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Abstract

Commonsense reasoning systems should be001
able to generalize to diverse reasoning cases.002
However, most state-of-the-art approaches de-003
pend on expensive data annotations and over-004
fit to a specific benchmark without learning005
how to perform general semantic reasoning.006
To overcome these drawbacks, zero-shot QA007
systems have shown promise as a robust learn-008
ing scheme by transforming a commonsense009
knowledge graph (KG) into synthetic QA-010
form samples for model training. Considering011
the increasing type of different commonsense012
KGs, this paper aims to extend the zero-shot013
transfer learning scenario into multiple-source014
settings, where different KGs can be utilized015
synergetically. Towards this goal, we propose016
to mitigate the loss of knowledge from the017
interference among the different knowledge018
sources, by developing a modular variant of019
the knowledge aggregation as a new zero-shot020
commonsense reasoning framework. Results021
on five commonsense reasoning benchmarks022
demonstrate the efficacy of our framework, im-023
proving the performance with multiple KGs.024

1 Introduction025

The ability to understand natural language through026

commonsense reasoning is one of the core focuses027

in the field of natural language processing. To028

measure and study the different aspects of com-029

monsense reasoning, several datasets are devel-030

oped, such as SocialIQA (Sap et al., 2019b), Com-031

monsenseQA (Talmor et al., 2018), and Physi-032

calIQA (Bisk et al., 2020), each requiring different033

type of commonsense knowledge (e.g., social, taxo-034

nomic, causal, declarative, etc) to select the correct035

answer. While large-scale neural systems (Devlin036

et al., 2018; Yang et al., 2019; Liu et al., 2019b)037

have shown human-level accuracy on these bench-038

marks, recent studies (Mitra et al., 2019) also crit-039

icize that these models solve individual datasets,040

rather than learning how to perform general seman-041

tic reasoning. To this end, Ma et al. (2021) sug- 042

gested zero-shot evaluation as a genuine measure 043

for the reasoning capability of the machine. 044

Inspired by this new metric, in this work, we 045

focus on building unsupervised zero-shot multiple- 046

choice QA systems. That is, we target an arbitrary 047

commonsense reasoning task where conventional 048

approaches (that rely heavily on task-specific super- 049

vision) are not applicable to such zero-shot learning 050

scenarios. To learn QA models without expensive 051

annotation efforts, recent works (Ma et al., 2021; 052

Banerjee and Baral, 2020; Malaviya et al., 2020) 053

propose to generate a synthetic QA dataset using a 054

commonsense KG such as ATOMIC (Sap et al., 055

2019a) and ConceptNet (Speer et al., 2017). 056

Such an approach mostly focuses only on one spe- 057

cific type of reasoning relations (e.g., if-then re- 058

lation, or declarative relation), neglecting the fact 059

that real-world QA systems require simultaneously 060

considering different types of reasoning abilities 061

(e.g., declarative and social, or causal and physical 062

reasoning; Ilievski et al., 2021; Chang et al., 2021). 063

To consider different types of reasoning, this 064

paper extends ideas from the aforementioned zero- 065

shot learning to the multi-source case such that 066

it benefits from different types of commonsense 067

knowledge on individual KGs. For example, 068

ATOMIC (Sap et al., 2019a) focuses on social com- 069

monsense while ConceptNet (Speer et al., 2017) 070

contains conceptual knowledge. A practical ap- 071

proach is multi-task learning (MTL; Caruana, 1997; 072

Liu et al., 2019a), which learns a shared encoder 073

for different synthetic QA datasets from multiple 074

KGs. Despite its effectiveness, MTL scheme suf- 075

fers from interference among different KGs, which 076

results in forgetting previously learned knowledge 077

when trained on new KG which has different kinds 078

of knowledge (Pilault et al., 2021; Pfeiffer et al., 079

2021; Wang et al., 2021a; Wu et al., 2020). 080

To address these limitations, we propose a novel, 081

modularized framework that aims to learn multiple 082
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expert models for KGs, then conduct zero-shot fu-083

