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ABSTRACT

In batch multi-objective Bayesian optimization (MOBO), it is often desirable
to identify the whole Pareto optimal set, especially when considering the com-
plicated interplay between different design criteria and constraints. This poses
unique challenges in acquiring batches of both high quality and diversity to cover
the Pareto front. We propose a novel acquisition strategy, Probability of Matching,
which evaluates both batch candidate quality and diversity by explicitly capturing
the likelihood that a batch matches the true Pareto set. This is achieved by fac-
torizing the probability into two components: the likelihood that all batch points
are Pareto optimal, and the probability that they collectively cover the full Pareto
set. To estimate the coverage probability and promote diversity, we incorporate
space-filling design principles, resulting in our space-filling qEHVI (qEHVI-SF),
a new batch MOBO method. Across synthetic benchmarks and real-world tasks,
qEHVI-SF consistently outperforms state-of-the-art baselines on standard MOBO
metrics as well as a new design-space coverage metric, Expected Minimum Dis-
tance (EMD), with comparable computational efficiency.

1 INTRODUCTION

Bayesian optimization (BO) is a powerful framework for optimizing unknown or uncertain objec-
tive functions that are complex (non-linear, non-convex, non-stationary) and expensive to evaluate
in terms of both time and cost (Tu et al., 2022; Garnett, 2023; Ahmadianshalchi et al., 2024; Wang
et al., 2024). BO operates by sequentially querying objective function values for selective input, due
to the “black-box” nature of the problem setting. To achieve the desired sampling and computation
efficiency, it models the objective function probabilistically, constructs an acquisition function con-
sidering model uncertainty, and uses this acquisition function to iteratively select new points in the
design space to query. The probabilistic model is updated with new observations at each iteration.

When multiple objectives are involved, BO becomes more complex compared to those targeting
single-objective problems. Instead of identifying a single global optimum, the goal here is to ap-
proximate the non-dominated Pareto optimal set. In this context of multi-objective BO (MOBO),
acquisition functions must evaluate the quality of samples relative to the unknown Pareto front.
A widely used approach is by the Expected Hypervolume Improvement (EHVI; Emmerich et al.
(2006)), which measures improvement in the hypervolume dominated with respect to a reference
point. However, the effectiveness of EHVI is sensitive to the choice of the reference point, which
can bias sampling toward specific regions of the objective space (Auger et al., 2009).

Batch Bayesian optimization can partially mitigate diversity limitations by suggesting multiple can-
didates simultaneously, reducing the risk of oversampling in a single localized region. However,
batch selection in MOBO is inherently more challenging due to several factors: the acquisition
function must account for multiple objectives; it must capture interactions among batch points to
promote diversity and reduce redundancy; and it must carefully balance exploration of the design
space with exploitation of known high-performing regions.

In this paper, we propose a novel acquisition function from a probabilistic angle: Probability of
Matching, which can guide batch MOBO to better balance the trade-off between exploiting regions
with known high performance and ensuring diversity among batch points. This new acquisition
function captures the likelihood that an acquired batch matches the true Pareto optimal solutions
as much as possible. To estimate this Probability of Matching effectively, we factorize it as a joint
probability with two components: (i) the probability that all batch points belong to the Pareto set,
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and (ii) the probability that the batch collectively covers all Pareto optimal solutions. By jointly
estimating these two components during batch MOBO, our approach dynamically balances query
candidate quality with solution diversity, enabling more effective multi-objective batch acquisition.

The quality of batch candidates is estimated by parallel Expected Hypervolume Improvement (qE-
HVI; Daulton et al. (2020)), a batch version of EHVI. For the diversity within each batch, we in-
corporate principles from space-filling design, a well-established strategy in batch experimental
design (Pronzato & Müller, 2012). Classical space-filling approaches, such as the minimax-distance
design (Johnson et al., 1990), aim to uniformly distribute samples across the design space. Building
on these estimates, our batch MOBO acquisition function formulation based on the Probability of
Matching leads to new space-filling qEHVI (qEHVI-SF), which selects query points to maximize
the minimum distance between Pareto optimal solutions and their nearest previously sampled points,
thereby encouraging broader and more uniform coverage of the optimal region.

To validate the effectiveness of our Probability of Matching framework and space-filling estimation
strategy, we evaluate our qEHVI-SF method across a range of challenging multi-objective optimiza-
tion tasks. Compared to baseline methods, including qEHVI and the diversity-aware Quantile Stein
Variational Gradient Descent (QSVGD; Gong et al. (2019)), our qEHVI-SF consistently achieves
superior rediscovery performance across standard evaluation metrics, including hypervolume, in-
verted generational distance (IGD; Ishibuchi et al. (2015)) and other widely used benchmarks for
MOBO. We also introduce a new metric, Expected Minimum Distance (EMD), to evaluate cover-
age in the design space, where our method again outperforms existing baselines. In addition, for
the materials discovery case study, qEHVI-SF demonstrates superior performance with consistently
better rediscovery ratio. Notably, these improvements come with minimal additional computational
overhead relative to qEHVI, highlighting the efficiency and general applicability of our approach.

2 MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

2.1 BACKGROUND

Multi-objective Bayesian optimization (MOBO) can be formulated by considering optimizing an
array of multiple objective functions with respect to the decision or design variables in a well-defined
design space, x ∈ X :

f(x) = (f1(x), f2(x), . . . , fm(x)), (1)
where f1(·), . . . , fm(·) are multiple design objectives defined similarly as in single-objective
Bayesian optimization (SOBO). Unlike SOBO, which aims to identify a single global or local opti-
mum, the objective of MOBO is to generate a set of designs that capture the best trade-offs across
competing objectives, forming the Pareto front. Denote the image of the m objective function as
Y ⊂ Rm, the Pareto front is defined as Y∗ = {y ∈ Y : ∄y′ s.t. y′ ≺ y} if the goal is to minimize
each objective. Here, y ≺ y′ reads as y dominates y′ in the context of minimization for all m
design objectives, meaning that ∀i ≤ m, yi ≤ y′i and ∃j ≤ m, yj < y′j . In the design space, the
pre-image of Y∗ is denoted by X ∗, called the Pareto optimal set.

