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Abstract
Pre-trained language models (PLMs) have001
achieved remarkable success on various natu-002
ral language understanding tasks. Simple fine-003
tuning of PLMs, on the other hand, might be004
suboptimal for domain-specific tasks because005
they cannot possibly cover knowledge from006
all domains. While adaptive pre-training of007
PLMs can help them obtain domain-specific008
knowledge, it requires a large training cost.009
Moreover, adaptive pre-training can harm the010
PLM’s performance on the downstream task011
by causing catastrophic forgetting of its gen-012
eral knowledge. To overcome such limitations013
of adaptive pre-training for PLM adaption, we014
propose a novel domain adaption framework015
for PLMs coined as Knowledge-Augmented016
Language model Adaptation (KALA), which017
modulates the intermediate hidden representa-018
tions of PLMs with domain knowledge, con-019
sisting of entities and their relational facts.020
We validate the performance of our KALA on021
question answering and named entity recogni-022
tion tasks on multiple datasets across various023
domains. The results show that, despite being024
computationally efficient, our KALA largely025
outperforms adaptive pre-training.026

1 Introduction027

Pre-trained Language Models (PLMs) (Devlin028

et al., 2019; Brown et al., 2020) have shown to029

be effective on various Natural Language Under-030

standing (NLU) tasks. Although PLMs aim to ad-031

dress diverse downstream tasks from various data032

sources, there have been considerable efforts to033

adapt the PLMs to specific domains —distributions034

over the language characterizing a given topic or035

genre (Gururangan et al., 2020)— for which the ac-036

quisition of domain knowledge is required to accu-037

rately solve the downstream tasks (e.g., Biomedical038

Named Entity Recognition (Dogan et al., 2014)).039

This problem, known as Language Model Adap-040

tation, can be viewed as a transfer learning prob-041

lem (Yosinski et al., 2014; Ruder, 2019) under042
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Figure 1: F1 Score and Training FLOPs for different methods
on Question Answering (NewsQA). Note that DAPT uses
about 112 times larger data for adaptation. Details are in §5.2

domain shift, where the model is pre-trained on 043

the general domain and the labeled distribution is 044

available for the target domain-specific task. The 045

most prevalent approach to this problem is adaptive 046

pre-training (Figure 2a) which further updates all 047

parameters of the PLM on a large domain-specific 048

or curated task-specific corpus, with the same pre- 049

training strategy (e.g., masked language modeling) 050

before fine-tuning it on the downstream task (Belt- 051

agy et al., 2019; Lee et al., 2020; Gururangan et al., 052

2020). This continual pre-training of a PLM on the 053

target domain corpus allows it to learn the distri- 054

bution of the target domain, resulting in improved 055

performance on domain-specific tasks (Howard and 056

Ruder, 2018; Han and Eisenstein, 2019). 057

While it has shown to be effective, adaptive pre- 058

training has obvious drawbacks. First, it is com- 059

putationally inefficient. Although a PLM becomes 060

more powerful with the increasing amount of pre- 061

training data (Gururangan et al., 2020), further 062

pre-training on the additional data requires larger 063

memory and computational cost as the dataset size 064

grows (Bai et al., 2021). Besides, it is difficult to 065

adapt the PLM to a new domain without forgetting 066

the general knowledge it obtained from the initial 067

pretraining step, since all pre-trained parameters 068

are continually updated to fit the domain-specific 069

corpus during adaptive pre-training (Chen et al., 070

2020). This catastrophic forgetting of the task- 071

general knowledge may lead to the performance 072

degradation on the downstream tasks. In Figure 1, 073

we show that adaptive pre-training with more train- 074

ing steps could lead to performance degeneration. 075
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Context: non-ST-elevation myocardial 
infarction, 100% RCA, three stents, 50% 
mid LD. 2017-04-02 instent restenosis
status post brachytherapy. (…) her short-
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have been shown to reduce restenosis and 
additional adverse cardiac events in patie-
nts with severe coronary artery disease (…)

Domain Corpus (e.g. Medical Textbook)
Question: Did the patient receive 
brachytherapies for instent restenosis?

(Unseen data not in training dataset)

Pre-trained LM

Parameter Update

KALA

Pre-trained LM
Transformation

(a) Adaptive
Pre-training

Fine-
Tuning Test

(b)

Knowledge GraphEntity Memory

myocardial
_infarction

asthma

pethidine

. . .

Adaptive Pre-training(a)

Adapted LM

Feature of

restenosis

(Feature
Space)

myocardial..
pethidine

asthma

restenosis

restenosis

DAPT
seen
unseen

KALA (Ours)

Figure 2: Concepts (Left). (a) Adaptive Pre-training updates whole parameters of the PLM through further pre-training on the
domain corpus. (b) Our method KALA integrates the external knowledge so that the PLM adapts to the target domain only with
fine-tuning, which is realized by the affine transformation on the intermediate feature. Visualization of the contextualized
representation from the PLM for seen and unseen entities (Right). Our KALA framework embeds the unseen entities on the
embedding space of seen entities by representing them with their relational knowledge over the graph, while the strong DAPT
baseline (Gururangan et al., 2020) cannot appropriately handle unseen entities that are not given for task fine-tuning.

Thus, it would be preferable if we could adapt076

the PLM to the domain-specific task without costly077

adaptive pre-training. To this end, we aim to inte-078

grate the domain-specific knowledge into the PLM079

directly during the task-specific fine-tuning step,080

as shown in Figure 2b, eliminating the adaptive081

pre-training stage. Specifically, we first note that082

entities and relations are core building blocks of083

the domain-specific knowledge that are required084

to solve for the domain-specific downstream tasks.085

Clinical domain experts, for example, are familiar086

with medical terminologies and their complex re-087

lations. Then, to represent the domain knowledge088

consisting of entities and relations, we introduce089

the Entity Memory, which is the source of entity090

embeddings but independent of the PLM parame-091

ters (See Entity Memory in Figure 2b). Then, we092

further exploit the relational structures of the enti-093

ties by utilizing a Knowledge Graph (KG), which094

denotes the factual relationships between entities,095

as shown in Knowledge Graph of Figure 2b.096

The remaining step is how to integrate the knowl-097

edge into the PLM during fine-tuning. To this098

end, we propose a novel layer named Knowledge-099

conditioned Feature Modulation (KFM, §3.2),100

which scales and shifts the intermediate hidden rep-101

resentations of PLMs by conditioning them with102

retrieved knowledge representations. This knowl-103

edge integration scheme has several advantages.104

First, it does not modify the original PLM architec-105

ture, and thus could be integrated into any PLMs106

regardless of their architectures. Also, it only re-107

quires marginal computational and memory over-108

head, while eliminating the need of excessive fur-109

ther pre-training (Figure 1). Finally, it can effec-110

tively handle unseen entities with relational knowl-111

edge from the KG, which are suboptimally em- 112

bedded by adaptive pre-training. For example, as 113

shown in Figure 2, an entity restenosis does not 114

appear in the training dataset for fine-tuning, thus 115

adaptive pre-training only implicitly infers them 116

within the context from the broad domain corpus. 117

However, we can explicitly represent the unknown 118

entity by aggregating the representations of known 119

entities in the entity memory (i.e., in Figure 2, 120

neighboring entities, such as asthma and pethidine, 121

are used to represent the unseen entity restenosis). 122

We combine all the previously described com- 123

ponents into a novel language model adapta- 124

tion framework, coined as Knowledge-Augmented 125

Language model Adaptation (KALA) (Figure 3). 126

We empirically verify that KALA improves the 127

performance of the PLM over adaptive pre-training 128

on various domains with two knowledge-intensive 129

tasks: Question Answering (QA) and Named Entity 130

Recognition (NER). Our contribution is threefold: 131

• We propose a novel LM adaptation framework, 132

which augments PLMs with entities and their re- 133

lations from the target domain, during fine-tuning 134

without any further pre-training. To our knowl- 135

edge, this is the first work that utilizes the struc- 136

tured knowledge for language model adaptation. 137

• To reflect structural knowledge into the PLM, we 138

introduce a novel layer which scales and shifts 139

the intermediate PLM representations with the 140

entity representations contextualized by their re- 141

lated entities according to the KG. 142

• We show that our KALA significantly enhances 143

the model’s performance on domain-specific 144

tasks while being significantly more efficient over 145

existing LM adaptation methods. 146
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2 Related Work147