sion to allow collaboration among KGs. For this084

purpose, we leverage AdapterFusion (Pfeiffer et al.,085

2021) where multiple tiny modules between Trans-086

former blocks called adapters (Houlsby et al., 2019)087

can be combined after independent training, thus088

allowing a continual integration of the adapters089

without retraining the entire framework. Specifi-090

cally, we treat the adapters as different KG-specific091

experts, and combine them using an attention-like092

fusion module. To improve the fusion of adapters,093

we suggest a KG-alignment adapter that guides094

to the apt expert adapters. Here, we use KGs in095

three different synthetic supervision training: (1)096

KG-specific QA datasets to train the KG-specific097

expert adapters, (2) a KG classification datasets to098

train the KG-alignment adapter, and (3) a balanced099

mixture of KG-specific QA datasets to train the100

fusion module. Our modularized method alleviates101

the interference between different KGs, which is102

the pitfall of MTL from our empirical observation,103

and thus combines multiple KGs into a synergetic104

zero-shot framework.105

Our contributions are: (1) We suggest a simple,106

yet effective KG modularization strategy for the use107

of multiple KGs in commonsense reasoning. (2)108

We then explore the use of AdapterFusion (Pfeif-109

fer et al., 2021) for better knowledge aggregation110

based on the KG modularization in zero-shot set-111

ting. We believe that such modularized transfer112

learning is critical to using different knowledge113

sources synergetically against interference between114

them. (3) In extensive experiments on various com-115

monsense reasoning benchmarks, our framework116

achieves significant improvements over baselines117

using a single KG, even using multiple KGs, which118

indicates the robustness in genuine commonsense119

reasoning. We make our code and resulting mod-120

els available to the community to facilitate future121

research in this direction.122

2 Related Work & Preliminaries123

2.1 Zero-shot Commonsense Reasoning124

Many researchers have recently focused on build-125

ing unsupervised models without any benchmark126

supervisions (i.e., zero-shot learning). In such zero-127

shot setting, KGs are often used as an external re-128

source for improving model prior (e.g., continually129

learned from pre-trained language models) (Baner-130

jee and Baral, 2020; Bosselut and Choi, 2019; Ma131

et al., 2021), especially for commonsense reason-132

ing, as much existing work couples language mod- 133

els with neural/symbolic commonsense KGs. 134

However, most of existing work are either as- 135

suming the existence of the alignment information 136

between tasks and KGs (Banerjee and Baral, 2020) 137

or an integrated KG (Ma et al., 2021). For example, 138

ATOMIC20
20 (Hwang et al., 2021), a commonsense 139

KG which incorporates tuples from ConceptNet 140

and ATOMIC with new relations and further crowd- 141

sourcing, combines multiple KGs into a new in- 142

tegrated KG, but as widely known (Ilievski et al., 143

2020; Hwang et al., 2021), heterogeneous schema 144

between different KGs may limit triplets that can be 145

integrated.1 Rather than such symbolic KG integra- 146

tion with the inevitable loss of knowledge, in this 147

work, we explore the neural KG integration leverag- 148

ing the multiple KGs without additional processing 149

and alignment information between KG and task. 150

2.2 Transfer Learning with Modular 151

Approaches 152

The idea of having specialized parameters, or so- 153

called experts, has been widely studied to integrate 154

multiple sources of knowledge via transfer learn- 155

ing. The adapter module (Rebuffi et al., 2017; 156

Houlsby et al., 2019) has been explored as one 157

of such approaches, introducing a small number 158

of task-specific parameters at every layer of pre- 159

trained language model (PLM) while sharing the 160

parameters of underlying PLM which is fixed. To 161

address the limitations of transfer learning due to 162

high re-training cost, many works utilize the multi- 163

ple adapter modules for individual tasks with differ- 164

ent domains (Puigcerver et al., 2020; Bapna et al., 165

2019; Rücklé et al., 2020; Madotto et al., 2021) 166

considering each adapter to be an expert of each do- 167

main. Similar to our work, K-Adapter (Wang et al., 168

2021a) encodes factual and linguistic knowledge to 169

each adapter, but in this paper, we further explore 170

how to mitigate catastrophic forgetting or interfer- 171

ence among multiple adapters for better knowledge 172

transfer in zero-shot setting. 173

2.3 Multi-Task Learning 174

MTL (Liu et al., 2019a; Zhang and Yang, 2017; 175

Caruana, 1997) learns a shared representation while 176

aggregating knowledge across multiple learning 177

tasks, often leading to better generalization ability 178

of a model. However, parametric aggregation of 179

1Only 172K tuples of the 3.4M tuples and 5 relations of
36 relations in ConceptNet are integrated into ATOMIC20

20.
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knowledge with MTL has following limitations:180

(1) retraining the full model when adding new181

tasks (Houlsby et al., 2019; Pfeiffer et al., 2021,182

2020b) (2) catastrophic forgetting and interference183

between tasks leading to difficulties of solving184

each task equally well (Pilault et al., 2021; Wu185

et al., 2020; Yu et al., 2020) and (3) inconsistent186

effect (Lourie et al., 2021). To deal with these187

challenges, Mixture-of-Experts (MoE) is a param-188

eterized generalization of ensembling techniques,189

which has been adapted for MTL with gating net-190

work trained to optimize each task (Ma et al., 2018).191

However, simple linear gating networks are too192

shallow and thus may destruct task knowledge for193

commonsense reasoning.194

To address this problem, AdapterFusion (Pfeiffer195

et al., 2021) has been proposed to fuse task specific196

parameters called adapters for the given target task197

leveraging attention-like mechanism. AdapterFu-198

sion aggregates adapters, which is trained indepen-199

dently for each task, in a non-destructive manner200

mitigating aforementioned MTL problems such201

as forgetting and interference between tasks. Re-202

cently, it has been used for zero-shot cross-lingual203

transfer framework (Pfeiffer et al., 2020c; Wang204

et al., 2021b), which motivates our work to transfer205

multi-source knowledge with less interference for206

zero-shot commonsense reasoning.207

3 Modularized Zero-shot Framework208

In our setup, we repurpose synthetic QA genera-209

tion (Ma et al., 2021) for the task of knowledge-210

driven zero-shot learning for commonsense reason-211

ing, i.e., we transform a KG into multiple (Qi, Ai)212

pairs where Qi is a natural language question and213

Ai = {Ai,1, ..., Ai,m} is the set of options with214

m answer candidates. Specifically, given a triple215

(ehead, r, etail) in a KG, where ehead, etail and r216

denote head/tail entity and relation respectively, we217

transform ehead and r into a natural language ques-218

tion Qi using templates. For the option set Ai, we219

use the combination of the correct answer etail and220

m− 1 distractors which are tail entities from other221

triples sampled randomly (Ma et al., 2021) (details222

are described in Appendix B).223

Formally, we denote (Qi, Ai) as one QA sam-224

ple. The goal is to learn a QA model from the225

synthetic QA sample. In a downstream task (e.g.,226

reasoning benchmarks such as SocialIQA and Com-227

monsenseQA), we need to predict answers given228

non-synthetic test samples (Qtest, Atest). In the229

QA from ATOMIC (Sap et al., 2019a)
Q: Dana speeds on the highway. Dana is seen as
A1: considerate A2: risky(X) A3: lazy
QA from ConceptNet (Speer et al., 2017)
Q: pentode is a [MASK]
A1: ascocarp A2: girls footwear A3: vacuum tube(X)
QA from WikiData (Vrandečić and Krötzsch, 2014)
Q: badminton is a [MASK]
A1: fable A2: juvenile justice A3: type of sport(X)
QA from WordNet (Miller, 1995)
Q: princewood is part of [MASK]
A1: shaddock A2: genus Cordia(X)
A3: family Columbidae

Table 1: Synthetic QA examples. We use templates to
convert (ehead, r) into a natural language sentence.