Batch MOBO extends the standard sequential MOBO by selecting a set of q > 1 query design points
per iteration, enabling parallel evaluation of these multiple expensive black-box objectives. The goal
is still to approximate the Pareto optimal set X ∗, but evaluations are performed in batches of size q:

X =
{
x(1), . . . ,x(q)

}
⊆ X . (2)

At each iteration n, typical implementations of batch MOBO select the batch Xn+1 by jointly
maximizing a batch acquisition function α(X | Dn), where Dn = {(xi,f(xi))}ni=1 is the set of
observed data points. The batch selection rule is given by:

Xn+1 = arg max
X⊆X ,|X|=q

α(X | Dn). (3)

One widely adopted batch acquisition function in MOBO is qEHVI, which generalizes EHVI to the
batch setting by jointly approximating the hypervolume improvement of the entire batch (Emmerich
et al., 2006). Assuming A ⊂ Y is a finite set of objective vectors, the hypervolume indicator H(A)
is defined as the Lebesgue measure of the region in the objective space dominated by at least one
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element of A and bounded above by a reference point r ∈ Rm, which is dominated by all elements
in the Pareto front:

H(A) = Vol ({y ∈ Rm|y ≺ r and ∃ a ∈ A : a ≺ y}) , (4)

where Vol(·) quantifies the size of a set of the m-dimensional objective space.

Given a batch of q input points X , the qEHVI acquisition function evaluates the expected increase
in the dominated hypervolume over the current Pareto front set Y∗

n:

αqEHVI
n (X | Dn) := Ey(1:q)|Dn,X

[
H(Y∗

n ∪ y(1:q))−H(Y∗
n)
]
, (5)

where y(1:q) is the (random) vector of objective values for points x(1:q) under the Gaussian pro-
cess (GP; Rasmussen (2003)) surrogate model, and the expectation is taken over the joint posterior
distribution of f(X) conditioned on current observations Dn.

In practice, this expectation is often approximated using Monte Carlo integration by sampling y(1:q)

from the posterior and computing the average hypervolume improvement. In MOBO, qEHVI can
be biased towards certain regions, depending on the shape of the Pareto front and the position of the
reference point (Auger et al., 2009). For example, if the reference point is far from the Pareto front,
qEHVI may prioritize extreme solutions on the Pareto front (Tian et al., 2016). This bias occurs
because extreme solutions are likely to yield the greatest hypervolume improvement. However, the
ultimate goal of MOBO is to collect evaluation samples across the entire Pareto front to support
more informed design decisions. This calls for new decision-making strategies that ensure better
coverage performance during acquisition.

2.2 RELATED WORK

Several existing methods have been developed to improve MOBO performance through better cov-
erage of the Pareto front, but most of these operate directly in the objective space. For example,
Expected MaxiMin Improvement (EMMI; Olofsson et al. (2018)) enhances Pareto front coverage
by prioritizing improvement in unexplored regions of the objective space. Similarly, Inverted Gen-
erational Distance with Noncontributing Solutions (IGD-NS; Tian et al. (2016)) aims to improve
coverage by directly minimizing the IGD metric (Zhou et al., 2006). These methods are effec-
tive when Pareto optimal solutions are densely clustered in a specific region in the design space.
However, these approaches struggle to capture the full Pareto front when the solutions are widely
dispersed across the design space. Implementing diversity improvement directly in the objective
space also presents several challenges: 1) Validity: It is unclear whether any candidates actually ex-
ist in the regions of the objective space being targeted; 2) Bias: The estimation of these acquisition
function values depends on GP surrogate modeling. This reliance introduces the risk of bias, similar
to the challenge faced by EHVI, where the indicator may favor specific regions based on initializa-
tion. 3) Misalignment with optimization goals: Diversity improvement strategies in the objective
space may suggest queries that may not align with the same preferences considering hypervolume
improvement, potentially reducing the overall optimization performance.

Given the limitations of promoting diversity in the objective space, enhancing the diversity of Pareto
optimal solutions in the design space presents a more reliable alternative. This is because: 1) the
feasible region is explicitly defined, eliminating concerns about solution validity; 2) diversity is
evaluated over the design space, making diversity modeling independent of potential biases in ob-
jective estimation; 3) promoting diversity in the design space does not compromise solution quality,
as there is no inherent preferential direction within the feasible domain; 4) and moreover, diversity
estimation in the design space does not introduce additional sensitivity to observational noise, if the
diversity estimation is computed purely from the design space distribution of the candidates, thereby
preserving the robustness of the approach.

However, not many related works have taken into account the diversity of Pareto optimal solutions
when developing MOBO. Here, before we present our new batch MOBO strategy, we first consider
a modified strategy, following QSVGD (Gong et al., 2019), which has been developed to increase
the exploration ability in single-objective BO. We extend the original implementation into batch
MOBO and still refer to it as QSVGD throughout the paper. QSVGD incorporates batch entropy to
enhance the diversity of queried samples. This formulation, though effective for global exploration,
does not directly target improved coverage of the Pareto front. Therefore, here we consider this
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multi-objective QSVGD as a baseline when evaluating our direct coverage improvement strategy
detailed later. The acquisition function for QSVGD is defined as follows:

αQSVGD
n (X | Dn) := Ey(1:q)|Dn,X

[
H(Y∗

n ∪ y(1:q))−H(Y∗
n)
]
+ ηH (X), (6)

where H is the entropy of the distribution over the batch samples and η is the hyperparameter to
balance the batch quality and diversity.

3 BATCH MOBO WITH SPACE FILLING

We now describe our new batch MOBO method based on the key concept of Probability of Match-
ing to guide queried batches to approach and cover the Pareto front. With a space-filling strategy
to efficiently approximate the coverage probability, the corresponding batch MOBO iterations can
better balance the trade-off between exploiting regions with known high performance and ensuring
diversity among batch points.

3.1 PROBABILISTIC PARETO SET MATCHING

We propose a novel batch acquisition strategy for MOBO that optimizes a new metric, the Proba-
bility of Matching, to guide batch selection. This metric measures the probability that the selected
batch is identical to the true Pareto optimal set by quantifying the likelihood that an acquired batch
not only contains high-quality solutions, but also closely approximates the entire Pareto optimal set.

Unlike existing approaches such as QSVGD that combine separate quality and diversity terms
through additive objectives, our method models both aspects jointly within a single probabilistic
framework. This removes the need for sensitive hyperparameter tuning, which is often required
due to the varying characteristics of different black-box objectives and can be both computationally
costly and difficult to calibrate during the optimization of new problems. More importantly, our
approach avoids fallback mechanisms that only adjust the trade-off when a failure is detected or per-
formance begins to degrade. By relying on a single coherent metric from the outset, the acquisition
strategy proactively maintains a high level of search efficiency and robustness, reducing the risk of
oversampling in extreme value regions or inefficient exploration.

To properly estimate the intractable Probability of Matching, we decompose it into two interpretable
components:(1) the probability that all points in the batch are Pareto optimal, and (2) the probability
that the batch collectively covers the full Pareto set. By estimating these two components jointly
during the acquisition process, our method maintains a dynamic balance between candidate quality
and diversity. This unified perspective enables the acquisition function to favor batches that not only
yield good performance but also provide broader coverage of the Pareto optimal set.

