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Abstract

Federated Prompt Learning (FPL) adapts pre-
trained Vision-Language Models (VLMs) to fed-
erated learning through prompt tuning, leverag-
ing their transferable representations and strong
generalization capabilities. Traditional methods
often require uniform prompt lengths for feder-
ated aggregation, limiting adaptability to clients
with diverse prompt lengths and distribution bi-
ases. In this paper, we propose Federated Prompt
Learning for Heterogeneous Client Adaptation
(FedPHA), a novel framework that combines a
fixed-length global prompt for efficient aggrega-
tion with local prompts of varying lengths to cap-
ture client-specific data characteristics. Addition-
ally, FedPHA designs Singular Value Decompo-
sition (SVD) based projection and bidirectional
alignment to disentangle global conflicts arising
from client heterogeneity, ensuring that personal-
ized client tasks effectively utilize non-harmful
global knowledge. This approach ensures that
global knowledge improves model generalization
while local knowledge preserves local optimiza-
tion. Experimental results validate the effective-
ness of FedPHA in achieving a balance between
global and personalized knowledge in federated
learning scenarios. The source code is avail-
able at: https://github.com/CYFang6/
FedPHA.

1. Introduction

Federated learning (McMabhan et al., 2017; Yang et al., 2019;
Hong & Chae, 2021; Qu et al., 2022; Huang et al., 2024),
as a distributed machine learning paradigm, addresses data
silos by enabling participants to collaboratively train models
locally, ensuring data privacy while promoting Al collabora-
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Figure 1: Problem illustration of heterogeneous federated prompt
learning (FPL). (a) Heterogeneous FPL: Clients hold different
prompts, models, and data distributions. (b) Heterogeneity Prob-
lem: Aggregation of heterogeneous prompts and models under
non-IID data is inherently challenging. (c) Conflicting Problem:
Aggregated global prompts may conflict with client-specific knowl-
edge, impeding personalization during local adaptation.

tion. However, existing federated learning approaches face
significant limitations due to the frequent exchange large
volumes of model parameters with a central server. This
results in high communication overhead, increased train-
ing costs, potential performance degradation, and instability
during the training process (Wu et al., 2020; Kulkarni et al.,
2020; Chen et al., 2022; Wan et al., 2024).

Fortunately, vision-language pre-trained models such as
Contrastive Language-Image Pretraining (CLIP) (Radford
et al., 2021) have demonstrated potential in learning robust
and versatile representations suitable for various image dis-
tributions, aligning well with the objectives of federated
learning. However, the substantial communication overhead
between the server and clients poses challenges for train-
ing CLIP within federated learning frameworks (Lu et al.,
2023). Additionally, overfitting concerns may arise when
large-scale models are trained on limited client data. Prompt
learning (Zhou et al., 2022b;a; Khattak et al., 2023; khattak
et al., 2023; Li et al., 2024b) offers a flexible approach to
adapt pre-trained models to downstream tasks by training
only additional parameters. This enables prompts to capture
task-specific information while guiding the performance of
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the fixed model. Leveraging its lightweight nature, prior re-
search (Guo et al., 2023b; Qiu et al., 2023; Feng et al., 2023;
Su et al., 2024) has explored integrating prompt learning
into federated learning to address these challenges.

As shown in Figure 1, one of the fundamental challenges in
federated learning is client heterogeneity (Li et al., 2021b;a;
Huang et al., 2022; Wang et al., 2023; Huang et al., 2023b;
Hu et al., 2024; Tan et al., 2025), which manifests in two key
forms: data heterogeneity, where client data distributions
are non-IID, and model heterogeneity, where clients employ
diverse model architectures or have varying computational
resources. These challenges significantly hinder model con-
vergence and system efficiency. Intuitively, different clients
should require prompts of varying lengths to more effec-
tively capture the characteristics of their local data (proved
in Sec 4.3). However, due to aggregation constraints, current
federated prompt learning frameworks (Guo et al., 2023b;a;
Feng et al., 2023; Yang et al., 2023; Bai et al., 2024) typi-
cally enforce uniform prompt lengths across all clients to
facilitate the aggregation process. Although some works
(Li et al., 2024a; Cui et al., 2024) have proposed dual-layer
architectures incorporating both global and local prompts
while aggregating only global prompts, the structural con-
straints of these methods prevent support for varying local
prompt lengths. In such approaches, forcibly expanding or
reducing the length of prompts may lead to information loss,
further highlighting the challenge of designing methods that
can adapt to different prompt length requirements.

Furthermore, the complex interplay between shared global
knowledge and client-specific local knowledge presents an-
other critical challenge in federated prompt learning, as
illustrated in Figure 1(c). While global knowledge aggre-
gated from multiple clients can provide valuable general-
izable features, it may also contain potentially conflicting
information that hinders local optimization (Wang et al.,
2020; Li et al., 2022; Nguyen et al., 2024). Specifically, in
high data heterogeneity scenarios, the knowledge learned
from other clients may not align with or even contradict the
optimal features required for a specific client’s local task.
The conventional federated averaging approach (Guo et al.,
2023b;a) may force clients to compromise their locally opti-
mal representations to accommodate the global consensus,
potentially degrading performance on client-specific tasks.
Although some recent works (Guo et al., 2023a; Li et al.,
2024a) have attempted to mitigate this issue by separating
global and local prompts, they lack explicit mechanisms to
resolve knowledge conflicts and ensure effective knowledge
transfer between the two.

To address the challenges in Figure 1, our work is moti-
vated by two primary objectives: (1) Designing a framework
that balances federated learning aggregation requirements
with client-side flexibility, accommodating diverse prompt

lengths and varying data distributions while preserving in-
formation integrity. (2) Developing a method to mitigate
the negative impact of the conflicting parts between global
and local knowledge, allowing clients to retain their unique
characteristics while benefiting from global knowledge.

In this work, we propose FedPHA (Federated Prompt Learn-
ing for Heterogeneous Client Adaptation), a novel method
designed to address challenges related to data and model het-
erogeneity, as well as resolving conflicts between global and
local knowledge. FedPHA designs a G-L (Global-Local)
architecture to manage the varying prompt requirements of
heterogeneous clients. Each client receives a local prompt
with a unique length and a global prompt with a uniform
length. These prompts are connected through shared to-
kens and a frozen encoder, establishing an implicit coupling
between global and local prompts. To resolve conflicts
between global and local knowledge, we integrate an SVD-
based projection mechanism, which filters out conflicting
parts while preserving essential local information. In addi-
tion, we introduce a bidirectional alignment function in the
optimization process. This ensures alignment between local
and projected features while ensuring a clear distinction
between global and local features, preserving their unique
characteristics. Our main contributions are summarized as:

* We are the first to consider the heterogeneity of prompt
lengths in federated prompt learning. We design a G-L
framework to facilitate aggregation and individual client
requirements. Shared tokens and a frozen encoder connect
the global and local prompts, creating implicit coupling.
We use feature-level computation to prevent information
loss from prompt length variations.

