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ABSTRACT

When analyzing robustness of predictive models under distribution shift, many
works focus on tackling generalization in the presence of spurious correlations. In
this case, one typically makes use of covariates or environment indicators to en-
force independencies in learned models to guarantee generalization under various
distribution shifts. In this work, we analyze a class of distribution shifts, where
such independencies are not desirable, as there is a causal association between co-
variates and outcomes of interest. This case is common in the health space where
covariates can be causally, as opposed to spuriously, related to outcomes of inter-
est. We formalize this setting and relate it to common distribution shift settings
from the literature. We theoretically show why standard supervised learning and
invariant learning will not yield robust predictors in this case, while including the
causal covariates into the prediction model can recover robustness. We demon-
strate our theoretical findings in experiments on both synthetic and real data.

1 INTRODUCTION

In this work, we motivate how common assumptions in the domain generalization and invariant
learning literature (Arjovsky et al., 2019; Ganin et al., 2016; Veitch et al., 2021) are violated in a set
of broadly applicable problems, e.g. in healthcare. Invariant learning typically assumes a spurious or
confounded association between outcome and covariates or auxiliary information. Hence, building
a predictor that is invariant to the covariates or associated environment indicators can be shown
to generalize better under distribution shift than standard empirical risk minimization. However,
in many applications of interest for machine learning, e.g. in healthcare, there might not be only
spurious associations between covariates and outcome, but also causal ones.1

One illustrative example is body mass index (BMI), which is causally related to a host of condi-
tions, e.g., left ventricular hypertrophy (LVH) (Lorell & Carabello, 2000). BMI is not “spurious”
in the sense that it is merely associated with LVH, but can directly cause changes in left ventricular
mass, which in turn can lead to LVH (Himeno et al., 1996). However, a shift in the prevalence of
elevated BMI can shift the association between a signal — e.g., an electrocardiogram (ECG) — that
is influenced by both BMI and LVH.

We formalize such a causal setting and show that it leads to regression in performance of machine
learning models under distribution shift, that can not be mitigated with common invariant learning
methods. Our contributions are the following:

• We motivate and formalize a class of problems where covariates, such as demographics or
other auxiliary data causally influence the outcome of interest and explain the difference to
the commonly considered confounded or spurious associations.

• For this class of problems we show theoretically and on simulated data, how distribution
shifts along such causally influencing covariates cause discrepancies in performance that
can not be mitigated with invariant learning methods designed for the commonly consid-
ered confounded setting.

*These authors contributed equally to this work
1Unlike the fairness literature (Kilbertus et al., 2017; Kusner et al., 2017), we do not make a distinction as

to whether this causal link is discriminatory or not.
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Figure 1: Causal graphs considered in this work. (a) The “confounded graph” describes a spuri-
ous/confounded association between Y and V , and has been considered in the ML literature (Heinze-
Deml & Meinshausen, 2021; Veitch et al., 2021; Makar et al., 2022; Puli et al., 2022). This setting
requires that the marginal P (Y ) remains invariant across distribution shifts. (b) In the “direct causal
graph” (this work), the shortcut variable V is a direct cause of the outcome Y , shifting the marginal
P (Y ) when the intervention variable IV shifts the marginal P (V ).

2 THEORY

Consider predicting outcome Y (e.g., health status) from features X (e.g., an ECG recording) in
the presence of an auxiliary covariate V (e.g., age or BMI). One source of model brittleness can
be “shortcuts”, or features that are predictive in the training distribution, but not predictive under
relevant distribution shifts (Arjovsky et al., 2019; Geirhos et al., 2020). To cope with such instability,
one may try to remove the shortcuts during learning. One common approach to shortcut removal
assumes a non-causal association between the potential shortcut V and the outcome to be predicted
Y (Heinze-Deml & Meinshausen, 2021; Veitch et al., 2021; Makar et al., 2022; Puli et al., 2022),
which, for instance, can arise due to a confounding covariate between V and Y . The goal is then to
seek a predictor using only X that performs well across a range of distributions. For example, Makar
et al. (2022) develop a risk invariant predictor across a family of related probability distributions
motivated by the graph depicted in Figure 1a, that can be simplified for our analysis to