training stage, we are given K KG-driven datasets 230

{Dk
QA}Kk=1 from K different KGs, where Dk

QA is 231

a dataset with Nk samples for KG k as follows: 232

Dk
QA = {(Qi, Ai, label)}Nk

i=1 (1) 233

where label is the index of the correct answer 234

for each sample. In this work, as shown in Ta- 235

ble 1, we generate four synthetic QA datasets 236

from ATOMIC, ConceptNet, WikiData, and 237

WordNet (More details are in Appendix C). 238

For effective use of multiple KGs at once with 239

less interference, we present a modularized frame- 240

work, which is a novel approach to knowledge 241

transfer for the zero-shot setting as shown in Fig- 242

ure 1. As a modular approach, we train the mul- 243

tiple KG-specific adapters (expert adapters) with 244

each dataset from KG. Based on these pre-trained 245

adapters, we use a zero-shot fusion method to 246

aggregate knowledge of each adapter leveraging 247

AdapterFusion (Pfeiffer et al., 2021) as a base 248

architecture with the balanced mixture of each 249

KG dataset. Further, for better knowledge fusion, 250

we suggest a KG-alignment aware adapter (KG- 251

Classifier adapter) as a guide for detecting align- 252

ment with given sample in zero-shot reasoning. 253

Here, we utilize KG classification dataset by veri- 254

fying the synthetic QA from the KGs. We describe 255

the overall process of our proposed framework in 256

Algorithm 1 (Appendix) and summarize the nota- 257

tions used in this paper in Appendix A. 258

3.1 KG Modularization 259

First, we modularize the KGs to preserve their in- 260

trinsic knowledge. Considering the importance of 261

using a suitable and well-aligned KG (Ma et al., 262

2019, 2021) on a downstream task, the subtle 263

difference between each KG should be learned 264

by the model without any interference from each 265
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Figure 1: Illustration of the proposed modular-
ized framework for zero-shot commonsense reasoning.
Each colored square represents different KGs. Not only
for KG modularization, we re-use a set of synthetic QA
datasets from the multiple KGs for the purpose of KG
classification and zero-shot fusion, which enables bet-
ter knowledge aggregation.

other. Accordingly, we adopt the adapter mod-266

ule (Houlsby et al., 2019) which repurposes a pre-267

trained language model (PLM) to incorporate each268

KG as tiny modules in between Transformer blocks.269

Specifically, as illustrated in Figure 2 (except for270

green area), the adapter training strategy involves271

injecting new layers (parameterized by Φ) into the272

original PLM (parameterized by θ). The weights273

of the original PLM are untouched, while the new274

adapter layers are initialized at random. Formally,275

we call each adapter trained with Dk
QA as an expert276

adapter for KG k, parameterized by Φk
QA.277

When a QA sample (Qi, Ai) is given for dataset278

Dk
QA, we first concatenate question Qi and each279

answer option Ai = {Ai,1, ..., Ai,m} to generate280

input sequences Ti = {Ti,1, ..., Ti,m}. Then, we281

compute a score Si,j (Ma et al., 2021) for the an-282

swer candidate Ai,j is computed as follows:283

Si,j = − 1

|Ti,j |

|Ti,j |∑
t=1

logP (wt|...wt−1, wt+1...; θ,Φ)

(2)284

where wt is a word token in the sequence Ti,j and285

P is the conditional probability from Transformer286

blocks parameterized by θ and Φ. To train the287

adapter Φk
QA, we use the marginal ranking loss (Ma288

et al., 2021) as follows:289

LQA =
1

m

Nk∑
i=1

m∑
j=1

j 6=label

max(0, η − Si,label + Si,j)

(3)290

where η represents the margin. 291

Φk
QA ← argmin

Φ
LQA(Dk

QA; θ,Φ) (4) 292

where KG-invariant parameters θ are fixed and only 293

KG-dependent parameters Φk
QA are learned, which 294

enables to store the corresponding knowledge sep- 295

arately without any interference. Further, we can 296

parallelize the training of adapter for all KGs. The 297

efficiency of adapter training allows our modular- 298

ization to be more scalable. 299

3.2 Zero-shot Fusion 300

Once the expert adapters are learned, we combine 301

the knowledge from each expert adapter using an 302

attention-like mechanism. We present a novel fu- 303

sion strategy as shown in Figure 2, which is referred 304

to as the zero-shot fusion. In contrast to AdapterFu- 305

sion (Pfeiffer et al., 2021) where the focus is learn- 306

ing to transfer knowledge to a specific target task, 307

our zero-shot fusion aims to generalize this transfer 308

to any arbitrary target task. Specifically, the zero- 309

shot fusion parameters Ψ learn to combine fixed 310

expert adapters which are parameterized by θ and 311

Φk
QA. In each Transformer layer l of PLM with the 312

injected fusion layer, the zero-shot fusion parame- 313

ters ΨQA consist of query, key, and value matrices, 314

denoted by WQ
l , WK

l , and WV
l respectively. These 315

parameters are used to learn the balancing between 316

the representation of each expert adapters through 317

attention-like mechanism. While fixing both the 318

parameters θ and all expert adapters Φ1
QA, ...,Φ

K
QA, 319

the only trainable weights ΨQA on the fusion layer 320

learns to combine the knowledge from different K 321

expert adapters by using the subset of {Dk
QA}Kk=1 322

by random sampling. Here, we balance the ratio 323

between the K knowledge-driven datasets as N 324

samples (details are in Appendix D). Formally, 325

ΨQA ← argmin
Ψ

K∑
k=1

LQA(Dk
QA; θ, {Φk

QA}Kk=1,Ψ)

(5) 326

where Ψ refers to the initialized zero-shot fusion 327

parameters. 328

More specifically, in the l-th Transformer layer, 329

let hlPLM and hk,lE be the representations of un- 330

derlying PLM parameterized by θ and an expert 331

adapter parameterized by Φk
QA, respectively. Then, 332

using the hidden representation hlPLM of PLM as 333

a query, the fusion layer performs the attention-like 334
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Figure 2: Illustration of the zero-shot fusion archi-
tecture with KG-Classifier adapter. Each colored cir-
cle represents expert adapters, except the black circle
which denotes KG-Classifier adapter. ∗ indicates the
fixed layer. Details are in Appendix F