We model and optimize the probability that the acquired batch X approximates the true Pareto
optimal set X ∗ both in quality and distributional diversity. Specifically, we explicitly consider the
probability that the acquired batch X approaches X ∗:

P (X = X ∗) = P (X ∗ ⊆ X,X ⊆ X ∗) = P (X ⊆ X ∗)P (X ∗ ⊆ X|X ⊆ X ∗), (7)

which quantifies the likelihood that the selected batch X matches exactly the sampled set of true
Pareto optimal solutions. As in (7), we factorize this “matching” event X = X ∗ by estimating
the joint probability of X ∗ ⊆ X and X ⊆ X ∗: X ⊆ X ∗ is the event of X belonging to the
Pareto optimal set and X ∗ ⊆ X is the event that all optimal solutions are contained within X . This
provides a more balanced criterion for batch selection in MOBO. Many optimal quality preferred
methods, such as qEHVI, prioritize X ⊆ X ∗ while neglecting X ∗ ⊆ X . This imbalance may
explain qEHVI’s tendency to favor extreme regions, where X ⊆ X ∗ is easier to satisfy since those
solutions are less likely to be dominated. To improve coverage performance, new strategies should
explicitly account for the probability of X ∗ ⊆ X to promote coverage or diversity.

Regarding the coverage of the Pareto optimal set, batch MOBO is generally more effective than
sequential counterparts, as a larger batch size naturally leads to higher P (X ∗ ⊆ X). On the other
hand, excessively large batches may reduce P (X ⊆ X ∗). Also, such large batch sizes incur sub-
stantial costs due to the evaluation of numerous non-Pareto optimal solutions, resulting in inefficient
utilization of the evaluation budget. Therefore, simply increasing the batch size should not be viewed
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as a universal solution for improving coverage. Another drawback of using a large batch size is the
increased computational cost (Binois et al., 2025). As the batch size q grows, the number of possible
batch combinations increases superlinearly, leading to significantly higher complexity in acquisition
optimization and evaluation. Instead, we need a principled methodology that balances P (X ∗ ⊆ X)
and P (X ⊆ X ∗) to achieve effective and diverse sample queries.

3.2 SPACE FILLING

To optimize (7), we first use normalized qEHVI to approximate P (X ⊆ X ∗) for batch X . Next, we
estimate the coverage probability P (X ∗ ⊆ X | X ⊆ X ∗), taking a space filling strategy (Pronzato
& Müller, 2012). Since X ∗ denotes a continuous space while X is a finite set of sampled points,
we evaluate the coverage capacity of X by defining Ar

X as the union of closed balls of radius r
centered at each point in X . We then use P (X ∗ ⊆ Ar

X | X ⊆ X ∗) as a surrogate to estimate
P (X ∗ ⊆ X | X ⊆ X ∗).

Note that the coverage probability is already conditioned on X ⊆ X ∗, which implies that expanding
the covered region Ar

X leads to improved coverage of the Pareto optimal set. Therefore, a natural
thought is to maximize the total volume of Ar

X . Given that the batch size of X and the radius r
are fixed, the sum of the volumes of the individual balls is also fixed. Thus, to increase the total
covered space, it is beneficial to reduce the overlap between balls. We achieve this by maximizing
the minimum distance among points in X , thereby encouraging a more dispersed and space-filling
configuration. Besides the minimum distance term between the candidates inside the batch, we also
take the previous observation location into account to ensure that the next-step acquisition does not
overlap with the previously queried regions. The final acquisition function is defined as:

Ey(1:q)|Dn,X

[(
H(Y∗

n ∪ y(1:q))−H(Y∗
n)
)
·min {∆(X,X), ∆(X,Xn)}

]
, (8)

where ∆(·, ·) denotes the minimum non-zero L2 distance between two input sets.

It is crucial to emphasize that we do not recommend estimating coverage using the current Pareto
optimal set X ∗

n . The definition of coverage probability is strictly conditioned on X ⊆ X ∗. Substi-
tuting X ∗

n for X ∗ implicitly changes the condition to X ⊆ X ∗
n . This shift can lead to oversampling

in the local region around X ∗
n and undermine the goal of achieving comprehensive coverage over

the true Pareto optimal set X ∗.

3.3 COMPLEXITY ANALYSIS

To demonstrate that our space-filling strategy does not introduce significant computational over-
head compared to qEHVI, we present a complexity comparison of various batch MOBO acquisition
strategies. For qEHVI, we have applied the box decomposition strategy to compute the expected
hypervolume improvement, which has the time complexity of Θ(NmK(2q − 1)) (Daulton et al.,
2020), since qEHVI requires computing the volume of 2q − 1 (the number of non-empty subsets
of y(1:q)) hyper-rectangles for each of K hyper-rectangles and N Monte Carlo (MC) samples. The
exact complexity of K is unknown but it is super-polynomial in m (Yang et al., 2019a). For QSVGD
and qEHVI-SF, based on (7), the complexity consists of two parts: The first part is to estimate the
probability of being Pareto optimal, which has the same complexity, Θ(NmK(2q − 1)), as simi-
larly estimated in qEHVI. The second part is for approximating the coverage probability by either
entropy or space filling. For QSVGD, we adapt the Kernel Density Estimation (KDE) to estimate the
entropy in the design space, which has the complexity of Θ(q2d). For qEHVI-SF, we first estimate
the minimum distance inside the batch, which has the complexity of Θ(q2d). Next, we estimate
the minimum distance between the selected batch and previous evaluations, which has complex-
ity of Θ(qnd). Thus, the overall complexity of coverage probability estimation for qEHVI-SF is
Θ(q(q+ n)d). For QSVGD and qEHVI-SF, the coverage probability estimation is performed in the
design space and is independent of Pareto optimality estimation. Therefore, the overall complexity
per iteration is Θ(NmK(2q−1)+q2d) for QSVGD, and Θ(NmK(2q−1)+q(n+q)d) for qEHVI-
SF. At each iteration, the number of possible batch combinations of size q from the candidate set X
is
(|X |

q

)
, and we obtain q evaluation candidates per iteration. Thus, the average time cost per evalua-

tion is Θ
(
NmK

(
2q−1

q

)
+ qd

) (|X |
q

)
for QSVGD, and Θ

(
NmK

(
2q−1

q

)
+ (n+ q)d

) (|X |
q

)
for

qEHVI-SF. For qEHVI, the overall complexity per evaluation is Θ
(
NmK

(
2q−1

q

)) (|X |
q

)
.
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4 EMPIRICAL RESULTS

4.1 BASELINE BENCHMARK

We have performed experiments in different setups to investigate performance trends of different
batch MOBO strategies with different batch sizes. To emphasize the importance of reliable coverage
estimation of P (X ∗ ⊆ X), we focus on the MOBO problems that have multiple Pareto optimal
regions in the corresponding design space. For the problems with only a single Pareto optimal
region, optimization with respect to P (X ⊆ X ∗) is often sufficient, since if X does not belong
to the current Pareto optimal region, it can be ignored as it can not be in any other Pareto optimal
region.