Pspur = {Ps(X | Y, V )Ps(Y )Pt(V |Y )} , (1)

for a source distribution denoted by s and shifted target distributions indexed by t. All target distri-
butions in this family of distributions thus factor as Pt(X,Y, V ) = Ps(X | Y, V )Ps(Y )Pt(V |Y ),
i.e., they vary only in P (V |Y ) from the source distribution, while P (X | Y, V ) and P (Y ) remain
unchanged. Notably, assuming that P (Y ) remains the same across all potential shifted distributions,
can be an unrealistically strong assumption in applications like healthcare. For example, we would
expect the prevalence of heart diseases (Y ) to be higher in an older population (V ).

Instead, in this work, we consider the scenario where the shortcut variable (e.g., age or BMI) is
a direct causal parent of the outcome we wish to predict (e.g., myocardial infarction in an ECG),
as depicted in Figure 1b. In this scenario, we wish to form good predictions for the family of
distributions

Pcause = {Ps(X | Y, V )Ps(Y | V )Pt(V )}. (2)

That is, we allow for changing marginal distribution of P (V ), while holding the conditional distri-
butions P (Y |V ) and P (X | Y, V ) fixed.

Using the notion of so-called stable sets from Pfister et al. (2021), one can derive from the graph
in Figure 1b which sets of predictors are associated with the same conditional expectation across
different interventions on V by checking which sets of covariates block all paths between IV and
Y . Hence, in our model, to block the path IV → V → Y , the covariate V must be included in the
set of predictors. The predictive distribution derived from the source that conditions on X and V
is then invariant across the entire family, i.e., Ps(Y |X,V ) = Pt(Y |X,V ), whereas the predictive
distribution that only conditions on X is not invariant, i.e., Ps(Y |X) ̸= Pt(Y |X) in general. We
formalize this in the following proposition (proof in Appendix A.1).

Proposition 1 For any element Pt ∈ Pcause as defined in Eq. (2), it holds that Pt(Y |X,V ) =
Ps(Y |X,V ). Furthermore, for such a Pt, in general Pt(Y |X) ̸= Ps(Y |X).
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Figure 2: Extended versions of causal graphs in Figure 1. (a) Graph considered in Makar et al.
(2022) explicitly including invariant latent variable X∗ (still leading to shifts in Pspur). Here, X∗

is a latent variable that describes variation in X caused by Y . Recovering the predictive signal
e(X) = X∗ yields a predictor that is invariant across interventions IV , but one that does not use
information from V about Y . (b) Direct graph explicitly including X∗ (still leading to shifts in
Pcause). In this setting, recovering X∗ does not guarantee an invariant predictor across shifts due to
IV , demonstrated in Section 3

Hence, empirical risk minimization (ERM) using {V,X} as predictors would yield a robust model
with respect to Pcause while ERM using {X} only would not.

Remark 1 Even an invariant representation that is invariant to V and encodes only the information
in X related to Y (e.g., X∗ in Makar et al. (2022)) would suffer from a degradation in performance
across the family Pcause.

We illustrate these findings with a simulation study in the next section.

3 EXPERIMENTS

To illustrate our findings above regarding the consequences of shifts in causally influencing covari-
ates V , we set up a simulation from a simple example.2 To allow for analyses of the behaviour of
invariant methods as well, we roll out the graphs from Figure 1 similar to Makar et al. (2022) by
explicitly including an unobserved variable X∗ (see Figure 2). Here, X∗ = e(X) for some function
e is assumed to be a latent variable that only contains information about X that is related to Y and
as such is invariant to V when conditioned on Y .

In this extended setting (2), we define our data generating process as

p(V = 1) = p (3)
P (Y = 1 | V = 0) = .2 (4)
P (Y = 1 | V = 1) = .9 (5)

P (X | Y = y, V = v) = N (µy,v, 1) (6)
P (X∗ | Y = y) = N (µy,0, 1) . (7)

where µ0,0 = −2/3, µ1,0 = 2/3, µ0,1 = −.8, and µ1,1, = .8. As such, it is constructed to allow
to analyse shifts of the family Pcause, where P (V ) can be shifted by varying p while P (Y |V ) and
P (X|Y, V ) will remain the same.