* We devise an SVD-based projection mechanism to disen-
tangle conflicting parts between global and local knowl-
edge, retaining essential local information while remov-
ing inconsistencies. And bidirectional alignment func-
tion aligns local and projected features and preserves the
unique characteristics of global and local representations.

* We evaluate FedPHA against the existing personalized
techniques on widely-adopted datasets. Extensive experi-
ments and ablation studies demonstrate the superiority of
our methods under heterogeneous settings.

2. Related Work

2.1. Heterogeneous Federated Learning

Federated Learning (FL) aims to address the critical chal-
lenge of heterogeneity in client data distributions (Xu et al.,
2021; Huang et al., 2022; Fang & Ye, 2022; Huang et al.,
2023a). Key types of heterogeneity include label shift,
where the label distribution P(Y") differs across clients
while P(X|Y') remains consistent, and domain shift, where
the feature distribution P(X) varies while P(Y") stays un-
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changed. These challenges necessitate specialized meth-
ods to ensure effective collaboration across diverse client
datasets. To handle such heterogeneity, early approaches
in FL often include incorporated regularization terms to
the loss function (Li et al., 2020) or fine-tuning the global
model on clients’ local datasets (Fallah et al., 2020). How-
ever, these methods risk local overfitting due to the limited
and diverse data on clients, potentially compromising global
generalizability. More advanced methods explicitly aim to
balance global and local models (Chen & Chao, 2022), or
leverage client relationships through weighted aggregation
techniques, such as FedPAC (Xu et al., 2023) and FedDisco
(Ye et al., 2023). Parameter decomposition has been ex-
plored for heterogeneity; e.g., FedTP (Li et al., 2023) learns
client-specific self-attention layers. Despite progress, FL
methods continue to struggle with balancing personalization
and generalization under high data and model heterogeneity.
Our proposed FedPHA addresses these challenges by im-
proving the balance between global consistency and local
personalization under prompt-length heterogeneity.

2.2. Federated Prompt Learning

Prompt learning, initially developed for NLP, has been ex-
tended to Vision-Language Models to adapt pre-trained mod-
els to diverse downstream tasks. Early methods like CLIP
(Radford et al., 2021) used manual templates, while newer
approaches learn prompts in continuous embedding spaces.
For example, CoOp (Zhou et al., 2022b) fine-tunes CLIP
with continuous vectors, and ProGrad (Zhu et al., 2023) se-
lectively updates prompts to preserve essential VLM knowl-
edge. To integrate prompt learning into Federated Learn-
ing (FL), methods like FedPrompt (Zhao et al., 2023) and
PromptFL (Guo et al., 2023b) accelerate global aggregation
and address limited user data. Building on these, pFed-
prompt (Guo et al., 2023a) employs a non-parametric per-
sonalized attention module for local feature generation, and
pFedPG (Yang et al., 2023) designs a server-side prompt
generator for client-specific personalization. FedOTP (Li
et al., 2024a) uses unbalanced Optimal Transport to coordi-
nate global and local prompts. FedPGP (Cui et al., 2024)
adapts to heterogeneous data via low-rank decomposition
of global prompts and contrastive loss to balance personal-
ization and generalization. However, the structural limita-
tions of these methods prevent them from accommodating
varying local prompt lengths and lack a mechanism to sepa-
rate conflicting global knowledge from personalized local
knowledge. In contrast, our proposed FedPHA leverages a
dual-layer architecture and Singular Value Decomposition
(SVD) to effectively address these challenges.

2.3. Singular Value Decomposition

Singular Value Decomposition (SVD) (Golub et al., 1987)
is a technique that decomposes a matrix A € R™*" into

A=USVT, where U € R™*™_ V & R™"*"™ are orthonor-
mal matrices, and S € R™*"™ is a diagonal matrix of sin-
gular values. SVD enables dimensionality reduction by
retaining only the largest singular values. SVD has been
widely explored in large language models (LLMs) for its
ability to decompose matrices into orthogonal components,
offering robust mathematical foundations for a variety of ap-
plications. It is a powerful tool for dimensionality reduction
(Hsu et al., 2022; Yuan et al., 2023; Saha et al., 2023; Wang
et al., 2024), enabling the extraction of key features while
minimizing redundant information. Additionally, SVD has
proven effective in noise filtering (Sharma et al., 2023; Dai
et al., 2024), as it isolates signal-dominant components and
suppresses less significant, noisy contributions. Further-
more, it is frequently utilized in subspace projection (Feng
et al., 2023; Lan et al., 2024), enabling data representation
in lower-dimensional subspaces while preserving essential
properties and optimizing computational efficiency. Our
work builds on these principles by proposing an SVD-based
projection mechanism in the context of federated prompt
learning, addressing heterogeneity and reducing potential
conflicts between local and global information.

3. Proposed Method

In this section, we present the details of FedPHA illustrated
in Figure 2. To address the issue that existing methods
cannot adapt to heterogeneous prompt lengths, FedPHA in-
troduces a G-L heterogeneous federated prompt architecture
(Sec 3.2). Meanwhile, to reduce the negative impact caused
by the conflict between global prompts and local prompts,
we propose SVD-based projection (Sec 3.3) and bidirec-
tional alignment (Sec 3.4). The details of our FedPHA are
provided in Algorithm 1.

3.1. Preliminaries of Prompt Learning

Prompt learning efficiently adapts pre-trained models like
CLIP for downstream tasks by introducing learnable pa-
rameters in the text encoder. Unlike zero-shot transfer,
which uses fixed word embeddings W = {wy, wa,...,w;}
from handcrafted prompts (e.g., ”a photo of a (label)”),
prompt learning adds learnable continuous context vectors
Py = {p1,p2,...,pr} € RT*? where T is the prompt
length and d is the embedding dimension. This allows the
text encoder to capture task-specific information while keep-
ing the image encoder fixed. For a class label tcjygs, the
textual input is extended as:

Y, = {tsos, Pi, t1,t2, ..., tL, tClass; tEOS } (1)
where tsos and tgps are learnable start/end embeddings,
{t1,...,tr} are fixed word embeddings, and tcj,g is the
class label embedding. The text encoder g(+), composed of
transformer layers, generates the prompted textual feature
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Figure 2: Our proposed FedPHA framework for heterogeneous federated prompt learning consists of three main components. The
dual-layer architecture (Sec 3.2) assigns each client a local prompt of varying lengths and a global prompt of uniform length. The longest
prompt forms frozen tokens (¢sos, tciass, tsuffix, tE0s), distributed to all clients for input sequence construction, with tpadding filling gaps.
The top right shows the SVD-Based Projection (Sec 3.3), where the global prompt is decomposed via SVD. The last d’ components of V7
form the null space, into which local prompts are projected. The bottom right illustrates the bidirectional alignment (Sec 3.4), which uses
Lpun to align local and projected features, and Lpush to separate local and global features. Only local features are used for final inference.

