
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Adaptive Neural Ranking Framework: Toward Maximized
Business Goal for Cascade Ranking Systems

Anonymous Author(s)

ABSTRACT
Cascade ranking is widely used for large-scale top-k selection

problems in online advertising and recommendation systems, and

learning-to-rank is an important way to optimize the models in

cascade ranking systems. Previous works on learning-to-rank usu-

ally focus on letting the model learn the complete order or pay

more attention to the order of top materials, and adopt the corre-

sponding rank metrics (e.g. NDCG@k and OAP) as optimization

targets. However, these optimization targets can not adapt to vari-

ous cascade ranking scenarios with varying data complexities and

model capabilities; and the existing metric-driven methods such

as the Lambda framework can only optimize a rough upper bound

of the metric, potentially resulting in performance misalignment.

To address these issues, we first propose a novel perspective on

optimizing cascade ranking systems by highlighting the adaptabil-

ity of optimization targets to data complexities and model capa-

bilities. Concretely, we employ multi-task learning framework to

adaptively combine the optimization of relaxed and full targets,

which refers to metrics Recall@m@k and OAP respectively. Then

we introduce a permutation matrix to represent the rank metrics

and employ differentiable sorting techniques to obtain a relaxed

permutation matrix with controllable approximate error bound.

This enables us to optimize both the relaxed and full targets di-

rectly and more appropriately using the proposed surrogate losses

within the deep learning framework. We named this method as

Adaptive Neural Ranking Framework (abbreviated as ARF). Further-

more, we give a specific practice under ARF. We use the NeuralSort

method to obtain the relaxed permutation matrix and draw on the

uncertainty weight method in multi-task learning to optimize the

proposed losses jointly. Experiments on a total of 4 public and in-

dustrial benchmarks show the effectiveness and generalization of

our method, and online experiment shows that our method has

significant application value.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for

Your Paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

𝑁 𝑆 𝐾
𝑀! 𝑀" 𝑀# 𝑀$ Final

Results

Cascade Ranking

Figure 1: A classic cascade ranking architecture, which in-
cludes four stages: Matching, Pre-ranking, Ranking, and Re-
ranking.

KEYWORDS
Learning to Rank in Cascade Systems, Differentiable Sorting, Multi-

task Learning

ACM Reference Format:
Anonymous Author(s). 2018. Adaptive Neural Ranking Framework: Toward

Maximized Business Goal for Cascade Ranking Systems. InWoodstock ’18:
ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY .
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The cascade ranking [31, 40, 48] has garnered increasing research

interest and attention as a mature solution to large-scale rank-

ing and top-k set selection problems under limited resources. It is

widely used in business systems, such as online advertising and

recommendation systems, which have an important impact on hu-

man production and life. Take typical online advertising systems

as an example, they often employ a cascade ranking architecture

with four stages, as illustrated in Figure 1. When an online request

arrives, the Matching stage first selects a subset of ads from the

entire ad inventory (with a magnitude of 𝑁), typically of size 𝑆 .

Subsequently, the Pre-ranking stage predicts the value of these 𝑆

ads and selects the top 𝐾 ads to send to the Ranking stage. This pro-

cess continues iteratively until the last stage of the cascade ranking

system decides the ads for exposure.

In cascade ranking systems, letting one stage learn from its post-

stages through learning-to-rank (LTR) is an important method to

maximize system traffic efficiency, and it is also one of the most

commonly used methods in the industry. Take the Pre-ranking

stage as an example, people usually randomly sample some ads in

the Pre-ranking space and adopt learning-to-rank methods to let

the Pre-ranking model learn the order of these ads produced by the

Ranking model. Traditional learning-to-rank methods (whether the

typical point-wise methods[11, 12, 26, 35], pair-wise methods[4, 7,

15, 46, 56], or list-wise methods[8, 39, 47, 48, 53]) often focus on

the entire order or top-k order of the training data, which refer

to the ranking metrics such as 𝑁𝐷𝐶𝐺 and 𝑁𝐷𝐶𝐺@𝑘 . When we

directly adopt these methods, we actually try to drive the system

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

towards the oracle condition, which is the most strict sufficient,

and unnecessary condition to maximize the business goal of the

cascade ranking system. In short, the oracle condition (formulated

in section 4.1.) requires each stage to have an idealized model that

can give the ground-truth output regardless of the input.