In Figure 3, we compare the performance of the predictors Ps(Y | X), Ps(Y | X∗) and
Ps(Y | X,V ) on distributions where the marginal P (V ) has been shifted, and the source distri-
bution marginal is Ps(V = 1) = .1. Predictors are obtained in closed form, and performance
metrics are calculated on a sample of size 20,000 drawn according to the source distribution. As
discussed in Section 2, this shift induces a shift in P (Y ), P (Y | X), and P (Y | X∗), causing a

2First results of experiments on real data (annotated electrocardiogram or ECG recordings in the PTB-XL
data set (Wagner et al., 2020)) can be found Appendix A.2.
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Figure 3: Simulation study described in Section 3. Panel (a) compares the predictive accuracy of the
models Ps(Y |X), Ps(Y |X∗) and Ps(Y |X,V ) as a function of the target marginal Pt(V ) = p,
with source Ps(V ) = .1. Only Ps(Y |X,V ) does not degrade in accuracy as Pt(V ) shifts further
away from Ps(V ). Panel (b) compares the predictive AUC of the same three models. Note that
the predictor using X∗, Ps(Y |X∗) does achieve invariance in AUC across shifts, but not accuracy
(or likelihood), and cannot make use of information about Y from V . Panel (c) depicts the four
likelihood models (one for each combination of Y and V ) — note that V = 1 further separates the
conditional distributions, making separation easier (hence the AUC goes up in Panel (b) as p in-
creases). Panel (d) depicts a P (X∗|Y, V ), which is the same across values of V (unlike P (X|Y, V )
in Panel (c)). The overall key takeaway is the robustness of Ps(Y |X,V ), i.e. the model condition-
ing on both V and X versus the lack of robustness in models conditioning only on X or X∗ in terms
of predictive accuracy in Panel (a) (even when their AUC is robust across shifts, Panel (b)).

degradation in performance of the predictors Ps(Y | X) and Ps(Y | X∗), but not of Ps(Y | X,V ),
i.e. conditioning on V restores performance across distribution shifts.

As a side note, note that the AUC performance of P (Y | X∗) does not degrade, though a general
risk (like accuracy or log-likelihood) does degrade. This is due to the fact that shifts in P (V )
only influence P (Y | X∗) through the prevalence Pt(Y ) =

∑
v′ Ps(Y | V = v′)Pt(V = v′),

not through X∗. The AUC metric is invariant to prevalence, but general metrics like accuracy,
log-likelihood, and calibration are sensitive to prevalence. Also note that the difference in AUC
performance of P (Y | X∗) and P (Y | X) is due to the construction of the class conditional
distributions depicted in Figures 3c and 3d.

Overall, the degradation (or robustness) of performance across shifts of the family Pcause is the
main illustrative point to be observed in Figure 3 and this section.

4 DISCUSSION

Our theoretical findings show that for settings in which auxiliary covariates V causally influence the
outcome of interest Y (rather than just being spuriously correlated to them), P (Y |X,V ) remains
stable across shifts in P (V ), while P (Y |X) in general does not. As such, regressing Y only on X
to learn P (Y |X) (or invariant derivations thereof) will lead to predictions that are not robust to such
shifts, while regressing Y on X,V recovers the desired robustness, as we empirically demonstrate
on simulated data. Lastly, we also demonstrate the former (regressing Y on X not being robust to
such shifts) on a real world healthcare application that consists in predicting ECG statements based
on ECG recordings. We plan to extend this experiment to also demonstrate the latter.
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variable selection and regression. The Annals of Applied Statistics, 15(3):1220 – 1246, 2021. doi:
10.1214/21-AOAS1487.

Aahlad Manas Puli, Lily H Zhang, Eric Karl Oermann, and Rajesh Ranganath. Out-of-distribution
generalization in the presence of nuisance-induced spurious correlations. In International Con-
ference on Learning Representations, 2022.