Gy = 9(Yy, 0,) € R?, where 0, includes frozen pre-trained
parameters and the learnable P;. For image classification,
textual features {g,; }$; are compared with image features
f. extracted by the frozen image encoder f(-). The class k
probability for an image x is:

exp(sim(Gpk, f)/T)

P(g=klx)= f ’
(y | ) chzl exp(sim(ﬁpu f)/T)

2

where sim(-, -) is cosine similarity, and 7 regulates the Soft-
max sharpness. The learnable prompts P; are optimized
with cross-entropy loss. For a dataset D of input-output
pairs (X, y), the objective is:

Lcg = argpmin ]E(X,y)N'D ‘C(Sim(gpv f)a y) 3

3.2. Federated Prompt Heterogeneous Architecture

In federated learning, different clients often exhibit diverse
data distributions and task requirements, making it difficult
to use a single, fixed-length prompt that balances person-
alization and aggregability. To address this issue, we pro-
pose a G-L heterogeneous federated prompt architecture,
which comprises a fixed-length global prompt and a variable-
length local prompt for each client. Additionally, we employ
frozen contextual tokens and zero-padding tokens to ensure
the implicit coupling between global and local prompts,
providing a consistent structure that facilitates subsequent
feature computation.

Suppose there are N clients indexed by ¢ = 1,2,..., N
and a central server. Each client ¢ holds a local dataset D;
of size n;, with {Dy,..., Dy} collectively denoting the
full dataset. Let C, C {1,..., N} be the subset of clients
selected at communication round 7. Each selected client
performs local training for £ epochs using a loss £. During
local optimization, the global prompt P,/ € R7sxd and
the local prompt P} € R+ (where Ty, is fixed and T;
may vary across clients) are updated. Let 7 be the learning
rate. For each local epoch e, the updates are

P*r,ieJrl

“

P*Tze - UVP*,iﬁ(Pgrze, 13[7;67 D; )
where P’} denotes either the global prompt P, or the
local prompt P

At the end of local training, only PT’ is uploaded to the

server, while Pr Eis kept locally to preserve personalized
information. The server then aggregates the global prompts
from all clients ¢ € C,.. The new global prompt is obtained
by weighted averaging based on the sample sizes n; of the
participating clients:

n; r B

(r+1,0) _
Pg - g8

®

iec, ZJ €Cr

where n; denotes the number of samples in the local dataset
D;. This ensures that clients with larger datasets contribute
more significantly to the aggregated global prompt. The

updated global prompt P_yH’O) is then distributed to all



FedPHA: Federated Prompt Learning for Heterogeneous Client Adaptation

clients in preparation for the next round of communication.
Formally, the objective function can be expressed as:

N
. Uz e T,€.
qu{%l?}fle ; Zj\/:1 nj [:1 (Pgﬂ ?Pl,z sz); (6)
where £;(P,’}, P/;°; D;) denotes the local loss of client .
During training, both global and local prompts are lever-
aged to jointly optimize the model. During inference, only
local features, derived from the local prompts, are used for
final inference to ensure adaptability to personalized data
distributions.

Heterogeneous Key. The fundamental distinction of our
method from others lies in its unique handling of global
and local prompts. Specifically, on the text-encoder side,
each client is assigned a local prompt of varying lengths
and a global prompt of fixed length. We select the
longest prompt among all clients to construct the frozen
tsos, tClasss tsuffix, teos via Eq.(1). Each client then forms
three types of input sequences by concatenating its pre-
fix tokens, class name tokens, and suffix tokens with: (1)
the global prompt P;’7, (2) the local prompt P; %, and (3)

g’
the projected local prompt ]Slff (in Eq.(10)). If the result-
ing sequence is shorter than the maximum encoder length
Lyax, zero vectors (tpagding) are appended. The final input
sequence can be represented as:

Y, = {tsos, Pt tclass, tsuffix tEOS  tpadding }» @)

The global and local prompts are implicitly coupled and
interact through shared prefix and suffix tokens, as well
as a common Transformer encoder. This interaction en-
sures that while local prompts retain their client-specific
distinctions, the overall model still operates within a shared
high-dimensional representation space, promoting informa-
tion exchange across clients. Finally, the resulting input
sequences are fed into the pre-trained CLIP encoder along-
side image representations to compute similarity scores and
perform classification.

3.3. SVD-Based Projection

Although the above framework achieves personalization
with heterogeneous prompt lengths by thoroughly separat-
ing global prompts and local prompts, an interaction mech-
anism between global and local prompts is still required
to facilitate information exchange. Simple alignment or
orthogonality between the two may be insufficient in cases
of highly heterogeneous data distribution. Therefore, it is
necessary to further refine local prompts to mitigate poten-
tial conflicts with global prompts. Inspired by subspace
projection in matrix factorization, we propose a projection
mechanism based on Singular Value Decomposition (SVD)
to filter out unnecessary or conflicting components from
local prompts.

If Pye e R75>4 be the current global prompt at local epoch
e. We directly perform singular value decomposition (SVD)
on PgT *¢, obtaining

P =USV', ®)

where U € RTs*Ts and V' € R?*4 are orthonormal matri-
ces, and S € RT9*4 is a diagonal matrix with descending
singular values. Because the global prompt has length T},
and the local prompt may have a different length 7}, choos-
ing U to construct the projection could lead to dimension
mismatch. Therefore, we utilize V', which naturally resides
in the same feature dimension d as both local and global
prompts, to form the null space. Let Vo € R%*? be the
matrix collecting the columns of V' corresponding to the
smaller singular values. The number of selected columns d’
is determined by the hyperparameter ratio p:

d = [(1-p)d]. 9

These directions typically capture less significant or poten-
tially conflicting components in the global prompt. The null-
space projection matrix () is then defined as Q = V,V,'.
Then the projection of the local prompt is defined as:

P =PfQ =PV, (10)

where P° € R"+*% s the local prompt for client 7. The
projected prompt ]S;:f € RT:*4 retains the same dimen-
sions as the original local prompt. By projecting P;:f onto
Q, we effectively “filter out” dimensions dominated by the
global prompt’s major components, thereby reducing po-
tential conflicts between local and global information. This
step is crucial in heterogeneous settings: it preserves local
discriminative features relevant to each client’s data while
mitigating interference from global prompt directions that
may not generalize to individual client distributions.

3.4. Bidirectional Alignment

To mitigate conflicts, we project the local prompt P;ff into
the null space. However, this may lead to information loss,
reducing client-specific expressiveness. To address this, we
introduce a bidirectional alignment mechanism: a “pull”
term to retain information by aligning the local prompt
with its projection and a “push” term to ensure sufficient
divergence from the global prompt.

