma 3.2)

≤ `
(

1 +
1

m

)∑
l∈[`]

∆ (Al |Gi−1)

⇒ (`+ 1)

(
1 +

1

m

)∑
l∈[`]

∆ (Al |Gi−1) ≥
∑
l∈[`]

f (O ∪Al)− `f (Gi−1)

≥ (`− 1) f (O ∪Gi−1)− `f (Gi−1) , (14)

where the last inequality follows from Proposition B.1. Then, it holds that

E [f (Gi)− f (Gi−1) | Gi−1] =
1

`

∑
l∈[`]

∆ (Al |Gi−1)

≥ 1

`+ 1
· m

m+ 1
·
((

1− 1

`

)
f (O ∪Gi−1)− f (Gi−1)

)
(Inequality (14))

By unfixing Gi−1, the lemma holds.

Lemma E.2. For any iteration i of the outer for loop in Alg. 2, it holds that

E [f (O ∪Gi)] ≥
(

1− 1

`

)
E [f (O ∪Gi−1)] .
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Proof of Lemma E.2. Fix on Gi−1 at the beginning of this iteration. Since {Al \Gi−1}l∈[`] are pairwise disjoint sets at the
end of this iteration, by Proposition B.1, it holds that

E [f (O ∪Gi) | Gi−1] =
1

`

∑
l∈[`]

f (O ∪Al) ≥
(

1− 1

`

)
f (O ∪Gi−1) .

Then, by unfixing Gi−1, the lemma holds.

E.2. Proof of Theorem 3.1

Theorem 3.1. With input instance (f, k, `, ε) such that ` = O
(
ε−1
)
≥ 2

eε and k ≥ 2(e`−2)

eε− 2
`

, Alg. 2 returns a set G with
O (kn/ε) queries such that E [f (G)] ≥ (1/e− ε) f (O).

Proof. By Lemma E.1 and E.2, the recurrence of E [f (Gi)] can be expressed as follows,

E [f (Gi)] ≥
(

1− 1

`+ 1

(
1− 1

m+ 1

))
E [f (Gi−1)] +

1

`+ 1

(
1− 1

m+ 1

)(
1− 1

`

)i
f (O)

≥
(

1− 1

`

)
E [f (Gi−1)] +

1

`+ 1

(
1− 1

m+ 1

)(
1− 1

`

)i
f (O) .

By solving the above recurrence,

E [f (G`)] ≥
`

`+ 1

(
1− 1

m+ 1

)(
1− 1

`

)`
f (O)

≥ `− 1

`+ 1

(
1− 1

m+ 1

)
e−1f (O) (Lemma A.1)

≥
(

1− 2

`

)(
1− `

k

)
e−1f (O) (m =

⌊
k
`

⌋
)

≥ 1

1− `
k

(
1− 2

`
− 2`

k
+

4

k

)
e−1f (O)

≥ 1

1− `
k

(
e−1 − ε

)
f (O) . (` ≥ 2

eε , k ≥
2(`−2)

eε− 2
`

)

If kmod ` = 0, the approximation ratio holds immediately.

Otherwise, when kmod ` > 0, the algorithm returns an approximation solution for a size constraint of ` ·
⌊
k
`

⌋
. By

Proposition B.3, it holds that

f (O′) ≥ ` ·
⌊
k

`

⌋
/kf (O) ≥

(
1− `

k

)
f (O) , O′ = arg max

S⊆U,|S|≤`·b k` c
f (S) . (15)

In this case, the approximation ratio still holds.

F. Preliminary Warm-Up of Parallel Approaches: Nearly-Linear Time Algorithms
Kuhnle (2019) introduced a fast version of INTERLACEGREEDY, replacing the greedy procedure with a descending threshold
greedy procedure (Badanidiyuru & Vondrák, 2014) to achieve a query complexity of O (n log(k)). This same technique
was subsequently employed in INTERPOLATEDGREEDY (Chen & Kuhnle, 2023). In this section, we present simplified
versions of both algorithms, incorporating the blended marginal gain analysis strategy introduced in Section 3. These fast
algorithms serve as building blocks for the parallel algorithms introduced in this work.
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Algorithm 9: A nearly-linear time, (1/4− ε)-approximation algorithm.

Input: evaluation oracle f : 2U → R≥0, constraint k, error ε
Initialize :A← ∅, B ← ∅, M ← maxx∈U f ({x}), τ1 ←M , τ2 ←M

1 for i← 1 to k do
2 while τ1 ≥ εM

k and |A| < k do
3 if ∃a ∈ U \ (A ∪B) s.t. ∆ (a |A) ≥ τ1 then
4 A← A+ a
5 break
6 else τ1 ← (1− ε)τ1
7 while τ2 ≥ εM

k and |B| < k do
8 if ∃b ∈ U \ (A ∪B) s.t. ∆ (b |B) ≥ τ2 then
9 B ← B + b

10 break
11 else τ2 ← (1− ε)τ2
12 return S ← arg max{f (A) , f (B)}

F.1. Simplified Fast INTERLACEGREEDY with 1/4− ε Approximation Ratio (Alg. 9)

Theorem F.1. With input instance (f, k, ε), Alg. 9 returns a set S with O (n log(k)/ε) queries such that f (S) ≥(
1
4 − ε

)
f (O).

Proof. Query Complexity. Without loss of generality, we analyze the number queries related to set A. For each threshold
value τ1, at most n queries are made to the value oracle. Since τ1 is initialized with value M , decreases by a factor of 1− ε,
and cannot exceed εM

k , there are at most log1−ε
(
ε
k

)
+ 1 possible values of τ1. Therefore, the total number of queries is

bounded as follows,

#Queries ≤ 2 · n ·
(

log1−ε

( ε
k

)
+ 1
)
≤ O (n log(k)/ε) ,

where the last inequality follows from the first inequality in Lemma A.1.

Approximation Ratio. Since A and B are disjoint, by submodularity and non-negativity,

f (O) ≤ f (O ∪A) + f (O ∪B) . (16)

Let ai be the i-th element added to A, Ai be the first i elements added to A, and τai1 be the threshold value when ai is added
to A. Similarly, define bi, Bi, and τ bi2 . Let i∗ = max{i ≤ |A| : Ai ⊆ O} and j∗ = max{i ≤ |B| : Bi ⊆ O}. If either
i∗ = k or j∗ = k, then f (S) = f (O). Next, we follow the analysis of Alg. 8 in Section D to analyze the approximation
ratio of Alg. 9.

Case 1: 0 ≤ i∗ ≤ j∗ < k; Fig. 3(a). First, we bound f (O ∪A). Since Bi∗ ⊆ O, by submodularity

f (O ∪A)− f (A) ≤ ∆ (Bi∗ |A) + ∆ (O \Bi∗ |A) ≤ f (Bi∗) +
∑

o∈O\(A∪Bi∗ )

∆ (o |A) . (17)

Next, we bound ∆ (o |A) for each o ∈ O \ (A ∪Bi∗).

Let Õ = O \ (A ∪Bi∗). Obviously, it holds that |Õ| ≤ k − i∗. Then, order Õ as {o1, o2, . . .} such that oi 6∈ Bi+i∗−1, for
all 1 ≤ i ≤ |Õ|. If |A| < k, the algorithm terminates with τ1 < εM

k . Thus, it follows that

∆ (oi |A) <
εM

k(1− ε)
,∀|A| − i∗ < i ≤ |Õ|. (18)

Next, consider tuple (oi, ai+i∗ , Ai+i∗−1), for any 1 ≤ i ≤ min{|Õ|, |A| − i∗}. Since τai+i∗1 is the threshold value when
ai+i∗ is added, it holds that

∆ (ai+i∗ |Ai+i∗−1) ≥ τai+i∗1 ,∀1 ≤ i ≤ |A| − i∗. (19)
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Then, we show that ∆ (oi |Ai+i∗−1) < τ
ai+i∗
1 /(1− ε) always holds for any 1 ≤ i ≤ min{|Õ|, |A| − i∗}.

Since M = maxx∈U f ({x}), if τai+i∗1 ≥ M , it always holds that ∆ (oi |Ai+i∗−1) < M/(1 − ε) ≤ τ
ai+i∗
1 /(1 − ε). If

τ
ai+i∗
1 < M , since oi 6∈ Bi+i∗−1, oi is not considered to be added to A with threshold value τai+i∗1 /(1 − ε). Then, by

submodularity, ∆ (oi |Ai+i∗−1) < τ
ai+i∗
1 /(1− ε). Therefore, by submodularity and Inequality (19), it holds that

∆ (oi |A) ≤ ∆ (oi |Ai+i∗−1) < ∆ (ai+i∗ |Ai+i∗−1) /(1− ε),∀1 ≤ i ≤ min{|Õ|, |A| − i∗}. (20)

Then,

f (O ∪A)− f (A) ≤ f (Bi∗) +
∑

o∈O\(A∪Bi∗ )

∆ (o |A)

≤ f (Bi∗) +

min{|Õ|,|A|}−i∗∑
i=1

∆ (ai+i∗ |Ai+i∗−1) /(1− ε) +
εM

1− ε

≤ 1

1− ε
(f (Bi∗) + f (A)− f (Ai∗) + εf (O)) , (21)

where the first inequality follows from Inequality (17); the second inequality follows from Inequalities (18) and (20); and
the last inequality follows from M ≤ f (O).

Second, we bound f (O ∪B). Since Ai∗ ⊆ O, by submodularity

f (O ∪B)− f (B) ≤ ∆ (Ai∗ |B) + ∆ (O \Ai∗ |B) ≤ f (Ai∗) +
∑

o∈O\(B∪Ai∗ )

∆ (o |B) . (22)

Next, we bound ∆ (o |B) for each o ∈ O \ (B ∪Ai∗).

Let Õ = O \ (B ∪Ai∗). Obviously, it holds that |Õ| ≤ k − i∗. Then, since ai∗+1 6∈ O, we can order Õ as {o1, o2, . . .}
such that oi 6∈ Ai+i∗ , for all 1 ≤ i ≤ |Õ|. If |B| < k, the algorithm terminates with τ2 < εM

k . Thus, it follows that

∆ (oi |B) <
εM

k(1− ε)
,∀|B| − i∗ < i ≤ |Õ|. (23)

Next, consider tuple (oi, bi+i∗ , Bi+i∗−1), for any 1 ≤ i ≤ min{|Õ|, |B| − i∗}. Since τ bi+i∗2 is the threshold value when
bi+i∗ is added, it holds that

∆ (bi+i∗ |Bi+i∗−1) ≥ τ bi+i∗2 ,∀1 ≤ i ≤ |B| − i∗. (24)

Then, we show that ∆ (oi |Bi+i∗−1) < τ
bi+i∗
2 /(1− ε) always holds for any 1 ≤ i ≤ min{|Õ|, |B| − i∗}.