A fact in cascade ranking systems is that model complexity

typically increases from the front to the end stages, and so does the

models’ capacity. This means that it may be impossible for a stage

to completely fit its post-stage, even if the training data is down-

sampled from its post-stage. In real cascade ranking systems, there

is often a large gap between the prediction capabilities of a certain

stage and its post-stage.Whenwe adopt traditional learning-to-rank

methods to optimize towards the "Oracle Condition", we cannot

guide the model to only lose the sufficiency but not the necessity

of the actually achieved condition when the model makes mistakes.

Therefore, when facing the situation that the training data is too

complex for the model, it’s better to optimize the model towards

some relaxed conditions. To this end, we propose the "stage recall

complete condition" as the relaxed condition, which only requires

the 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 of each stage to be equal to 1 (cf., Section 4.1).

To optimize the model towards the relaxed condition, an intuitive

thought is to relax the existing learning-to-rank methods. Wang

et al.(2018)[43] extend LambdaRank[3] to a unified framework for

designing metric-driven surrogate loss and propose LambdaLoss

for optimizing 𝑁𝐷𝐶𝐺 under this framework. Although we can give

the surrogate loss for 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 following [43], such a surro-

gate loss can only optimize a rough upper bound of the metric. In

order to better optimize 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 , we first introduce an alter-

native perspective to describe sorting based on permutation matrix

and matrix operation, and re-formulate 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . Furthermore,

we introduce differentiable sorting techniques that can produce

a relaxed permutation matrix with a controllable approximate er-

ror bound of the hard permutation matrix. Concretely, we adopt

NeuralSort[18] to produce an unimodal row stochastic permutation

matrix, and design the novel surrogate loss 𝐿𝑅𝑒𝑙𝑎𝑥 for optimizing

𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 directly. With the temperature 𝜏 of NeuralSort, we

can control the relaxation of the permutation matrix.

In cascade ranking systems, sometimes we may face another

opposite situation that the data is simple enough for the model’s

capabilities, since the drawn samples of the post-stages may be in a

small amount. At this time, just optimizing 𝐿𝑅𝑒𝑙𝑎𝑥 may not be good

enough, and harnessing the relaxed target with the information of

all pairs is more likely to be beneficial. To mine the information of

all pairs, we also define a loss function 𝐿𝐺𝑙𝑜𝑏𝑎𝑙 based on the relaxed

permutation matrix which requires complete order accuracy and

corresponds to the metric 𝑂𝑃𝐴 (cf., Eq 2). However, it is difficult

to determine which situation belongs to the actual system before

applying a specific loss function, and the optimal direction of the

optimization should lie somewhere in between these two extremes.

In order to build a robust method for various scenarios of cascade

ranking systems, we employ the multi-task learning framework to

empower the model to adaptively learn from 𝐿𝑅𝑒𝑙𝑎𝑥 and 𝐿𝐺𝑙𝑜𝑏𝑎𝑙 .

We hope that 𝐿𝐺𝑙𝑜𝑏𝑎𝑙 can be used as an auxiliary loss function to

always help the model learn from 𝐿𝑅𝑒𝑙𝑎𝑥 more effectively. We name

this approach as Adaptive Neural Ranking Framework (abbreviated

as ARF). As a practice of ARF, we employ a simple gradient-based

optimization strategy named uncertainty-weight[24] and make a

variation of this method to highlight the primacy of 𝐿𝑅𝑒𝑙𝑎𝑥 .

To verify the effectiveness and generalization of our methods,

we conducted comprehensive experiments on four datasets. Two

datasets are constructed from a real-world online cascade ranking

system. The other two are publicly available benchmark datasets,

which are standard LTR datasets. Experiments show that even

the surrogate loss 𝐿𝑅𝑒𝑙𝑎𝑥 significantly outperforms the baseline

methods on 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 and the complete ARF method can bring

further improvements. We also compare the results of 𝐿𝑅𝑒𝑙𝑎𝑥 and

the baseline methods which can specify the optimization for Recall

when optimizing different𝑚 and 𝑘 . The results show that 𝐿𝑅𝑒𝑙𝑎𝑥
achieves overall better results under various𝑚 and 𝑘 and shows

higher consistency with 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . Furthermore, we deployed

ARF in an online advertising system and achieved significant im-

provements in business metrics, demonstrating that our proposed

approach has significant commercial value.