Language Model Adaptation Nowadays, trans-148

fer learning (Howard and Ruder, 2018) is a dom-149

inant approach for solving Natural Language Un-150

derstanding (NLU) tasks. This strategy first pre-151

trains a Language Model (LM) on a large and un-152

labeled corpus, then fine-tunes it on downstream153

tasks with labeled data (Devlin et al., 2019). While154

this scheme alone achieves impressive performance155

on various NLU tasks, adaptive pre-training of the156

PLM on a domain-specific corpus helps the PLM157

achieve better performance on the domain-specific158

tasks. For example, Lee et al. (2020) demonstrated159

that a further pre-trained LM on biomedical doc-160

uments outperforms the original LM on biomed-161

ical NLU tasks. Also, Gururangan et al. (2020)162

showed that adaptive pre-training of the PLM on163

the corpus of a target domain (Domain-adaptive164

Pre-training; DAPT) or a target task (Task-adaptive165

Pre-training; TAPT) improves its performance on166

domain-specific tasks.167

Knowledge-aware LM Accompanied with in-168

creasing sources of knowledge (Vrandecic and169

Krötzsch, 2014), some prior works have proposed170

to integrate external knowledge into PLMs, to en-171

hance their performance on tasks that require struc-172

tured knowledge. For instance, ERNIE (Zhang173

et al., 2019) and KnowBERT (Peters et al., 2019)174

incorporate entities as additional inputs in the pre-175

training stage to obtain a knowledge-aware LM,176

wherein a pre-trained knowledge graph embedding177

from Wikidata (Vrandecic and Krötzsch, 2014) is178

used to represent entities. Entity-as-Experts (Févry179

et al., 2020) and LUKE (Yamada et al., 2020) use180

the entity memory that is pre-trained along with181

the LMs from scratch. ERICA (Qin et al., 2021)182

further uses the fact consisting of entities and their183

relations in the pre-training stage of LMs from184

scratch. Previous works aim to integrate external185

knowledge into the LMs during the pre-training186

step to obtain a universal knowledge-aware LM187

that requires additional parameters for millions of188

entities. In contrast to this, our framework aims to189

efficiently modify a general PLM for the domain-190

specific task with a linear modulation layer scheme191

discussed in Section 3.2, during fine-tuning.192

3 Method193

3.1 Problem Statement194

Our goal is to solve Natural Language Understand-195

ing (NLU) tasks for a specific domain, with a196

knowledge-augmented Language Model (LM). We 197

first introduce the NLU tasks we target, followed 198

by the descriptions of the proposed knowledge- 199

augmented LM. After that, we formally define the 200

ingredients for structured knowledge integration. 201

NLU tasks The goal of an NLU task is to predict 202

the label y of the given input instance x, where the 203

input x contains the sequence of tokens (Devlin 204

et al., 2019): x = [w1, w2, . . . , w|x|]. Then, given 205

a training dataset D = {(x(i),y(i))}Ni=1, the objec- 206

tive is to maximize the log-likelihood as follows: 207

max
θ
L(θ) := max

θ

∑
(x,y)∼D

log p(y|x; θ), 208

p(y|x; θ) = g(H; θg), H = f(x; θf ), 209

where f is an encoder of the PLM which outputs 210

contextualized representationH from x, and g is 211

a decoder which models the probability distribu- 212

tion p of the label y, with trainable parameters 213

θ = (θf , θg). If the LM is composed of L-layers of 214

transformer blocks (Devlin et al., 2019), the func- 215

tion f is decomposed to multiple functions f = 216

[f0, . . . , fL], where each block gets the output of 217

the previous block as the input: H l = f l(H l−1).1 218

Knowledge-Augmented Language Model The 219

conventional learning objective defined above 220

might be sufficient for understanding the texts if 221

the tasks require only the general knowledge stored 222

in PLMs. However, it is suboptimal for tackling 223

domain-specific tasks since the general knowledge 224

captured by the parameters θf may not include the 225

knowledge required for solving the domain-specific 226

tasks. Thus, contextualizing the texts by the do- 227

main knowledge, captured by the domain-specific 228

entities and their relations, is more appropriate for 229

handling such domain-specific problems. 230

To this end, we propose a function h(·;φ) which 231

augments PLMs conditioned on the domain knowl- 232

edge. Formally, the objective for a NLU task with 233

our knowledge-augmented LM is given as follows: 234

max
θ,φ
L(θ, φ) := max

θ,φ

∑
(x,y)∼D

log p(y|x; θ, φ), 235

p(y|x; θ, φ) = g(H̃; θg), 236

H̃ l = f l(H l−1, hl(H l−1, E ,M,G;φ); θf l), 237

where φ is parameters for the function h, E is the set 238

of entities,M is the set of corresponding mentions, 239

1f0 denotes a word embedding layer which gets x as an
input, i.e., H0 = f0(x), for the sake of simplicity.
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and G is a knowledge graph. In the following,240

we will describe the definition of the knowledge-241

related inputs E ,M,G, and the details of h(·, φ).242

Definition 1 (Entity and Mention). Given a se-243

quence of tokens x = [w1, . . . , w|x|], let E be244

a set of entities in x. Then an entity e ∈ E245

is composed of one or multiple adjacent tokens246

within the input text: [wmα , . . . , wmω ] v x2. Here,247

m = (mα,mω) is a mention that denotes the start248

and end locations for the entity within the input249

tokens x, which term is commonly used for defin-250

ing entities (Févry et al., 2020). Consequently, for251

each given input x(i), there are a set of entities252

E(i) = {e1, . . . , eK} and their corresponding men-253

tionsM(i) = {m1, . . . ,mK}. For example, given254

an input x = [New, York, is, a, city], we have two255

entities E = {New_York, city} and their associated256

mentionsM = {(1, 2), (4, 4)}.257

We further construct the entity vocabulary258

Etrain =
⋃N
i=1 E(i), which consists of all entities259

appearing in the training dataset. However, at test260

time, we may encounter unseen entities that are not261

in Etrain. To tackle this, we regard unknown entities262

as the null entity e∅, so that ∀e ∈ Etrain ∪ {e∅}.263

Definition 2 (Entity Memory). Given a set of264

all entities Etrain ∪ {e∅}, we represent them in the265

continuous vector (feature) space to learn meaning-266

ful entity embeddings. In order to implement this,267

we define the entity memory E ∈ R(|Etrain|+1)×d268

that comprises of an entity e ∈ R as a key and269

its embedding e ∈ Rd as its value. Also, to ac-270

cess the value in the entity memory, we define the271

point-wise memory access function EntEmbed272

which takes an entity as an input. For instance, e =273

EntEmbed(New_York) returns the embedding of274

the New_York entity, and e = EntEmbed(e∅) re-275

turns the zero embedding. This entity memory E276

is the part of the parameter φ used in function h.277

Definition 3 (Knowledge Graph). Since the en-278

tity memory alone cannot represent relational in-279

formation between entities, we further define a280

Knowledge Graph (KG) G that consists of a set281

of factual triplets {(h, r, t)}, where the head and282

the tail entities, h and t, are the elements of E ,283

and a relation r is an element of a set of relations284

R: h, t ∈ E and r ∈ R. We assume that a pre-285

constructed KG G(i) is given for each input x(i),286

and provide the details of the KGs and how to con-287

struct them in Appendix A.288

2E v E′ iff E = E′, or E is included in E′ such that the
order of elements in E and E′ is the same.

3.2 Knowledge-conditioned Feature 289

Modulation on Transformer 290

The remaining problem is how to augment a PLM 291

by conditioning it on the domain-specific knowl- 292

edge, through the function h. An effective ap- 293

proach to do so without stacking additional layers 294

on top of the LM is to interleave the knowledge 295

from h with the pre-trained parameters of the lan- 296

guage model (Devlin et al., 2019) consisting of 297

transformer layers (Vaswani et al., 2017). Before 298

describing our interleaving method in detail, we 299

first describe the Transformer architecture. 300

Transformer Given |x| token representations 301

H l−1 = [hl−11 , . . . ,hl−1|x| ] ∈ R|x|×d from the layer 302

l − 1 where d is the embedding size, each trans- 303

former block outputs the contextualized representa- 304

tions for all tokens. In detail, the l-th block consists 305

of the multi-head self-attention (Attn) layer and the 306

residual feed-forward (FF) layer as follows: 307

Ĥ l = LN(H l−1 +Attn(H l−1))

FF (Ĥ l) = σ(Ĥ l ·W1) ·W2,

H l = LN(Ĥ l + FF (Ĥ l)),

308

where LN is a layer normalization (Ba et al., 2016), 309

σ is an activation function (Hendrycks and Gimpel, 310

2016), W2 ∈ Rd′×d and W1 ∈ Rd×d′ are weight 311

matrices, and d′ is an intermediate hidden size. We 312

omit the bias term for brevity. 313

Linear Modulation on Transformer An effec- 314

tive yet efficient way to fuse knowledge from differ- 315

ent sources without modifying the original model 316

architecture is to scale and shift the features of 317

one source with respect to the data from another 318

source (Dumoulin et al., 2018). This scheme of 319

feature-wise affine transformation is effective on 320

various tasks, such as language-conditioned image 321

reasoning (Perez et al., 2018) or style-transfer in 322

image generation (Huang and Belongie, 2017). 323

Motivated by them, we propose to linearly trans- 324

form the intermediate features after the layer nor- 325

malization of the transformer-based PLM, condi- 326

tioned on the knowledge sources E ,M,G. We term 327

this method as the Knowledge-conditioned Fea- 328

ture Modulation (KFM), described as follows: 329

Γ,B, Γ̃, B̃ = hl(H l−1, E ,M,G;φ),
Ĥ l = Γ ◦ LN(H l−1 +Attn(H l−1)) +B,

FF (Ĥ l) = σ(Ĥ l ·W1) ·W2,

H̃ l = Γ̃ ◦ LN(Ĥ l + FF (Ĥ l)) + B̃, (1)

330
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Figure 3: Framework Overview. (Left) The architecture of a knowledge-augmented LM with our method. Some of the input
tokens are annotated as entities with their mentions. (Middle) Inside the transformer block, KFM (§3.2) is applied after the
layer normalization as in equation 1, to modulate the hidden representations of tokens in entity mentions. (Right) The retrieved
embedding of an entity New_York is composed by the weighted aggregation of neighbors through the knowledge graph (§3.3).