Since M = maxx∈U f ({x}), if τ bi+i∗2 ≥ M , it always holds that ∆ (oi |Bi+i∗−1) < M/(1 − ε) ≤ τ
bi+i∗
2 /(1 − ε). If

τ
bi+i∗
2 < M , since oi 6∈ Ai+i∗ , oi is not considered to be added to B with threshold value τ bi+i∗2 /(1 − ε). Then, by

submodularity, ∆ (oi |Bi+i∗−1) < τ
bi+i∗
2 /(1− ε). Therefore, by submodularity and Inequality (24), it holds that

∆ (oi |B) ≤ ∆ (oi |Bi+i∗−1) < ∆ (bi+i∗ |Bi+i∗−1) /(1− ε),∀1 ≤ i ≤ min{|Õ|, |B| − i∗}. (25)

Then,

f (O ∪B)− f (B) ≤ f (Ai∗) +
∑

o∈O\(B∪Ai∗ )

∆ (o |B)

≤ f (Ai∗) +

min{|Õ|,|B|}−i∗∑
i=1

∆ (bi+i∗ |Bi+i∗−1) /(1− ε) +
εM

1− ε

≤ 1

1− ε
(f (Ai∗) + f (B)− f (Bi∗) + εf (O)) , (26)
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where the first inequality follows from Inequality (22); the second inequality follows from Inequalities (23) and (25); and
the last inequality follows from M ≤ f (O).

By Inequalities (16), (21) and (26), it holds that

f (O) ≤ 2− ε
1− ε

(f (A) + f (B)) +
2ε

1− ε
f (O)

⇒f (S) ≥
(

1

4
− 5

2(4− 2ε)
ε

)
f (O) ≥

(
1

4
− ε
)
f (O) (ε < 1/2)

Case 2: 0 ≤ j∗ < i∗ < k; Fig. 3(b).

First, we bound f (O ∪A). Since Bj∗ ⊆ O, by submodularity

f (O ∪A)− f (A) ≤ ∆ (Bj∗ |A) + ∆ (O \Bj∗ |A) ≤ f (Bj∗) +
∑

o∈O\(A∪Bj∗)

∆ (o |A) . (27)

Next, we bound ∆ (o |A) for each o ∈ O \ (A ∪Bj∗).

Let Õ = O \ (A ∪Bj∗). Since i∗ > j∗ ≥ 0, it holds that |Õ| ≤ k − j∗ − 1. Since bj∗+1 6∈ O, we can order Õ as
{o1, o2, . . .} such that oi 6∈ Bi+j∗ , for all 1 ≤ i ≤ |Õ|. If |A| < k, the algorithm terminates with τ1 < εM

k . Thus, it follows
that

∆ (oi |A) <
εM

k(1− ε)
,∀|A| − j∗ − 1 < i ≤ |Õ|. (28)

Next, consider tuple (oi, ai+j∗+1, Ai+j∗), for any 1 ≤ i ≤ min{|Õ|, |A| − j∗ − 1}. Since τai+j∗+1

1 is the threshold value
when ai+j∗+1 is added, it holds that

∆ (ai+j∗+1 |Ai+j∗) ≥ τ
ai+j∗+1

1 ,∀1 ≤ i ≤ |A| − j∗ − 1. (29)

Then, we show that ∆ (oi |Ai+j∗) < τ
ai+j∗+1

1 /(1− ε) always holds for any 1 ≤ i ≤ min{|Õ|, |A| − j∗ − 1}.

Since M = maxx∈U f ({x}), if τai+j∗+1

1 ≥M , it always holds that ∆ (oi |Ai+j∗) < M/(1− ε) ≤ τ
ai+j∗+1

1 /(1− ε). If
τ
ai+j∗+1

1 < M , since oi 6∈ Bi+j∗ , oi is not considered to be added to A with threshold value τai+j∗+1

1 /(1− ε). Then, by
submodularity, ∆ (oi |Ai+j∗) < τ

ai+j∗+1

1 /(1− ε). Therefore, by submodularity and Inequality (29), it holds that

∆ (oi |A) ≤ ∆ (oi |Ai+j∗) < ∆ (ai+j∗+1 |Ai+j∗) /(1− ε),∀1 ≤ i ≤ min{|Õ|, |A| − j∗ − 1}. (30)

Then,

f (O ∪A)− f (A) ≤ f (Bj∗) +
∑

o∈O\(A∪Bj∗)

∆ (o |A)

≤ f (Bj∗) +

min{|Õ|,|A|−j∗−1}∑
i=1

∆ (ai+j∗+1 |Ai+j∗) /(1− ε) +
εM

1− ε

≤ 1

1− ε
(f (Bj∗) + f (A)− f (Aj∗+1) + εf (O)) , (31)

where the first inequality follows from Inequality (27); the second inequality follows from Inequalities (28) and (30); and
the last inequality follows from M ≤ f (O).

Second, we bound f (O ∪B). Since Aj∗+1 ⊆ O, by submodularity

f (O ∪B)− f (B) ≤ ∆ (Aj∗+1 |B) + ∆ (O \Aj∗+1 |B) ≤ f (Aj∗+1) +
∑

o∈O\(B∪Aj∗+1)

∆ (o |B) . (32)

Next, we bound ∆ (o |B) for each o ∈ O \ (B ∪Aj∗+1).
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Let Õ = O \ (B ∪Aj∗+1). Obviously, it holds that |Õ| ≤ k − j∗ − 1. Then, order Õ as {o1, o2, . . .} such that oi 6∈ Ai+j∗ ,
for all 1 ≤ i ≤ |Õ|. If |B| < k, the algorithm terminates with τ2 < εM

k . Thus, it follows that

∆ (oi |B) <
εM

k(1− ε)
,∀|B| − j∗ − 1 < i ≤ |Õ|. (33)

Next, consider tuple (oi, bi+j∗ , Bi+j∗−1), for any 1 ≤ i ≤ min{|Õ|, |B| − j∗ − 1}. Since τ bi+j∗2 is the threshold value
when bi+j∗ is added, it holds that

∆ (bi+j∗ |Bi+j∗−1) ≥ τ bi+j∗2 ,∀1 ≤ i ≤ |B| − j∗ − 1. (34)

Then, we show that ∆ (oi |Bi+j∗−1) < τ
bi+j∗
2 /(1− ε) always holds for any 1 ≤ i ≤ min{|Õ|, |B| − j∗ − 1}.

Since M = maxx∈U f ({x}), if τ bi+j∗2 ≥ M , it always holds that ∆ (oi |Bi+j∗−1) < M/(1 − ε) ≤ τ
bi+j∗
2 /(1 − ε). If

τ
bi+j∗
2 < M , since oi 6∈ Ai+j∗ , oi is not considered to be added to B with threshold value τ bi+j∗2 /(1 − ε). Then, by

submodularity, ∆ (oi |Bi+j∗−1) < τ
bi+j∗
2 /(1− ε). Therefore, by submodularity and Inequality (34), it holds that

∆ (oi |B) ≤ ∆ (oi |Bi+j∗−1) < ∆ (bi+j∗ |Bi+j∗−1) /(1− ε),∀1 ≤ i ≤ min{|Õ|, |B| − j∗ − 1}. (35)

Then,

f (O ∪B)− f (B) ≤ f (Aj∗+1) +
∑

o∈O\(B∪Aj∗+1)

∆ (o |B)

≤ f (Aj∗+1) +

min{|Õ|,|B|−j∗−1}∑
i=1

∆ (bi+j∗ |Bi+j∗−1) /(1− ε) +
εM

1− ε

≤ 1

1− ε
(f (Aj∗+1) + f (B)− f (Bi∗) + εf (O)) , (36)

where the first inequality follows from Inequality (32); the second inequality follows from Inequalities (33) and (35); and
the last inequality follows from M ≤ f (O).

By Inequalities (16), (31) and (36), it holds that

f (O) ≤ 2− ε
1− ε

(f (A) + f (B)) +
2ε

1− ε
f (O)

⇒f (S) ≥
(

1

4
− 5

2(4− 2ε)
ε

)
f (O) ≥

(
1

4
− ε
)
f (O) (ε < 1/2)

Therefore, in both cases, it holds that

f (S) ≥
(

1

4
− ε
)
f (O) .

F.2. Simplified Fast INTERPOLATEDGREEDY with 1/e− ε Approximation Ratio (Alg. 10)

Theorem F.2. With input instance (f, k, ε) such that ` = O
(
ε−1
)
≥ 4

eε and k ≥ 2(2−ε)`2
eε`−4 , Alg. 2 (Alg. 10) returns a set

G` with O
(
n log(k)/ε2

)
queries such that f (G`) ≥ (1/e− ε) f (O).

Proof. When kmod ` > 0, the algorithm returns an approximation with a size constraint of `·
⌊
k
`

⌋
, where by Proposition B.3,

f (O′) ≥
(

1− `

k

)
f (O) , O′ = arg max

S⊆U,|S|≤`·b k` c
f (S) . (37)
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Algorithm 10: A nearly-linear time, (1/e− ε)-approximation algorithm.

Input: evaluation oracle f : 2U → R≥0, constraint k, error ε
Initialize :G0 ← ∅, ε′ ← ε

2 , m←
⌊
k
`

⌋
, `←

⌈
4
eε′

⌉
, M ← maxx∈U f ({x})

1 for i← 1 to ` do
2 τl ←M,∀l ∈ [`]
3 Al ← Gi−1,∀l ∈ [`]
4 for j ← 1 to m do
5 for l← 1 to ` do
6 while τl ≥ ε′M

k and |Al \Gi−1| < m do
7 if ∃x ∈ U \

(⋃
r∈[`]Ar

)
s.t. ∆ (a |Al) ≥ τl then

8 Al ← Al + x
9 break

10 else τl ← (1− ε′)τl
11 Gi ← a random set in {Al}l∈[`]

12 return G`

In the following, we only consider the case where kmod ` = 0.

At every iteration of the outer for loop, ` solutions are constructed, with each solution being augmented by at most k/`
elements. To bound the marginal gain of the optimal set O on each solution set Al, we consider partitioning O into ` subsets.
We formalize this partition in the following claim, which yields a result analogous to Claim 3.1 presented in Section 3.3.
Specifically, the claim states that the optimal set O can be evenly divided into ` subsets, where each subset only overlaps
with only one solution set.