We evaluate the performance of different acquisition strategies on two benchmark problems char-
acterized by complex Pareto optimal solution distributions. The first is a simulated bi-objective
Gaussian mixture (GM; Fröhlich et al. (2020)) function with a 2-dimensional design space, where
the Pareto optimal solutions are widely dispersed. The second is the car side-impact problem (RE4-
7-1), which involves a 7-dimensional design space and four objectives, with an unknown Pareto
optimal set (Tanabe & Ishibuchi, 2020). Both experiments are implemented within the BOTorch
framework (Balandat et al., 2020). Additional implementation details are provided in Appendix A.1.

For each problem, we evaluate optimization performance using two metrics. The first is hyper-
volume, which measures the quality of the solutions obtained in the objective space. The second
is expected minimum distance (EMD), defined in (9), which quantifies the coverage of the Pareto
optimal solutions in the design space. EMD is conceptually similar to the IGD, but it operates in
the design space rather than the objective space. In MOBO, fully covering the Pareto front does
not guarantee that all Pareto optimal designs are recovered. However, capturing all Pareto optimal
designs does imply full coverage of the Pareto front. Therefore, EMD serves as a stricter metric than
IGD, offering higher selectivity and precision in evaluating MOBO solution quality:

EMD(Xn,X ∗) =
1

|X ∗|
∑

x∗∈X∗

min
x∈Xn

∥x− x∗∥2. (9)

As shown in Figure 1, qEHVI-SF consistently outperforms competing baselines in both candidate
quality (measured by hypervolume) and diversity (measured by EMD) in both problems. Moreover,
its performance remains stable across different batch sizes. In contrast, qEHVI and QSVGD exhibit
high sensitivity to batch size. For example, on the first GM problem, qEHVI performs the best with
a batch size of two; while for RE4-7-1, it performs the best with a batch size of ten. QSVGD also
shows significant variability depending on the batch size. These results indicate that qEHVI-SF
is a more robust strategy under varying batch size settings. Additionally, when comparing results
within the same column (i.e., at fixed batch sizes), qEHVI-SF consistently demonstrates superior
performance on both metrics, particularly when the batch size is small. Also, results by qEHVI-
SF have smaller standard deviation values across trials, indicating that qEHVI-SF is a more robust
acquisition strategy with different random initialization throughout optimization iterations than other
strategies.

Additional results on standard MOBO benchmarks such as ZDT (Zitzler et al., 2000) and
DTLZ (Deb et al., 2005) families are provided in Appendix A.2.

4.2 REAL-WORLD CASE STUDIES

We further evaluate and compare batch MOBO performance in an alloy inverse design task aimed
at identifying compositions with targeted material properties. Specifically, we aim to recover Pareto
optimal compositions from a pool of 1,000 given candidates under a constrained evaluation bud-
get (Hastings et al., 2024). To provide a comprehensive assessment on the effectiveness of different
batch MOBO strategies, we vary the batch size and measure the resulting Pareto optimal solution
rediscovery ratio, for qEHVI, QSVGD, and our qEHVI-SF.

The design objectives in this MOBO problem include six material properties: Stacking Fault En-
ergy (SFE), principal axial elastic constant (C11), Heat Capacity (HC), Thermal Conductivity (TC),
Solidification Range (SR), and Room-Temperature Density (RTD). As a model of the trade-offs in-
herent to alloy design, these six material properties—SFE, C11, HC, TC, SR, and RTD—collectively
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qEHVI

QSVGD

qEHVI-SF

Figure 1: Comparison of batch MOBO performances under different experimental settings across
three acquisition strategies: qEHVI, QSVGD, qEHVI-SF. The first two columns show the changes of
hypervolume and expected minimum distance (EMD) across MOBO iterations for the GM problem,
and the last two columns correspond to the results for the RE4-7-1 problem.

define the key thermodynamic, mechanical, and processing constraints that shape performance.
These attributes are deeply entangled: they do not vary independently, and optimizing one often
perturbs others. Their interplay reflects the practical complexity of real-world alloy development,
where performance gains are rarely free and improvements in one dimension often impose costs
elsewhere.

SFE governs dislocation behavior, including splitting, cross-slip, and twinning, and directly in-
fluences deformation mechanisms such as transformation-induced plasticity (TRIP) and twinning-
induced plasticity (TWIP) (Gallagher, 1970; Ahlers, 1970; Vitos et al., 2006; Pierce et al., 2015).
C11 characterizes the intrinsic stiffness along the primary crystallographic axes and plays a key role
in determining both the yield strength and elastic anisotropy (Hill, 1948; Yoo, 1986; Hutchinson,
2015). Thermal properties fall into two regimes: HC, which governs transient thermal response by
storing or releasing energy; and TC, which dictates steady-state heat transport by controlling spatial
heat diffusion (Callister & Rethwisch, 2013). Both properties are critical in thermally demanding
systems, from aerospace components to microelectronic devices (Hanuska et al., 2000; Zawada,
2006). These thermal properties often exhibit an inverse relationship with RTD, a measure of mass
per unit volume. While lower density can enhance specific properties, it may compromise abso-
lute stiffness, thermal conductivity, or mechanical robustness (Ashby & Cebon, 2005; Callister &
Rethwisch, 2013). SR reflects the temperature interval over which an alloy transitions from liquid
to solid. A narrow SR minimizes elemental segregation and reduces the risk of hot cracking dur-
ing solidification, thereby enhancing processability. In contrast, a wider SR expands the accessible
compositional design space but increases susceptibility to solidification defects (Flemings, 1974).

Simultaneously optimizing all six dimensions is inherently constrained by competing material mech-
anisms. For example, alloying strategies to increase ductility via reduced SFE or enhance stiffness
via increased C11 may inadvertently raise density or broaden SR, thus worsening processability or
reducing mass efficiency (Ashby, 2011c;a;b). These trade-offs cannot be resolved independently;
rather, they manifest as interlocked constraints in multi-objective optimization landscapes. The alloy
design process must therefore navigate a multi-dimensional Pareto front, where gains in one domain

7
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often exact cost in another, a reality mirrored in recent multi-objective Bayesian optimization frame-
works that explicitly balance candidate quality with design space coverage (Khatamsaz et al., 2021;
2022).