To ensure that the local prompt does not deviate excessively
from its projected prompt, we minimize the mean squared
error (MSE) between f(P,%) and f(P,%). Formally,

2
) (1)

2

Lot = | F(P) = £(PF)

which encourages P, to “pull” closer to its null-space-

projected version ﬁlrf in the feature space. By doing so, we
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retain essential local information while filtering out compo-
nents that conflict with the global prompt.

In parallel, to prevent the local prompt from collapsing too
closely to the global prompt, we introduce a margin-based
“push” term to maintain a safe distance between f (Plrf)
and f (Pgr ’e). Specifically,

Loush = ReLU (a = | f(P) = f(Py)2),  (12)

where o > 0 defines the minimal acceptable distance. This
ensures that each local prompt remains sufficiently person-
alized and does not become overly dominated by the global
prompt’s major components.

In practice, both of these MSE-based terms (pull and push)
are combined with standard cross-entropy losses (for both
the local prompt and the global prompt), forming a unified
training objective:

L= Lcr(Pyi) + Lee(Py

This bidirectional alignment strategy mitigates potential con-
flicts arising from heterogeneous data distributions, ensuring
that local prompts retain discriminative characteristics while
still benefiting from global knowledge.

7/!/@) + ACpull + £push (13)

4. Experiments

In this section, we conduct extensive experiments aiming at

answer following research questions:

* Q1: Does the proposed method maintain its effectiveness
when the prompt length is fixed? How does it compare to
the state-of-the-art (SOTA) methods? (in Sec 4.2)

¢ Q2: For clients with diverse data distributions, can
prompts of varying lengths enhance performance? Does
length heterogeneity provide any advantage? (in Sec 4.3)

4.1. Experimental Setup

Datasets. Following previous research (Guo et al., 2023b;a),
we evaluate our method on multiple public benchmark
datasets exhibiting significant data heterogeneity. We use
five visual classification datasets—Food101 (Bossard et al.,
2014), DTD (Cimpoi et al., 2014), Caltech101 (Fei-Fei,
2004), Flowers102 (Nilsback & Zisserman, 2008), and Ox-
fordPets (Parkhi et al., 2012)—collectively referred to as
the CLIP dataset (1 domain). These datasets are configured
using a pathological non-IID setting, where each client is
randomly allocated a distinct number of non-overlapping
classes to simulate heterogeneous data distributions. In addi-
tion, we select two cross-domain datasets, Office31 (Saenko
et al., 2010) (3 domains) and OfficeHome (Venkateswara
et al., 2017) (4 domains), where the data for each client
is drawn from a specific domain, further emphasizing data
heterogeneity. Finally, we employ two classic image bench-
mark datasets, CIFAR10 (Krizhevsky et al., 2010) and

Algorithm 1 Overall Procedure of FedPHA

Data: The random public dataset {D; }7L, sizes {n;};
Input: Communication rounds R; Local epochs E; Learning

rate n; SVD ratio p; Margin «; Initial global prompt Pg(o)
Initial local prompts Pl(f;).

Output: The final local models M

// Federated Rounds

forr=1,2,...,Rdo

// Participant Side

for each client 7 € C, in parallel do

P;;’E), PZEZ’E) — LocalUpdate(P;j;?l), PZSZ_I’E))

end
// Server Side

Py P in Eq.(5)

icc, Tyeamy Lo
end

// Local Epochs
fore=1,2,...,Edo

// SVD-Based Projection
e T -

Py« USV ' inEq.(8)

Vo « V[:,d(1 — p) : d] via Eq.(5)

Q + VLVy'
Pl + P/Q in Eq.(10)

// Construct projection

// Compute losses

Lowr < | £(P]) = F(P79)|| in Eq.(11)
Louwsn <= ReLU(a — [|f(F;7) = f(Pg7)l) in Eq.(12)
L+ ﬁCE + [,pull + Epush in Eq(13)

// Update prompts using gradients
Update Pg(j;-’eﬂ), Pl(;’eﬂ) using VL

end
return MF // Final model after R rounds

CIFAR-100 (Krizhevsky & Hinton, 2009), where data is ran-
domly partitioned among clients using a symmetric Dirichlet
distribution as in (Cao et al., 2023; Shamsian et al., 2021)
with 8 = 0.5, further enhancing the diversity in data dis-
tribution. Details of these dataset setups are provided in
Appendix Section B.1.

Baselines. We compare our FedPHA with five baseline
methods: (1) Zero-shot CLIP (Radford et al., 2021), a lo-
cal training approach that utilizes manually designed text
prompt templates to generate the model’s initial perfor-
mance. (2) PromptFL (Guo et al., 2023b), a prompt-based
federated learning method that learns a unified prompt
across clients using the federated averaging mechanism
(McMahan et al., 2017). (3) PromptFL+Prox (Li et al.,
2020), as introduced in (Guo et al., 2023a), which con-
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Table 1: Comparison with the SOTA methods with same prompt length on single-domain datasets across 10 clients.

Methods | Caltech101 ~ Food101  Flowers102 OxfordPets ~ DTD

Zero-Shot CLIP (Radford et al., 2021) || 91.43£0.24 85.4320.05 67.70£0.12 88.95:0.12 43.28+0.10
PromptFL (Guo et al., 2023b) 9347042 86.60£0.10 85.54+0.65 93.44+0.25 5524031
Prompt+Prox (Li et al., 2020) 93.55+0.36  86.65+0.17 85.74+0.25 93.48+0.32 55.64+0.23
FedPGP (Cui et al., 2024) 95.86£0.50 88302041 94.46%2.44 93.87+0.31 62.9543.01
FedOTP (Li et al., 2024a) 98.11x0.04 92.96+0.16 98.47+0.07 98.60+0.11 89.97:0.17
FedPHA 99.05£0.08 96.420.05 99.25+0.05 99.25+0.06 91.79+0.17

Table 2: Comparison with the SOTA methods with the same prompt length on multi-domain datasets. Each domain consists of two
clients, and the table presents both the average accuracy within each domain and the overall global accuracy.

Methods Office31 OfficeHome

A D W Avg A C P R Avg
Zero-Shot CLIP (Radford et al., 2021) || 80.96 71.63 74.60 75.73 | 84.21 6637 89.16 89.68 82.35
PromptFL (Guo et al., 2023b) 8820 84.89 91.14 88.08 | 86.75 7530 9438 9324 87.41
Prompt+Prox (Li et al., 2020) 88.32 85.03 9143 8826 | 86.58 75.65 94.79 9327 87.57
FedOTP (Li et al., 2024a) 86.62 87.40 93.55 89.19 | 80.38 76.29 9249 87.86 84.26
FedPGP (Cui et al., 2024) 89.55 90.70 9450 91.58 | 88.34 78.09 9549 93.86 88.95
FedPHA 9044 9580 9798 94.74 | 88.70 79.59 9593 93.83 89.51

strains local prompt updates using a proximal term instead
of direct aggregation. Additionally, we include two popular
methods that integrate both global and local prompts: (4)
FedOTP (Li et al., 2024a), which employs the Unpaired
Optimal Transport (UOT) method to align prompts with
the most relevant image features, thereby enhancing per-
sonalization. (5) FedPGP (Cui et al., 2024), which uses
low-rank decomposition and contrastive learning to balance
personalization and generalization.