Claim F.1. At an iteration i of the outer for loop in Alg. 10, let Gi−1 be G at the start of this iteration, and Al be the set at
the end of this iteration, for each l ∈ [`]. The set O \Gi−1 can then be split into ` pairwise disjoint sets {O1, . . . , O`} such
that |Ol| ≤ k

` and (O \Gi−1) ∩ (Al \Gi−1) ⊆ Ol, for all l ∈ [`].

Next, based on such partition, we introduce the following lemma, which provides a bound on the marginal gain of any
subset Ol1 with respect to any solution set Al2 , where 1 ≤ l1, l2 ≤ `.

Lemma F.3. Fix on Gi−1 for an iteration i of the outer for loop in Alg. 10. Following the definition in Claim 3.1, it holds
that

1) ∆ (Ol |Al) ≤
∆ (Al |Gj−1)

1− ε′
+

ε′M

(1− ε′)`
,∀1 ≤ l ≤ `,

2) ∆ (Ol2 |Al1) + ∆ (Ol1 |Al2) ≤ 1

1− ε′

(
1 +

1

m

)
(∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1)) +

2ε′M

(1− ε′)`
,∀1 ≤ l1 < l2 ≤ `.

Followed by the above lemma, we provide the recurrence of E [f (Gi)] and E [f (O ∪Gi)].

Lemma F.4. For any iteration i of the outer for loop in Alg. 10, it holds that

1) E [f (O ∪Gi)] ≥
(

1− 1

`

)
E [f (O ∪Gi−1)]

2) E [f (Gi)− f (Gi−1)] ≥ 1

1 + `
1−ε′

(
1− 1

m+ 1

)((
1− 1

`

)
E [f (O ∪Gi−1)]− E [f (Gi−1)]− ε′

1− ε′
f (O)

)
.

By solving the recurrence in Lemma F.4, we calculate the approximation ratio of the algorithm as follows,

E [f (Gi)] ≥
(

1− 1

`

)
E [f (Gi−1)] +

1

1 + `
1−ε′

(
1− 1

m+ 1

)((
1− 1

`

)i
− ε′

1− ε′

)
f (O)
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⇒E [f (G`)] ≥
`

1 + `
1−ε′

(
1− 1

m+ 1

)((
1− 1

`

)`
− ε′

1− ε′

(
1−

(
1− 1

`

)`))
f (O)

≥ `− 1

1 + `
1−ε′

(
1− 1

m+ 1

)(
e−1 − ε′

1− ε′
(
1− e−1

))
f (O)

≥ 1

1− `
k

(
1− ε′ − 2

`

)(
1− `

k

)2(
e−1 − ε′

1− ε′
(
1− e−1

))
f (O)

≥ 1

1− `
k

(
1− ε′ − 2

`
− 2(1− ε′)`

k

)(
e−1 − ε′

1− ε′
(
1− e−1

))
f (O)

≥ 1

1− `
k

(1− (e+ 1)ε′)

(
e−1 − ε′

1− ε′
(
1− e−1

))
f (O) (` ≥ 2

eε′ , k ≥
2(1−ε′)`
eε′− 2

`

)

≥ 1

1− `
k

(
e−1 − ε

)
f (O) . (ε′ = ε

2 )

By Inequality 37, the approximation ratio of Alg. 10 is e−1 − ε.

In the rest of this section, we provide the proofs for Lemma F.3 and F.4.

Proof of Lemma F.3. At iteration i of the outer for loop, let Al be the set at the end of iteration i, al,j be the j-th element
added to Al, τ

j
l be the threshold value of τl when al,j is added to Al, and Al,j be Al after al,j is added to Al. Let

c∗l = max{c ∈ [m] : Al,c \Gi−1 ⊆ Ol}.

First, we prove that the first inequality holds. For each l ∈ [`], order the elements in Ol as {o1, o2, . . .} such that oj 6∈ Al,j−1

for any 1 ≤ j ≤ |Al \Gi−1|, and oj 6∈ Al for any |Al \Gi−1| < j ≤ m.

When 1 ≤ j ≤ |Al \Gi−1|, by Claim 3.1, each oj is either added to Al or not in any solution set. Since τl is initialized with
the maximum marginal gain M , oj is not considered to be added to Al with threshold value τ jl /(1 − ε′). Therefore, by
submodularity it holds that

∆ (oj |Al,j−1) < τ jl /(1− ε
′) ≤ ∆ (al,j |Al,j−1) /(1− ε′),∀1 ≤ j ≤ |Al \Gi−1|. (38)

When |Al \Gi−1| < m, the minimum value of τl is less than ε′M
k . Then, for any |Al \Gi−1| < j ≤ m, oj is not considered

to be added to Al with threshold value less than ε′M
(1−ε′)k . It follows that

∆ (oj |Al) ≤
ε′M

(1− ε′)k
,∀|Al \Gi−1| < j ≤ m. (39)

Then,

∆ (Ol |Al) ≤
∑
oj∈Ol

∆ (oj |Al) (Proposition B.1)

≤
|Al\Gi−1|∑

j=1

∆ (oj |Al,j−1) +

m∑
j=|Al\Gi−1|+1

∆ (oj |Al) (Submodularity)

≤
|Al\Gi−1|∑

j=1

∆ (al,j |Al,j−1)

1− ε′
+

ε′M

(1− ε′)`
(Inequalities (38) and (39))

=
∆ (Al |Gj−1)

1− ε′
+

ε′M

(1− ε′)`
.

The first inequality holds.

In the following, we prove that the second inequality holds. For any 1 ≤ l1 ≤ l2 ≤ `, we analyze two cases of the
relationship between c∗l1 and c∗l2 in the following.
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Case 1: c∗l1 ≤ c
∗
l2

; left half part in Fig. 4.

First, we bound ∆ (Ol1 |Al2). Order the elements in Ol1 \ Al1,c∗l1 as {o1, o2, . . .} such that oj 6∈ Al1,c∗l1+j . (Refer to the
gray block with a dotted edge in the top left corner of Fig. 4 for Ol1 . If c∗l1 + j is greater than the number of elements added
to Al1 , Al1,c∗l1+j refers to Al1 .) Note that, since Al1,c∗l1 ⊆ Ol1 , it follows that |Ol1 \Al1,c∗l1 | ≤ m− c

∗
l1

.

When 1 ≤ j ≤ |Al2 \Gi−1| − c∗l1 , since each oj is either added to Al1 or not in any solution set by Claim 3.1 and τl2 is

initialized with the maximum marginal gain M , oj is not considered to be added to Al2 with threshold value τ
c∗l1

+j

l2
/(1− ε′).

Therefore, it holds that

∆
(
oj

∣∣∣Al2,c∗l1+j−1

)
<
τ
c∗l1

+j

l2

1− ε′
≤

∆
(
al2,c∗l1+j

∣∣∣Al2,c∗l1+j−1

)
1− ε′

,∀1 ≤ j ≤ |Al2 \Gi−1| − c∗l1 . (40)

When |Al2 \Gi−1| < m and |Al2 \Gi−1|−c∗l1 < j ≤ m−c∗l1 , this iteration ends with τl2 <
ε′M
k and oj is never considered

to be added to Al2 . Thus, it holds that

∆ (oj |Al2) <
ε′M

(1− ε′)k
,∀|Al2 \Gi−1| − c∗l1 < j ≤ m− c∗l1 . (41)

Then,

∆ (Ol1 |Al2) ≤ ∆
(
Al1,c∗l1

∣∣∣Al2)+
∑

oj∈Ol1\Al1,c∗l1

∆ (oj |Al2) (Proposition B.1)

≤ ∆
(
Al1,c∗l1

∣∣∣Gi−1

)
+

|Al2\Gi−1|−c∗l1∑
j=1

∆
(
oj

∣∣∣Al2,,c∗l1+j−1

)
+

m−c∗l1∑
j=|Al2\Gi−1|−c∗l1+1

∆ (oj |Al2)

(submodularity)

≤ f
(
Al1,c∗l1

)
− f (Gi−1) +

|Al2\Gi−1|−c∗l1∑
j=1

∆
(
al2,c∗l1+j

∣∣∣Al2,,c∗l1+j−1

)
1− ε′

+
ε′M

(1− ε′)`
(Inequality (40) and (41))

≤ f
(
Al1,c∗l1

)
− f (Gi−1) +

f (Al2)− f
(
Al2,c∗l1

)
1− ε′

+
ε′M

(1− ε′)`
(42)

Similarly, we bound ∆ (Ol2 |Al1) below. Order the elements in Ol2 \ Al2,c∗l1 as {o1, o2, . . .} such that oj 6∈ Al2,c∗l1+j−1.
(See the gray block with a dotted edge in the bottom left corner of Fig. 4 for Ol2 . If c∗l1 + j − 1 is greater than the number of
elements added to Al2 , Al2,c∗l1+j−1 refers to Al2 .) Note that, since Al2,c∗l1 ⊆ Ol2 , it follows that |Ol2 \Al2,c∗l1 | ≤ m− c

∗
l1

.

When 1 ≤ j ≤ |Al1 \Gi−1| − c∗l1 , since each oj is either added to Al2 or not in any solution set by Claim 3.1 and τl1 is

initialized with the maximum marginal gain M , oj is not considered to be added to Al1 with threshold value τ
c∗l1

+j

l1
/(1− ε′).