whereH l−1 ∈ R|x|×d is the matrix of hidden rep-331

resentations from the previous layer, ◦ denotes332

the hadamard (element-wise) product, and Γ =333

[γ1, . . . ,γ|x|] ∈ R|x|×d, B = [β1, . . . ,β|x|] ∈334

R|x|×d. Γ andB are learnable modulation param-335

eters from the function h, which are conditioned336

by the entity representation. For instance, in Fig-337

ure 3, γ and β for token ‘New’ are conditioned on338

the corresponding entity New_York. However, if339

tokens are not part of any entity (e.g., ‘is’), γ and340

β for such tokens are fixed to 1 and 0, respectively.341

One notable advantage of our KFM is that mul-342

tiple tokens associated to the identical entity are343

affected by the same modulation (e.g., ‘New’ and344

‘York’ in Figure 3), which allows the PLM to know345

which adjacent tokens are in the same entity. This346

is important for representing the tokens of the do-347

main entity (e.g., ‘cod’ and ‘on’), since the original348

PLM might regard them as separate, unrelated to-349

kens (See analysis in §5.4 with Figure 5). However,350

with our KFM, the PLM can identify associated351

tokens and embed them to be close to each other.352

Then, how can we design such functional op-353

erations in h? The easiest way is to retrieve the354

entity embedding of e, associated to the typical to-355

ken, from the entity memory E, and then use the356

retrieved entity embedding as the input to obtain γ357

and β for every entity (See Figure 3). Formally, for358

each entity e ∈ E and its mention (mα,mω) ∈M,359

v = EntEmbed(e) (2)360

γj = 1 + h1(v), βj = h2(v),361

γ̃j = 1 + h3(v), β̃j = h4(v), mα ≤ j ≤ mω,362

where v is the retrieved entity embedding from the363

entity memory, h1, h2, h3, and h4 are mutually in-364

dependent Multi-Layer Perceptrons (MLPs) which365

return a zero vector 0 if e = e∅.366

3.3 Relational Retrieval from Entity Memory 367

Although the simple access to the entity memory 368

can retrieve the necessary entity embeddings for 369

the modulation, this approach has obvious draw- 370

backs as it not only fails to reflect the relations with 371

other entities, but also regards unseen entities as 372

the same null entity e∅. If so, all unseen entities are 373

inevitably modulated by the same parameters even 374

if they have essentially different meaning. 375

To tackle these limitations, we further consider 376

the relational information between two entities that 377

are linked with a particular relation. For example, 378

the entity New_York alone will not give meaningful 379

information. However, with two associated facts 380

(New_York, instance of, city) and (New_York, coun- 381

try, USA), it is clear that New_York is a city in the 382

USA. Motivated by this observation, we propose 383

Relational Retrieval which leverages a KG G to 384

retrieve entity embeddings from the memory, ac- 385

cording to the relations defined in the given KG 386

(See Figure 3, right). 387

More specifically, our goal is to effectively uti- 388

lize the relations among entities in G, to improve 389

the EntEmbed function in equation 2. We tackle 390

this objective by utilizing a Graph Neural Net- 391

work (GNN) which learns feature representations 392

of each node using a neighborhood aggregation 393

scheme (Hamilton et al., 2017), as follows: 394

v = UPDATE(EntEmbed(e), 395

AGG({EntEmbed(ê) : ∀ê ∈ N (e;G)})), 396

where N (e;G) is a set of neighboring entities of 397

the entity e, AGG is the function that aggregates em- 398

beddings of neighboring entities of e, and UPDATE 399

is the function that updates the representation of e 400

with the aggregated messages from AGG. 401
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We consider the attentive scheme (Velickovic402

et al., 2018; Brody et al., 2021) for neighborhood403

aggregation, to allocate weights to the target en-404

tity’s neighbors by their importance. This scheme405

is helpful in filtering out less useful relations. For-406

mally, we first define a scoring function ψ that cal-407

culates a score for every triplet (ei, rij , ej), which408

is then used to weigh each node during aggregation:409

ei = EntEmbed(ei), ej = EntEmbed(ej),410

e∗ = [ei ‖ rij ‖ ej ‖ hei ],411

ψ(ei, rij , ej ,hei) = a
>σ(W · e∗),412

where σ is a nonlinear activation, e∗ ∈ R4d is413

concatenated vector where ‖ denotes the concate-414

nation, a ∈ Rd and W ∈ Rd×4d are learnable415

parameters, rij ∈ Rd is a embedding of the rela-416

tion, and hei ∈ Rd is a context representation of417

the entity ei obtained from the intermediate hidden418

states of the LM 3.419

The scores obtained from ψ are normalized420

across all neighbors ej ∈ N (ei;G) with softmax:421

αij = softmax(ψ(ei, rij , ej))422

=
exp(ψ(ei, rij , ej))∑

ej′∈N (ei;G) exp(ψ(ei, rij′ , ej′))
.423

Then, we update the entity embedding with a424

weighted average of the neighboring nodes with α425

as an attention coefficient, denoted as follows:426

v = UPDATE
(∑

ej′∈N (ei;G)αij · ej′
)
. (3)427

By replacing the EntEmbed function in equa-428

tion 2 with the above GNN in equation 3, we now429

represent each entity with its relational information430

in KG. This relational retrieval has several advan-431

tages over simple retrieval of a single entity from432

the entity memory. First, the relational retrieval433

with KG can consider richer interactions among434

entities, as described in Figure 3.435

In addition, we can naturally represent an un-436

seen entity – which is not seen during training but437

appears at test time – through neighboring aggre-438

gation, which is impossible only with the entity439

memory. In Figure 2, we provide an illustrative440

example of the unseen entity representation, where441

the unseen entity restenosis is represented with a442

weighted sum of representations of its neighboring443

entities myocardial_infarction, asthma, and pethi-444

dine, which is beneficial when the set of entities445

for training and test datasets have small overlaps.446

3The context representation of the entity is calculated with
its mention as follows: he = 1

mω−mα+1

∑mω

i=mα hl−1
i

4 Experiment 447

4.1 Tasks and Datasets 448

We evaluate our model on two NLU tasks: Ques- 449

tion Answering (QA) and Named Entity Recogni- 450

tion (NER). For QA, we use three domain-specific 451

datasets: NewsQA (News, Trischler et al., 2017) 452

and two subsets (Relation, Medication) of EMRQA 453

(Clinical, Pampari et al., 2018). We use the Exact- 454

Match (EM) and the F1 score as evaluation met- 455

rics. For NER, we use three datasets from different 456

domains, namely CoNLL-2003 (News, Sang and 457

Meulder, 2003), WNUT-17 (Social Media, Der- 458

czynski et al., 2017) and NCBI-Disease (Biomedi- 459

cal, Dogan et al., 2014). We use the F1 score as the 460

evaluation metric. We report statistics and detailed 461

descriptions of each dataset in Appendix B.2. 462

4.2 Baselines 463

1. Vanilla Fine-Tuning (FT): A baseline that di- 464

rectly fine-tunes the LM on downstream tasks. 465

2. Fine-Tuning + more params: A baseline with 466

one more transformer layer at the end of the 467

LM. We use this baseline to show that the per- 468

formance gain of our model does not come from 469

the use of additional parameters. 470

3. Task-Adaptive Pre-training (TAPT): A base- 471

line that further pre-trains the PLM on task- 472

specific corpus as in Gururangan et al. (2020). 473

4. TAPT + RecAdam: A baseline that uses 474

RecAdam (Chen et al., 2020) during further 475

pre-training of PLMs (i.e., TAPT), to alleviate 476

catastrophic forgetting of the learned general 477

knowledge in PLMs from adaptive pre-training. 478

5. Domain-Adaptive Pre-training (DAPT): A 479

strong baseline that uses a large-scale domain 480

corpus outside the training set during further pre- 481

training (Gururangan et al., 2020), and requires 482

extra data and large computational overhead. 483

6. KALA (pointwise): A variant of KALA that 484

only uses the entity memory and does not use 485

the knowledge graphs. 486

7. KALA (relational): Our full model that uses 487

KGs to perform relational retrieval from the en- 488

tity memory. 489

4.3 Experimental Setup 490

We use the uncased BERT-base (Devlin et al., 2019) 491

as the base PLM for all our experiments on QA 492

and NER tasks. For more details on training and 493

implementation, please see the Appendix B. 494
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Method NewsQA Relation Medication

Fine-Tuning 53.06 ± 0.63 | 67.20 ± 0.19 54.01 ± 1.14 | 61.43 ± 1.18 12.50 ± 0.28 | 43.31 ± 0.67
+ more params 53.59 ± 0.99 | 67.79 ± 0.67 54.06 ± 1.35 | 62.07 ± 1.44 12.46 ± 0.25 | 42.74 ± 0.91
TAPT 53.47 ± 1.69 | 67.59 ± 1.44 53.57 ± 2.05 | 60.87 ± 2.52 12.58 ± 0.42 | 43.82 ± 1.10
+ RecAdam 53.95 ± 1.02 | 67.89 ± 0.75 54.88 ± 1.94 | 62.54 ± 2.14 12.63 ± 0.30 | 43.86 ± 0.87
DAPT† 53.68 ± 0.94 | 67.76 ± 0.61 55.29 ± 1.74 | 62.25 ± 1.80 12.67 ± 0.27 | 43.26 ± 0.88

KALA (point-wise) 53.41 ± 0.74 | 67.30 ± 0.45 56.13 ± 0.85 | 64.69 ± 0.92 12.01 ± 0.47 | 42.97 ± 0.70
KALA (relational) 54.25 ± 0.63 | 68.27 ± 0.63 55.96 ± 1.37 | 64.22 ± 1.15 12.75 ± 0.61 | 44.19 ± 0.46

Table 1: Experimental results of the extractive QA task on three different datasets with the BERT-base. The reported results are
means and standard deviations of performances over five different runs with Exact Match / F1 score as a metric. The numbers in
bold fonts denote the best score. † indicates the method under an extremely high computational resource setting (See Figure 1).

Method CoNLL-2003 WNUT-17 NCBI-Disease

Fine-Tuning 90.58 ± 0.19 45.70 ± 1.25 84.42 ± 0.58
+ more params 90.75 ± 0.23 46.42 ± 0.55 84.70 ± 0.49
TAPT 90.61 ± 0.73 45.39 ± 0.77 84.39 ± 0.73
+ RecAdam 90.69 ± 0.30 46.73 ± 0.94 84.99 ± 0.88
DAPT† 90.30 ± 0.39 48.29 ± 1.08 84.68 ± 1.63

KALA (point-wise) 90.96 ± 0.21 47.33 ± 0.82 85.10 ± 0.73
KALA (relational) 91.02 ± 0.29 48.35 ± 0.92 85.77 ± 0.43

Table 2: Experimental results of the NER task on three dif-
ferent datasets with the BERT-base. The reported results are
means and standard deviations over five different runs with an
F1 score as a metric. The numbers in bold fonts denote the
best score. † indicates the baseline under an extremely high
computational resource setting (See Figure 1).

4.4 Experimental Results495

Performance on QA and NER tasks On both496

extractive QA and NER tasks, our KALA out-497

performs all baselines, including TAPT and498

TAPT+RedcAdam (Gururangan et al., 2020; Chen499

et al., 2020), as shown in Table 1 and 2. These500

results show that our KALA is highly effective501

for the language model adaptation task. KALA502

also largely outperforms DAPT (Gururangan et al.,503

2020) which is trained with extra data and requires504

a significantly higher computational cost compare505

to KALA (See Figure 1 for the plot of efficiency,506

discussed in Section 5.2).507

Effect of Using more Parameters One may sus-508

pect whether the performance of our KALA comes509

from the increment of parameters. However, the510

experimental results in Table 1 and 2 show that in-511

creasing the parameters for PLM during fine-tuning512

(+ more params) yields marginal performance im-513

provements over naive fine-tuning. This result con-514

firms that the performance improvement of KALA515

is not due to the increased number of parameters.516

Importance of Relational Retrieval The perfor-517

mance gap between KALA (relational) and KALA518

(point-wise) shows the effectiveness of relational519

retrieval for language model adaptation, which al-520

lows us to incorporate relational knowledge into521

the PLM. The relational retrieval also helps address522

unseen entities, as discussed in Section 5.3.523

KFM (§3.2) NewsQA
Components EM F1

None (Fine-tuning) 53.06 67.20
+ Γ, Γ̃ (gamma only) 54.10 67.98
+B, B̃ (beta only) 53.74 67.69
+ Γ,B (first only) 53.77 67.88
+ Γ̃, B̃ (second only) 53.89 67.49

+ Γ,B, Γ̃, B̃ (final) 54.25 68.27

Table 3: An ablation study of
the KFM parameters Γ, B, Γ̃, B̃.
We report the average over five
different runs.