Nils Strodthoff, Patrick Wagner, Tobias Schaeffter, and Wojciech Samek. Deep learning for
ECG analysis: Benchmarks and insights from PTB-XL. IEEE Journal of Biomedical and
Health Informatics, 25(5):1519–1528, 2021. doi: 10.1109/jbhi.2020.3022989. URL https:
//doi.org/10.1109/jbhi.2020.3022989.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invari-
ance to spurious correlations in text classification. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I. Lunze, Wojciech
Samek, and Tobias Schaeffter. PTB-XL, a large publicly available electrocardiography dataset.
Scientific Data, 7(1):154, 2020. doi: 10.1038/s41597-020-0495-6. URL https://doi.org/
10.1038/s41597-020-0495-6.

5

https://github.com/timeseriesAI/tsai
https://doi.org/10.1109/jbhi.2020.3022989
https://doi.org/10.1109/jbhi.2020.3022989
https://doi.org/10.1038/s41597-020-0495-6
https://doi.org/10.1038/s41597-020-0495-6


Trustworthy Machine Learning for Healthcare Workshop, ICLR 2023

A APPENDIX

A.1 PROOF OF PROPOSITION 1

First, we show that for any element Pt of this family, it holds that Pt(Y |X,V ) = Ps(Y |X,V ).
Remember that by the definition of Pcause, we have that Pt(X | Y, V ) = Ps(X | Y, V ) and
Pt(Y | V ) = Ps(Y | V ). From this, it quickly follows that

Pt(X|V ) =

∫
Pt(X|Y, V )Pt(Y |V )dY (8)

=

∫
Ps(X|Y, V )Ps(Y |V )dY (9)

= Ps(X|V ) (10)

Then, using basic probability calculus, it follows

Pt(Y |X,V ) =
Pt(Y,X, V )

Pt(X,V )
(11)

=
Ps(X|Y, V )Pt(Y |V )Pt(V )

Pt(X|V )Pt(V )
(12)

=
Ps(X|Y, V )Ps(Y |V )

Pt(X|V )
(13)

=
Ps(X|Y, V )Ps(Y |V )

Ps(X|V )
(14)

=
Ps(X|Y, V )Ps(Y |V )Ps(V )

Ps(X|V )Ps(V )
(15)

= Ps(Y |X,V ) (16)

Next, we show that for such an element Pt of this family, in general Pt(Y |X) ̸= Ps(Y |X). Using
the above result, this is indeed easy to see when marginalising over V :

Pt(Y |X) =

∫
Pt(Y |X,V )Pt(V |X)dV (17)

=

∫
Ps(Y |X,V )Pt(V |X)dV (18)

=

∫
Ps(Y |X,V )

Pt(X|V )Pt(V )

Pt(X)
dV (19)

=

∫
Ps(Y |X,V )Ps(X|V )

Pt(V )

Pt(X)
dV (20)

(21)

Since in general Pt(V )
Pt(X) ̸=

Ps(V )
Ps(X) , this also implies that in general Pt(Y |X) ̸= Ps(Y |X).

A.2 EXPERIMENTS ON REAL DATA

A.2.1 EXPERIMENTAL SETUP

Here, we include some first results of experiments on real data, which demonstrate the lack of
robustness of models trained only on X (i.e. trained to learn P (Y |X)) to shifts of the family Pcause,
as predicted by our theory and synthetic experiments in the main body. Extending these experiments
and showing that training on X,V can achieve higher robustness is left for future work.

Data We base our experiments on the PTB-XL data set (Wagner et al., 2020). It contains 21,837
clinical 12-lead ECG recordings from 18,885 patients. Each recording is 10 seconds long and is
processed following previous literature at a frequency of 100 Hz (Strodthoff et al., 2021).
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Each ECG recording is annotated with ECG statements that can be grouped into 5 classes of su-
perdiagnostics: normal ECG (NORM), conduction disturbance (CD), myocardial infarction (MI),
hypertrophy (HYP), and ST/T changes (STTC). We base our analysis on the 4 superdiagnostics that
indicate abnormal ECG.

Furthermore, the data set contains an annotation of age for 21,748 of the recordings. These
will be the annotations we use as V -variable. To this end, we discretise age to get VA ∈
{< 50, 50− 63, 63− 74, 74+} as demographic variable indicating age bin. These age thresh-
olds were chosen to yield sufficient samples per bin, and as such approximately correspond to the
quartiles.

