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ABSTRACT

We present a pre-trained SCVI model for the Tahoe-100M single-cell dataset, en-
abling large-scale single-cell analyses on systems with limited GPU memory. By
compressing expression profiles from over 95 million cells into a 42 GB “mini-
fied” file plus a 1 GB model, this approach preserves essential biological sig-
nals while remaining practical for routine exploratory tasks. The openly available
model supports downstream analyses such as differential expression and method
development, without requiring access to the entire raw dataset.

Through technological advances, single-cell genomics remains in an exponential growth phase in
terms of scaling the number of observations in a single study (Svensson et al., 2020). Data set sizes
have increased to the point where exploring raw data requires extremely powerful computational
resources.

We have produced the largest single-cell RNA-sequencing (scRNA-seq) data set to date, encom-
passing 105,609,549 single cells from 58,045 experimental conditions corresponding to varying
drug treatments and controls across 50 different cancer cell lines (Zhang et al., 2025). Here we
describe training and making openly available an SCVI model with encoded representations of the
Tahoe-100M data for the community to use for downstream exploratory analysis and methods de-
velopment.

The UMI (unique molecular identifier) counts of all 62,710 genes and metadata for all the cells
use 1.1 TB of storage when stored in H5AD format (Virshup et al., 2021), with a similar amount
of memory required if the full dataset was to be loaded into memory. With gz compression, the
storage requirement can be pushed down to 375 GB, though substantially reducing read speed as
the data is decompressed upon read (about 5×, depending on CPU performance), and would still
require the full 1.1TB of RAM after being read into memory. For exploratory analysis, the data
needs to be loaded in ‘backed’ mode where expression values are left on disk and only read when
needed. While this strategy greatly reduces the memory required to work with the dataset, lazily
reading UMI counts from disk substantially slows down calculations for exploratory analysis and
other downstream tasks such as differential expression analysis.

To ease exploratory analysis, we fitted an SCVI model (Lopez et al., 2018; Gayoso et al., 2022) to
the data with the goal of accurately representing expression of all genes in all cells in ‘minified’
format, where only variational parameters for latent representations are stored (Ergen et al., 2024).

The Tahoe-100M dataset was filtered to ensure particularly high quality training data, retaining
95,624,334 cells. The Tahoe-100M dataset was generated as 14 plates, where plate 14 replicates the
treatment conditions in plate 6. Plate 14 was held out from training to be used for out-of-sample
validation and model criticism. The data from plates 1 through 13 left 89,423,257 cells for model
fitting. Using the train () method for the SCVI class, the dataset was further randomly divided into
90% training and 10% validation during training.

Based on prior experience fitting SCVI models to smaller datasets, this initial version of the model
was set up with the default structure of 1 hidden layer of 128 units width, with 10-dimensional latent
representations of the cells. Since our goal is to accurately represent observed gene expression, the
model was not set up to perform batch integration. The model was trained with a batch size of 128,
default learning rate and other training parameters. The model was trained for a total 10 epochs over
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Figure 1: Tahoe-100M-SCVI-v1 training and evaluation.

the filtered Tahoe-100M data, allowing the model to see over 800 million examples of single-cell
gene expression profiles. The training validation reconstruction error curve shows no sign of over-
fitting, and does not appear to have reached convergence after training finished, suggesting simply
training the model longer will improve it (Figure 1a).

Each of the 95,624,334 filtered cells (including cells from the held-out replication plate) were en-
coded as 10-dimensional mean and variance parameters. The encoded dataset requires 42GB of stor-
age and memory, including cell metadata. Cell embeddings alone are estimated to use 8GB storage
and memory. To use the encoded (‘minified’) data, the SCVI model parameters are needed, which
requires 964 MB storage and GPU memory or RAM. The small model size enables the encoded data
to be decoded into gene expression and explored even on computers with older-generation GPUs that
have limited memory.

Average reconstruction error (negative log likelihood of the observed UMI counts given the latent
representations) was evaluated for all plates separately, including the held-out plate 14. Plate 14 has
a similar reconstruction error to the plates used for training, further indicating the model has not
overfit to the training data (Figure 1b).

The model and minified .h5ad file for the Tahoe-100M data are freely available on Hugging Face
at https://huggingface.co/vevotx/Tahoe-100M-SCVI-v1 and can be loaded into a
Python session directly using scvi .hub functions from the scvi−tools package (Ergen et al., 2024).

This model is an initial version. Future work will include optimization for more accurate decoding
of expression levels and generation of UMI counts. One important aspect of this optimization, is
a cost-benefit analysis of representation dimensionality. Higher dimensionality will facilitate more
accurate decoding of gene expression, but at the cost of larger memory requirements. What is the
marginal gain in practical, observable, accuracy in moving from 10-dimensional representations
(8 GB) to a 64-dimensional representation (51 GB)? One interesting direction would be the use
of Matryoshka representations, where downstream analysts can decide on the cost-benefit value of
higher dimensionality depending on the accuracy needed for the task Kusupati et al. (2022).

Another avenue of future work is quantitative accuracy metrics for reconstruction of gene expression
and generation of UMI counts. The average reconstruction error of the model, defined as the negative
log likelihood of the observed UMI counts given the representation vectors through the generative
SCVI model, across the full Tahoe-100M dataset is 4,509.95. This value carries little intuition
to a user without comparison to alternative models. Since SCVI is a generative model, posterior
predictive distributions of UMI counts can be used to assess the calibration of the model (Gelman
et al., 1996). For example, using the held-out validation plate, we find that observed UMI counts
for (cell, gene) pairs are within the 95% confidence interval of posterior predictive distributions
generated by the model 97.7% of the time. However, the observed UMI count for a (cell, gene)
pair is 0 in 97.4% of cases in the data, and so a very naive ’generative model’ which only produces
0-values would score 97.4% on the calibration metric. Further work on evaluation metrics is needed.

Nevertheless, this work provides a means for researchers to explore gene expression across all
62,710 genes in nearly 60,000 experimental conditions, at the single-cell level in nearly 100 mil-
lion cells, while only needing 42 GB storage and memory, and 1 GB GPU memory.
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MEANINGFULNESS STATEMENT

Living organisms react to chemical stimuli through highly complex and fine-grained transcriptional
regulation. Answering the question of which of the over 62,000 genes can be regulated by which
chemicals will allow us to understand a major and controllable aspect of the operation of life. The
data we have generated to answer this question is massive in scale. By training a generative model
of this data, the information in the massive data in a compressed representation can be analyzed to
answer questions about transcriptional responses to drug with fewer resources at lower cost.
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