In general, our main contributions are three-fold: 1)We propose a

novel surrogate loss 𝐿𝑅𝑒𝑙𝑎𝑥 for better optimization of 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 ,

which is considered to be a more relevant metric to the effect of the

cascade ranking system. 2) Considering the complexity of the model

and data combination in cascade ranking systems, we propose

ARF that utilizes the multi-task learning framework to harness

the 𝐿𝑅𝑒𝑙𝑎𝑥 with the full pairs information by auxiliary loss 𝐿𝐺𝑜𝑏𝑎𝑙

for building a robust learning-to-rank paradigm. 3) We conduct

comprehensive offline experiments to verify the effectiveness and

generalization of our method. We also deployed our method on

an online cascade ranking system to study the impact of ARF on

real-world applications.

2 RELATEDWORK
2.1 Learning to Rank and Cascade Ranking
Learning to rank (LTR) [6, 8, 26, 33, 39, 48, 50] is a subdomain of

machine learning and information retrieval that focuses on devel-

oping algorithms and models to improve the ranking of items in a

list based on their relevance to a specific query or context. Exten-

sive related work in this area spans several decades and includes

both traditional and modern approaches. Traditional methods, such

as ranking SVMs and RankNet[5], have provided foundational in-

sights into pairwise and pointwise ranking techniques. More recent

advancements have seen the adoption of deep learning, with neural

network-based architectures like RankNet[5] and LambdaRank[3].

Wang et al.(2018)[43] further extend LambdaRank to Lambda frame-

work for metric-driven loss designing. Jagerman et al.(2022)[22]

point out that the LambdaLoss under Lambda framework lacks in

optimizing NDCG@k and further proposed LambdaLoss@k. Ad-

ditionally, research has delved into incorporating diverse features,

handling multi-modal data, and addressing challenges in large-

scale, dynamic, and personalized ranking scenarios. LTR continues

to evolve, driven by the ever-increasing demand for efficient and

effective information retrieval systems in fields like e-commerce,

search engines, and recommendation systems.

Cascade ranking is widely used in large-scale top-k selection

systems such as RankFlow [31, 40, 41]. The concept of multi-stage

cascade ranking is introduced to strike a balance between the effi-

ciency and effectiveness of a ranking system. The previous works

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Adaptive Neural Ranking Framework: Toward Maximized Business Goal for Cascade Ranking Systems Woodstock ’18, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

[9, 16, 27] on cascade ranking systems primarily focus on the assign-

ment of different rankers to each stage to collectively achieve the

desired trade-off. Recently, RankFlow [31] and CoRR [21] propose

to train rankers on their specific data distributions to exploit the in-

teractions between each stage. Advanced learning-to-rank methods

are often designed for NDCG (Normalized Discounted Cumulative

Gain), which is a widely used evaluation metric in information

retrieval and recommendation systems. NDCG [44] takes into ac-

count both the relevance and the position of items in a ranked

list, providing a more nuanced and accurate assessment of ranking

quality. In this work, we designed a novel learning-to-rank method

considering the properties of cascade ranking to achieve robust

Recall optimization in different data cascade ranking scenarios.

2.2 Differentiable Sorting
Recently, differentiable approximations of the sorting function were

introduced by Grover et al.(2019)[18]. They propose NeuralSort, a

continuous relaxation of the argsort operator, which relaxes hard

permutation matrices by approximating them as unimodal row-

stochastic matrices. This relaxation allows for gradient-based sto-

chastic optimization. Grover et al.(2019)[18] first applied NeuralSort

to classification tasks such as four-digit MNIST classification and

yielded good results. Cuturi et al.(2019)[13], Blondel et al.(2020)[1]

and Petersen et al.(2021)[29] have successively proposed better

methods for the approximation of hard sort. Petersen et al.(2022)[30]

further proposed monotonic differentiable sorting networks based

on DiffSort[29]. Swezey et al.(2021)[37] proposed a method based

on NeurlSort to handle large-scale top-k sorting. When these works

are applied to sorting or classification tasks, they usually use a

straight-forward cross-entropy loss to minimize the difference be-

tween the permutation matrices of the labels and estimated results.

In this work, we adopt the differentiable sorting technique to obtain

the relaxation of permutation matrices and propose a novel loss

based on permutation matrices for optimizing the Recall metric.

2.3 Multi-task Learning
Multi-task learning (MTL) trains a model on multiple related tasks,

promoting shared representation and enhancing performance gen-

eralization. It has been effectively applied in various machine learn-

ing applications, such as natural language processing [49, 51, 55],

computer vision [23, 54] and recommendation systems[20, 36, 38].

In the context of ranking, multitasking [19, 42] refers to the con-

current evaluation of various criteria or attributes to ascertain the

order or relevance of items, such as search results or product listings.