Implementation Details. All methods use a frozen CLIP
model with two backbones: ResNet50 (He et al., 2016)
and ViT-B16 (Dosovitskiy et al., 2021), with ViT-B16 as
the default. Local training rounds are set to £ = 1 and
federated communication rounds to R = 50, except for
CIFAR-10 and CIFAR-100, where R = 25. Final perfor-
mance is averaged over the last 10 communication rounds.
The number of clients varies by dataset. CLIP datasets
(Food101, DTD, Caltech101, Flowers102, OxfordPets) use
N = 10, with each client holding a distinct class subset.
Multi-domain datasets (Office31, OfficeHome) set N to
twice the number of domains, assigning each domain’s data
to two clients. CIFAR-10 and CIFAR-100 use N = 100,
with each client randomly assigned 10% of the dataset.
For learnable prompts, the default length is 16 with a 512-
dimensional representation. In heterogeneous settings, local
prompt lengths range from 4 to 32, while the global prompt
length remains 16. The batch size is 32 for training and
128 for testing. For hyperparameter settings, the ratio (p in

Eq.(9)) defaults to 0.8, and alpha (« in Eq.(12)) to 1. More
details are provided in Appendix Section B.2.

4.2. Comparison with State-of-the-Art Methods

Evaluation Protocol. We evaluate the models on each
client’s private test data, which follows the same distribution
as its training set. The reported results represent the average
test accuracy across all clients over three different seeds.
For fairness, we use the same prompt length as other models
for comparison.

Single-Domain Model Evaluation. To verify that the
proposed method remains effective with a fixed prompt
length, we first evaluate FedPHA against baseline methods
on single-domain CLIP datasets under a pathological non-
IID setting. For ease of comparison, Table 1 presents results
using the 16-shot setting. As shown in the table, FedPHA
consistently outperforms state-of-the-art algorithms across
all datasets, demonstrating the effectiveness of our global-
local prompt separation mechanism in single-domain sce-
narios. Notably, on the Food101 dataset, FedPHA achieves
a 3.46% performance gain over the best competing method,
further highlighting its superiority. An analysis of conver-
gence speed is provided in Appendix Section C.1.

Impact of Number of Shots. Additionally, we explore
the impact of the number of shots on FedPHA. To ana-
lyze this, we vary the number of shots during training from
[1,2,4,8,16]. As shown in Figure 3, FedPHA consistently



FedPHA: Federated Prompt Learning for Heterogeneous Client Adaptation

o v
N ©

Accuracy %

o
w

—4— PromptFL FedPGP —$— FedOTP —$— FedPHA
Caltech101 Food101 Flowers102 OxfordPets DTD
100
96
- * S
X £ £ B
.92 > > > 80
19 o 85 9 %)
© © © ©
— 88 fos foy fos
=1 =1 594 = 3
o o o I . 1 o 60
+ [v] Q75 [¥] Ll ¥ —— [
3 <84 < = < f/I/ < {}4_,,/"
o1 12 4 8 16 8o 12 4 8 16 65 12 4 8 16 90 12 4 8 16 40 12 4 8 16

Shot Number Shot Number

Shot Number

Shot Number Shot Number

Figure 3: Ablation study on the number of shots. The x-axis represents the number of shots, and the y-axis denotes the average test
accuracy. Each curve corresponds to a different method, with error bars indicating standard deviations across multiple random seeds.

Table 3: Runtime overhead of SVD-based prompt projection.
All results are averaged over 10 communication rounds. Compared
to model training, the SVD overhead is negligible

Operation Stage H Time (ms) ‘ Overhead

Global prompt decomposition 4.2 <1%
Local prompt projection 2.8 <1%
Local model training 4536.8 —

outperforms other methods across all shot settings. In par-
ticular, when the number of shots is small, other methods
experience significant performance degradation, whereas
FedPHA exhibits only a slight decline compared to its per-
formance at 16 shots. This demonstrates the robustness of
our approach, enabling effective and rapid adaptation to
personalized client requirements even in few-shot scenarios.

Multi-Domain Model Evaluation. We also evaluate the
performance of FedPHA in comparison to baseline methods
on multi-domain datasets. To simulate client heterogeneity,
we partition data within the same domain into two clients
using a Dirichlet distribution (5 = 0.5). We analyze both
the average performance of clients within the same domain
and the overall mean performance across all clients. Results
for the Office31 and OfficeHome datasets are summarized
in Table 2. Our method consistently outperforms baseline
approaches. For instance, on the Office31 dataset, FedPHA
outperforms FedPGP across all domains, further validating
its effectiveness in handling heterogeneous data distribu-
tions. These results demonstrate the robustness of FedPHA
under diverse domain settings.

Computational Cost of SVD. To evaluate the efficiency of
the proposed SVD-based prompt projection mechanism, we
measure its runtime cost on the client side. As summarized
in Table 3, the additional overhead introduced by SVD is
minimal compared to standard model training. Specifically,
global prompt decomposition and local prompt projection
take 4.2 ms and 2.8 ms per communication round on aver-
age, each contributing less than 1% to the total training time.
Importantly, these operations are performed only once per
round, not per batch, making their amortized cost negligi-
ble. In contrast, local model training—including forward

and backward passes—dominates the runtime, taking over
4 seconds per round. These results indicate that the added
SVD step does not introduce any significant computational
bottleneck, even under large-scale settings. This lightweight
design confirms that the benefits of SVD-based global-local
prompt separation come at almost no cost, further support-
ing the practicality of our method in federated settings where
efficiency is critical.

4.3. Effectiveness of prompt length heterogeneity

Evaluation Protocol. In this set of experiments, each client
uses a different prompt length ranging from 4 to 32. For
multi-domain datasets, the specified prompt lengths are
applied, whereas for CIFAR-10/100, each client is assigned
a randomly selected prompt length.

Cross Domain Analysis. We investigate the impact of
different prompt length combinations on cross-domain per-
formance. In the Office31 dataset with three domains, each
domain has eight possible prompt length choices: [4, 8, 12,
16, 20, 24, 28, 32]. After evaluating 512 combinations, we
identify the optimal combination as [28, 12, 16], achiev-
ing an accuracy of 95.45%. Figure 4 visualizes the results,
where the color intensity of each cell represents the global
accuracy for a given prompt length combination. Black-
outlined cells indicate cases where all domains use the same
prompt length. Notably, most high-accuracy points fall out-
side these black-boxed regions, suggesting that the conven-
tional approach of assigning the same prompt length to all
clients is suboptimal and fails to capture the varying prompt
length requirements introduced by data heterogeneity. In
contrast, FedPHA enables each client to adopt different
prompt lengths, demonstrating its effectiveness in handling
heterogeneous data distributions. More details and addi-
tional experiments on the OfficcHome dataset are provided
in Appendix Section C.2.