function as follows:335

Kl,Vl = [h1,l
E , ..., h

K,l
E ] (6)336

Ql = hlPLM (7)337

zl = Attention(QlW
Q
l ,KlWK

l ,VlWV
l ) (8)338

where zl is passed to the next Transformer layer.339

Given a sample, the zero-shot fusion learns the340

suitable balancing parameters between the expert341

adapters for zero-shot reasoning. Eventually, it342

learns to identify generalizability across common-343

sense reasoning tasks.344

3.3 KG-Classifier Adapter345

AdapterFusion uses the PLM hidden representation346

hlPLM as a query which is learned when training347

on a specific downstream task. In our zero-shot348

setting, however, we use a mixture of synthetic QA349

for fusion training, which is not exactly a training350

dataset for a downstream task. To compensate for351

this issue, we present KG-Classifier adapter, which352

is a KG alignment-aware adapter, which is moti-353

vated from the fact that the ability to find which354

KG has an alignment with the given sample can be355

helpful as a role of providing a guidance for better356

performance (Ma et al., 2019, 2021).357

Specifically, we propose a novel training task for358

KG-Classifier adapter, which requires predicting359

the KG for the given sample of the task. For that,360

given {Dk
QA}Kk=1, we first transform a QA sam-361

ple (Qi, Ai) into a new KG classification sample362

[Qi;Ai,label] where [; ] is the concatenation. Then,363

we obtain a new label yi ∈ {0, 1}K indicating364

the corresponding KG source. The samples are in 365

Appendix E. Formally, KG classification dataset 366

DKGC is defined as: 367

DKGC = {([Qi;Ai,label], yi)}Mi=1 (9) 368

where M is the total size of {Dk
QA}Kk=1. 369

Based on DKGC , we learn the KG-Classifier 370

adapter parameterized by θ and ΦKGC . First, a 371

classification sample i is encoded into hCLS ∈ 372

RH then scored as ŷi ∈ RK with a linear layer 373

WKGC ∈ RK×H , i.e., ŷi = WKGChCLS . Once ŷi 374

is normalized by a softmax layer, the network is 375

trained to minimize the cross-entropy loss LKGC 376

between the prediction ŷi and its ground truth yi: 377

ΦKGC ← argmin
Φ

M∑
i=1

LKGC(yi, ŷi; θ,Φ) (10) 378

We propose to use the representation of KG- 379

Classifier adapter as a query in attention-like mech- 380

anism, referred to as the zero-shot fusion with KG- 381

Classifier adapter. That is, using the hidden repre- 382

sentation hlKGC of a KG-Classifier adapter param- 383

eterized by ΦKGC as a query, we substitute Ql in 384

Eq. (11) as follows: 385

Ql = hlKGC (11) 386

The overall zero-shot fusion architecture including 387

KG-Classifier is illustrated in Figure 2. 388

4 Experiments 389

In this section we evaluate the efficacy of our frame- 390

work on five commonsense reasoning tasks. We 391

denote KG-Classifier adapter by KG-C adapter. 392

4.1 Experimental Settings 393

All our experiments are conducted in a zero-shot 394

setting, in which the models do not have access to 395

the official training data or labels of the benchmark. 396

For the evaluation, we use the validation set of each 397

benchmark. We use accuracy as a metric. 398

4.1.1 Benchmarks 399

We evaluate our proposed framework on five 400

question-answering benchmarks for commonsense 401

reasoning: SocialIQA (SIQA) (Sap et al., 2019b), 402

CommonsenseQA (CSQA) (Talmor et al., 2018), 403

Abductive NLI (a-NLI) (Bhagavatula et al., 2019), 404

PhysicalIQA (PIQA) (Bisk et al., 2020), and Wino- 405

Grande (WG) (Sakaguchi et al., 2020). Each com- 406

monsense benchmark evaluates a specific kind 407
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Model KG a-NLI CSQA PIQA SIQA WG Avg.
Random - 50.0 20.0 50.0 33.3 50.0 40.7
Majority - 50.8 20.9 50.5 33.6 50.4 41.2
GPT2-L - 56.5 41.4 68.9 44.6 53.2 52.9
RoBERTa-L - 65.5 45.0 67.6 47.3 57.5 56.6
Self-talk (Shwartz et al., 2020) - - 32.4 70.2 46.2 54.7 -
COMET-DynaGen (Bosselut and Choi, 2019) AT - - - 50.1 - -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - -
RoBERTa-L (MR) (Ma et al., 2021) AT 70.8 64.2 72.1 63.1 59.2 65.9
RoBERTa-L (MR) (Ma et al., 2021) CN,WD,WN 70.0 67.9 72.0 54.8 59.4 64.8
RoBERTa-L (MR) (Ma et al., 2021) Whole 70.5 67.4 72.4 63.2 60.9 66.9
MTL Whole 69.8 (± 0.5) 66.0 (± 0.9) 71.2 (± 0.8) 62.2 (± 1.0) 59.5 (± 0.2) 65.7
zero-shot fusion w/o KG-C adapter Whole 72.3(±0.4) 67.9(±0.2) 73.1(±0.4) 65.9(±0.5) 59.7(±0.2) 67.8
zero-shot fusion w/ KG-C adapter Whole 72.5(±0.2) 68.2(±0.2) 72.9(±0.4) 66.6(±0.1) 60.8(±0.1) 68.2

Table 2: Zero-shot evaluation results with different combinations of models and knowledge sources across five
commonsense tasks. AT, CN, WD and WN represent ATOMIC, ConceptNet, WikiData and WordNet, re-
spectively. Whole represents the combination of AT, CN, WD and WN. Bold text indicates the best performance
on each benchmark. RoBERTa-L (MR) used the synthetic dataset after filtering, while we use the raw version.
SMLM (*) used different KG which has strong alignment with each task (e.g.AT for SIQA).