Contemporary ranking algorithms often incorporate a diverse array

of factors. These include user preferences, click-through rates, the

quality of content, its recency, and relevance, all aimed at providing

more accurate and personalized rankings. By employing multitask-

ing techniques, these algorithms can assign appropriate weight to

each criterion, adapt to evolving user behavior, and strike a balance

between competing objectives such as diversity and precision. This

strategy ensures that the ranked results are specifically tailored to

meet the unique needs and preferences of users. Furthermore, it

maintains a dynamic and adaptive ranking system that continually

evolves to meet the changing demands of users and the availability

of content. In this work, we decompose an optimization problem

into a joint optimization problem of two similar sub-objectives and

hope to utilize the multi-task method to adaptively find the optimal

gradient direction for the original optimization problem. Inspired by

the gradient-based multi-task learning methods[10, 20, 24, 45, 52],

we design a variant of the uncertainty weight method[24] that

emphasizes the primacy of one certain objective.

3 PROBLEM FORMULATION
LetM𝑖 denote the 𝑖-th stage and its model of the cascade ranking

system, Q𝑖 denote the sample space of M𝑖 , 𝑄𝑖 denote the size of

Q𝑖 . Let I denote the impression space of the system and its size is

recorded as𝑄I .I can be seen as a virtual post-stage of the system’s

end-stage. The number of stages is denoted by 𝑇 . For figure 1, the

Matching stage isM1, the Re-ranking stage isM4, and the𝑇 equals

to 4. Let F ↓
M (S) denote the ordered terms vector sorted by the score

of model M in descending order, and F ↓
M (S)[: 𝐾] denote the top

𝐾 terms of F ↓
M (S). We use Ocl denoted the oracle model, which

can definitely make a correct prediction, even though such a model

may not exist in reality.

The task of learning-to-rank methods are to optimize the models,

so that the cascade ranking system can produce a better impression

set, namely F ↓
M4

(F ↓
M3

(F ↓
M2

(F ↓
M1

(Q1) [: 𝑄2]) [: 𝑄3]) [: 𝑄4]) [: 𝑄𝐼].
Although the linkage influence of different stages is also an im-

portant factor affecting the final exposure quality in the cascade

ranking system, we primarily focus on improving the learning of

individual stages, rather than analyzing the impact of different

stages on each other, which is beyond the scope of this work. In

other words, when we optimize M𝑖 , all M 𝑗 for 𝑗 ≠ 𝑖 are regarded

as static. Besides, LTR methods usually can be only used forM𝑖<𝑇 ,

and assume that M𝑇 or M𝑖< 𝑗≤𝑇 is the Ocl or satisfying other op-

timal assumptions, let the model M𝑖 learn the data produced by

M𝑇 orM𝑖< 𝑗≤𝑇 . Although these assumptions may be not to hold

in reality, and learning fromM𝑇 orM𝑖< 𝑗≤𝑇 will be affected by the

bias of the sample selection problem and the model itself, our work

mainly focuses on how to make LTR better fit the data produced

by the system, so some debiased LTR methods are not discussed in

this paper and are not within the comparison range.

In the following, we formulate the problem and explain our

approach mainly based on the pre-reranking stage of the cascade

ranking system shown in Figure 1; the extension to other cascade

ranking systems and stages is straightforward. Now we formulate

the common settings of learning-to-rank in cascade ranking. Let

𝐷𝑡𝑟𝑎𝑖𝑛 be the training set, which can be formulated as:

𝐷𝑡𝑟𝑎𝑖𝑛 = {(𝑓𝑢𝑖 , {𝑓𝑎 𝑗

𝑖

, 𝑣
𝑗
𝑖
|1 ≤ 𝑗 ≤ 𝑛})𝑖 }𝑁𝑖=1 (1)

where 𝑢𝑖 means the user of the 𝑖-th impression in the training set,

𝑎 𝑗 means the 𝑗-th material for ranking in the system. 𝑁 is the

number of impressions of 𝐷𝑡𝑟𝑎𝑖𝑛 . The 𝑖 in 𝑎
𝑗
𝑖
means that the sample

𝑎 𝑗 corresponds to impression 𝑖 . The size of the materials for each

impression is 𝑛. 𝑓(·) means the feature of (·). 𝑢𝑖 and 𝑎 𝑗𝑖 are drawn
i.i.d from the space Q2. 𝑣