Intra Domain Analysis. Furthermore, we explore the im-
pact of prompt length on client performance across different
length combinations. The two clients within the same do-
main use identical prompt lengths. As shown in Figure 5,
we illustrate the effect of prompt lengths on the performance
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Figure 4: Impact of Prompt Length on Domains Performance across different length combinations on overall accuracy. Each 8x8
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a fixed prompt length in Office31 dataset. The X-axis represents the average prompt length of Domain 2, while the Y-axis represents that
of Domain 3. Color intensity indicates accuracy, with red representing higher accuracy and blue representing lower accuracy. Black-boxed
grids highlight cases where the prompt length of Domain 1 matches that of Domain 2 or 3 under the current length combination.
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Figure 5: Impact of Prompt Length on Client Performance
across different length combinations. Clients (1,2), (3,4), and (5,6)
belong to the same domain, respectively. The X-axis represents
the prompt length, while the Y-axis shows the client’s accuracy.
The box depicts the IQR, capturing the middle 50% of values,
with the horizontal line inside indicating the median accuracy.
Whiskers extend to the min/max within 1.5 times the IQR, and
outliers appear as points beyond them, highlighting deviations.

of each client. We observe that clients within the same do-
main exhibit similar sensitivity to prompt length, even when
their data distributions differ. For instance, both Client 1 and
Client 2 achieve the best performance with a prompt length
of 32, while the worst performance occurs at a prompt length
of 4. However, the sensitivity to prompt length varies across
domains. For example, while Client 1’s optimal prompt
length is 32, Client 3 performs best at a prompt length of 16
and performs poorly at 32.

Robustness Analysis. On the CIFAR datasets, we randomly
select prompt lengths to evaluate robustness. Table 4 com-
pares state-of-the-art methods under the Dirichlet setting
(8 = 0.5). FedPHA achieves the best performance on both
datasets, demonstrating strong generalization in non-IID
scenarios. Its improvement on CIFAR-100 further high-
lights the effectiveness of the global-local prompt separation
mechanism in balancing personalization and global perfor-
mance. To examine prompt length adaptability, we compare
FedPHA with fixed-length (16 tokens) and random-length

Table 4: Comparison with the SOTA methods and FedPHA
variants (fixed vs. random prompt length) on CIFAR-10 and
CIFAR-100 across 100 clients. All baseline methods use a fixed
prompt length of 16. FedPHA (fixed length) also uses 16 tokens
for all clients, while FedPHA (random length) assigns each client
a random prompt length between 4 and 32.

Methods | CIFAR-10  CIFAR-100
CLIP (Radford et al., 2021) || 87.88£0.11  64.8920.19
PromptFL (Guo et al., 2023b) || 91.70+0.11  72.58+0.04
Prompt+Prox (Li et al., 2020) || 91.83£0.12  72.08+0.09
FedPGP (Cui et al., 2024) 92.10£0.21  74.81+0.48
FedOTP (Li et al., 2024a) 93.43+0.41  75.07+0.39
FedPHA (fixed length) 94.11x0.14  75.92+0.13
FedPHA (random length) 93.80+0.17  75.63+0.17

(4-32 tokens) prompts. The fixed-length variant slightly
outperforms the random one, not due to design limitations,
but because random lengths may not align with each client’s
data distribution, leading to occasional inefficiencies. In con-
trast, fixed lengths ensure stable optimization and aggrega-
tion. Nevertheless, the random-length setting better reflects
real-world client heterogeneity, and FedPHA is uniquely ca-
pable of operating under such conditions. Future work may
explore adaptive prompt assignment strategies to further
improve performance in heterogeneous environments.

5. Conclusion

This paper proposes a novel and effective method of Fed-
PHA for federated prompt learning. FedPHA is capable
of handling heterogeneity problem and alleviating conflicts
between global and local knowledge. In particular, we de-
sign a G-L heterogeneous federated prompt architecture to
effectively accommodate varying prompt lengths. Mean-
while, we introduce SVD-based projection and bidirectional
alignment to reduce the negative impact caused by the con-
flict between global and local prompts. Experimental re-
sults on classification tasks demonstrate that our method
outperforms state-of-the-art approaches and validate the
effectiveness of prompt length heterogeneity.
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A. Method Details
A.1. Notations Definition

To facilitate understanding of our proposed FedPHA, we
provide a summary of key notations used throughout this
paper in Table 5.

Table 5: Summary of Notations.

Symbol | Definition | Symbol | Definition

N Clients number L Loss function

i Client index «a Push loss margin

D; Local dataset U, S,V | SVD matrices

n; Dataset size p Null-space ratio

Cyr Clients in round r d Null-space dim.

E Local epochs 1% Null-space basis
Py Global prompt Q Projection matrix
P/® | Local prompt Y, CLIP text input
ﬁlrf Projected prompt tpadding | Zero padding

Pg("' 10 | Aggregated prompt g() Text encoder

T, Global prompt length f) Image encoder

T; Local prompt length Jp Text feature

n Learning rate f Image feature

T Softmax temperature || sim(-,-) | Cosine similarity

A.2. Discussion

Distinction from Existing G-L Prompt Methods. Here,

we provide a more detailed analysis of how our approach

fundamentally differs from prior work in terms of architec-
ture design and personalization flexibility.

* FedOTP (Li et al., 2024a) adopts a dual-prompt structure
consisting of a global prompt and a local prompt. How-
ever, it requires both prompts to be of equal length due to
the constraints of its unbalanced optimal transport frame-
work. This architectural constraint significantly limits
flexibility and the ability to tailor local representations to
client-specific needs.

* FedPGP (Cui et al., 2024) employs a global prompt along-
side two local adapters. In this setup, the local prompt is
generated by adding a local adapter to the global prompt,
resulting in a tightly coupled formulation. This additive
dependency forces the local prompt to inherit features
from the global prompt, which may be suboptimal. In
scenarios where the global prompt is poorly aligned with
a client’s local data, this coupling can lead to negative
transfer, reducing the effectiveness of personalization.

* FedPHA (Ours) introduces a decoupled G-L prompt
structure where each client receives a shared fixed-length
global prompt and independently configures its local
prompt with a variable length. This design explicitly
supports heterogeneous prompt configurations, enabling
better alignment with diverse data distributions and com-
putational capacities. Importantly, by decoupling global
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and local prompts, FedPHA avoids negative transfer from
global representations to client-specific learning, thereby
enhancing the robustness and adaptability of personaliza-
tion in federated settings.