Architecture NewsQA
Variants (§5.2) EM F1

ERNIE 53.35 67.49
Adapter 53.32 67.38
KT-Net 53.15 67.01
EaE 53.00 67.40
ERICA 51.99 66.40

KALA (ours) 54.25 68.27

Table 4: Experimental re-
sults on knowledge integra-
tion architecture variants.
We report the average over
five different runs.

5 Analysis and Discussion 524

5.1 Ablation Studies 525

We perform an ablation study to see how much 526

each component of KALA contributes to the per- 527

formance gain. 528

KFM Parameters We first analyze the effect of 529

feature modulation parameters (i.e., gamma and 530

beta) in transformers by ablating a subset of them 531

in Table 3, in which we observe that using both 532

gamma and beta after both layer normalization on 533

a transformer layer obtains the best performance. 534

Architectural Variants We now examine the ef- 535

fectiveness of the proposed knowledge condition- 536

ing scheme in our KALA framework. To this end, 537

we use or adapt the knowledge integration methods 538

from previous literature, to compare their effective- 539

ness. Specifically, we couple the following five 540

components with KALA: Entity-as-Experts (Févry 541

et al., 2020), Adapter (Houlsby et al., 2019), KT- 542

Net (Yang et al., 2019), ERNIE (Zhang et al., 2019), 543

and ERICA (Qin et al., 2021). Note that, most 544

of them were proposed for improving pre-training 545

from scratch, while we adapt them for fine-tuning 546

under our KALA framework (The details are given 547

in Appendix B.4). As shown in Table 4, our KFM 548

used in KALA outperforms all variants, demon- 549

strating the effectiveness of feature modulation in 550

the middle of transformer layers for fine-tuning. 551
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48
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Seen Unseen70
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80
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Figure 4: Results on seen and unseen, where Seen denotes the
context having less than 3 unseen entities, otherwise Unseen.

5.2 Efficiency552

Figure 1 illustrates the performance and training553

FLOPs of KALA against baselines on the NewsQA554

dataset. We observe that the performance of TAPT555

decreases with the increased number of iterations,556

which could be due to forgetting of the knowledge557

from the PLM. DAPT, while not suffering from per-558

formance loss, requires huge computational costs559

as it trains on 112 times larger data for further pre-560

training (See Appendix B.3 for detail). On the561

other hand, our KALA outperforms DAPT without562

using external data, while requiring 17 times fewer563

computational costs, which shows that KALA is564

not only effective but also highly efficient. The565

resource requirement of our KALA could be fur-566

ther reduced by adjusting the size of entity memory567

(e.g., removing less frequent entities).568

5.3 Effectiveness on Unseen Entities569

One remarkable advantage of our KALA is its abil-570

ity to represent an unseen entity by aggregating571

features of its neighbors from a given KG. To an-572

alyze this, we first divide all contexts into one of573

Seen and Unseen, where Seen denotes the context574

with less than 3 unseen entities, and then measure575

the performance on the two subsets. As shown in576

Figure 4, we observe that the performance gain577

of KALA over the baselines is much larger on578

the Unseen subset, which demonstrates the effec-579

tiveness of KALA’s relational retrieval scheme to580

represent unseen entities. DAPT also largely out-581

performs fine-tuning and TAPT as it is trained on582

an extremely large external corpus for adaptive583

pre-training. However, KALA even outperforms584

DAPT in most cases, verifying that our knowledge-585

augmentation method is more effective for tack-586

ling domain-specific tasks. The visualization of587

embeddings of seen and unseen entities in Fig-588

ure 2 shows that KALA embeds the unseen entities589

more closely to the seen entities4, which explains590

KALA’s good performance on the Unseen subset.591

4We quantitatively measure the mean of cosine distance
of each unseen entity to its nearest seen entity, observing that
KALA embeds unseen 1.5 times more closer to seen than
DAPT (i.e., 0.07 for KALA vs 0.11 for DAPT for distance).

Context: A nonsense mutation in
exon 17 ( codon 556 ) of the RB1
gene was found to be present
homozygously in both the retinal
and the pineal tumours.

Fact: (retinal, instance of, gene)

nonsense mutation
ex

##on
cod

##on
genere

##tina
##l

Fine-Tuning

nonsensemutationex
##oncod##on

genere##tina
##l

KALA (Ours)

Figure 5: A case study on one context of the NCBI-Disease
dataset. A left table shows the context and its fact, and a right
figure shows a visualization of token representations. Text in
blue and red denote the seen and unseen entities, respectively.

5.4 Case Study 592

To better see how our KFM (§3.2) works, we show 593

the context and its fact, and then visualize repre- 594

sentations from the PLM modulated by the KFM. 595

As shown in Figure 5 right, the token ‘##on’ is not 596

aligned with their corresponding tokens, such as 597

‘ex’ (for exon) and ‘cod’ (for codon), in the baseline. 598

However, with our feature modulation that trans- 599

forms multiple tokens associated with the single 600

entity equally, the two tokens (e.g., (‘ex’, ‘##on’)), 601

composing one entity, are closely embedded. Also, 602

while the baseline cannot handle the unseen entity 603

consisting of three tokens: ‘re’, ‘##tina’, and ‘##l’, 604

KALA embeds them closely by representing the 605

unseen retinal from the representation of its neigh- 606

borhood gene derived by the domain knowledge – 607

(retinal, instance of, gene). 608

5.5 Extension to Generative Model 609

NewsQA
T5-small EM F1

Fine-tuning 48.96 64.24
TAPT 48.66 64.30
+ RecAdam 48.37 63.41

KALA (ours) 51.78 66.88

Table 5: Results of
generative QA.

Our KALA framework is also 610

applicable to encoder-decoder 611

PLMs by applying the KFM to 612

the encoder. We further vali- 613

date KALA’s effectiveness on 614

the encoder-decoder PLMs on 615

the generative QA task (Lee et al., 2021) with T5- 616

small (Raffel et al., 2020). Table 5 shows that 617

KALA largely outperforms baselines even with 618

such a generative PLM. 619

6 Conclusion 620

In this paper, we introduced KALA, a novel frame- 621

work for language model adaptation, which mod- 622

ulates the intermediate representations of a PLM 623

by conditioning it with the entity memory and the 624

relational facts from KGs. We validated KALA on 625

various domains of QA and NER tasks, on which 626

KALA significantly outperforms relevant baselines 627

while being computationally efficient. We demon- 628

strate that the success of KALA comes from both 629

KFM and relational retrieval, allowing the PLM to 630

recognize entities but also handle unseen ones that 631

might frequently appear in domain-specific tasks. 632
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“text”: “Arvane Rezai”,
“start”: 30,
“end”: 43,
“id”: 228998

“h”: 11578,
“r”: “P3373”,
“t”: 228998

Figure 6: Visual diagram of the KG construction pipeline used in this work. The entity format is composed of its corresponding
text in the data, its character-level mention boundary, and its wikidata id. The fact format is composed of the head, relation, and
tail, where head and tail entities are represented with their wikidata ids following the entity format.

Hyperparameters NewsQA Relation Medication CoNLL-2003 WNUT-17 NCBI-Disease

LM for Relation Extraction BERT-base-uncased
Threshold on Relation Extraction 0.1
Size of Entity Memory 62823 5724 4635 10288 101 3502

The location of KFM 11 11 11 8 9, 11 8, 10

Table 6: Hyperparamters for Knowledge Graph (Top) and KALA (Bottom) on six datasets we used. The reported
performances on main paper are measured with the above settings.

A Details on KG Construction973

In this work, we propose to use the Knowledge974

Graph (KG) that can define the relational informa-975

tion among entities that only appear in each dataset.976

However, unfortunately, most of the task datasets977

do not contain such relational facts on its context,978

thus we need to construct them manually to obtain979

the knowledge graph. In this section, we explain980

the way of constructing the knowledge graph that981

we used, consisting of facts of entities for each982

context in the task dataset.983

Relation extraction is the way how we obtain984

the factual knowledge from the text of the target985

dataset. To do so, we first need to extract entities986

and their corresponding mentions from the text, and987

then link it to the existing entities in wikidata (Vran-988

decic and Krötzsch, 2014). In order to do this, we989

use the existing library named as spaCy5, and open-990

sourced implementation of Entity Linker6. To sum991

up, in our work, a set of entities E(i) and corre-992

sponding mentionsM(i) for the given input x(i)993

are obtained through this step. Regarding a con-994

crete example, please see format (a) in Figure 6. In995

the example, “Text” indicates the entity mention996

within the input x, the “start” and “end” indicates997

its mention position denoted as (mα,mω), and “id”998

indicates the wikidata id for the entity identification999

used in the next step.1000

To extract the relation among entities that we1001

obtained above, we use the scheme of Relation Ex-1002

traction (RE). In other words, we use the trained1003

5https://spacy.io/
6https://github.com/egerber/spaCy-entity-linker

RE model to build our own knowledge base (KB) 1004

instead of using the existing KG directly from the 1005

existing general-domain KB7. Specifically, we first 1006

fine-tune the BERT-base model (Devlin et al., 2019) 1007

for 2 epochs with 600k distantly supervised data 1008

used in Qin et al. (2021), where the Wikipedia doc- 1009

ument and the Wikidata triplets are aligned. Then, 1010

we use the fine-tuned BERT model to extract the 1011

relations between entity pairs in the text. We use 1012

the model with a simple bilinear layer on top of it, 1013

which is widely used scheme in the relation extrac- 1014

tion literature (Yao et al., 2019). For an example 1015

of the extracted fact, please see format (b) in Fig- 1016

ure 6. In the example, “h” denotes the wikidata id 1017

of the head entity, “r” denotes the wikidata id of 1018

the extracted relation, and “t” denotes the wikidata 1019

id of the tail entity. In the relation extraction, the 1020

model returns the categorical distribution over the 1021

top 100 frequent relations. In general, the relation 1022

of top-1 probability is used as the relation for the 1023

corresponding entity pair. However, this approach 1024

sometimes results in predicting no_relation 1025

on most entity pairs. Thus, to obtain more rela- 1026

tions, we further use the relation of top-2 probabil- 1027

ity in the case where no_relation has a top-1 1028

7We faced several problems here. First of all, most KBs
such as Wikidata are less informative, especially for the en-
tities included in the domain-specific context (e.g., News,
Medical records). It only has a few facts for each context of
domain-specific tasks, although we can find a lot of entities
included in the context. Second, the entity linker is imperfect.
Due to the wrongly linked entity to the wikidata, even existing
relations in the KG are ignored a lot. Therefore, we instead
use a trained neural network to effectively extract the relations
between entities, instead of direct querying to obtain facts.
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Training Validation Test
Dataset # Context C. Length # Question # Context C. Length # Question # Context C. Length # Question