Here, we study six constructed MOBO tasks by grouping six properties into three bi-objective
(Bi-1: C11 and SFE , Bi-2: HC and TC, Bi-3: SR and RTD), two tri-objective (Tri-1: RTD,
C11, and SFE, Tri-2: SR, HC, and TC), and all six objective tasks (All: SR, RTD, HC, TC, C11,
and SFE). For each property, we first train a property predictor on the full candidate set and use
this surrogate model as the black-box objective function. We initialize each batch MOBO run with
10 randomly selected compositions and allocate a total of 80 evaluations. The goal is to compare
acquisition strategies in terms of how many Pareto optimal solutions they are able to recover within
this evaluation budget. We vary the batch size from the set 2, 5, 10, corresponding to 40, 16, 8 batch
MOBO iterations.

We use the following metrics to evaluate the re-identification performance: 1) Rediscovery ratio;
2) Hypervolume; 3) EMD; 4) IGD; 5) Maximum Spread (Zitzler & Thiele, 2002); and 6) Spac-
ing (Schott, 1995). Rediscovery ratio is defined as the number of rediscovered Pareto optimal so-
lutions divided by the total number of true Pareto optimal solutions. It serves as the most practical
evaluation metric for materials inverse design, as it directly measures the effectiveness of recover-
ing target compositions. Therefore, we adopt it as the primary metric for comparison. Figure 2
presents the rediscovery ratios achieved by different acquisition strategies across various experi-
mental setups. The evaluation results for other metrics and the acquisition behavior analysis exhibit
consistent trends with those observed in the benchmark examples (see Appendix A.3).

(a) Bi-1 (b) Bi-2

(c) Bi-3 (d) Tri-1

(e) Tri-2 (f) All

Figure 2: Rediscovery performance comparison for different MOBO settings: bi-objective com-
binations considering (a) Bi-1: C11 and SFE, (b) Bi-2: HC and TC, (c) Bi-3: SR and RTD;
tri-objective tasks considering (d) Tri-1: RTD, C11, and SFE, (e) Tri-2: SR, HC, and TC; as
well as considering all six objectives: (f) All: SR, RTD, HC, TC, C11, and SFE. Dots: Mean value
across 20 trials; Red: Best performance across all different settings.

For all the tasks, performing 80 random queries from 1000 candidates has a probability of 0.08 for
any Pareto optimal solution being selected. Each method outperforms this baseline of 0.08. As
the number of objectives increases, the rediscovery ratio decreases as expected, which is illustrated
when comparing the trends in Figures 2a, 2d, and 2f; or similarly in Figures 2b, 2e, and 2f when
increasing the number of objectives under consideration from two, three, to six.
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Specifically, qEHVI-SF consistently rediscovers the most Pareto optimal solutions compared to qE-
HVI and QSVGD across different settings. It typically shows stable performance with a batch size
of five, although during the exploration stage (e.g., Figure 2f), this is not always the case. For qE-
HVI, small batch sizes lead to low acquisition efficiency on tasks such as bi-objective (C11 and SFE;
HC and TC; SR and RTD) and tri-objective (RTD, C11, and SFE) tasks. Performance improves with
larger batch sizes, as the coverage probability P (X ∗ ⊆ X | X ⊆ X ∗) naturally increases. However,
larger batches can reduce the probability P (X ⊆ X ∗), causing an overall performance drop as seen
in Figures 2e and 2f.

For QSVGD, we employ a decaying schedule for the hyperparameter η to gradually diminish the
influence of the entropy term over iterations, thereby achieving a balance between exploitation and
diversity (details in Appendix A.1). Finding the optimal exploration-exploitation balance remains
challenging, as it varies by different scenarios. Without a dynamic balance, the diversity term may
occasionally dominate the qEHVI term, causing the acquisition of candidates without any Pareto
front potential. Consequently, QSVGD’s overall performance is worse than qEHVI-SF and some-
times can even be worse than qEHVI.

4.3 COMPUTATIONAL EFFICIENCY

We validate the computational complexity derived in Section 3.3 by investigating the run-time of
different batch MOBO strategies in our alloy design case study. Table 1 reports the average runtime
required to generate one evaluation candidate across different acquisition strategies and experimental
settings. The runtime is mainly influenced by the batch size q and the number of objectives m. In
general, incorporating coverage estimation introduces minimal additional overhead compared to
qEHVI. For instance, with multiple objectives (m = 6), the cost is dominated by hypervolume
estimation (Yang et al., 2019b), particularly for large q, since (n + q)d ≪ 2q−1

q . For qEHVI-
SF, the coverage computation exhibits a higher standard deviation, likely due to the increase in
computational complexity as the n increases. In contrast, the other two strategies demonstrate more
stable performance across trials. Meanwhile, the actual computational cost may deviate from the
theoretical complexity analysis, as some acquisition optimization converges to the maximum before
exhausting the optimization budget.

Table 1: Runtime (in seconds, Average±Standard Deviation) per candidate evaluation for different
tasks, batch sizes, and BO strategies

Acquisition strategies Batch size Bi-1 Bi-2 Bi-3 Tri-1 Tri-2 All

qEHVI
2 3.37±1.17 4.50±1.70 1.64±0.56 2.09±0.87 3.82±4.12 9.30±5.05
5 4.72±2.35 2.44±1.30 2.28±0.75 3.79±2.01 1.77±0.63 46.03±52.18
10 7.01±2.82 4.25±0.30 4.24±1.42 11.50±6.93 0.97±0.37 30.09±26.58

QSVGD
2 6.69±0.86 4.07±0.59 3.28±1.81 2.74±1.77 3.97±3.06 8.22±5.50
5 3.88±1.30 7.32±1.62 2.35±1.55 3.97±1.71 1.80±0.54 56.23±57.17
10 9.45±0.92 5.09±0.73 5.09±1.85 11.72±6.83 1.20±0.49 52.79±49.03

qEHVI-SF
2 5.12±0.91 3.57±4.15 2.38±1.14 3.11±2.33 8.86±6.08 10.07±8.68
5 4.20±2.56 7.59±4.20 3.66±0.69 4.64±1.37 6.28±3.22 54.96±60.84
10 7.58±2.73 3.79±1.64 6.48±0.65 13.23±5.63 6.89±4.18 52.01±70.60

5 CONCLUSION AND LIMITATION

In this study, we introduced qEHVI-SF, a novel batch acquisition strategy for batch MOBO, based
on the concept of Probability of Matching. This approach emphasizes both the quality and diversity
of batch candidates across optimization trials. Empirically, qEHVI-SF consistently demonstrates
strong performance in producing high-quality solutions while maintaining better coverage of the
Pareto front, all with only modest additional computational overhead compared to existing methods.