B. Experimental Details
B.1. Details of Dataset Setup

For our evaluation, we selected nine diverse visual classifi-
cation datasets as benchmarks. Table 6 provides a detailed
overview, including the original task, number of classes,
training and test sample sizes, and domain counts.

For datasets with multiple domains, we followed the well-
established Office-31 benchmarking protocol, which in-
cludes three domains: Amazon (A), Webcam (W), and
DSLR (D). These domains represent variations in image
quality and style, capturing differences between online prod-
uct images (Amazon), low-resolution webcam photos, and
high-resolution DSLR images. Additionally, we incorpo-
rated Office-Home, which consists of four domains: Art
(Ar), Clipart (Cl), Product (Pr), and Real-World (Rw). These
domains encompass diverse image sources, including artis-
tic renderings, clipart illustrations, product photos, and nat-
ural scene images, effectively capturing distribution shifts
across different acquisition methods and environments.

By leveraging these datasets, our evaluation ensures a com-
prehensive assessment of model performance across varying
domains and real-world conditions.

B.2. Details of Implementation

The optimizer used is Stochastic Gradient Descent (SGD)
(Robbins & Monro, 1951) with a learning rate of = 0.001.
All input images are resized to 224 x 224 pixels and fur-
ther divided into 14 x 14 patches with a dimension of 768.
We conducted all experiments with PyTorch (Paszke et al.,
2019) on NVIDIA RTX 3090 GPUs.

B.3. Details of Baseline Implementation

To ensure fair and transparent comparison with existing
Global-Local prompt methods, we re-implemented both
FedOTP (Li et al., 2024a) and FedPGP (Cui et al., 2024) un-
der a unified experimental framework. All experiments
followed the protocol described in Section 4.1 and Ap-
pendix B.2, including identical training schedules, model
architectures, and optimization settings.

For all methods, we used a frozen CLIP backbone (ViT-
B/16), with a prompt length of 16 and embedding dimension
512. Local training was performed using SGD with a learn-
ing rate of 0.001 and a batch size of 32. Each client trained
for one local epoch per round, and we ran 50 communication
rounds (reduced to 25 for CIFAR-10 and CIFAR-100). In ad-
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Table 6: Statistical details of datasets used in experiments.

Dataset H Classes Train Test Domains | Task
Caltech101 (Fei-Fei, 2004) 100 4,128 2,465 1 Object recognition
Food101 (Bossard et al., 2014) 101 50,500 30,300 1 Fine-grained food recognition
Flowers102 (Nilsback & Zisserman, 2008) 102 4,093 2,463 1 Fine-grained flower recognition
OxfordPets (Parkhi et al., 2012) 37 2,944 3,669 1 Fine-grained pet recognition
DTD (Cimpoi et al., 2014) 47 2,820 1,692 1 Texture classification
Office31 (Saenko et al., 2010) 31 3,292 813 3 Multi-domain image recognition
OfficeHome (Venkateswara et al., 2017) 65 12,475 3,113 4 Multi-domain image recognition
CIFAR10 (Krizhevsky et al., 2010) 10 50,000 10,000 1 General image classification
CIFAR100 (Krizhevsky & Hinton, 2009) 100 50,000 10,000 1 General image classification
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7 80

90 80

701 7

Accuracy (%)

70
60

60 50

80

70

e

60

[ 10 20 30 40 0 10 20 30 40 [ 10
Rounds Rounds

20

Rounds

30 40 0 10 20 30 40 0 10 20 30 40
Rounds Rounds

Figure 6: Comparison with the SOTA methods of convergence speed on single-domain datasets across 10 clients. The x-axis represents
training rounds (from O to 50), while the y-axis shows the model accuracy over the course of training.

dition to the shared setup, each baseline has its own method-
specific parameters. For FedOTP, we used an unbalanced
optimal transport formulation (COT), with Sinkhorn pa-
rameters set to THRESH le-3 and EPS 0.1, and
a maximum iteration limit of 100. For FedPGP, we followed
its original implementation using a bottleneck dimension of
4 and contrastive loss parameters © = 1 and temperature
= 0.5. Other hyperparameters were kept consistent across
both baselines, including disabling context initialization
(CTX_INIT False), disabling class-specific context
prompts (CSC False), using mixed-precision training
(fpl6), and placing the class token at the end of the se-
quence.

These configurations ensure that any observed performance
differences arise from algorithmic or architectural factors,
rather than inconsistencies in training conditions. All experi-
ments were repeated across three random seeds for statistical
robustness.

C. Additional Experiments Results
C.1. Convergence Analysis

Figure 6 presents a comparison of convergence speed across
five different datasets (Caltech101, Food101, Oxford Flow-
ers, Oxford Pets, and DTD) over 50 training rounds. Each
subfigure represents a distinct dataset, illustrating the per-
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Figure 7: Prompt length combination effects on Office31. The
X, Y, and Z axes represent the average prompt lengths for Domain
1, Domain 2, and Domain 3, respectively. The color intensity
of each point indicates the global accuracy achieved under the
corresponding prompt length configuration.

formance of four different training methods: PromptFL,
FedPGP, FedOTP, and FedPHA. It can be observed that
our FedPHA consistently converges faster than other meth-
ods, and its accuracy remains higher than that of other ap-
proaches at all stages. This demonstrates the effectiveness
of our method in personalization.
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Figure 8: Impact of Prompt Length on Domain Performance in OfficeHome. Each 8x8 heatmap illustrates the effect of different
Domain 2 and Domain 3 prompt length combinations on global accuracy, when the prompt length of Domain 1 is fixed and Domain 4 is
set to 16. The X-axis represents the prompt length of Domain 2, while the Y-axis represents that of Domain 3. Color intensity indicates
accuracy, with red representing higher accuracy and blue representing lower accuracy. Black-boxed grids highlight configurations where

the prompt length of Domain 1 matches that of Domain 2 or 3.

C.2. Inter Domain Analysis

Table 7: Comparison of Overall Mean values across different
domains with different prompts lengths.

ID | Domainl | Domain2 | Domain3 H Overall Acc
1 28 12 16 95.45
2 20 12 28 95.19
3 24 12 32 95.15
4 4 4 95.13
5 8 32 16 95.12
6 32 8 28 95.12
7 28 28 95.09
8 16 32 8 95.05
9 8 16 32 95.05
10 20 4 32 95.04

512 32 28 12 93.04

Mean of 512 combinations 94.36

Additionally, we investigated the impact of different prompt
length combinations on overall performance, as shown in
Figure 7. The eight heatmaps in Figure 4 can be regarded
as planar slices of Figure 7, providing a more granular view
of how prompt length variations influence accuracy across
different domains. In Table 7, we list the average accuracy
of 512 prompt length combinations sorted in descending
order. From the table, we can observe that the only well-
performing combination with uniform lengths is [4,4,4],
while all other combinations have varying lengths. This fur-
ther validates our research motivation: for clients with dif-
ferent data distributions, adopting different adaptive prompt
lengths is more beneficial for personalization.