NewsQA 11428 655.7 74160 - - - 106 625.8 674
Relation 296 1386.1 6162 42 1206.6 321 85 1467.7 802
Medication 182 1737.3 7518 26 1626.5 1858 53 2005.0 4005

Table 7: QA dataset statistics. We report the number of contexts and questions (i.e., # Context and # Question), with the
average length of contexts (i.e., C. Length) where the length is measured as the number of tokens after wordpiece tokenization.

probability but the top-2 probability is larger than1029

a certain threshold (e.g., > 0.1). In Figure 6, we1030

summarize our KG construction pipeline. In Ta-1031

ble 6, we report the hyperparameters related to our1032

KG construction.1033

B Experimental Setup1034

In this section, we introduce the detailed setups for1035

our models and baselines used in Table 1, 2, and 4.1036

B.1 Implementation Details1037

We use the Pytorch (Paszke et al., 2019) for the1038

implementation of all models. Also, to easily im-1039

plement the language model, we use the hugging-1040

face library (Wolf et al., 2020) containing vari-1041

ous transformer-based pre-trained language models1042

(PLMs) and their checkpoints.1043

Details for KALA In this paragraph, we de-1044

scribe the implementation details of the compo-1045

nents, such as four linear layers in the proposed1046

KFM, architectural specifications in the attention-1047

based GNN, and initialization of both the entity1048

memory and relational embeddings, in the follow-1049

ing. In terms of the functions h1, h2, h3, and h4 in1050

the KFM of Equation 2, we use two linear layers1051

with the ReLU (Nair and Hinton, 2010) activation1052

function, where the dimension is set to 768.1053

For relational retrieval, we implement the novel1054

GNN model based on GATv2 (Brody et al., 2021)1055

provided by the torch-geometric package (Fey and1056

Lenssen, 2019). Specifically, we stack two GNN1057

layers with the RELU activation function and also1058

use the dropout with a probability of 0.1. For at-1059

tention in our GNN, we mask the nodes of the null1060

entity, so that the attention score becomes zero for1061

them. Moreover, to obtain the context representa-1062

tion of the entity (See Footnote 3 in the main paper)1063

used in the GNN attention, we use the scatter oper-1064

ation8 for reduced computational cost.1065

For Entity Memory, we experimentally found1066

that initializing the embeddings of the entity mem-1067

ory with the contextualized features obtained from1068

8https://github.com/rusty1s/pytorch_scatter

the pre-trained language model could be helpful. 1069

Therefore, the dimension of the entity embedding 1070

is set to the same as the language model d = 768. 1071

For relation embeddings, we randomly initialize 1072

them, where the dimension size is set to 128. 1073

Location of KLM in the PLM Note that, the 1074

number and location of the KFM layers inside the 1075

PLM are hyperparameters. However, we empiri- 1076

cally found that inserting one to three KFM layers 1077

at the end of the PLM (i.e., after the 9th - 11th 1078

layers of the BERT-base language model) is ben- 1079

eficial to the performance (See Appendix C.4 for 1080

experiments on diverse layer locations). 1081

B.2 Dataset Details 1082

Here we describe the dataset details with its statis- 1083

tics for two different tasks: extractive question an- 1084

swering (QA) and named entity recognition (NER). 1085

Question Answering We evaluate models on 1086

three domain-specific datasets: NewsQA, Rela- 1087

tion, and Medication. Notably, NewsQA (Trischler 1088

et al., 2017) is curated from CNN news articles. 1089

Relation and Medication are originally part of the 1090

emrQA (Pampari et al., 2018), which is an auto- 1091

matically constructed question answering dataset 1092

based on the electrical medical record from n2c2 1093

challenges9. However, Yue et al. (2020) extract 1094

two major subsets by dividing the entire dataset 1095

into Relation and Medication and suggest the us- 1096

age of sampled questions from the original em- 1097

rQA dataset. Following the suggestion of Yue et al. 1098

(2020), we use only 1% of generated questions of 1099

Relation for training, validation, and testing. Also, 1100

we only use 1% of generated questions of Medica- 1101

tion for training and use 5% of generated questions 1102

of Medication for validation and testing. Since the 1103

original emrQA is automatically generated based 1104

on templates, the quality is poor – it means that 1105

the original emrQA dataset was inappropriate to 1106

evaluate the ability of the model to reason over 1107

the clinical text since the most of questions can be 1108

9https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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Hyperparameters NewsQA Relation Medication CoNLL-2003 WNUT-17 NCBI-Disease Generative NewsQA

Fine-tuning

Language Model BERT-base-uncased T5-small
Maximum Sequence Length 384 384 384 128 128 128 512
Batch Size 12 12 12 32 32 32 64
Training Epochs 2 2 2 20 20 20 4
Optimizer AdamW Adafactor
Learning rate 3e-5 3e-5 3e-5 5e-5 5e-5 5e-5 1e-4
Weight Decay 0.01 0.01 0.01 0 0 0 -
LR decay Warmup rate 0.06 0.06 0.06 0 0 0 -
Half Precision Yes Yes Yes No No No No

Task-Adaptive Pre-training (TAPT)

Maximum Sequence Length 384 384 384 128 128 128 384
Batch Size 12 12 12 32 32 32 64
Training Epochs 1 1 1 3 3 3 4
Training Epochs (RecAdam) 3 1 1 3 3 3 4
Optimizer AdamW Adafactor
Learning rate 5e-5 1e-3
Weight Decay 0.01 0.01 0.01 0 0 0 -
LR decay Warmup rate 0.06 0.06 0.06 0 0 0 -
Half Precision Yes Yes Yes No No No No

Table 8: Hyperparamters for Fine-tuning (Top) and TAPT (Bottom) on six datasets (+ generative QA) we used for reporting
the performances in the main paper. Note that the Fine-tuning setup is applied to all methods including KALA.

Training Validation Test
Dataset # Context C. Length # Context C. Length # Context C. Length

CoNLL-2003 14,041 19.95 3,250 21.36 3,453 18.77
WNUT-17 3,394 31.32 1,009 19.28 1,287 30.58
NCBI-Disease 5,433 34.36 924 35.00 941 35.50

Table 9: NER dataset statistics. We report the number of
contexts (i.e., # Context), with the average length of them (i.e.,
C. Length) on training, validation, and test sets.

answered by the simple text matching. To over-1109

come this limitation, Yue et al. (2020) suggests1110

two ways to make the task more difficult. First,1111

they divide the question templates into easy and1112

hard versions and then use the hard question only.1113

Second, they suggest replacing medical terminolo-1114

gies in the question of the test set into synonyms1115

to avoid the trivial question which can be solvable1116

with a simple text matching. We use both methods1117

to Relation and Medication datasets to report the1118

performance of every model. For more details on1119

Relation and Medication datasets, please refer to1120

the original paper (Yue et al., 2020). The statis-1121

tics of training, validation, and test sets on all QA1122

datasets are provided in Table 7.1123

Named Entity Recognition We use three dif-1124

ferent domain-specific datasets for evaluating our1125

KALA on NER tasks: CoNLL-2003 (Sang and1126

Meulder, 2003) (News), WNUT-17 (Derczynski1127

et al., 2017) (Social Network Service) and NCBI-1128

Disease (Dogan et al., 2014) (Biomedical). The1129

CoNLL-2003 is constructed from the manually cu-1130

rated 1,393 English news articles, including 301.4k1131

tokens, which has 9 class labels. The WNUT-1132

17 dataset consists of 65,124 emerging and rare1133

entities from social media (e.g., Twitter, Reddit,1134

YouTube, to name a few), which has 13 class la-1135

Hyperparameters News Medical Textbook

Domain-Adaptive Pre-training (DAPT)

The number of text (by lines) 10M 100k
The number of text (by words) 618M 12.8M
The size of data (by volume) 3.5G 86M
Maximum Sequence Length 384
Batch Size 64
Training Epochs 50
Maximum Steps 12.5k
Optimizer AdamW
Learning rate 5e-5
Weight Decay 0.01
LR decay Warmup rate 0.06
Half Precision Yes

Applied Dataset
NewsQA

CoNLL-2003
WNUT-17

Relation
Medication

NCBI-Disease

Table 10: Hyperparamters for DAPT on two domains we
used for reporting the performances in the main paper.