of knowledge: social commonsense for SIQA,408

concept-level commonsense for CSQA, abductive409

reasoning for a-NLI, physical commonsense for410

PIQA, and pronoun resolution ability for WG.2411

The details are presented in Appendix G.412

4.1.2 Baselines413

We compare our framework with the following414

baselines. First, to show the characteristics of each415

benchmark, we use the random or the most fre-416

quent label as Random and Majority baseline, re-417

spectively. RoBERTa-L and GPT2-L is the perfor-418

mance of each PLM without any fine-tuning. Also,419

as the baseline for the unsupervised learning model420

using KGs, we report the performance of Self-talk,421

COMET-DynaGen, SMLM as presented in original422

papers.423

For further analysis in §4.4 and §4.5, we set the424

following models that are pre-trained on the syn-425

thetic QA datasets from KGs as baselines:426

• Single-Task Learning (STL): The model is427

pre-trained on a synthetic QA dataset gener-428

ated from a single KG. Specifically, we exper-429

iment two architectural choices: PLM (STL-430

PLM) and PLM with adapters (STL-Adapter).431

For each architecture, there are four STL mod-432

els for each of synthetic QA datasets derived433

from ATOMIC, ConceptNet, WikiData,434

and WordNet. We note that the trained STL-435

Adapter is an expert adapter from a specific436

KG in our framework.437

2Some benchmarks have a strong alignment with a cer-
tain KG due to its construction strategy: SIQA-ATOMIC, and
CSQA-ConceptNet. To make a direct comparison with Ma
et al. (2021), we use the same KGs to generate data samples.

• Multi-Task Learning (MTL): The model is 438

pre-trained on multiple synthetic QA datasets, 439

each of which is generated from a KG. We 440

experiment with a PLM trained on all four 441

aforementioned synthetic QA datasets. We 442

note that the difference between STL-PLM 443

and MTL is whether to use one synthetic QA 444

dataset or multiple synthetic QA datasets for 445

its training. 446

4.1.3 Implementations 447

We employ RoBERTa-L (Liu et al., 2019b) from 448

Hugging Face’s transformers toolkit for all experi- 449

ments. We follow the default settings from Ma et al. 450

(2021). Our implementation uses Adapter (Houlsby 451

et al., 2019) and AdapterFusion (Pfeiffer et al., 452

2021) as a base model architecture from Adpa- 453

terHub (Pfeiffer et al., 2020a). We run our ex- 454

periments with three different random seeds. We 455

describe the implementation details in the Ap- 456

pendix H. 457

4.2 Main Results 458

Table 2 shows the zero-shot evaluation results on 459

five benchmark datasets. Generally, zero-shot fu- 460

sion scores higher than the baselines across all 461

benchmarks, and further, zero-shot fusion shows 462

the best performance in all benchmarks except WG. 463

We note that although Ma et al. (2021) uses the syn- 464

thetic QA dataset after sample filtering, our method 465

achieves comparable performance with the best per- 466

formance in WG, even with the raw dataset. Also, 467

the average score of all evaluation benchmarks (the 468

last column of Table 2) shows that zero-shot fusion 469

has generalisability in commonsense reasoning. 470
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(a) PLM (b) KG-Classifier adapter

Figure 3: t-SNE visualization of the hidden representa-
tion from (a) PLM and (b) KG-C adapter. Each color
denotes the five different benchmark samples.

(a) w/o KG-C adapter (b) w/KG-C adapter

Figure 4: Comparison of attention probability between
zero-shot fusion with/without KG-C adapter. The x-
and y-axis indicate expert adapters and the fusion layer
number in RoBERTa-L, respectively. The darker color
indicates higher attention probability in fusion layer.

In addition, zero-shot fusion achieves consis-471

tent improvements over MTL. These results indi-472

cate that our proposed zero-shot fusion method473

attributes to fusing the knowledge of multiple KGs474

more synergetically regardless of the task.475

Moreover, as an ablation, we compare the zero-476

shot fusion with and without KG-C adapter to ex-477

plore the efficacy of the KG-C adapter. We can478

observe that zero-shot fusion with KG-C adapter479

improves the average accuracy by 0.4%, which im-480

plies that the use of KG-C adapter improves the481

overall performance and makes our method gener-482

alize better on most of the evaluation benchmarks.483

4.3 Impact of the KG-Classifier Adapter484

To assess the effects of the KG-C adapter itself, we485

visualize and compare the final layer [CLS] token486

representation between PLM and KG-C adapter.487

Figure 3 shows t-SNE (Van der Maaten and Hinton,488

2008) plots of all representation of five benchmark489

datasets. In this figure, every sample is mapped490

into a 1024-dimensional feature space through491

RoBERTa-L model and projected back into a two-492

dimensional plane by t-SNE. We can observe that 493

KG-C adapter can separate the samples of differ- 494

ent benchmarks well despite being unseen data. It 495

verifies that KG-awareness acquired with the KG 496

classification task is beneficial to categorize the 497

given sample. The KG-C adapter can thus gener- 498

ate a relevant KG-aware query for a given sample 499

and help to fuse representations from suitable ex- 500

pert adapters in our proposed framework. 501

Further, we explore how the KG-C adapter 502

affects zero-shot fusion which is based on an 503

attention-like mechanism (Pfeiffer et al., 2021) 504

compared to zero-shot fusion without KG-C 505

adapter. Here, while zero-shot fusion without KG- 506

C adapter simply uses the representation of PLM 507

as a query, zero-shot fusion with KG-C adapter 508

leverages the representation of KG-C adapter. To 509

illustrate this strength, we visualize the attention 510

probability of [CLS] token from each fusion layer 511

as a representative in Figure 4. The column of the 512

darker cell indicates the adapter that has the big- 513

ger influence on the fused representation. We can 514

observe that zero-shot fusion with KG-C adapter 515

fuses the knowledge from different experts with a 516

subtle difference rather than focusing on a single 517

expert severely. This implies that KG-C adapter 518

enables the delicate balancing between multiple 519

knowledge sources based on the KG-alignment 520

awareness, which leads to performance improve- 521

ments in commonsense reasoning tasks. Interest- 522

ingly, both cases have the ability not to focus on 523

the expert adapter based on WikiData, which 524

can be seen as a redundant expert.3 This obser- 525

vation would benefit from the further study that 526

explores the optimal combination of KGs by expert 527

selection or rejection. 528

4.4 Mitigating Interference 529

In this experiment, we compare the amount of in- 530

terference in the MTL and zero-shot fusion with 531

KG-C adapter. We propose a novel evaluation met- 532

ric, the interference ratio, which is the percentage 533

of the incorrectly predicted samples by the multi- 534

KG models among the correctly predicted samples 535

from the STL models in common. 536

Using the interference ratio, we can precisely 537

compare the negative effects of multi-KG models 538

on knowledge aggregation since the only reason 539

to get the correct samples wrong is the interfer- 540

3The zero-shot fusion with KG-C adapter using AT, CN,
and WN shows the best average performance in Table 10.
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Figure 5: Interference ratio of multi-KG models on five
benchmarks. The lower indicates less interference.