Beyond Office31, we extended our inter-domain prompt
length analysis to the OfficeHome dataset, which comprises
four distinct domains. Given the increased number of clients,
the total number of possible prompt length combinations
grows exponentially (8* = 4096), making exhaustive eval-
uation computationally infeasible. To reduce complexity
while maintaining representative coverage, we constrained
the prompt length of the fourth domain to 16, thereby nar-
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Figure 9: Prompt length combination effects on OfficeHome.
The X, Y, and Z axes represent the average prompt lengths for
Domain 1, Domain 2, and Domain 3, respectively, with Domain
4 fixed at length 16. The color intensity of each point reflects the
global accuracy.

rowing the search space to a manageable 512 combinations.

The corresponding 3D scatter plot is illustrated in Figure 9,
where each point represents a unique prompt length combi-
nation for the first three domains. The spatial distribution
reveals clear patterns: high-performing configurations tend
to cluster in regions where the prompt lengths differ across
domains, again suggesting that uniform configurations are
not optimal. This observation is consistent with our earlier
findings from Office31.

In addition, Figure 8 presents eight heatmaps with fixed
prompt lengths for Domainl, offering a slice-by-slice visu-
alization across Domain2 and Domain3. Similar to Office31,
black-boxed cells indicate uniform prompt lengths across all
domains. These boxed areas rarely correspond to the highest
accuracy regions, reinforcing the insight that heterogeneity-
aware prompt length selection is critical for maximizing
performance in multi-domain federated settings.

Taken together, these findings provide converging evidence
across datasets: the assumption that all clients benefit from
the same prompt length is fundamentally flawed. Instead,
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Table 8: Sensitivity analysis of projection ratio p and push margin « on 5 datasets. FedPHA achieves robust performance across a
wide range of settings with shot number = 16. Default values are p = 0.8, o = 1.0.

(a) Average over 5 datasets.

(b) Caltech101.

alp |l 03 | 05 [ 08 | 1.0 || Avg. al/p || 03 | 05 [ 08 | 1.0 [ Avg
05 |[[ 97.05 ] 97.04 [ 96.99 | 96.92 || 97.00 05 |[98.97 [ 98.99 | 98.91 | 98.97 || 98.96
1.0 || 97.04 | 97.02 | 97.13 | 97.08 | 97.07 1.0 || 99.01 | 99.05 | 99.12 | 99.04 || 99.06
15 || 96.94 | 96.99 | 96.94 | 96.95 || 96.96 15 || 98.97 | 99.07 | 98.93 | 98.95 | 98.98
20 || 96.88 | 96.82 | 96.85 | 96.87 || 96.85 2.0 || 98.89 | 98.77 | 98.88 | 98.84 || 98.84
Avg. ][ 96.98 | 96.97 | 96.98 | 96.96 || 96.97 Avg. || 98.96 | 98.97 | 98.96 | 98.95 || 98.96
(c) Food101. (d) Flowers102.
al/p || 03 | 05 [ 08 | 1.0 || Avg. al/p || 03 ] 05 [ 08 | 1.0 [ Avg
05 | 96229627 | 96.23 | 96.27 || 96.25 05 [[99.33]99.16 [ 99.23 [ 99.24 [| 99.24
10 || 9635 | 96.38 | 96.42 | 96.33 || 96.37 10 |1 9928 | 99.19 | 99.23 | 99.32 || 99.25
15 || 96.61 | 96.51 | 96.49 | 96.48 || 96.52 15 || 99.01 | 99.14 | 99.14 | 99.12 || 99.10
20 || 9648 | 96.42 | 96.43 | 96.38 || 96.43 2.0 || 99.17 | 98.78 | 99.08 | 99.07 || 99.02
Avg. || 96.42 ] 9639 | 96.39 | 96.36 || 96.39 Avg. [[ 9920 [ 99.07 | 99.17 | 99.19 || 99.16
(e) OxfordPets. (f) DTD.
al/p || 03 | 05 [ 08 | 1.0 || Avg. al/p || 03 ] 05 [ 08 | 1.0 [ Avg
05 [[99.15]99.06 [ 99.13 [ 99.08 [[ 99.11 05 [[91.59 [ 91.74 [ 91.45 [ 91.02 [[ 91.45
1.0 |1 99.24 | 99.18 | 99.21 | 99.14 || 99.19 1.0 || 9131 | 9130 | 91.67 | 91.57 || 91.46
15 || 99.08 | 99.27 | 99.03 | 99.06 || 99.11 15 || 91.02 | 90.96 | 91.12 | 91.16 || 91.06
20 || 99.06 | 98.94 | 98.86 | 99.01 || 98.97 20 || 90.82 | 91.17 | 90.98 | 91.07 || 91.01
Avg. || 99.13 [ 99.11 | 99.06 | 99.07 || 99.09 Avg. || 91.19 [ 91.29 [ 91.31 | 91.20 [| 91.25

our FedPHA approach, which allows client-specific prompt
length adaptation, effectively captures domain-level vari-
ability and leads to superior cross-domain generalization.

C.3. Sensitivity Analysis

Table 8 reports a detailed sensitivity analysis of FedPHA
with respect to the projection ratio p in Eq.(9) and the push
margin « in Eq.(12) across five datasets. Each cell in the
table presents the average accuracy over the last 10 training
epochs under a specific configuration.

As shown in Table 8 (a), the average accuracy across all
datasets remains consistently high across a broad range
of (o, p) combinations. The best overall performance
(97.13%) is achieved when o« = 1.0 and p = 0.8, which
are also the default values used throughout our main experi-
ments. Importantly, performance degradation remains mini-
mal—typically within 0.2%—even when deviating from this
configuration. This reflects the robustness of FedPHA and
its insensitivity to moderate variations in hyperparameter
settings, which is a desirable property in practical federated
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deployments where fine-tuning may not always be feasible.

For Caltech101 and OxfordPets, performance remains re-
markably stable, exceeding 98.8% across all tested settings,
with optimal configurations coinciding with the default val-
ues. Food101 exhibits a mild preference for larger « (es-
pecially 1.5), indicating that a stronger push margin may
help in fine-grained classification tasks. Flowers102 shows
high tolerance to both a and p changes, suggesting that
the method generalizes well in image domains with intra-
class similarity. In contrast, DTD reveals greater sensi-
tivity to hyperparameter shifts. Nevertheless, its accuracy
remains within a relatively narrow and acceptable range
(90.8%-91.7%), demonstrating that FedPHA retains com-
petitiveness even under more challenging visual domains.

This table-based analysis confirms that FedPHA achieves
strong and stable performance under a wide spectrum
of hyperparameter choices. The default configuration
(a=1.0, p=0.8) serves as a robust and well-balanced setting
across diverse data distributions, minimizing the need for
extensive tuning in real-world federated learning scenarios.