Therefore, it holds that

∆
(
oj

∣∣∣Al1,c∗l1+j−1

)
<
τ
c∗l1+j

l1

1− ε′
≤

∆
(
al1,c∗l1+j

∣∣∣Al1,c∗l1+j−1

)
1− ε′

,∀1 ≤ j ≤ |Al2 \Gi−1| − c∗l1 . (43)

When |Al1 \Gi−1| < m and |Al1 \Gi−1|−c∗l1 < j ≤ m−c∗l1 , this iteration ends with τl1 <
ε′M
k and oj is never considered

to be added to Al1 . Thus, it holds that

∆ (oj |Al1) <
ε′M

(1− ε′)k
,∀|Al1 \Gi−1| − c∗l1 < j ≤ m− c∗l1 . (44)
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Then,

∆ (Ol2 |Al1) ≤ ∆
(
Al2,c∗l1

∣∣∣Al1)+
∑

oj∈Ol2\Al2,c∗l1

∆ (oj |Al1) (Proposition B.1)

≤ ∆
(
Al2,c∗l1

∣∣∣Gi−1

)
+

|Al1\Gi−1|−c∗l1∑
j=1

∆
(
oj

∣∣∣Al1,c∗l1+j−1

)
+

m−c∗l1∑
j=|Al1\Gi−1|−c∗l1+1

∆ (oj |Al1)

(submodularity)

≤ f
(
Al2,c∗l1

)
− f (Gi−1) +

|Al1\Gi−1|−c∗l1∑
j=1

∆
(
al1,c∗l1+j

∣∣∣Al1,,c∗l1+j−1

)
1− ε′

+
ε′M

(1− ε′)`
(Inequality (43) and (44))

≤ f
(
Al2,c∗l1

)
− f (Gi−1) +

f (Al1)− f
(
Al1,c∗l1

)
1− ε′

+
ε′M

(1− ε′)`
(45)

By Inequalities (42) and (45),

∆ (Ol1 |Al2) + ∆ (Ol2 |Al1) ≤ 1

1− ε′
(∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1)) +

2ε′M

(1− ε′)`

Thus, the lemma holds in this case.

Case 2: c∗l1 > c∗l2 ; right half part in Fig. 4.

First, we bound ∆ (Ol1 |Al2). Order the elements in Ol1 \Al1,c∗l2+1 as {o1, o2, . . .} such that oj 6∈ Al1,c∗l1+j . (Refer to the
gray block with a dotted edge in the top right corner of Fig. 4 for Ol1 . If c∗l1 + j is greater than the number of elements
added to Al1 , Al1,c∗l1+j refers to Al1 .) Note that, since Al1,c∗l2+1 ⊆ Ol1 , it follows that |Ol1 \Al1,c∗l2+1| ≤ m− c∗l2 − 1.

When 1 ≤ j ≤ |Al2 \Gi−1| − c∗l2 − 1, since each oj is either added to Al1 or not in any solution set by Claim 3.1 and τl2 is

initialized with the maximum marginal gain M , oj is not considered to be added to Al2 with threshold value τ
c∗l2

+j

l2
/(1− ε′).

Therefore, it holds that

∆
(
oj

∣∣∣Al2,c∗l2+j−1

)
<
τ
c∗l2

+j

l2

1− ε′
≤

∆
(
al2,c∗l2+j

∣∣∣Al2,c∗l2+j−1

)
1− ε′

,∀1 ≤ j ≤ |Al2 \Gi−1| − c∗l2 − 1. (46)

When |Al2 \Gi−1| < m and |Al2 \Gi−1| − c∗l2 − 1 < j ≤ m− c∗l2 − 1, this iteration ends with τl2 <
ε′M
k and oj is never

considered to be added to Al2 . Thus, it holds that

∆ (oj |Al2) <
ε′M

(1− ε′)k
,∀|Al2 \Gi−1| − c∗l2 − 1 < j ≤ m− c∗l2 − 1. (47)

Then,

∆ (Ol1 |Al2) ≤ ∆
(
Al1,c∗l2

∣∣∣Al2)+
∑

oj∈Ol1\Al1,c∗l2+1

∆ (oj |Al2) (Proposition B.1)

≤ ∆
(
Al1,c∗l2

∣∣∣Gi−1

)
+

|Al2\Gi−1|−c∗l2−1∑
j=1

∆
(
oj

∣∣∣Al2,,c∗l2+j−1

)
+

m−c∗l2−1∑
j=|Al2\Gi−1|−c∗l2

∆ (oj |Al2)

(submodularity)

≤ f
(
Al1,c∗l2

)
− f (Gi−1) +

|Al2\Gi−1|−c∗l2−1∑
j=1

∆
(
al2,c∗l2+j

∣∣∣Al2,,c∗l2+j−1

)
1− ε′

+
ε′M

(1− ε′)`
(Inequality (46) and (47))
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≤ f
(
Al1,c∗l2

)
− f (Gi−1) +

f (Al2)− f
(
Al2,c∗l2

)
1− ε′

+
ε′M

(1− ε′)`
(48)

Similarly, we bound ∆ (Ol2 |Al1) below. Order the elements in Ol2 \Al2,c∗l2 as {o1, o2, . . .} such that oj 6∈ Al2,c∗l2+j . (See
the gray block with a dotted edge in the bottom right corner of Fig. 4 for Ol2 . If c∗l2 + j is greater than the number of
elements added to Al2 , Al2,c∗l2+j refers to Al2 .) Note that, since Al2,c∗l2 ⊆ Ol2 , it follows that |Ol2 \Al2,c∗l2 | ≤ m− c

∗
l2

.

When 1 ≤ j ≤ |Al1 \ Gi−1| − c∗l2 − 1, since each oj is either added to Al2 or not in any solution set by Claim 3.1
and τl1 is initialized with the maximum marginal gain M , oj is not considered to be added to Al1 with threshold value

τ
c∗l2

+j+1

l1
/(1− ε′). Therefore, it holds that

∆
(
oj

∣∣∣Al1,c∗l2+j

)
<
τ
c∗l2

+j+1

l1

1− ε′
≤

∆
(
al1,c∗l2+j+1

∣∣∣Al1,c∗l2+j

)
1− ε′

,∀1 ≤ j ≤ |Al2 \Gi−1| − c∗l2 − 1. (49)

If |Al1 \Gi−1| = m, consider the last element om−c∗l2 in Ol2 \Al2,c∗l2 . Since om−c∗l2 6∈ Al2 and om−c∗l2 6∈ Al1 , om−c∗l2 is

not considered to be added to Al1 with threshold value τ jl1/(1− ε
′) for any j ∈ [m]. Then,

∆
(
om−c∗l2

∣∣∣Al1) < ∑m
j=1 τ

j
l1

(1− ε′)m
≤
∑m
j=1 ∆ (al1,j |Al1,j−1)

(1− ε′)m
=

∆ (Al1 |Gi−1)

(1− ε′)m
. (50)

When |Al1 \ Gi−1| < m and |Al1 \ Gi−1| − c∗l2 − 1 < j ≤ m − c∗l2 , this iteration ends with τl1 <
ε′M
k and oj is never

considered to be added to Al1 . Thus, it holds that

∆ (oj |Al1) <
ε′M

(1− ε′)k
,∀|Al1 \Gi−1| − c∗l2 − 1 < j ≤ m− c∗l2 . (51)

Then,

∆ (Ol2 |Al1) ≤ ∆
(
Al2,c∗l2

∣∣∣Al1)+
∑

oj∈Ol2\Al2,c∗l2

∆ (oj |Al1) (Proposition B.1)

≤ ∆
(
Al2,c∗l2

∣∣∣Gi−1

)
+

|Al1\Gi−1|−c∗l2−1∑
j=1

∆
(
oj

∣∣∣Al1,c∗l2+j−1

)
+

m∑
j=|Al1\Gi−1|−c∗l2

∆ (oj |Al1)

(submodularity)

≤ f
(
Al2,c∗l2

)
− f (Gi−1) +

|Al1\Gi−1|−c∗l2−1∑
j=1

∆
(
al1,c∗l2+j

∣∣∣Al1,,c∗l2+j−1

)
1− ε′

+
∆ (Al1 |Gi−1)

(1− ε′)m
+

ε′M

(1− ε′)`
(Inequalities (49)-(51))

≤ f
(
Al2,c∗l2

)
− f (Gi−1) +

f (Al1)− f
(
Al1,c∗l2

)
1− ε′

+
∆ (Al1 |Gi−1)

(1− ε′)m
+

ε′M

(1− ε′)`
(52)

By Inequalities (48) and (52),

∆ (Ol1 |Al2) + ∆ (Ol2 |Al1) ≤ 1

1− ε′

(
1 +

1

m

)
(∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1)) +

2ε′M

(1− ε′)`

Thus, the lemma holds in this case.

Proof of Lemma F.4. Fix on Gi−1 at the beginning of this iteration, Since {Al \Gi−1 : l ∈ [`]} are pairwise disjoint sets,
by Proposition B.1, it holds that

E [f (O ∪Gi) | Gi−1] =
1

`

∑
l∈[`]

f (O ∪Al) ≥
(

1− 1

`

)
f (O ∪Gi−1) .
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Then, by unfixing Gi−1, the first inequality holds.

To prove the second inequality, also consider fix on Gi−1 at the beginning of iteration i. Then,∑
l∈[`]

∆ (O |Al) ≤
∑
l1∈[`]

∑
l2∈[`]

∆ (Ol1 |Al2) (Proposition B.1)

=
∑
l∈[`]

∆ (Ol |Al) +
∑

1≤l1<l2≤`

(∆ (Ol1 |Al2) + ∆ (Ol2 |Al1)) (Lemma F.3)

≤
∑
l∈[`]

(
∆ (Al |Gi−1)

1− ε′
+

ε′M

(1− ε′)`

)

+
∑

1≤l1<l2≤`

(
1

1− ε′

(
1 +

1

m

)
(∆ (Al1 |Gi−1) + ∆ (Al2 |Gi−1)) +

2ε′M

(1− ε′)`

)
(Lemma F.3)

≤ `

1− ε′

(
1 +

1

m

)∑
l∈[`]

∆ (Al |Gi−1) +
ε′`

1− ε′
f (O) (M ≤ f (O))

⇒
(

1 +
`

1− ε′

)(
1 +

1

m

)∑
l∈[`]

∆ (Al |Gi−1) ≥
∑
l∈[`]

f (O ∪Al)− `f (Gi−1)− ε′`

1− ε′
f (O)

≥ (`− 1) f (O ∪Gi−1)− `f (Gi−1)− ε′`

1− ε′
f (O)

Thus,

E [f (Gi)− f (Gi−1) | Gi−1] =
1

`

∑
l∈[`]

∆ (Al |Gi−1)

≥ 1

1 + `
1−ε′

m

m+ 1

((
1− 1

`

)
f (O ∪Gi−1)− f (Gi−1)− ε′

1− ε′
f (O)

)
(Proposition B.1)

By unfixing Gi−1, the second inequality holds.

G. Analysis of Parallel Algorithms Introduced in Section 4
This section presents the formal analysis of our parallel algorithms introduced in Section 4. We first prove fundamental
lemmata for PIG in Appendix G.1, then establish its approximation guarantees in Appendix G.2, and finally analyze PITG
in Appendix G.3.