ence caused by learning with additional KGs. We541

present the interference ratio of the models on five542

benchmark datasets in Figure 5. This figure shows543

that MTL has the higher interference ratio than544

the competing models across all benchmarks. Our545

method achieves a substantially better ratio, espe-546

cially when KG-C adapter is used. This demon-547

strates the efficacy of our framework in mitigating548

interference between knowledge, which is one of549

the major problems of MTL.550

4.5 Visualization of Knowledge Aggregation551

To verify the ability of our model to aggregate dif-552

ferent types of KGs, we compare the relative per-553

formance gains of MTL and zero-shot fusion with554

KG-C adapter when increasing the number of KGs.555

The performance of all KG-combinations for each556

framework is presented in Table 9 and Table 10. We557

visualize the improvement of performance for five558

benchmark development sets, leveraging heatmaps559

in Figure 6. Here, for the sake of brevity, we denote560

our framework with KG-C adapter as our method.561

For MTL in Figure 6 (a), the color of the cell562

denotes the relative improvement of MTL with the563

combination of KGs over the best performance564

among the STL-PLM of KGs. Also, for our method565

in Figure 6 (b), the relative improvement is mea-566

sured based on the best performance among the567

STL-Adapter of KGs, considering the difference of568

the base architecture for MTL (i.e. PLM) and zero-569

shot fusion (i.e. PLM with adapter). The green and570

red colors denote the increase and decrease of per-571

formance, respectively, when using multiple KGs572

together. The greener color on the cells indicates573

that the approach benefits from an increasing num-574

ber of KGs, which implies aggregating knowledge575

successfully.576

In Figure 6, while the MTL tends to show the577

decrease of the performance when more KGs are578

utilized for training, our method obtains relative579

performance improvement across most of bench-580

(a) MTL (b) zero-shot fusion
w/ KG-C adapter

Figure 6: Relative improvement upon the STL on five
benchmarks. The x- and y-axis indicate the benchmark
and the combination of the KGs, respectively. The
value of each cell indicates the relative performance
improvement of using multiple KGs over the highest
performance among STLs. The green and red colors
denote the improvement or decrease of relative perfor-
mance, respectively.

marks. In both framework, the slightly degraded 581

performance of the combination of KGs without 582

ATOMIC could be due to the strong alignment be- 583

tween ATOMIC and SIQA. Except for the above 584

case, we can observe that as more KGs are lever- 585

aged, the color of the cell gets greener, which im- 586

plies that our method gains more advantages for 587

better performance. This demonstrates that our 588

method enables knowledge aggregation for multi- 589

ple KGs synergetically. 590

5 Conclusion 591

Despite the existence of various types of common- 592

sense KGs, utilizing multiple KGs has not been 593

explored enough in the commonsense reasoning 594

field. Motivated by this, this paper proposes a 595

modularized transfer learning framework to fuse 596

the knowledge from multiple KGs efficiently for 597

zero-shot commonsense reasoning. Our framework 598

consists of KG modularization for expert adapter, 599

zero-shot fusion and KG-Classifier adapter. Exten- 600

sive experiments show that our framework obtains 601

strong improvements over MTL on five common- 602

sense reasoning benchmarks. 603

In the future, our work can be extended to adapt 604

our methods to further various multiple KGs with 605

studies of appropriate scale for KG modularization. 606

In addition, based on our hypothesis that the exis- 607

tence of an optimal combination, we can explore 608

the study for the optional use of modularized KG 609

experts for the best transfer learning. 610
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A List of Notations 781

We summarize the notations used in this paper in 782

Table 3. 783

B Synthetic QA 784

We generate QA for four KGs (ATOMIC, 785

ConceptNet, WikiData and WordNet) based 786

on synthetic QA generation (Ma et al., 2021) with- 787

out sample filtering. Table 4 shows the statistics of 788

the synthetic QA dataset from KGs. We use the pre- 789

fixes for relation of triplet as shown in Table 5 for 790

generating synthetic QA. The samples of synthetic 791

QA with source triplet are shown in Table 6. 792

C Commonsense Knowledge Graphs 793

A variety of KGs have been proposed to provide 794

large-scale high quality collection of different com- 795

monsense knowledge types: ATOMIC (Sap et al., 796

2019a) focuses on inferential knowledge organized 797

as typed if-then relations with variables (e.g., “if X 798

pays Y a compliment, then Y will likely return the 799

compliment”). ConceptNet (Speer et al., 2017) 800

mainly consists of taxonomic and lexical knowl- 801

edge (e.g., RelatedTo, Synonym, and IsA) and 802

physical commonsense knowledge (e.g., MadeOf 803

and PartOf). WikiData (Vrandečić and Krötzsch, 804

2014) is a general-domain KG which has a close 805

relation with Wikipedia. WordNet (Miller, 1995) 806

is a large lexical source of words and taxonomical 807

system. 808

D Dataset for Zero-shot Fusion 809

For zero-shot fusion training, we use balanced mix- 810

ture of synthetic QA from different KGs by random 811

sampling. The statistics of dataset for zero-shot fu- 812

sion is shown in Table 7. For validation dataset, we 813

balance between the ATOMIC, ConceptNet and 814

WordNet due to the lack of synthetic QA valida- 815

tion dataset from WikiData. 816
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Notation Meaning
(ehead, r, etail) Triple of KG (head entity, relation, tail entity)
Qi Natural language Question of sample i
Ai = {Ai,1, ..., Ai,m} A set of answer options of sample i, Ai,j denotes j-th answer option of sample i(1 ≤ j ≤ m)