Model and training We base our analysis on the best performing model in the supervised deep
learning benchmark analysis by Strodthoff et al. (2021), a xresnet1d101 model. We use the publi-
cally available tsai library (Oguiza, 2022) to implement our xresnet1d101 model and obtain clean
test set performance that is similar to the one reported in Strodthoff et al. (2021) (using the same
training, validation, and test splits).

Introducing distribution shifts Next, we introduce some shifts in the test set by changing P (V )
in comparison to the original test set (which follows the same distribution as the training set). To
this end, we sample subsets from the test set that are constrained to be 90% older than a certain age
threshold, increasing that age threshold in steps of 10 years from 40 to 80. E.g., the shifted evaluation
set ’90% 70+’ consists of 90% of samples from the test set from people that are over 70, and 10%
from people that are at most 70 years old. We always use the maximal possible subset size, which
diminishes as we increase the threshold (as in the original test set there are, e.g., more 40+ than
80+ samples), making the evaluation set sizes for the age shifts nA = 2042, 1765, 1312, 775, 306
from ’90% 40+’ to ’90% 80+’. We take the randomness introduced through this subsampling into
account by showing average results and standard deviations over 5 runs.

A.2.2 VERIFYING THAT SHIFTS BELONG TO Pcause

First, we verify that the (target) distributions resulting from the shifts we introduce above belong to
the family Pcause, i.e. that while P (V ) changes, P (Y |V ) and P (X|Y, V ) remain unchanged. We
can verify that P (Y |V ) remains unchanged by counting. For age, in Figure 4, we verify that indeed
Pt(Y |VA) ≈ Ps(Y |VA) for all t under inspection. Here, the source distribution s is the one of the
original test set (column ’Original’), and we can see that for all the target distributions t introduced
by the shifts in A.2.1 (remaining columns), P (Y |VA = v) remains roughly constant (inside standard
deviations) for all v ∈ {< 50, 50− 63, 63− 74, 74+}. Also, the difference between P (Y |VA =
vi) and P (Y |VA = vj) remains prominent for all vi ̸= vj ∈ {< 50, 50− 63, 63− 74, 74+} for
all superdiagnostics (and almost all shifts). We would ideally also check that P (X|Y, V ) remains
unchanged across shifts. Since X is not binary but rather continuous and high-dimensional, this
would require statistical tests such as presented in Gretton et al. (2012), something that we leave
for future work (note that both Pspur and Pcause assume P (X|Y, V ) to remain unchanged). One
additional thing to note is that for the shifts we consider, P (Y ) changes, i.e. they are definitely not
part of Pspur (see Figure 5).

A.2.3 REGRESSING Y ONLY ON X IS NOT ROBUST UNDER SHIFTS IN P (V )

In Figure 6, we can observe what happens to the predictive accuracy (Acc) and the area under the
receiver operating characteristic curve (AUC) under the shifts of the family Pcause introduced above
when the predictive model is regressing Y on X . For the shifts along age, for all 4 superdiagnostics
(CD, HYP, MI, STTC), regressing Y only on X is not robust under shifts of the family Pcause in
terms of neither accuracy nor AUC, as predicted by the theory in Section 2. For all superdiagnostics,
we observe a monotonic drop of accuracy and AUC as the evaluation set gets shifted to an increas-
ingly older subpopulation of the test set, reaching around 5% drop in accuracy for the evaluation set
consisting of 90% of people older than 80.
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Figure 4: Validation of shifts for V=Age. For each of the 4 superdiagnostics (subplots), we show
P (Y |VA = v) per v ∈ {< 50, 50− 63, 63− 74, 74+} (leftmost group of bars in subplot to
rightmost group of bars in subplot) for the original, unshifted test set (dark purple) and the shifts
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P (Y |V ) across evaluation sets.
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we show P (Y ) for the original, unshifted test set (dark purple) and the shifts introduced in Section
A.2.1. Clearly, it does not remain unchanged, thus confirming that the shifts do not belong to the
family Pspur.
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on original training data when evaluated on shifted evaluation sets. Only the original test set (’Orig-
inal’) follows the same distribution as the training data, all others follow shifted distributions intro-
duced in Section A.2.1 that belong to the family Pcause, as verified in Section A.2.2. Average across
5 runs, with shaded standard deviations.
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