G.1. Key Lemmata for PIG (Alg. 6, Section 4)

We provide the key lemmata achieved by PIG as follows,

Lemma G.1. With input (f,m, `, τmin, ε), PARALLELINTERLACEGREEDY (Alg. 6) runs in O
(
`2ε−2 log(n) log

(
M
τmin

))
adaptive rounds and O

(
`3ε−2n log(n) log

(
M
τmin

))
queries with a probability of 1− 1/n, and terminates with {(Al, A′l) :

l ∈ [`]} s.t.

1. A′l ⊆ Al, ∆ (A′l | ∅) ≥ ∆ (Al | ∅) ,∀1 ≤ l ≤ `, and {Al : l ∈ [`]} are pairwise disjoint sets,

2. ∆ (Ol |Al) ≤
∆(A′l | ∅)
(1−ε)2 + m·τmin

1−ε ,∀1 ≤ l ≤ `,

3. ∆ (Ol2 |Al1) + ∆ (Ol1 |Al2) ≤ 1+ 1
m

(1−ε)2
(
∆
(
A′l1

∣∣ ∅)+ ∆
(
A′l2

∣∣ ∅))+ 2m·τmin

1−ε , if Ol1 = Ol2 ,∀1 ≤ l1 < l2 ≤ `,

where Ol ⊆ U , |Ol| ≤ m, and Ol ∩Aj = ∅ for each j 6= l.

Especially, when ` = 2,
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4. ∆ (S |A1) + ∆ (S |A2) ≤ 1
(1−ε)2

(
∆
(
A′l1

∣∣ ∅)+ ∆
(
A′l2

∣∣ ∅))+ 2m·τmin

1−ε ,∀S ⊆ U , |S| ≤ m.

Before proving Lemma G.1, we provide the following lemma regarding each iteration of PARALLELINTERLACEGREEDY.

Lemma G.2. For any iteration of the while loop in PARALLELINTERLACEGREEDY (Alg. 6), let Al,0, A′l,0, Vl,0, τl,0 be the
set and threshold value at the beginning, and Al, A′l, Vl, τl be those at the end. The following properties hold.

1. With a probability of at least 1/2, there exists l ∈ [`] s.t. τl < τl,0 or m0 = 0 or |Vl| ≤
(
1− ε

4`

)
|Vl,0|.

2. {Al : l ∈ [`]} have the same size and are pairwise disjoint.

3. For each x ∈ Al \Al,0, let τ (x)
l be the threshold value when x is added to the solution, Al,(x) be the largest prefix of

Al that do not include x, and for any j ∈ [`] and j 6= l, Aj,(x) be the prefix of Aj with |Al,(x)| elements if j < l, or

with |Al,(x)| − 1 elements if j > l. Then, for any l ∈ [`], x ∈ Al \ Al,0, and y ∈ U \
(⋃

j∈[`]Aj,(x)

)
, it holds that

∆
(
y
∣∣Al,(x)

)
<

τ
(x)
l

1−ε .

4. A′l ⊆ Al, ∆
(
A′l

∣∣∣A′l,0) ≥ ∆ (Al |Al,0), and ∆
(
A′l

∣∣∣A′l,0) ≥ (1− ε)
∑
x∈Al\Al,0 τ

(x)
l for all l ∈ [`].

Proof of Lemma G.2. Proof of Property 1. At the beginning of the iteration, if there exists l ∈ I s.t. |Vl,0| < 2`, then either
τl,0 is decreased to τl and Vl is updated accordingly, or an element xl from Vl,0 is added to Aj and A′j and subsequently
removed from Vl,0. This implies that

|Vl| ≤ |Vl,0| − 1 <

(
1− 1

2`

)
|Vl,0|.

Property 1 holds in this case.

Otherwise, for all l ∈ I , it holds that |Vl,0| ≥ 2`, and the algorithm proceeds to execute Lines 16-24. By Lemma 4.3, in
Line 16, |Vl| ≥ |Vl,0|2` for each l ∈ I . Consider the index j ∈ I where i∗j = i∗. Then, Oj consists of the first i∗ elements
in Vj by Line 21. By Lemma 4.5, with probability greater than 1/2, either i∗ = m0 or at least an ε

2 -fraction of elements
x ∈ Vj satisfy ∆ (x |Aj) < τj,0. Consequently, either m0 = 0 after Line 24, or, after the UPDATE procedure in Line 4, one
of the following holds: |Vl| ≤

(
1− ε

4`

)
|Vl,0|, or τj < τj,0. Therefore, Property 1 holds in this case.

Proof of Property 2. At any iteration of the while, either |I| different elements or |I| pairwise disjoint sets with same size
i∗ are added to solution sets {Al : l ∈ I}. Therefore, Property 2 holds.

Proof of Property 3. At any iteration, if τl is not updated on Line 8, then prior to this iteration, all the elements outside

of the solutions have marginal gain less than τ
(x)
l

1−ε . Thus, for any x ∈ Al \ Al,0, y ∈ U \
(⋃

j∈[`]Aj,0

)
, it holds that

∆
(
y
∣∣Al,(x)

)
<

τ
(x)
l

1−ε by submodularity. Property 3 holds in this case.

Otherwise, if τl is updated on Line 8, only one element is added to each solution set during this iteration. Let x = Al \Al,0.
For any j ∈ [`] and j 6= l, it holds that Aj,(x) = Aj if j < l, or Aj,(x) = Aj,0 if j > l. Since elements are added to each

pair of solutions in sequence within the for loop in Lines 7-13, by the UPDATE procedure, for any y ∈ U \
(⋃

j∈[`]Aj,(x)

)
,

it holds that ∆
(
y
∣∣Al,(x)

)
<

τ
(x)
l

1−ε . Therefore, Property 3 also holds in this case.

Proof of Property 4. First, we prove A′l ⊆ Al by induction. At the beginning of the algorithm, A′l and Al are initialized as
empty sets. Clearly, the property holds in the base case. Then, suppose that A′l,0 ⊆ Al,0. There are three possible cases of
updating A′l,0 and Al,0 at any iteration: 1) A′l = A′l,0 and Al = Al,0, 2) A′l = A′l,0 + xl and Al = Al,0 + xl in Line 12, or
3) A′l = A′l,0 ∪ S′l and Al = Al,0 ∪ Sl in Line 23. Clearly, A′l ⊆ Al holds in all cases.

Next, we prove the rest of Property 4.

If A′l = A′l,0 and Al = Al,0, then ∆
(
A′l

∣∣∣A′l,0) = ∆ (Al |Al,0) = 0. Property 4 holds.

IfA′l,0 andAl,0 are updated in Line 12, by submodularity, ∆
(
A′l

∣∣∣A′l,0) = ∆
(
xl

∣∣∣A′l,0) ≥ ∆ (xl |Al,0) = ∆ (Al |Al,0) ≥

τ
(xl)
l . Therefore, Property 4 also holds.
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If A′l,0 and Al,0 are updated in Line 23, we know that A′l = A′l,0 ∪ S′l and Al = Al,0 ∪ Sl. Suppose the elements in Sl and
S′l retain their original order within Vl. For each x ∈ Sl, let Sl,(x), Vl,(x) and Al,(x) be the largest prefixes of Sl, Vl and Al
that do not include x, respectively. Moreover, let S′l,(x) = Sl,(x) ∩ S′l and A′l,(x) = Al,(x) ∩A′l. Say an element x ∈ Sl true
if Bl[(x)] = true, where Bl[(x)] is the i-th element in Bl if x is the i-th element in Vl. Similarly, say an element x ∈ Sl
false if Bl[(x)] = false, and none otherwise.

Following the above definitions, for any true or none element x ∈ Sl, by Line 21, it holds that Sl,(x) ⊆ Vl,(x). Then, by
Line 5 and submodularity,

∆
(
x
∣∣Al,(x)

)
= ∆

(
x
∣∣Al,0 ∪ Sl,(x)

)
≥ ∆

(
x
∣∣Al,0 ∪ Vl,(x)

)
≥

{
τ

(x)
l , if x is true element

0, if x is none element

Since true elements are selected at first and i∗j ≥ i∗, there are more than (1− ε)i∗ true elements in Sl. Therefore,

∆
(
A′l
∣∣A′l,0) =

∑
x∈A′l\A

′
l,0,x is true element

∆
(
x
∣∣∣A′l,(x)

)
+

∑
x∈A′l\A

′
l,0,x is none element

∆
(
x
∣∣∣A′l,(x)

)
≥

∑
x∈A′l\A

′
l,0,x is true element

∆
(
x
∣∣Al,(x)

)
+

∑
x∈A′l\A

′
l,0,x is none element

∆
(
x
∣∣Al,(x)

)
≥ (1− ε)|Al \Al,0|τ (x)

l , for any x ∈ Al \Al,0
= (1− ε)

∑
x∈Al\Al,0

τ
(x)
l .

The third part of Property 4 holds.

To prove the second part of Property 4, consider any false element x ∈ Sl. By Line 21, it holds that Vl,(x) = Sl,(x). Then,
by Line 6

∆
(
x
∣∣Al,(x)

)
= ∆

(
x
∣∣Al,0 ∪ Sl,(x)

)
= ∆

(
x
∣∣Al,0 ∪ Vl,(x)

)
< 0. (53)

By Line 22, all the elements in Sl \ S′l are false elements. Then,

f (Al)− f (Al,0) =
∑
x∈S′l

∆
(
x
∣∣Al,(x)

)
+

∑
x∈Sl\S′l

∆
(
x
∣∣Al,(x)

)
<
∑
x∈S′l

∆
(
x
∣∣Al,(x)

)
(Inequality 53)

≤
∑
x∈S′l

∆
(
x
∣∣∣A′l,(x)

)
(Submodularity)

= f (A′l)− f
(
A′l,0

)
.

By Lemma G.2, we are ready to prove Lemma G.1.

Proof of Lemma G.1. Proof of Property 1. By Property 2 and 3 in Lemma G.2, this property holds immediately.

Proof of Property 2. For any l ∈ [`], since Ol ∩Aj = ∅ for each j 6= l, Ol \Al is outside of any solution set. If |Al| = m,
by Property 4 of Lemma G.2,

∆ (Ol |Al) ≤
∑

y∈Ol\Al

∆ (y |Al)

≤
∑
x∈Al

τ
(x)
l /(1− ε) (Property 3 in Lemma G.2)

≤ ∆ (A′l | ∅)
(1− ε)2

. (Property 5 in Lemma G.2)
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If |Al| < m, then the threshold value for solution Al has been updated to be less than τmin. Therefore, for any y ∈ Ol \Al,
it holds that ∆ (y |Al) < τmin

1−ε . Then,

∆ (Ol |Al) ≤
∑

y∈Ol\Al

∆ (y |Al) ≤
mτmin

1− ε
.