bels. The NCBI-Disease dataset consists of the 1136

793 PubMed articles from the biomedical domain, 1137

which contains 6,892 disease mentions and 790 1138

disease concepts, and also has 3 class labels. The 1139

statistics of training, validation, and test sets are 1140

provided in Table 9. 1141

B.3 Training details 1142

All experiments are constrained to be done with a 1143

single 12GB Geforce RTX 2080 Ti GPU for fair- 1144

ness in terms of memory and the availability on 1145

the academic budget, except for the DAPT and 1146

generative QA which use a single 48GB Quadro 1147

8000 GPU. KALA training needs 3 hours in wall 1148

time with a single GPU. For all experiments, we 1149

select the best checkpoint on the validation set. For 1150

the summary of training setups, please see Table 8 1151

and 10. 1152
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Fine-tuning Setup In the following three para-1153

graphs, we explain the setting of fine-tuning for1154

QA, NER, and generative QA tasks. For all ex-1155

periments on extractive QA tasks, we fine-tune the1156

Pre-trained Language Model (PLM) for 2 epochs1157

with the weight decay of 0.01, learning rate of 3e-5,1158

maximum sequence length of 384, batch size of 12,1159

linear learning rate decay of 0.06 warmup rate, and1160

half precision (Micikevicius et al., 2018).1161

For all experiments on NER tasks, we fine-1162

tune the PLM for 20 epochs, where the learning1163

rate is set to 5e-5, maximum sequence length is1164

set to 128, and batch size is set to 32. We use1165

AdamW (Loshchilov and Hutter, 2019) as an opti-1166

mizer using BERT-base as the PLM.1167

For the generative QA task in Table 5, we fine-1168

tune the T5-small (Raffel et al., 2020) for 4 epochs1169

with the learning rate of 1e-4, maximum sequence1170

length of 512, and batch size of 64. We also use1171

the Adafactor (Shazeer and Stern, 2018) optimizer.1172

Instead of training with the same optimizer as in1173

BERT for QA and NER, we instead use the inde-1174

pendent AdamW optimizer with the learning rate1175

of 1e-4 and weight decay of 0.01 to train the KALA1176

module with T5.1177

Adaptive Pre-training Setup In this paragraph,1178

we describe the experimental settings of adaptive1179

pre-training baselines, namely TAPT, TAPT (+1180

RecAdam), and DAPT. For QA tasks, we further1181

pre-train the PLM for {1,3,5,10} epochs and then1182

report the best performance among them. Specifi-1183

cally, reported TAPT result on NewsQA, Relation,1184

and Medication are obtained by 1 epoch of fur-1185

ther pre-training. We use the weight decay of 0.01,1186

learning rate of 5e-5, maximum sequence length of1187

384, batch size of 12, and linear learning rate decay1188

of 0.06 warmup rate, with a half-precision. Also,1189

the masking ratio for the pre-training objective is1190

set to 0.15, following the existing strategy intro-1191

duced in the original BERT paper (Devlin et al.,1192

2019).1193

For NER tasks, we further pre-train the PLM1194

for 3 epochs across all datasets. In particular, the1195

learning rate is set to 5e-5, batch size is set to 32,1196

and the maximum sequence length is set to 128. We1197

also use AdamW (Loshchilov and Hutter, 2019) as1198

the optimizer for all experiments.1199

In the case of T5-small for generative QA in Ta-1200

ble 5, we further pre-train the PLM for 4 epochs1201

with the learning rate of 0.001, batch size of 64,1202

maximum sequence length of 384, and Adafac-1203

tor (Shazeer and Stern, 2018) optimizer. 1204

Regarding the setting of TAPT (+ RecAdam) on 1205

all tasks, we follow the best setting in the original 1206

paper (Chen et al., 2020) – sigmoid as an annealing 1207

function with annealing parameters: k = 0.5, t0 = 1208

250, and the pretraining coefficient of 5000. 1209

For training with DAPT, we need an external 1210

corpus having a large amount of data for adaptive 1211

pre-training. Thus, we first choose the datasets of 1212

two domains – News and Medical. Specifically, 1213

as the source of corpus for the News domain, we 1214

use the sampled set of 10 million News from the 1215

RealNews dataset used in Gururangan et al. (2021). 1216

As the source of corpus for the Medical domain, we 1217

use the set of approximately 100k passages from 1218

the Medical textbook provided in Jin et al. (2020). 1219

The size of pre-training data used in DAPT is much 1220

larger than TAPT. In other words, for experiments 1221

on NewsQA, TAPT only uses fine-tuning contexts 1222

containing 5.8 million words from the NewsQA 1223

training dataset, while DAPT uses more than a hun- 1224

dred times larger data – enormous contexts contain- 1225

ing about 618 million words from the RealNews 1226

database. For both News and Medical domains, 1227

we further pre-train the BERT-base model for 50 1228

epochs with the batch size of 64, to match the sim- 1229

ilar computational cost used in Gururangan et al. 1230

(2020). Other experimental details are the same as 1231

TAPT described above. 1232

B.4 Architectural Variant Details 1233

In this subsection, we describe the details of archi- 1234

tectural variants reported in Section 5.1. For all 1235

variants, we use the same KGs used in KALA. 1236

Entity-as-Experts (Févry et al. (2020); EaE) 1237

utilizes the entity memory similar to our work, but 1238

they use the parametric dense retrieval more like the 1239

memory neural network (Sukhbaatar et al., 2015). 1240

Similar to Févry et al. (2020); Verga et al. (2021), 1241

we change the formulation of query and memory 1242

retrieval by using the mention representation of the 1243

entity from the intermediate hidden states of PLMs, 1244

which is formally defined as follows: 1245

he =
1

mω −mα + 1

mω∑
i=mα

hl−1i , (4) 1246

v = softmax(he ·E>) ·E, 1247

where he represents the average of token represen- 1248

tations of the entity mention m = (mα,mω). We 1249

also give the supervised retrieval loss (ELLoss 1250
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in Févry et al. (2020)), when training the EaE1251

model. With this retrieval, EaE also can repre-1252

sent the unseen entity e /∈ Etrain if we know the1253

mention boundary of the given entity on the con-1254

text. We believe it is expected to work well, if the1255

entity memory is pre-trained on the enormous text1256

along with the pre-training of the language model1257

from the scratch. However, it might underperform1258

for the language model adaptation scenario, since1259

it can fall into the problem of circular reasoning1260

– the PLM does not properly represent the unseen1261

entity, but it should predict which entity it is similar1262

from the representation. Regarding the integration1263

of the knowledge from the entity memory into the1264

PLM, the retrieved entity representation v is simply1265

added (Peters et al., 2019) to the hidden represen-1266

tations H after the transformer block as follows:1267

1268

H̃ l =H l + h(v) (5)1269

where h is Multi-Layer Perceptrons (MLPs).1270

Adapter (Houlsby et al., 2019) is introduced to1271

fine-tune the PLM only with a few trainable param-1272

eters, instead of fine-tuning the whole parameters1273

of the PLM. To adapt this original implementa-1274

tion into our KALA framework, we replace our1275

Knowledge-conditioned Feature Modulation with1276

it, where the Adapter is used as the knowledge inte-1277

gration module. We interleave the layer of Adapter1278

after the feed-forward layer (FF ) and before the1279

residual connection of the transformer block. Also,1280

instead of only providing the LM hidden states as1281

an input, we concatenate the knowledge represen-1282

tation in Equation 3 to the LM hidden states. Note1283

that we fine-tune the whole parameters following1284

our KALA setting, unlike fine-tuning the parame-1285

ters of only Adapter layers in Houlsby et al. (2019).1286

ERNIE (Zhang et al., 2019) is a notable PLM1287

model that utilizes the external KB as an input for1288

the language model. The key feature of ERNIE can1289

be summarized into two folds. First, they use the1290

multi-head self-attention scheme (Vaswani et al.,1291

2017) to contextualize the input entities. Second,1292

ERNIE fuses the entity representation at the end1293

of the PLM by adding it to the corresponding lan-1294

guage representation. We assume that those two1295

features are important points of ERNIE. Therefore,1296

instead of using a Graph Neural Network (GNN)1297

layer, we use a multi-head self-attention layer to1298

contextualize the entity embeddings. Then, we add1299

it to a representation of the entity from the PLM,1300

which is the same as the design in equation 5.1301

KT-Net (Yang et al., 2019) uses knowledge as an 1302

external input in the fine-tuning stage for extractive 1303

QA. Since they have a typical layer for integrating 1304

existing KB (Miller, 1995; Carlson et al., 2010) 1305

with the PLM, we only adopt the self-matching 1306

layer as the architecture variant of the KFM layer 1307

used in our KALA framework. The computation 1308

of the self-matching matrix in KT-Net is costly, 1309

i.e., it requires a large computational cost that is 1310

approximately 12 times larger than KALA. 1311

ERICA (Qin et al., 2021) uses contrastive learn- 1312

ing in LM pre-training to reflect the relational 1313

knowledge into the language model. We use the 1314

Entity Discrimination task from ERICA on the pri- 1315

mary task of fine-tuning. We would like to note that, 1316

as reported in Section 5 of the original paper (Qin 1317

et al., 2021), the use of ERICA on fine-tuning has 1318

no effect, since the size and diversity of entities and 1319

relations in downstream training data are limited. 1320

Such limited information rather harms the perfor- 1321

mance, as it can hinder the generalization. In other 1322

words, contrastive learning cannot reflect the entity 1323

and relation in the test dataset. 1324

B.5 FLOPs Computation 1325

In this subsection, we give detailed descriptions of 1326

how the FLOPs in Figure 1 are measured. We ma- 1327

jorly follow the script from the ELECTRA (Clark 1328

et al., 2020) repository to compute the approxi- 1329

mated FLOPs for all models including ours. For 1330

FLOPs computation of our KALA, we addition- 1331

ally include the FLOPs of the entity embedding 1332

layer, linear layers for h1, h2, h3, h4, and GNN 1333

layer. Since the GNN layer is implemented based 1334

on the sparse implementation, we first calculate 1335

the FLOPs of the message propagation over one 1336

edge, and then multiply it to the average number of 1337

edges per node. Also, in terms of the computation 1338

on mentions, we consider the maximum sequence 1339

length of the context rather than the average num- 1340

ber of mentions, to set the upper bound of FLOPs 1341

for our KALA. Note that, in NewsQA training data, 1342

the average number of nodes is 57, the average 1343

number of edges for each node is 0.64, and the av- 1344

erage number of mentions in the context is 92.68. 1345

C Additional Experimental Results 1346

In this section, we provide the analyses on the for- 1347

getting of TAPT, entity memory, number of entities 1348

and facts, location of the KLM layer, and values of 1349

Gamma and Beta. 1350
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Figure 7: Masked Language Model loss from Task-Adaptive
Pre-Training on the domain-specific training dataset (Relation)
and the general domain test dataset (Sampled wikipedia).
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Figure 8: The performance (F1 score and Exact Match) and
the GPU memory usage on NewsQA dataset with varying the
size of elements in the entity memory.