This work presents only one specific way of estimating the Probability of Matching, primarily
through qEHVI to approximate probability of optimal and maximizing minimum distance to approx-
imate coverage. While this surrogate proves effective in practice, the precise relationship between
pairwise distance and true coverage probability remains unclear. Future work will focus on devel-
oping and evaluating more direct and theoretically grounded estimators for coverage probability. A
deeper theoretical investigation into the relationship between distance-based heuristics and coverage
probability is also necessary to further improve the robustness and interpretability of the proposed
method.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Manfred Ahlers. Stacking fault energy and mechanical properties. Metallurgical Transactions, 1
(9):2415–2428, 1970.

Alaleh Ahmadianshalchi, Syrine Belakaria, and Janardhan Rao Doppa. Preference-aware con-
strained multi-objective Bayesian optimization. In Proceedings of the 7th Joint International
Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th CO-
MAD), pp. 182–191, 2024.

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Un-
expected improvements to expected improvement for Bayesian optimization. Advances in Neural
Information Processing Systems, 36:20577–20612, 2023.

Michael F. Ashby. Chapter 7 - Multiple Constraints and Conflicting Objectives. In Michael F. Ashby
(ed.), Materials Selection in Mechanical Design (Fourth Edition), pp. 197–216. Butterworth-
Heinemann, Oxford, fourth edition edition, 2011a. ISBN 978-1-85617-663-7. doi: https://doi.
org/10.1016/B978-1-85617-663-7.00007-2. URL https://www.sciencedirect.com/
science/article/pii/B9781856176637000072.

Michael F. Ashby. Chapter 4 - Material Property Charts. In Michael F. Ashby (ed.), Materi-
als Selection in Mechanical Design (Fourth Edition), pp. 57–96. Butterworth-Heinemann, Ox-
ford, fourth edition edition, 2011b. ISBN 978-1-85617-663-7. doi: https://doi.org/10.1016/
B978-1-85617-663-7.00004-7. URL https://www.sciencedirect.com/science/
article/pii/B9781856176637000047.

Michael F. Ashby. Chapter 5 - Materials Selection—The Basics. In Michael F. Ashby (ed.), Ma-
terials Selection in Mechanical Design (Fourth Edition), pp. 97–124. Butterworth-Heinemann,
Oxford, fourth edition edition, 2011c. ISBN 978-1-85617-663-7. doi: https://doi.org/10.1016/
B978-1-85617-663-7.00005-9. URL https://www.sciencedirect.com/science/
article/pii/B9781856176637000059.

Michael F Ashby and D Cebon. Materials selection in mechanical design. Mrs Bull, 30(12):995,
2005.

Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler. Theory of the hypervolume
indicator: optimal µ-distributions and the choice of the reference point. In Proceedings of the
tenth ACM SIGEVO workshop on Foundations of genetic algorithms, pp. 87–102. ACM, 2009.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson,
and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020.

Mickael Binois, Nicholson Collier, and Jonathan Ozik. A portfolio approach to massively parallel
Bayesian optimization. Journal of Artificial Intelligence Research, 82:137–167, 2025.

W.D. Callister and D.G. Rethwisch. Materials Science and Engineering: An Introduction,
chapter 19, pp. 785–802. John Wiley and Sons, Incorporated, 9th edition, 2013. ISBN
9781118476543. URL https://books.google.com/books?id=TmxbAgAAQBAJ.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume
improvement for parallel multi-objective Bayesian optimization. Advances in Neural Information
Processing Systems, 33:9851–9864, 2020.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable test problems for
evolutionary multiobjective optimization. In Evolutionary multiobjective optimization: theoreti-
cal advances and applications, pp. 105–145. Springer, 2005.

Michael T M Emmerich, Kyriakos C Giannakoglou, and Boris Naujoks. Single-and multi-objective
evolutionary optimization assisted by Gaussian random field metamodels. IEEE Transactions on
Evolutionary Computation, 10(4):421–439, 2006. ISSN 1089-778X.

Merton C Flemings. Solidification processing. Metallurgical transactions, 5(10):2121–2134, 1974.

10

https://www.sciencedirect.com/science/article/pii/B9781856176637000072
https://www.sciencedirect.com/science/article/pii/B9781856176637000072
https://www.sciencedirect.com/science/article/pii/B9781856176637000047
https://www.sciencedirect.com/science/article/pii/B9781856176637000047
https://www.sciencedirect.com/science/article/pii/B9781856176637000059
https://www.sciencedirect.com/science/article/pii/B9781856176637000059
https://books.google.com/books?id=TmxbAgAAQBAJ


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025
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A APPENDIX

A.1 EXPERIMENTAL SETUP AND ENVIRONMENT

We consider the task of identifying Pareto optimal solutions from a discrete feasible set of 10,000
candidates for both the GM (Fröhlich et al., 2020) and RE4-7-1 (Tanabe & Ishibuchi, 2020) bench-
mark problems. All the evaluation experiments are implemented in the BOTorch framework (Ba-
landat et al., 2020). Given a strict evaluation budget of 80 function queries per trial, each BO run
is initialized with 10 randomly selected points. The corresponding GP surrogate models are trained
using these initial evaluations. For each batch selection, we evaluate the acquisition function using
MC sampling with 512 samples to ensure accurate estimation. The adopted optimization strategy
for each iteration in BOTorch is set to be joint instead of sequential to further increase the esti-
mation accuracy. Further details on the distinction between the joint and sequential batch selection
strategies can be found in the prior work (Ament et al., 2023), which is adopted in the BOTorch
framework.

For QSVGD, we assign equal weights to all quantiles, as none of our experimental setups incorporate
a notion of risk. For the hyperparameter η, we define a piecewise schedule for the hyperparameter η:
it is kept constant at η0 for the first 40 iterations to maintain exploration, and then linearly decays to
0 over the next 40 iterations, effectively reducing the influence of the entropy term as optimization
progresses. The choice of η0 is task-dependent and is generally tuned so that the weighted entropy
term is on a similar scale as the hypervolume improvement term, ensuring neither heavily dominates
the optimization objective.

We compute the hypervolume using the default reference point, defined as 1.1 times the lower
bounds of the objectives, for both the GM (Fröhlich et al., 2020) and RE4-7-1 (Tanabe & Ishibuchi,
2020) problems. The exact hypervolume is computed using the box decomposition method (Daulton
et al., 2020). To compute EMD, we first exhaustively evaluate the objective values of all 10,000
candidates in the feasible space to obtain the true Pareto optimal solutions. We then compute EMD
between the current non-dominated solutions and the true Pareto optimal solutions as a measure of
convergence quality.

For all objective functions, the experimental runs were distributed across 8 Intel(R) Xeon(R) Gold
6248R CPUs.