Therefore, Property 2 holds by summing the above two inequalities.

Proof of Property 3 and 4. Let al,j be the j-th element added to Al, τ
j
l be the threshold value of τl when al,j is added to

Al, and Al,j be Al after al,j is added to Al. Let c∗l = max{c ∈ [m] : Al,c ⊆ Ol}.

In the following, we analyze these properties together under two cases, similar to the analysis of Alg. 11. For the case where
` = 2, let O1 = S \A2, and O2 = S \A1, unifying the notations used in Property 3 and 4. Note that, the only difference
between the two analyses is that, a small portion (no more than ε fraction) of elements in the solution returned by Alg. 6 do
not have marginal gain greater than the threshold value.

Case 1: c∗l1 ≤ c
∗
l2

; left half part in Fig. 4.

First, we bound ∆ (Ol1 |Al2). Consider elements in Al1,c∗l1 ⊆ Ol1 . Let Al1,c∗l1 = {o1, . . . , oc∗l1
}. For each 1 ≤ j ≤ c∗l1 ,

since oj is added to Al1 with threshold value τ jl1 and the threshold value starts from the maximum marginal gain M , clearly,
oj has been filtered out with threshold value τ jl1/(1− ε). Then, by submodularity,

∆
(
Al1,c∗l1

∣∣∣Al2) ≤ ∆
(
Al1,c∗l1

∣∣∣ ∅) =

c∗l1∑
j=1

∆ (oj |Al1,j−1) ≤
c∗l1∑
j=1

τ jl1/(1− ε). (54)

Next, consider the elements in Ol1 \Al1,c∗l1 . Order the elements in Ol1 \Al1,c∗l1 as {o1, o2, . . .} such that oj 6∈ Al1,c∗l1+j .
(Refer to the gray block with a dotted edge in the top left corner of Fig. 4 for Ol1 . If c∗l1 + j is greater than |Al1 |, Al1,c∗l1+j

refers to Al1 .) Note that, since Al1,c∗l1 ⊆ Ol1 , it follows that |Ol1 \Al1,c∗l1 | ≤ m− c
∗
l1

.

When 1 ≤ j ≤ |Al2 | − c∗l1 , since each oj is either added to Al1 or not in any solution set and τl2 is initialized with the

maximum marginal gain M , oj is not considered to be added to Al2 with threshold value τ
c∗l1

+j

l2
/(1− ε) by Property 3 of

Lemma G.2. Therefore, it holds that

∆
(
oj

∣∣∣Al2,c∗l1+j−1

)
<
τ
c∗l1

+j

l2

1− ε
,∀1 ≤ j ≤ |Al2 | − c∗l1 . (55)

When |Al2 | < m and |Al2 | − c∗l1 < j ≤ m− c∗l1 , the algorithm ends with τl2 < τmin and oj is never considered to be added
to Al2 . Thus, it holds that

∆ (oj |Al2) <
τmin

1− ε
,∀|Al2 | − c∗l1 < j ≤ m− c∗l1 . (56)

Then,

∆ (Ol1 |Al2) ≤ ∆
(
Al1,c∗l1

∣∣∣Al2)+
∑

oj∈Ol1\Al1,c∗l1

∆ (oj |Al2) (Proposition B.1)

≤ ∆
(
Al1,c∗l1

∣∣∣ ∅)+

|Al2 |−c
∗
l1∑

j=1

∆
(
oj

∣∣∣Al2,,c∗l1+j−1

)
+

m−c∗l1∑
j=|Al2 |−c

∗
l1

+1

∆ (oj |Al2) (submodularity)

≤
c∗l1∑
j=1

τ jl1
1− ε

+

|Al2 |∑
j=c∗l1

+1

τ jl2
1− ε

+
m · τmin

1− ε
(57)

where the last inequality follows from Inequalities (54)-(56).
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Similarly, we bound ∆ (Ol2 |Al1) below. Consider elements in Al2,c∗l1 ⊆ Ol2 . Let Al2,c∗l1 = {o1, . . . , oc∗l1
}. For each

1 ≤ j ≤ c∗l1 , since oj is added to Al2 with threshold value τ jl2 and the threshold value starts from the maximum marginal
gain M , clearly, oj has been filtered out with threshold value τ jl2/(1− ε). Then, by submodularity,

∆
(
Al2,c∗l1

∣∣∣Al1) ≤ ∆
(
Al2,c∗l1

∣∣∣ ∅) =

c∗l1∑
j=1

∆ (oj |Al2,j−1) ≤
c∗l1∑
j=1

τ jl2/(1− ε). (58)

Next, consider the elements in Ol2 \Al2,c∗l1 . Order the elements in Ol2 \Al2,c∗l1 as {o1, o2, . . .} such that oj 6∈ Al2,c∗l1+j−1.
(See the gray block with a dotted edge in the bottom left corner of Fig. 4 for Ol2 . If c∗l1 + j − 1 is greater than |Al2 |,
Al2,c∗l1+j−1 refers to Al2 .) Note that, since Al2,c∗l1 ⊆ Ol2 , it follows that |Ol2 \Al2,c∗l1 | ≤ m− c

∗
l1

.

When 1 ≤ j ≤ |Al1 | − c∗l1 , since each oj is either added to Al2 or not in any solution set, and τl1 is initialized with the

maximum marginal gain M , oj is not considered to be added to Al1 with threshold value τ
c∗l1

+j

l1
/(1− ε) by Property 3 of

Lemma G.2. Therefore, it holds that

∆
(
oj

∣∣∣Al1,c∗l1+j−1

)
<
τ
c∗l1

+j

l1

1− ε
,∀1 ≤ j ≤ |Al2 | − c∗l1 . (59)

When |Al1 | < m and |Al1 | − c∗l1 < j ≤ m− c∗l1 , this iteration ends with τl1 < τmin and oj is never considered to be added
to Al1 . Thus, it holds that

∆ (oj |Al1) <
τmin

1− ε
,∀|Al1 | − c∗l1 < j ≤ m− c∗l1 . (60)

Then,

∆ (Ol2 |Al1) ≤ ∆
(
Al2,c∗l1

∣∣∣Al1)+
∑

oj∈Ol2\Al2,c∗l1

∆ (oj |Al1) (Proposition B.1)

≤ ∆
(
Al2,c∗l1

∣∣∣ ∅)+

|Al1 |−c
∗
l1∑

j=1

∆
(
oj

∣∣∣Al1,c∗l1+j−1

)
+

m−c∗l1∑
j=|Al1 |−c

∗
l1

+1

∆ (oj |Al1) (submodularity)

≤
c∗l1∑
j=1

τ jl2
1− ε

+

|Al1 |∑
j=c∗l1

+1

τ jl1
1− ε

+
m · τmin

1− ε
(61)

where the last inequality follows from Inequalities 58-60.

By Inequalities (57) and (61),

∆ (Ol1 |Al2) + ∆ (Ol2 |Al1) ≤
|Al1 |∑
j=1

τ jl1
1− ε

+

|Al2 |∑
j=1

τ jl2
1− ε

+
2m · τmin

1− ε
(62)

Case 2: c∗l1 > c∗l2 ; right half part in Fig. 4.

First, we bound ∆ (Ol1 |Al2). Consider elements in Al1,c∗l2+1 ⊆ Ol1 . Let Al1,c∗l2+1 = {o1, . . . , oc∗l2+1}. For each

1 ≤ j ≤ c∗l2 + 1, since oj is added to Al1 with threshold value τ jl1 and the threshold value starts from the maximum marginal
gain M , clearly, oj has been filtered out with threshold value τ jl1/(1− ε). Then, by submodularity,

∆
(
Al1,c∗l2+1

∣∣∣Al2) ≤ ∆
(
Al1,c∗l2+1

∣∣∣ ∅) =

c∗l2+1∑
j=1

∆ (oj |Al1,j−1) ≤
c∗l2+1∑
j=1

τ jl1/(1− ε). (63)
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Next, consider the elements inOl1 \Al1,c∗l2+1. Order the elements inOl1 \Al1,c∗l2+1 as {o1, o2, . . .} such that oj 6∈ Al1,c∗l1+j .
(Refer to the gray block with a dotted edge in the top right corner of Fig. 4 for Ol1 . If c∗l1 + j is greater than |Al1 |, Al1,c∗l1+j

refers to Al1 .) Note that, since Al1,c∗l2+1 ⊆ Ol1 , it follows that |Ol1 \Al1,c∗l2+1| ≤ m− c∗l2 − 1.

When 1 ≤ j ≤ |Al2 | − c∗l2 − 1, since each oj is either added to Al1 or not in any solution set and τl2 is initialized with the

maximum marginal gain M , oj is not considered to be added to Al2 with threshold value τ
c∗l2

+j

l2
/(1− ε). Therefore, it holds

that

∆
(
oj

∣∣∣Al2,c∗l2+j−1

)
<
τ
c∗l2+j

l2

1− ε
,∀1 ≤ j ≤ |Al2 \Gi−1| − c∗l2 − 1. (64)

When |Al2 | < m and |Al2 | − c∗l2 − 1 < j ≤ m− c∗l2 − 1, this iteration ends with τl2 < τmin and oj is never considered to
be added to Al2 . Thus, it holds that

∆ (oj |Al2) <
τmin

1− ε
,∀|Al2 | − c∗l2 − 1 < j ≤ m− c∗l2 − 1. (65)

Then,

∆ (Ol1 |Al2) ≤ ∆
(
Al1,c∗l2

∣∣∣Al2)+
∑

oj∈Ol1\Al1,c∗l2+1

∆ (oj |Al2) (Proposition B.1)

≤ ∆
(
Al1,c∗l2

∣∣∣ ∅)+

|Al2 |−c
∗
l2
−1∑

j=1

∆
(
oj

∣∣∣Al2,c∗l2+j−1

)
+

m−c∗l2−1∑
j=|Al2 |−c

∗
l2

∆ (oj |Al2) (submodularity)

≤
c∗l2

+1∑
j=1

τ jl1/(1− ε) +

|Al2 |∑
j=c∗l2

+1

τ jl2/(1− ε) +
m · τmin

1− ε
(66)

where the last inequality follows from Inequalities (63)-(65).