Ti = {Ti,1, ..., Ti,m} Input sequences generated by concatenation of Qi and Ai

wt A word t-th token in the sequence Ti,j

label the index of the correct answer for sample
Dk

QA Synthetic QA generated by KG k, 1 ≤ k ≤K
Nk The number of samples for Dk

QA, 1 ≤ k ≤K
θ Parameters for pre-trained LM
Φk

QA Parameters for the expert adapter of KG k, 1 ≤ k ≤K
ΦKGC Parameters for the KG-Classifier adapter
ΨQA Parameters for the fusion layer
l The index of Transformer layer
WQ

l Query matrix of fusion layer in lth Transformer layer
WK

l Key matrix of fusion layer in lth Transformer layer
WV

l Value matrix of fusion layer in lth Transformer layer
hl
PLM Hidden representation of PLM parameterized by θ in lth Transformer layer
hk,l
E Hidden representation of expert adapter parameterized by Φk

QA in lth Transformer layer
hl
KGC Hidden representation of KG-Classifier adapter parameterized by ΦKGC in lth Transformer layer

Table 3: Notations and their meanings

KG Train Validation Total
ATOMIC 534,833 60,289 595,122

ConceptNet 363,645 19,140 382,785
WikiData 42,342 2,229 44,571
WordNet 256,922 13,523 270,445

Whole 1,197,742 95,181 1,292,923

Table 4: Synthetic QA dataset statistics. Whole repre-
sents the combination of AT,CN,WD and WN.

relation prefix
xAttr . PersonX is seen as

xIntent . Before, PersonX wanted
xNeed . Before, PersonX needed to
xReact . As a result, PersonX felt
xWant . As a result, PersonX wanted to
xEffect . PersonX then
oReact . As a result, others felt
oWant . As a result, others wanted to
oEffect . Others then
Causes can cause [MASK]

UsedFor can be used for [MASK]
CapableOf is capable of [MASK]

CausesDesire causes desire for [MASK]
IsA. is a [MASK]

SymbolOf is a symbol of [MASK]
MadeOf can be made of [MASK]

LocatedNear is often located near [MASK]
Desires desires [MASK]

AtLocation can be found at [MASK]
HasProperty has property [MASK]

PartOf is part of [MASK]
HasFirstSubevent starts by [MASK]
HasLastSubevent ends by [MASK]

Table 5: Prefixes used for synthetic QA dataset

QA from ATOMIC (Sap et al., 2019a)
(eh, r, et): (Dana speeds on the highway., xAttr, risky)
Q: Dana speeds on the highway. Dana is seen as
A1: considerate A2: risky(X) A3: lazy
QA from ConceptNet (Speer et al., 2017)
(eh, r, et): (pentode, IsA, vacuum tube)
Q: pentode is a [MASK]
A1: ascocarp A2: girls footwear A3: vacuum tube(X)
QA from WikiData (Vrandečić and Krötzsch, 2014)
(eh, r, et): (badminton, IsA, type of sport)
Q: badminton is a [MASK]
A1: fable A2: juvenile justice A3: type of sport(X)
QA from WordNet (Miller, 1995)
(eh, r, et): (princewood, PartOf, genus Cordia)
Q: princewood is part of [MASK]
A1: shaddock A2: genus Cordia(X) A3: family
Columbidae

Table 6: Synthetic QA examples. We use templates to
convert a question (ehead, r) into a natural language.

KG Train Validation Total

+ATOMIC 2,500 2,500 5,000
+ConceptNet 2,500 2,500 5,000

+WikiData 2,500 2,229 4,729
+WordNet 2,500 2,500 5,000

Total 10,000 9,729 19,729

Table 7: Statistics of the dataset for zero-shot fusion
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E KG-Classification Dataset817

We suggest KG-Classification dataset DKGC for818

KG-Classifier adapter training. The example of819

transformation from synthetic QA dataset DQA is820

shown in Table 8. The dataset size is equal to the821

whole dataset of synthetic QA (refer to Table 4).822

QA→ KG-Classification ATOMIC
Q: Dana speeds on the highway. Dana is seen as
A1: considerate A2: risky(X) A3: lazy
S: Dana speeds on the highway. Dana is seen as risky.
A: Atomic
QA→ KG-Classification ConceptNet
Q: pentode is a [MASK]
A1: ascocarp A2: girls footwear A3: vacuum tube(X)
S: pentode is a vacuum tube.
A: ConceptNet
QA→ KG-Classification WikiData
Q: badminton is a [MASK]
A1: fable A2: juvenile justice A3: type of sport(X)
S: badminton is a type of sport.
A: WikiData
QA→ KG-Classification WordNet
Q: princewood is part of [MASK]
A1: shaddock A2: genus Cordia(X) A3: family
Columbidae
S: princewood is part of genus Cordia.
A: WordNet

Table 8: KG-Classification examples from synthetic
QA dataset of each KG

F Zero-shot architecture with823

parameters824

We describe the illustration of the zero-shot fusion825

architecture with parameters in Figure 7.826

G Commonsense Reasoning Benchmarks827

SocialIQA (SIQA) (Sap et al., 2019b) requires828

reasoning for emotional and social intelligence in829

everyday situations. Each QA consists of a con-830

text that comes from ATOMIC, a question which831

is based on the relations in ATOMIC, and 3 an-832

swer candidates. It contains 38,000 multiple-choice833

questions, which is generated by crowdsourcing.834

CommonsenseQA (CSQA) (Talmor et al., 2018)835

evaluates a broad range of concept-level common-836

sense reasoning. Each multiple-choice question,837

answer and distractors are designed by crowdsourc-838

ing based on the ConceptNet.839

Abductive NLI (a-NLI) (Bhagavatula et al., 2019)840

asks to infer the most plausible explanation based841

softmax

Multi-Head Attention

Feed Forward

Zero-shot Fusion

Add & Norm

Add & Norm

Add & Norm

Zero-shot Fusion

Add & Norm

value key

query
Φ 1 Φ 2 Φ 3 Φ KGC

Φ1 Φ2 Φ3 ΦKGC

Ψ

Ψ

θ

θ

Figure 7: Illustration of the zero-shot fusion architec-
ture with KG-Classifier adapter. Each colored circle
represents expert adapters, , except the black circle
which denotes KG-Classifier adapter. ∗ indicates the
fixed layer.