A.2 OTHER OBJECTIVE FUNCTIONS

We would like to note that in our experiments, we do not consider ZDT and DTLZ as our primary
benchmarks due to the following observations: ZDT problems have Pareto solutions concentrated
along the feasible space boundary, which tend to favor the exploitation-based methods including
qEHVI, while DTLZ problems typically exhibit a single Pareto region in the design space, for which
spatial diversity may not be needed to further improve batch MOBO performance. However, we
here still provide the corresponding experimental results for these benchmark objective functions
with detailed discussions.

Based on the results in Figure A.1, for the DTLZ2 problem, qEHVI-SF consistently outperforms
other methods in terms of both hypervolume and EMD across all batch size configurations. However,
since qEHVI already attains strong performance on this problem, the additional gains from the space
filling strategy are relatively modest. This is likely because the Pareto optimal solutions for DTLZ2
are densely clustered within a single region, as Figure A.2 shows, limiting the opportunity for the
enhanced coverage capabilities of qEHVI-SF to demonstrate its full advantage.

For the ZDT2 problem, qEHVI-SF consistently demonstrates more stable and competitive hypervol-
ume performance across different batch sizes compared to other strategies. Meanwhile, its coverage
metric improves as the batch size increases, suggesting enhanced diversity benefits in larger batches.
However, similar to the DTLZ2 case, the baseline qEHVI already achieves strong performance due
to the distribution of the Pareto optimal solutions lie along the boundary of the feasible space as
Figure A.3. As a result, diversity oriented strategies like qEHVI-SF offer limited additional gains in
such scenarios, since there is little room to further expand the coverage.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

qEHVI

QSVGD

qEHVI-SF

Figure A.1: Comparison of batch MOBO performances under different experimental settings across
three acquisition strategies: qEHVI, QSVGD, qEHVI-SF. The first two columns show the changes of
hypervolume and EMD across MOBO iterations for the DTLZ2 problem, and the last two columns
correspond to the results for the ZDT2 problem.

Figure A.2: Pareto optimal solution distribution of DTLZ2: The left plot shows the Pareto front in
the objective space. The middle and right plots illustrate the distribution of Pareto optimal solutions
in the design space, where each plot corresponds to one objective. The color bar indicates the
respective objective function values.
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Figure A.3: Pareto optimal solution distribution of ZDT2: The left plot shows the Pareto front in
the objective space. The middel and right plots illustrate the distribution of Pareto optimal solutions
in the design space, where each plot corresponds to one objective. The color bar indicates the
respective objective function values.

Due to the inherent characteristics of the DTLZ and ZDT problem classes where optimal solutions
are either densely concentrated or confined to the boundary of the feasible space, these benchmarks
may not effectively demonstrate the benefits of diversity enhancing strategies in MOBO.

A.3 ADDITIONAL EVALUATION METRICS FOR ALLOY INVERSE DESIGN

(a) Bi-1 (b) Bi-2

(c) Bi-3 (d) Tri-1

(e) Tri-2 (f) All

Figure A.4: Hypervolume comparison for different MOBO settings: (a) Bi-1; (b) Bi-2; (c) Bi-3;
(d) Tri-1; (e) Tri-2; and (f) All. Dots: Mean value across 20 trials; Red: Best performance
across all different settings.
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(a) Bi-1 (b) Bi-2

(c) Bi-3 (d) Tri-1

(e) Tri-2 (f) All

Figure A.5: Coverage comparison for different MOBO settings: (a) Bi-1; (b) Bi-2; (c) Bi-3; (d)
Tri-1; (e) Tri-2; and (f) All.

In our materials inverse design tasks, in addition to the rediscovery ratio discussed in the main text,
we also evaluate the performance of different acquisition strategies using several commonly adopted
multi-objective evaluation metrics. These include Hypervolume, EMD, IGD (Ishibuchi et al., 2015),
Maximum Spread (Zitzler & Thiele, 2002), and Spacing (Schott, 1995).

Here, we introduce three additional performance metrics in addition to the ones discussed in the main
text: IGD, Maximum Spread (MS), and Spacing (SP). IGD assesses the coverage of the Pareto front
in the objective space. However, since it operates in the target objective space and multiple Pareto
optimal solutions can be mapped to the same objective values, IGD may be considered a weaker
indicator of diversity compared to EMD. Maximum Spread measures whether the extreme value
regions of the Pareto front are captured by the selected candidates. Spacing evaluates the uniformity
of the batch distribution, reflecting how evenly the solutions are spread across the Pareto front. The
definitions of these three additional evaluation metrics can be found in (10), (11), and (12):

IGD(Y∗
n,Y∗) =

1

|Y∗|
∑
y∈Y∗

min
y′∈Y∗

n

∥y − y′∥2, (10)

MS(Y∗
n) =

√√√√ 1

m

m∑
k=1

(
max

i=1,...,|Y∗
n|
y
(i)
k − min

i=1,...,|Y∗
n|
y
(i)
k

)2

, (11)

SP(Y∗
n) =

√√√√ 1

| Y∗
n | −1

|Y∗
n|∑

i=1

(
di − d̄

)2
, (12)

where
Y∗
n = {y(1),y(2), . . . ,y(|Y∗

n|)}, y(i) = (y
(i)
1 , y

(i)
2 , . . . , y(i)m ) ∈ Rm

di = min
j=1,...,|Y∗

n|,j ̸=i

∥∥∥y(i) − y(j)
∥∥∥
1
, d̄ =

1

| Y∗
n |

|Y∗
n|∑

i=1

di.
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Figures A.4 and A.5 show the distribution of final performance across 20 trials for the hypervolume
and EMD metrics, respectively. In terms of hypervolume, qEHVI-SF consistently outperforms all
other acquisition strategies, which aligns well with the rediscovery ratio results reported in the main
text. Furthermore, the narrow spread of hypervolume values across trials highlights the stability of
qEHVI-SF relative to both qEHVI and QSVGD. For EMD, qEHVI-SF also demonstrates superior
performance in most cases, except for the all composition scenario where it is slightly outper-
formed by QSVGD. However, despite QSVGD achieving marginally better coverage in this case, its
performance in hypervolume and rediscovery remains suboptimal as Figures A.4f and 2f show. This
suggests that QSVGD may sometimes overly emphasize diversity at the expense of solution quality,
which is critical in tasks such as materials discovery where both diversity and objective quality are
essential.