Similarly, we bound ∆ (Ol2 |Al1) below. Consider elements in Al1,c∗l2 ⊆ Ol2 . Let Al2,c∗l2 = {o1, . . . , oc∗l2
}. For each

1 ≤ j ≤ c∗l2 , since oj is added to Al2 with threshold value τ jl2 and the threshold value starts from the maximum marginal
gain M , clearly, oj has been filtered out with threshold value τ jl2/(1− ε). Then, by submodularity,

∆
(
Al2,c∗l2

∣∣∣Al1) ≤ ∆
(
Al2,c∗l2

∣∣∣ ∅) =

c∗l2∑
j=1

∆ (oj |Al2,j−1) ≤
c∗l2∑
j=1

τ jl2/(1− ε). (67)

Next, consider the elements in Ol2 \Al2,c∗l2 . Order these elements as {o1, o2, . . .} such that oj 6∈ Al2,c∗l2+j . (See the gray
block with a dotted edge in the bottom right corner of Fig. 4 for Ol2 . If c∗l2 + j is greater than the number of elements added
to Al2 , Al2,c∗l2+j refers to Al2 .) Note that, since Al2,c∗l2 ⊆ Ol2 , it follows that |Ol2 \Al2,c∗l2 | ≤ m− c

∗
l2

.

Furthermore, for the case where ` = 2, as considered in Property 4, we have O1 = S \ A2 and O2 = S \ A1 for a given
S ⊆ U where |S| ≤ m. Since c∗l1 > c∗l2 ≥ 0, it follows that c∗l1 ≥ 1, which implies |O2| = |S \A1| ≤ m− 1. In this case,
it holds that |Ol2 \Al2,c∗l2 | ≤ m− c

∗
l2
− 1.

When 1 ≤ j ≤ |Al1 | − c∗l2 − 1, since each oj is either added to Al2 or not in any solution set by Claim 3.1 and τl1 is

initialized with the maximum marginal gainM , oj is not considered to be added toAl1 with threshold value τ
c∗l2

+j+1

l1
/(1−ε).

Therefore, it holds that

∆
(
oj

∣∣∣Al1,c∗l2+j

)
<
τ
c∗l2+j+1

l1

1− ε
,∀1 ≤ j ≤ |Al2 | − c∗l2 − 1. (68)

If |Al1 | = m, consider the last element om−c∗l2 in Ol2 \ Al2,c∗l2 . Since om−c∗l2 6∈ Al2 and om−c∗l2 6∈ Al1 , om−c∗l2 is not
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considered to be added to Al1 with threshold value τ jl1/(1− ε) for any j ∈ [m]. Then,

∆
(
om−c∗l2

∣∣∣Al1) < ∑m
j=1 τ

j
l1

(1− ε)m
. (69)

Else, |Al1 | < m and this iteration ends with τl1 <
εM
k . For any |Al1 | − c∗l2 − 1 < j ≤ m− c∗l2 , oj is never considered to be

added to Al1 . Thus, it holds that

∆ (oj |Al1) <
τmin

1− ε
,∀|Al1 | − c∗l2 − 1 < j ≤ m− c∗l2 . (70)

Then,

∆ (Ol2 |Al1) ≤ ∆
(
Al2,c∗l2

∣∣∣Al1)+
∑

oj∈Ol2\Al2,c∗l2

∆ (oj |Al1) (Proposition B.1)

≤



∆
(
Al2,c∗l2

∣∣∣ ∅)+

|Al1\Gi−1|−c∗l2−1∑
j=1

∆
(
oj

∣∣∣Al1,c∗l2+j−1

)
+

m−c∗l2∑
j=|Al1\Gi−1|−c∗l2

∆ (oj |Al1) , if |Ol2 | = m

∆
(
Al2,c∗l2

∣∣∣ ∅)+

|Al1\Gi−1|−c∗l2−1∑
j=1

∆
(
oj

∣∣∣Al1,c∗l2+j−1

)
+

m−c∗l2−1∑
j=|Al1\Gi−1|−c∗l2

∆ (oj |Al1) , otherwise

(submodularity)

≤



c∗l2∑
j=1

τ jl2
1− ε

+

|Al2 |∑
j=c∗l2

+2

(
1 +

1

m

)
τ jl1

1− ε
+
m · τmin

1− ε
, if |Ol2 | = m

c∗l2∑
j=1

τ jl2
1− ε

+

|Al2 |∑
j=c∗l2

+2

τ jl1
1− ε

+
m · τmin

1− ε
, otherwise

(71)

where the last inequality follows from Inequalities (67)-(70).

By Inequalities (66) and (71),

∆ (Ol1 |Al2) + ∆ (Ol2 |Al1) ≤



(
1 +

1

m

)
1

1− ε

|Al1 |∑
j=1

τ jl1 +

|Al2 |∑
j=1

τ jl2

+
2m · τmin

1− ε
, if |Ol2 | = m

1

1− ε

|Al1 |∑
j=1

τ jl1 +

|Al2 |∑
j=1

τ jl2

+
2m · τmin

1− ε
, otherwise

(72)

Overall, in both cases, if |Ol2 | = m,

∆ (Ol1 |Al2) + ∆ (Ol2 |Al1) ≤
(

1 +
1

m

)
1

1− ε

|Al1 |∑
j=1

τ jl1 +

|Al2 |∑
j=1

τ jl2

+
2m · τmin

1− ε
(Inequalities (62) and (72))

≤
(

1 +
1

m

)
1

(1− ε)2

(
∆
(
A′l1

∣∣ ∅)+ ∆
(
A′l2

∣∣ ∅))+
2m · τmin

1− ε
(Property 4 of Lemma G.2)

Otherwise, if |Ol2 | < m,

∆ (Ol1 |Al2) + ∆ (Ol2 |Al1) ≤ 1

1− ε

|Al1 |∑
j=1

τ jl1 +

|Al2 |∑
j=1

τ jl2

+
2m · τmin

1− ε
(Inequalities (62) and (72))
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≤ 1

(1− ε)2

(
∆
(
A′l1

∣∣ ∅)+ ∆
(
A′l2

∣∣ ∅))+
2m · τmin

1− ε
(Property 4 of Lemma G.2)

Property (3) and (4) hold.

Proof of Adaptivity and Query Complexity. Note that, at the beginning of every iteration, for any j ∈ I , Vj contains all
the elements outside of all solutions that has marginal gain greater than τj with respect to solution Aj . Say an iteration
successful if either 1) algorithm terminates after this iteration because of m0 = 0, 2) all the elements in Vj can be filtered
out at the end of this iteration and the value of τj decreases, or 3) the size of Vj decreases by a factor of 1− ε

4` . Then, by
Property 1 of Lemma G.2, with a probability of at least 1/2, the iteration is successful. Furthermore, if τj is less than τmin,
j will be removed from I and solutions Aj and A′j won’t be updated anymore.

For each j ∈ [`], there are at most log1−ε
(
τmin

M

)
≤ ε−1 log

(
M
τmin

)
possible threshold values. And, for each threshold value,

with at most log1− ε
4`

(
1
n

)
≤ 4`ε−1 log(n) successful iterations regarding solution Aj , the threshold value τj will decrease

or the algorithm terminates because of m0 = 0. Overall, with at most 4`2ε−2 log(n) log
(

M
τmin

)
successful iterations, the

algorithm terminates because of m0 = 0 or I = ∅.

Next, we prove that, after N = 4
(

log(n) + 4`2ε−2 log(n) log
(

M
τmin

))
iterations, with a probability of 1− 1

n , there exists

at least 4`2ε−2 log(n) log
(

M
τmin

)
successful iterations, or equivalently, the algorithm terminates. Let X be the number of

successful iterations. Then, X can be regarded as a sum of N dependent Bernoulli trails, where the success probability is
larger than 1/2. Let Y be a sum of N independent Bernoulli trials, where the success probability is equal to 1/2. Then, the
probability that the algorithm terminates with at most N iterations can be bounded as follows,

P [#iterations > N ] ≤ P
[
X ≤ 4`2ε−2 log(n) log

(
M

τmin

)]
(a)

≤ P
[
Y ≤ 4`2ε−2 log(n) log

(
M

τmin

)]
(Lemma A.3)

≤ e
−N4

1−
8`2ε−2 log(n) log

(
M
τmin

)
N

2

(Lemma A.2)

= e
−

(
4 log(n)+8`2ε−2 log(n) log

(
M
τmin

))2
16

(
log(n)+4`2ε−2 log(n) log

(
M
τmin

))
≤ 1

n
.

Therefore, with a probability of 1− 1
n , the algorithm terminates with O

(
`2ε−2 log(n) log

(
M
τmin

))
iterations of the while

loop.

In Alg. 6, oracle queries occur during calls to UPDATE and PREFIX-SELECTION on Line 8, 18 and 4. The PREFIX-
SELECTION algorithm, with input (f,V, s, τ, ε), operates with 1 adaptive rounds and at most |V| queries. The UPDATE

algorithm, with input (f, V0, τ0, ε), outputs (V, τ) with 1 + log1−ε

(
τ
τ0

)
adaptive rounds and at most |V |+ n log1−ε

(
τ
τ0

)
queries. Here, log1−ε

(
τ
τ0

)
equals the number of iterations in the while loop within UPDATE. Notably, every iteration is

successful, as the threshold value is updated. Consequently, we can regard an iteration of the while loop in UPDATE as a
separate iteration of the while loop in Alg. 6, where such iteration only update one threshold value τj and its corresponding
candidate set Vj . So, each redefined iteration has no more than 2 adaptive rounds, and then the adaptivity of the algorithm

should be no more than the number of successful iterations, which is O
(
`2ε−2 log(n) log

(
M
τmin

))
. Since there are at most

`n queries at each adaptive rounds, the query complexity is bounded by O
(
`3ε−2n log(n) log

(
M
τmin

))
.

G.2. Analysis of Guarantees achieved by PIG (Theorem 4.1, Section 4)

In this section, we provide the analysis of the parallel (1/4− ε)-approximation algorithm.
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Theorem 4.1. With input (f, k, 2, εMk , ε), where M = maxx∈U f (x), PIG (Alg. 6) returns {A′1, A′2} with
O
(
ε−4 log(n) log(k)

)
adaptive rounds and O

(
ε−5n log(n) log(k)

)
queries with a probability of 1 − 1/n. It satisfies

that max{f (A′1) , f (A′2)} ≥ (1/4− ε)f (O).

Proof of Theorem 4.1. The adaptivity and query complextiy are quite straightforward. In the following, we will analyze the
approximation ratio.