on the given causal situation to test abductive rea- 842

soning in narratives. Each sample consists of the 843

beginning and the end of the story with two pos- 844

sible options to be an explanation for the given 845

situation. 846

PhysicalIQA (PIQA) (Bisk et al., 2020) requires 847

physical commonsense reasoning to select the most 848

sensible solution for the given goal among the two 849

choices. Its dataset is comprised of over 16,000 850

training samples, 2K validation samples, and 3K 851

test samples. 852

HellaSWAG (HSWAG) (Zellers et al., 2019) is an 853

evolved version of SWAG (Zellers et al., 2018), 854

which asks to infer the most proper story based on 855

the given situation. The dataset consists of 70K 856

questions with four answer options. 857

H Implementation Details 858

In all our experiments, we use max sequence length 859

128, batch size 32, weight decay 0.01, adam β1 860

0.9, adam β2 0.99, adam epsilion 1e−8, warm-up 861

proportion 0.05, and margin 1.0. The experiments 862

are conducted split across NVIDIA GeForce 3090 863

and NVIDIA RTX A5000. 864

H.1 Baselines 865

The baseline models for STL-PLM and MTL are 866

trained with learning rate 1e−5 for single epoch. 867

H.2 Adapter 868

For expert adapters, we set the batch size 869

32, and use learning rate 8e−5 after tuning in 870
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{5e−6, 8e−6, 1e−5, 5e−5, 8e−5, 1e−4}. For KG-871

Classifier adapter, we use learning rate 1e−5, batch872

size 64 for five epochs.873

H.3 Zero-shot fusion874

After experiment with learning rates {1e−5, 8e−5},875

we empirically find that a learning rate of 1e−5876

works well on zero-shot fusion without/with KG-877

Classifier adapter, respectively. Here, we set the at-878

tention drop probability 0.1. As we used extremely879

smaller subset of the synthetic QA dataset, zero-880

shot fusions are trained for five epochs.881

I Knowledge aggregation of zero-shot882

fusion883

In order to validate the efficacy on knowledge ag-884

gregation of zero-shot fusion over the STL, we885

present the results of each framework with various886

combination of KGs in Table 9 and Table 10.887
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Model KG a-NLI CSQA PIQA SIQA WG Avg.

STL-PLM

AT 71.6 64.0 72.2 63.2 60.5 66.3
CN 67.9 68.5 72.6 54.6 58.6 64.4
WD 68.4 64.7 72.0 53.7 58.6 63.5
WN 67.2 61.4 71.7 53.5 58.9 62.5

MTL

AT, CN 70.5 68.4 72.2 60.1 58.2 65.9
AT, WD 69.9 66.4 72.0 60.1 59.3 65.5
AT, WN 69.1 62.7 71.6 59.1 59.1 64.3
CN, WD 69.6 67.8 72.0 54.3 59.5 64.6
CN, WN 69.8 66.3 71.7 53.8 56.4 63.6
WD, WN 67.5 62.0 71.7 53.7 59.0 62.8

MTL

AT, CN, WD 70.4 66.8 71.5 62.4 61.0 66.4
AT, CN, WN 68.5 65.7 72.1 62.7 59.1 65.6
AT, WD, WN 71.0 65.1 71.1 63.2 60.8 66.2
CN, WD, WN 69.6 67.3 72.5 52.0 57.2 63.7

MTL AT, CN, WD, WN 69.8 67.1 72.0 61.9 59.3 66.0

Table 9: STL-PLM and MTL performance across five commonsense tasks in various combination of KGs. AT, CN,
WD and WN represent ATOMIC, ConceptNet, WikiData and WordNet, respectively. We run our experiment
with seed 42.

Model KG a-NLI CSQA PIQA SIQA WG Avg.

STL-Adapter

AT 71.3 66.5 71.1 64.4 60.3 66.7
CN 70.6 67.2 72.4 55.5 58.7 64.9
WD 66.8 61.6 69.9 51.8 58.5 61.7
WN 67.6 60.0 70.3 54.0 57.0 61.8

zero-shot fusion w/KGC-adapter

AT, CN 71.9 68.1 72.8 65.4 59.7 67.6
AT, WD 71.5 66.3 71.4 65.3 61.2 67.1
AT, WN 72.5 67.5 73.1 66.4 59.5 67.8
CN, WD 70.8 68.1 72.1 55.3 59.3 65.1
CN, WN 71.0 67.6 73.0 54.8 59.1 65.1
WD, WN 67.8 62.6 71.3 52.9 57.1 62.3

zero-shot fusion w/KGC-adapter

AT, CN, WD 72.3 68.0 72.9 66.2 60.5 68.0
AT, CN, WN 72.5 68.7 73.8 66.8 60.4 68.4
AT, WD, WN 71.9 67.6 73.0 66.0 59.7 67.6
CN, WD, WN 69.6 67.6 73.1 53.7 59.5 64.7

zero-shot fusion w/KGC-adapter AT, CN, WD, WN 72.4 68.3 73.0 66.7 60.9 68.3

Table 10: STL-Adapter and zero-shot fusion w/ KG-C adapter performance across five commonsense tasks in var-
ious combination of KGs. AT, CN, WD and WN represent ATOMIC, ConceptNet, WikiData and WordNet,
respectively. Whole represents the combination of AT, CN, WD and WN. We run our experiment with seed 42.

Algorithm 1: Proposed framework for zero-shot commonsense reasoning
Input: PLM parameters θ, K KGs
Output: Reasoning model parameters (θ, {Φk

QA}Kk=1,ΦKGC ,ΨQA)

{Dk
QA}Kk=1 ← Generate synthetic QA samples from multiple KGs (Eq. 1)

DKGC ← Generate KG classification samples from multiple KGs (Eq. 9)
for each KG k = 1, ...,K do

Φk
QA ← argminΦ LQA(Dk

QA; θ,Φ) (Eq. 4)

ΦKGC ← argminΦ

∑M
i=1 LKGC(DKGC ; θ,Φ) (Eq. 10)

ΨQA ← argminΨ

∑K
k=1 LQA(Dk

QA; θ, {Φk
QA}Kk=1,ΦKGC ,Ψ) (Eq. 5 and 11)

return (θ, {Φk
QA}Kk=1,ΦKGC ,ΨQA)
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