Table 2: Comparison of Pareto front coverage with respect to IGD↓
Acquisition strategies Batch size Bi-1 Bi-2 Bi-3 Tri-1 Tri-2 All

qEHVI
2 38.74±30.78 4.21±2.37 18.60±11.63 30.77±22.01 19.71±7.00 45.11±2.43
5 28.84±14.99 3.51±2.05 14.55±8.50 23.65±10.68 20.21±4.87 45.46±2.41

10 26.23±10.77 2.92±2.17 10.07±5.88 17.57±6.51 25.23±8.48 43.62±1.45

QSVGD
2 37.41±31.06 3.86±2.56 15.83±9.34 27.49±18.60 18.94±3.70 45.57±2.56
5 25.40±13.71 3.49±1.75 12.23±5.88 21.17±8.53 23.23±7.34 44.43±2.40

10 19.54±10.14 4.05±2.03 14.00±9.78 18.74±7.10 26.41±10.97 43.30±1.68

qEHVI-SF
2 18.13±12.67 3.03±1.00 9.36±5.50 16.51±8.31 19.15±5.59 44.13±1.83
5 15.53±6.70 2.22±0.68 9.33±4.98 13.83±7.42 16.96±6.40 44.43±2.44

10 20.15±8.60 3.70±3.07 10.91±6.17 17.12±7.40 22.12±9.49 42.78±1.33

Table 3: Comparison of extreme Pareto capturing with respect to Maximum Spread (MS)↑
Acquisition strategies Batch size Bi-1 Bi-2 Bi-3 Tri-1 Tri-2 All

qEHVI
2 876.16±112.74 67.63±8.25 431.45±170.08 956.63±166.71 525.12±114.95 968.89±88.40
5 944.89±186.81 70.58±8.92 465.05±155.17 1010.37±173.56 512.09±100.24 971.98±138.67

10 953.59±135.00 74.32±8.94 515.05±127.36 1055.08±162.75 460.63±129.17 1006.22±144.28

QSVGD
2 911.52±108.11 71.09±8.97 427.48±153.29 1075.84±237.17 483.38±92.83 984.77±147.88
5 994.27±167.27 71.37±7.05 467.78±126.22 1047.58±145.78 455.63±120.94 1008.11±137.09

10 967.97±144.84 67.80±9.68 454.77±154.16 1087.36±145.54 459.50±146.25 1032.97±147.26

qEHVI-SF
2 1025.78±161.75 73.51±5.81 524.49±129.78 1095.15±122.34 554.92±102.30 984.04±122.55
5 1145.63±179.89 76.83±3.73 499.61±112.38 1160.04±270.84 533.41±111.44 1002.14±152.16

10 974.65±109.28 70.85±10.07 480.01±128.35 953.47±146.65 478.82±144.99 1005.94±147.49

Table 4: Comparison of Pareto front uniformity with respect to Spacing (SP)↓
Acquisition strategies Batch size Bi-1 Bi-2 Bi-3 Tri-1 Tri-2 All

qEHVI
2 1.19±0.09 1.35±0.13 1.42±0.10 1.38±0.09 1.12±0.21 0.75±0.04
5 1.08±0.10 1.13±0.11 1.33±0.09 1.25±0.10 0.99±0.18 0.77±0.07

10 0.99±0.08 1.04±0.10 1.28±0.10 1.11±0.08 0.74±0.14 0.67±0.04

QSVGD
2 1.12±0.11 1.27±0.10 1.36±0.09 1.28±0.10 1.05±0.13 0.75±0.03
5 1.14±0.07 1.18±0.10 1.33±0.08 1.24±0.08 0.85±0.18 0.73±0.05

10 1.03±0.09 1.05±0.09 1.24±0.12 1.09±0.07 0.73±0.08 0.68±0.04

qEHVI-SF
2 0.76±0.06 1.06±0.18 1.25±0.12 1.14±0.10 1.18±0.14 0.69±0.05
5 0.70±0.05 0.87±0.11 1.16±0.12 0.94±0.07 0.85±0.06 0.68±0.05

10 0.65±0.05 0.73±0.10 1.10±0.12 0.78±0.10 0.67±0.10 0.64±0.05

For performance comparison by IGD, shown in Table 2, and Spacing (SP), shown in Table 4, qEHVI-
SF demonstrates superior performance compared to other acquisition strategies. This indicates that,
relative to qEHVI and QSVGD, qEHVI-SF not only achieves better coverage of the objective space
but also produces a more uniformly distributed Pareto front. Regarding the Maximum Spread met-
ric shown in Table 3, QSVGD outperforms qEHVI-SF on case all composition, suggesting that
QSVGD is occasionally able to capture more extreme solutions by providing candidates with greater
diversity. This observation is consistent with the QSVGD EMD performance presented in Fig-
ure A.5f. Performance comparison results with the three metrics, IGD, Maximum Spread (MS),
and Spacing (SP), provide strong complementary evidence that qEHVI-SF recovers the Pareto front
more effectively and reinforce the conclusion drawn from the reported results on the rediscovery
rate in the main text.

To clearly illustrate the differences between acquisition strategies: qEHVI, QSVGD, and qEHVI-
SF, we select the bi-objective tasks with the batch size of two to visualize and compare the search
behavior of these methods.
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qEHVI

QSVGD

qEHVI-SF

Figure A.6: Comparison of search behaviors for three acquisition strategies: qEHVI, QSVGD, and
qEHVI-SF on case Bi-1. The first column shows the search trajectories in the objective space. The
remaining two columns illustrate the distribution of Pareto optimal solutions in the design space.
Background: feasible region; Red points: Pareto optimal solutions; Black dots: acquired candi-
dates, with radius proportional to the time of selections; Yellow stars: optimal solutions among the
acquired candidates; Black crosses: initial training points.

From Figures A.6, A.7, and A.8, we observe that qEHVI-SF consistently achieves better Pareto
front coverage than qEHVI and higher solution quality than QSVGD. This improved rediscovery
performance is primarily due to its lower risk of oversampling. The significantly lower number of
large radius black dots in these plots visualizing qEHVI-SF’s results suggests that our qEHVI-SF
avoids repeatedly selecting the same candidates, unlike qEHVI and QSVGD.

Interestingly, although QSVGD is designed to promote diversity and reduce oversampling, it still
exhibits redundant selections in all three cases. This is likely because QSVGD enforces diversity
only within each batch, without accounting for previously evaluated points. While QSVGD can
sometimes enhance diversity, as seen in Figure A.8. However, a closer look at the upper left region
reveals that it misses some high-quality Pareto optimal solutions. In contrast, qEHVI-SF success-
fully identifies and selects these high-quality candidates.

A.4 USE OF LARGE LANGUAGE MODELS

Large Language Models are only used to check vocabulary and grammar for polishing purpose.
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qEHVI

QSVGD

qEHVI-SF

Figure A.7: Comparison of search behaviors across three acquisition strategies for case Bi-2.

qEHVI

QSVGD

qEHVI-SF

Figure A.8: Comparison of search behaviors across three acquisition strategies for case Bi-3.
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