Let S = O in Lemma G.1, it holds that

f (A′l) ≥ f (Al) ,∀l = 1, 2 (73)
A1 ∩A2 = ∅ (74)

∆ (O |A1) + ∆ (O |A2) ≤ 1

(1− ε)2
(f (A′1) + f (A′2)) +

2εM

1− ε
(75)

Then,

f (O) ≤ f (O ∪A1) + f (O ∪A2) (Submodularity, Nonnegativity, Inequality (74))

≤ f (A1) + f (A2) +
1

(1− ε)2
(f (A′1) + f (A′2)) +

2εM

1− ε
(Inequality (75))

≤ 2

(
1 +

1

(1− ε)2

)
f (G) +

2ε

1− ε
f (O) (Inequality (73) and G = arg max{f (A′1) , f (A′2)})

⇒ f (G) ≥ (1− 3ε)(1− ε)
2
(
(1− ε)2 + 1 + 1

k

)f (O) ≥
(

1

4
− ε
)
f (O)

G.3. Pseudocode and Analysis of PITG (Theorem 4.2, Section 4)

Algorithm 11: A randomized (1/e − ε)-approximation algorithm with O
(
`3ε−2 log(n) log(k)

)
adaptivity and

O
(
`4ε−2n log(n) log(k)

)
query complexity

1 Procedure PARALLELINTERPOLATEDGREEDY (f, k, ε):
Input: evaluation oracle f : 2U → R≥0, constraint k, constant `, error ε
Initialize :G← ∅, ε′ ← ε

2 ,m←
⌊
k
`

⌋
,M ← maxx∈U f ({x}) , τmin ← ε′M

k
2 for i← 1 to ` do
3 {A′l : l ∈ [`]} ← PARALLELINTERLACEGREEDY(fG,m, `, τmin, ε

′)
4 G← a random set in {G ∪A′l : l ∈ [`]}
5 return G

This subsection presents the pseudocode and theoretical analysis of our parallel (1/e− ε)-approximation algorithm.

First, we provide the following lemma which provides a lower bound on the gains achieved after every iteration in Alg. 11.

Lemma G.3. For any iteration i of the outer for loop in Alg. 11, it holds that

1) E [f (O ∪Gi)] ≥
(

1− 1

`

)
E [f (O ∪Gi−1)]

2) E [f (Gi)− f (Gi−1)] ≥ 1

1 + `
(1−ε′)2

(
1− 1

m+ 1

)((
1− 1

`

)
E [f (O ∪Gi−1)]− E [f (Gi−1)]− ε′

1− ε′
f (O)

)
.

Proof of Lemma G.3. Fix on Gi−1 at the beginning of this iteration, Since {Al : l ∈ [`]} are pairwise disjoint sets, by
Proposition B.1, it holds that

E [f (O ∪Gi) | Gi−1] =
1

`

∑
l∈[`]

f (O ∪Gi−1 ∪Al) ≥
(

1− 1

`

)
f (O ∪Gi−1) .
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Then, by unfixing Gi−1, the first inequality holds.

To prove the second inequality, also consider fix on Gi−1 at the beginning of iteration i. By Lemma G.1, {Al : l ∈ [`]} are
paiewise disjoint sets, and the following inequalities hold,

A′l ⊆ Al,∆ (A′l | ∅) ≥ ∆ (Al | ∅) ,∀1 ≤ l ≤ ` (76)

∆ (Ol |Al) ≤
∆ (A′l | ∅)
(1− ε′)2

+
ε′M

(1− ε′)`
,∀1 ≤ l ≤ ` (77)

∆ (Ol2 |Al1) + ∆ (Ol1 |Al2) ≤
1 + 1

m

(1− ε′)2

(
∆
(
A′l1

∣∣ ∅)+ ∆
(
A′l2

∣∣ ∅))+
2ε′M

(1− ε′)`
,∀1 ≤ l1 < l2 ≤ ` (78)

Then,∑
l∈[`]

∆ (O |Al ∪Gi−1) ≤
∑
l1∈[`]

∑
l2∈[`]

∆ (Ol1 |Al2 ∪Gi−1) (Proposition B.1)

=
∑
l∈[`]

∆ (Ol |Al ∪Gi−1) +
∑

1≤l1<l2≤`

(∆ (Ol1 |Al2 ∪Gi−1) + ∆ (Ol2 |Al1 ∪Gi−1))

(Lemma F.3)

≤
∑
l∈[`]

(
∆ (A′l |Gi−1)

(1− ε′)2
+

ε′M

(1− ε′)`

)

+
∑

1≤l1<l2≤`

((
1 + 1

m

)
(1− ε′)2

(
∆
(
A′l1

∣∣Gi−1

)
+ ∆

(
A′l2

∣∣Gi−1

))
+

2ε′M

(1− ε′)`

)
(Inequalities (77) and (78))

≤ `

(1− ε′)2

(
1 +

1

m

)∑
l∈[`]

∆ (A′l |Gi−1) +
ε′`

1− ε′
f (O) (M ≤ f (O))

⇒
(

1 +
`

(1− ε′)2

)(
1 +

1

m

)∑
l∈[`]

∆ (A′l |Gi−1) ≥
∑
l∈[`]

f (O ∪Al ∪Gi−1)− `f (Gi−1)− ε′`

1− ε′
f (O)

(Inequality (76))

≥ (`− 1) f (O ∪Gi−1)− `f (Gi−1)− ε′`

1− ε′
f (O)

Thus,

E [f (Gi)− f (Gi−1) | Gi−1] =
1

`

∑
l∈[`]

∆ (A′l |Gi−1)

≥ 1

1 + `
(1−ε′)2

m

m+ 1

((
1− 1

`

)
f (O ∪Gi−1)− f (Gi−1)− ε′

1− ε′
f (O)

)
(Proposition B.1)

By unfixing Gi−1, the second inequality holds.

Theorem 4.2. With input (f, k, ε) such that ` = O
(
ε−1
)
≥ 4

eε and k ≥ (2−ε)2`
eε`−4 , PITG (Alg. 11) returns G such that

E [f (G)] ≥ (1/e − ε)f (O) with O
(
ε−5 log(n) log(k)

)
adaptive rounds and O

(
ε−6n log(n) log(k)

)
queries with a

probability of 1−O (1/(εn)).

Proof of Theorem 4.2. Since the algorithm contains a for loop which runs PARALLELINTERLACEGREEDY ` = O (1/ε)
times, by Lemma G.1, the adaptivity, query complexity and success probability holds immediately.

Next, we provide the analysis of approximation ratio. By solving the recurrence in Lemma G.3, we calculate the approxima-
tion ratio of the algorithm as follows,

E [f (Gi)] ≥
(

1− 1

`

)
E [f (Gi−1)] +

1

1 + `
(1−ε′)2

(
1− 1

m+ 1

)((
1− 1

`

)i
− ε′

1− ε′

)
f (O)
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⇒E [f (G`)] ≥
`

1 + `
(1−ε′)2

(
1− 1

m+ 1

)((
1− 1

`

)`
− ε′

1− ε′

(
1−

(
1− 1

`

)`))
f (O)

≥ `− 1

1 + `
(1−ε′)2

(
1− 1

m+ 1

)(
e−1 − ε′

1− ε′
(
1− e−1

))
f (O)

≥ 1

1− `
k

(
(1− ε′)2 − 2

`

)(
1− `

k

)2(
e−1 − ε′

1− ε′
(
1− e−1

))
f (O)

≥ 1

1− `
k

(
(1− ε′)2 − 2

`
− 2(1− ε′)2`

k

)(
e−1 − ε′

1− ε′
(
1− e−1

))
f (O)

≥ 1

1− `
k

(1− (e+ 1)ε′)

(
e−1 − ε′

1− ε′
(
1− e−1

))
f (O) (` ≥ 2

eε′ , k ≥
2(1−ε′)2`
eε′− 2

`

)

≥ 1

1− `
k

(
e−1 − ε

)
f (O) . (ε′ = ε

2 )

By Inequality 37, the approximation ratio of Alg. 10 is e−1 − ε.

H. Experimental Setups and Additional Empirical Results
In the section, we introduce the settings in Section 5 further, and discuss more experimental results on SM-GEN and
SM-MON.

H.1. Applications

Maxcut. In the context of the maxcut application, we start with a graph G = (V,E) where each edge ij ∈ E has a weight
wij . The objective is to find a cut that maximizes the total weight of edges crossing the cut. The cut function f : 2V → R≥0

is defined as follows,
f(S) =

∑
i∈S

∑
j∈V \S

wij ,∀S ⊆ V.

This is a non-monotone submodular function. In our implementation, for simplicity, all edges have a weight of 1.

Revmax. In our revenue maximization application, we adopt the revenue maximization model introduced in (Hartline et al.,
2008), which we will briefly outline here. Consider a social network G = (V,E), where V denotes the buyers. Each buyer
i’s value for a good depends on the set of buyers S that already own it, which is formulated by

vi(S) = fi

∑
j∈S

wij

 ,

where fi : R≥0 → R≥0 is a non-negative, monotone, concave function, and wij is drawn independently from a distribution.
The total revenue generated from selling goods to the buyers S is

f(S) =
∑
i∈V \S

fi

∑
j∈S

wij

 .

This is a non-monotone submodular function. In our implementation, we randomly choose each wij ∈ (0, 1), and
fi(x) = xαi , where αi ∈ (0, 1) is chosen uniformly randomly.

H.2. Datasets

er is a synthetic random graph generated by Erdös-Rényi model (ERDdS & R&wi, 1959) by setting number of nodes
n = 100, 000 and edge probability p = 5

n .

web-Google (Leskovec et al., 2009) is a web graph of n = 875, 713 web pages as nodes and 5, 105, 039 hyperlinks as
edges.
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musae-github (Rozemberczki et al., 2019) is a social network of GitHub developers with n = 37, 700 developers and
289, 003 edges, where edges are mutual follower relationships between them.

twitch-gamers (Rozemberczki & Sarkar, 2021) is a social network of n = 168, 114 Twitch users with 6, 797, 557 edges,
where edges are mutual follower relationships between them.

H.3. Additional Results

Fig. 5 provides additional results on musae-github dataset with n = 37, 700 and web-Google dataset with n = 875, 713. It
shows that as n and k increase, our algorithms achieve superior on objective values. The results of query complexity and
adaptivity align closely with those discussed in Section 5. Notably, the number of adaptive round of PITG exceeds k on
musae-github, which may be attributed to the dataset’s relatively small size.
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Figure 5. Results for revmax on musae-github with n = 37, 700, and maxcut on web-Google with n = 875, 713.
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