C.1 Analysis on forgetting of TAPT1351

In Figure 1, we observe that the performance of1352

TAPT decreases as the number of training steps1353

increases. To get a concrete intuition on this par-1354

ticular phenomenon, we analysis what happens1355

in the Pre-trained Language Model (PLM), when1356

we further pre-train it on the task-specific corpus.1357

Specifically, in Figure 7, we visualize the Masked1358

Language Model (MLM) loss of TAPT on both1359

domain-specific corpus from the Relation dataset1360

and general corpus from the sampled Wikipedia1361

documents during the adaptive pre-traing. As Fig-1362

ure 7 shows, the test MLM loss increases while1363

the training MLM loss persistently increases as the1364

training step increases. This result indicates that1365

TAPT on domain-specific corpus may yield the1366

catastrophic forgetting of the general knowledge in1367

the PLM.1368

C.2 Effects of the Size of Entity Memory1369

In this subsection, we analyze how the size of en-1370

tity memory affects the performance of our KALA.1371

In Figure 8, we plot the performance of KALA1372

on the NewsQA dataset by varying the number of1373

entity elements in the memory. Note that, we re-1374

duce the size of the entity memory by eliminating1375

the entity appearing fewer times. Thus, the results1376

are obtained by only considering the entities that1377

appear more than [1000, 100, 10, 5, 0] times, e.g.,1378

0 means the model with full entity memory. As1379

shown in Figure 8, we observe that the size of the1380
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Figure 9: Performance improvements of our KALA from
simple fine-tuning, with varying the number of entities and
facts in the context on Named Entity Recognition tasks.
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Figure 10: The performance of our KALA with varying the
location of the KFM layer inside the BERT-base model. y-
axis denotes the F1 score on NewsQA and x-axis denotes the
location of the KFM layer. For instance, 11 means the case
where the KFM layer is appended in the 11th transformer layer
of BERT-base.

entity memory is larger, the performance of our 1381

KALA is better in general. However, interestingly, 1382

we also observe that the smallest size of the entity 1383

memory shows decent performance, which might 1384

be due to the fact that some parameters in the entity 1385

memory are stale. For more discussions on it in- 1386

cluding visualization, please refer to Appendix D.2. 1387

Finally, we would like to note that, in Figure 1, we 1388

report the performance of our KALA in the case 1389

of [1000, 5, 0] (i.e., considering entities appearing 1390

more than [1000, 5, 0] times). 1391

C.3 Effects of the Number of Entity and Fact 1392

In this subsection, we aim to analyze which num- 1393

bers of entities and facts per context are appropriate 1394

to achieve good performance in NER tasks. Specif- 1395

ically, we first collect the contexts having more 1396

than or equal to the k number of entities (or facts), 1397

and then calculate the performance difference from 1398

our KALA to the fine-tuning baseline. As shown 1399

in Figure 9, while there are no obvious patterns, 1400

performance improvements from the baseline are 1401

consistent across a varying number of entities and 1402

facts. This result suggests that our KALA is indeed 1403

beneficial when entities and facts are given to the 1404

model, whereas the appropriate number of entities 1405

and facts to obtain the best performance against the 1406

baseline is different across datasets. 1407
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Figure 11: Histogram of values of gamma and beta on the CoNLL-2003 dataset.
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Figure 12: Visualization of contextual representations for
seen and unseen entities on the NCBI-Disease dataset.

C.4 Effects of the Location of KFM1408

In the main paper and Appendix B.1, we describe1409

that the location of the KFM layer inside the PLM1410

architecture is the hyperparameter. However, some-1411

one might wonder which location of KFM yields1412

the best performance, and what is the reason for1413

this. Therefore, in this section, we analyze where1414

we obtain the best performance in various locations1415

of the KFM layer on the NewsQA dataset. Specif-1416

ically, in Figure 10, we show the performance of1417

our KALA with varying the location of the KFM1418

layer insider the BERT-base model. The results1419

demonstrate that the model with the KFM on the1420

last layer of the BERT-base outperforms all the1421

other choices. This might be because, as the final1422

layer of the PLM is generally considered as the1423

most task-specific layer, our KFM interleaved in1424

the latest layer of BERT expressively injects the1425

task-specific information from the entity memory1426

and KGs, to such a task-specific layer.1427

C.5 Analysis on Values of Gamma and Beta1428

To see how much amount of value on gamma and1429

beta is used to shift and scale the intermediate hid-1430

den representations in transformer layers, we visu-1431

alize the modulation values, namely gamma and1432

beta, in Figure 11. We first observe that, as shown1433

in Figure 11, the distribution of values of gamma1434

and beta approximately follow the Gaussian dis-1435

Method GPU Mem. Wall Time FLOPs (1016)

Fine-Tuning 8 GB 3 hrs 9.5
+ more params 8.8 GB 3 hrs 10.1
TAPT 8 GB 3.8 hrs 10.9
DAPT 48 GB 40 hrs < 157.0

KALA (ours, 0.2k) 8.2 GB 3 hrs 9.6
KALA (ours, 62.8k) 9.1 GB 3 hrs 10.2

Table 11: Efficiency comparison of GPU memory, Wall Time,
and FLOPs on the NewsQA dataset. The number 0.2k and
62.8k indicate the size of entity memory used in our KALA.

tribution, with zero mean for beta and one mean 1436

for gamma. Also, we notice that the scale of val- 1437

ues remain nearly around the mean point, which 1438

suggests that the small amount of shifting to in- 1439

termediate hidden representations on transformer 1440

layers is enough to contribute to the performance 1441

gain, as we can see in the main results of Table 1, 2. 1442

C.6 Detailed Efficiency Comparison 1443

While we provide the efficiency on FLOPs in Fig- 1444

ure 1, we further provide the efficiency on GPU 1445

memory, wall time, and FLOPs for training each 1446

method in Table 11. Specifically, we measure the 1447

computational cost on the NewsQA dataset with 1448

BERT-base, where we use the single Geforce RTX 1449

2080 Ti GPU on the same machine. For our KALA, 1450

as we can flexibly manage the cost of GPU mem- 1451

ory by reducing the number of entities in entity 1452

memory (See Figure 8 with Appendix C.2 for more 1453

analysis on the effects of the size of entity memory), 1454

we provide the experimental results on two settings 1455

– KALA with memory size 0.2k and 62.8k (full 1456

memory). As shown in Table 11, we confirm that 1457

the computational cost of our KALA with the full 1458

memory is similar to the cost of the more params 1459

baseline that uses one additional transformer layer 1460

on top of BERT-base. However, by reducing the 1461

number of entities in the memory, we can achieve 1462

better efficiency than more params in terms of GPU 1463

memory and FLOPs. Also, we observe that the 1464

training cost (i.e., Wall Time and FLOPs) of TAPT 1465

and DAPT is high, especially on DAPT, thus we 1466

verify that our KALA is more efficient to train for 1467

domain adaptation settings. 1468
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Method NewsQA Relation WNUT-17 NCBI-Disease

Fine-Tuning 57.21 ± 0.56 | 71.91 ± 0.35 46.61 ± 2.75 | 53.89 ± 2.92 55.00 ± 1.66 86.91 ± 1.08
+ more params 58.07 ± 1.19 | 72.38 ± 1.04 45.12 ± 0.86 | 53.22 ± 1.27 56.62 ± 0.26 87.21 ± 0.26
TAPT 57.24 ± 0.53 | 71.77 ± 0.34 45.66 ± 2.20 | 53.23 ± 2.38 55.46 ± 1.90 86.24 ± 0.76

KALA (relational) 58.01 ± 0.57 | 72.70 ± 0.25 47.40 ± 1.67 | 55.13 ± 1.26 56.96 ± 0.27 87.72 ± 0.27

Table 12: Experimental results of the extractive QA and NER tasks on four different datasets – NewsQA, Relation, WNUT-17
and NCBI-Disease – with the RoBERTa-base. The reported results are means and standard deviations over five different runs.
We use Exact Match and F1 score as a metric for QA, and F1 score for NER. The numbers in bold fonts denote the best score.
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Figure 13: Distribution of frequency of entities on QA
datasets: NewsQA, Relation, and Medication, where almost
all entities appear less than 10 times, while an extremely few
numbers of entities appear very frequently.

C.7 Experimental Results on RoBERTa1469

Although we believe our experimental results on1470

Table 1, 2, and 5 with BERT (Devlin et al., 2019)1471

and T5 (Raffel et al., 2020) are enough to show the1472

effectiveness of KALA across different pre-trained1473

language models (PLMs), one might be curious1474

that KALA can work on even other PLMs such as1475

RoBERTa (Liu et al., 2020). Thus, to address such1476

concerns, we additionally conduct experiments on1477

RoBERTa. As shown in Table 12, we observe that1478

our KALA outperforms all baselines except for one1479

case (Fine-Tuning + more params on NewsQA).1480

Thus, we believe that our KALA would be useful1481

to any PLMs, not depending on specific PLMs.1482

D Additional Visualization Results1483

Here we provide the frequency distribution of enti-1484

ties, additional case studies, and more illustrations1485

of textual examples and embedding spaces.1486

D.1 Additional Representation Visualization1487

While we already show the contextualized repre-1488

sentations of seen and unseen entities in the latent1489

space in Figure 2 right, we further visualize them1490

including the missing baselines of Figure 2, such1491

as Fine-tuning or TAPT, in Figure 12 on the NCBI-1492

Disease dataset. Similar to Figure 2, we observe1493

that all baselines fail to closely embed the unseen1494

entities in the representation space of seen enti-1495

ties. While this visualization result does not give1496

a strong evidence of why our KALA outperforms1497

other baselines, we clearly observe that KALA is1498

beneficial to represent unseen entities in the feature1499
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Figure 14: Distribution of frequency of entities on NER
datasets: CoNLL-2003, WNUT-17, and NCBI-Disease, where
almost all entities appear less than 10 times, while an ex-
tremely few numbers of entities appear very frequently.

space of seen entities, which suggests that such an 1500

advantage of our KALA helps the PLM to general- 1501

ize over the test dataset, where the context contains 1502

unseen entities. 1503

D.2 Entity Frequency Distribution 1504

We visualize the frequency of entities in Figure 13 1505

and 14. The entity frequency denotes the number 1506

of mentions of their associated entities within the 1507

entire text corpus of the training dataset. As shown 1508

in Figure 13 and 14 of QA and NER datasets, the 1509

entity frequency follows the long-tail distribution, 1510

where most entities appear a few times. For in- 1511

stance, in the NewsQA dataset, more than 20k en- 1512

tities among entire 60k entities appear only once 1513

in the training dataset, whereas one entity (CNN10) 1514

appears approximately 20k times. This observa- 1515

tion suggests that most of the elements in the entity 1516

memory are not utilized frequently. In other words, 1517

only few entities are accurately trained with many 1518

training instances, whereas there exists the stale 1519

embeddings which are rarely updated. This obser- 1520

vation raises an interesting research question on the 1521

efficient usage of the entity memory, as we can see 1522

in Figure 8 that the small size of entity memory 1523

could result in the better performance (See Ap- 1524

pendix C.2). We leave the more in-depth analysis 1525

on the entity memory as the future work. 1526

10Almost every context in NewsQA includes the text ‘CNN’
since they are originated from the CNN News.
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Context PHOENIX, Arizona (CNN) – Jamie Andrade had just gotten 
out of the shower when the men came to snatch him. Jamie Andrade 
was kept in this closet for three days without food or water, police say. 
His wife, Araceli Valencia, was mopping the kitchen in … (ellipse)…

Question who was kidnapped because of her neighbour?
Answer Jaime Andrade

Facts (Sampled)
(Valencia, spouse, Jaime Andrade Jr.)
(Jamie Andrade Jr., spouse, Valencia)

KALA (Ours)DAPT

DAPT prediction Araceli Valencia, KALA prediction Jaime Andrade

Figure 15: A textual example from NewsQA with predictions from each method (DAPT and KALA), and also the T-SNE plot
of contextualized representations from the last layer of BERT obtained by each method. Grey dots indicate tokens without any
mentions, and dots in other colors indicate tokens with mentions to the entity. We also represent sampled facts in Knowledge
Graph we used. Blue text indicates the mention of seen entities and red text indicates the mention of unseen entities. The fact is
represented as the format of (head, relation, tail). Text with yellow background indicates the ground truth answer span.

D.3 Additional Case Study1527

In addition to the case study in Figure 5, we further1528

show the case on the question answering task in Fig-1529

ure 15, like in Section 5.4, With this example, we1530

explain how the factual knowledge in KGs could be1531

utilized to solve the task via our KALA. The ques-1532

tion in the example is “who was kidnapped because1533

of her neighbor”. We observe that DAPT answers1534

this question as Araceli Valencia. This prediction1535

may come from matching the word ‘her’ in the1536

question to the feminine name ‘Araceli Valencia’1537

in the context. In contrast, our KALA predicts the1538

Jaime Andrade as an answer, which is the ground1539

truth. We suspect that this might be because of1540

the fact “(Jaime Andrade, spouse, Valencia)” in1541

the knowledge graph, which relates the ‘Valencia’1542

to the ‘Jaime Andrade’. Although it is not clear1543

how it directly affects the model’s performance, we1544

can reason that KALA can successfully answer the1545

question by utilizing the existing facts.1546

D.4 Additional Data Visualization 1547

In Figure 16 and 17, we visualize the examples of 1548

the context with its seen and unseen entities and its 1549

relational facts. We first confirm that the quality of 1550

facts is moderate to use. For instance, in the first 1551

example of Figure 16, the fact in the context that 1552

Omar_bin_Laden is son of Osama_bin_Laden, is 1553

also appeared in the knowledge graph. In addition, 1554

we observe that there are facts that link unseen en- 1555

tities to the seen entities in both Figure 16 and 17. 1556

Thus, while some of the facts in the knowledge 1557

graph are not accurate, we can represent the unseen 1558

entities with their relation to the seen entities. We 1559

expect that there is a still room to improve in terms 1560

of the quality of KGs, allowing our KALA to mod- 1561

ulate the entity representation more accurately. We 1562

leave the study on this as the future work. 1563
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Context MADRID, Spain (CNN) – One of Osama bin Laden’s sons 
has been denied asylum in Spain, an Interior Ministry spokeswoman 
told CNN on Wednesday. Omar bin Laden pictured earlier this year
during television interview in Rome, Italy. Omar bin Laden, who is in 
his late 20s, stepped off a plane at Madrid’s Barajas International 
Airport during a stopover late Monday and informed authorities that 
he planned to request political asylum, the spokeswoman said. Bin 
Laden has publicly called on his father to abandon terrorism. He 
prepared his formal asylum request Tuesday at the airport with the 
help of a translator, filing it around 1 p.m., the spokeswoman said. 
The Interior Ministry, which had 72 hours to reply to the request, was 
required to seek the opinion of the U.N. High Commissioner for 
Refugees on the matter. The UNHCR recommended … (ellipse) …

Question 1 Where was Omar previously denied?
Answer 1 asylum in Britain.

Facts (Sampled)
(Bin Laden, significant event, Flight)
(International Airport, country, Spain)
(International Airport, [UNK], Madrid)
(Omar bin Laden, father, Osama Bin 
Laden)
(Spain, diplomatic relation, Italy)
(Osama Bin Laden, child, Omar Bin 
Laden)
(Italy, diplomatic relation, Spain)

Question 2 Did Spain give a reason for turning down the asylum?
Answer 2 was given

Question 3 Who was denied asylum in Britain?
Answer 3 Omar bin Laden

Question 4 What family member of Omar bin Laden was associated with terrorism?
Answer 4 his father

Context (CNN) – unseeded Frenchwoman Aravane Rezai produced 
one of the shocks of the year on Sunday by defeating favorite Venus 
Williams in straight sets to win the final of the Madrid Open. The 23-
year-old Rezai – who had only claimed WTA Tour titles at Strasbourg
and Bali prior to Madrid – continued her remarkable week with a 6-2 
7-5 victory, adding Williams’ scalp to her earlier surprise victories 
over former world number one’s Junstine Henin and Jelena Jankovic. 
Williams, who returns to No.2 in the world behind younger sister 
Serena on Monday, lost the opening set in just 27 minutes and then 
failed to take advantage of a 4-1 lead in the. “I just cannot believe 
this,” world number 24 Rezai – who must now enter calculations for 
the French Open – told reporters. “Venus played very well and I’ve 
always respected her as a player and a champion. I just tried my best 
today and it worked well for me.” Williams, who was looking to 
secure her 44th career title, only converted two of her 13 break points 
in the batch – a statistic that contributed greatly to her defeat.

Question 1 Which player was the favourite?
Answer 1 Venus Williams

Facts
(Venus Williams, sibling, Aravane Rezai)
(Final, part of, Year)
(Mutua Madrid Open, located in the 
administrative territorial entity, Madrid)
(Victories, instance of, Military rank)
(Surprise, instance of, Military rank)
(Mutua Madrid Open, instance of, 
Military rank)
(Final, instance of, Military rank)

Question 2 Which title number was this?
Answer 2 44th

Question 3 When did the Mardrid Open final take place?
Answer 3 Sunday

Figure 16: NewsQA examples with facts in Knowledge Graph we used in this work. Blue text indicates the mention of seen
entities and red text indicates the mention of unseen entities. The fact is represented as the format of (head, relation, tail).
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Context The adenomatous polyposis coli ( APC ) tumour - suppressor 

protein controls the Wnt signalling pathway by forming a complex

with glycogen synthase kinase 3beta ( GSK - 3beta ), axin / conductin

and betacatenin.

Facts (Sampled)

(complex, subclass of,  protein)

(GSK, instance of, protein)

(glycogen, instance of, protein)

(APC, instance of, protein)

Context HLA typing for HLA - B27, HLA - B60, and HLA - DR1

was performed by polymerase chain reaction with sequence - specific 

primers, and zygosity was assessed using microsatellite markers.

Facts (Sampled)

(microsatellite, subclass of, primers)

(DR1, instance of, microsatellite)

(microsatellite, subclass of, typing)

Context We identified four germline mutations in three breast cancer

families and in one breast - ovarian cancer family. among these were 

one frameshift mutation, one nonsense mutation, one novel splice site 

mutation, and one missense mutation.

Facts (Sampled)

(frameshift mutation, subclass of, 

Germline mutations)

(Nonsense mutation, subclass of, 

Germline mutations)

(splice site mutation, subclass of, 

Germline mutations)

(missense mutations, subclass of, 

Germline mutations)

(Nonsense mutation, subclass of, cancers)

(frameshift mutation, subclass of, cancers)

(missense mutations, subclass of, cancers)

Context A nonsense mutation in exon 17 ( codon 556 ) of the RB1 

gene was found to be present homozygously in both the retinal and 

the pineal tumours.

Facts (Sampled)

(retinal, instance of, gene)

(Nonsense mutation, subclass of, gene)

Context Sixteen different p16 germline mutations were found in 21 

families, while one germline mutation, Arg24His, was detected in the 

CDK4 gene.

Facts (Sampled)

(p16, subclass of, Germline mutations)

(Germline mutations, subclass of, gene)

(p16, instance of, gene)

Context Aspartylglucosaminuria ( AGU ) is a rare disorder of 

glycoprotein metabolism caused by the deficiency of the lysosomal 

enzyme aspartylglucosaminidase ( AGA ).

Facts (Sampled)

(Aspartylglucosaminuria, subclass of, 

deficiency)

Context Detection of heterozygous carriers of the ataxia -

telangiectasia ( ATM ) gene by G2 phase chromosomal 

radiosensitivity of peripheral blood lymphocytes.

Facts (Sampled)

(ATM, instance of, gene)

(G2 phase, part of, blood)

(G2 phase, instance of, gene)

Context Recently, we reported five Austrian families with generalized 

atrophic benign epidermolysis bullosa who share the same COL17A1 

mutation.

Facts (Sampled)

(epidermolysis bullosa, instance of, 

mutations)

Figure 17: NCBI-Disease examples with facts in Knowledge Graph we used in this work. Blue text indicates the mention of
seen entities and red text indicates the mention of unseen entities. The fact is represented as the format of (head, relation, tail).
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