𝑗
𝑖
is considered to be the ground truth value

(the higher value is considered better) of the pair (𝑢𝑖 , 𝑎 𝑗), which can
have many different specific forms. 𝑣 can be the rank index which is

the relevance position (in descending order) in the system when the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

request happens. It can also be uniformly scored byM𝑡≥3 through
some exploration mechanisms. For example, letM𝑇 (namelyM4

in Figure 1) uniformly scores the sampled samples. Let M2 (𝑢𝑖 , 𝑎 𝑗𝑖)
denote the score predict byM2 on the pair (𝑢𝑖 , 𝑎 𝑗𝑖) andM (𝑖, 𝑗)

2
be

the short for M2 (𝑢𝑖 , 𝑎 𝑗𝑖). In section 4, we will discuss how to make

M2 learn better from 𝐷𝑡𝑟𝑎𝑖𝑛 .

4 APPROACH
In this section, we first discuss the oracle condition and the relax-

ation of the oracle condition for cascade ranking systems. Then

we give a novel surrogate loss named 𝐿𝑅𝑒𝑙𝑎𝑥 to better optimize

the model towards the relaxed condition. Finally, we describe the

Adaptive Neural Ranking Framework, which aims to achieve robust

learning-to-rank in various cascade ranking scenarios.

4.1 The Relaxation of Learning Targets for
Cascade Ranking

With the notations in section 3, we can formulate the different

assumed conditions for the system, such as the following most

common condition, which is also the goal to be optimized when the

cascade ranking systems use the LTR methods in the traditional

way.

Definition 1 (the oracle condition for cascade ranking

systems). When the cascade ranking system is met the oracle condi-
tion, it satisfies: 1) M𝑇 is the Ocl, 2) for each i<T, F ↓

M𝑖
(Q1) equals

to F ↓
M𝑖+1

(Q1).

Obviously, the system met the oracle condition means each stage

of the system has an oracle model. The goal of traditional learning-

to-rank applications for cascade ranking can be viewed as optimiz-

ing the ordered pair accuracy (𝑂𝑃𝐴) or 𝑁𝐷𝐶𝐺 to 1. The 𝑂𝑃𝐴 and

𝑁𝐷𝐶𝐺 onM2 and the 𝑖-th impression of 𝐷𝑡𝑟𝑎𝑖𝑛 can be formulated

as (D is the short for 𝐷𝑡𝑟𝑎𝑖𝑛):

𝑂𝑃𝐴M2,D[𝑖] =
2

∑𝑛
𝑗

∑𝑛
𝑘=𝑗+1 1((M

(𝑖, 𝑗)
2

−M (𝑖,𝑘)
2

) (𝑣 𝑗
𝑖
− 𝑣𝑘

𝑖
) ≥ 0)

𝑛(𝑛 − 1)
(2)

𝑁𝐷𝐶𝐺M2,D[𝑖] =
𝑛∑︁
𝑗

1

𝑚𝑎𝑥𝐷𝐶𝐺𝑖

𝐺𝑖, 𝑗

𝐷𝑖, 𝑗

=

𝑁∑︁
𝑖

1

𝑚𝑎𝑥𝐷𝐶𝐺𝑖

𝑛∑︁
𝑗

2
𝑙𝑖,𝑗 − 1

𝑙𝑜𝑔2 (𝑝𝑖, 𝑗 + 1)

𝑙𝑖, 𝑗 = 𝜋 (F ↓
v𝑖 (D[𝑖]), 𝑗)

𝑝𝑖, 𝑗 = 𝜋 (F ↑
M2 (𝑢𝑖 ,a(·)𝑖

)
(D[𝑖]), 𝑗)

𝑚𝑎𝑥𝐷𝐶𝐺𝑖 =

𝑛∑︁
𝑗

2
𝑙𝑖,𝑗 − 1

log
2
(𝑝∗

𝑖, 𝑗
+ 1)

=

𝑛∑︁
𝑗

2
𝜋 (F↓

v𝑖 (D[𝑖]), 𝑗) − 1

𝑙𝑜𝑔2 (𝜋 (F ↑
v𝑖 (D[𝑖]), 𝑗) + 1)

(3)

where 𝜋 (F ↓
v𝑖 (D[𝑖]), 𝑗)means the rank index of the term 𝑣

𝑗
𝑖
in the

vector F ↓
v𝑖 (D[𝑖]). Note that F ↓

and F ↑
denote sorting operators in

descending order and ascending order respectively, and F ↓
v𝑖 (D[𝑖])

refers to the vector of D[𝑖] sorted by the score vector v𝑖 . The same

applies to 𝜋 (F ↑
M2 (𝑢𝑖 ,a(·)𝑖

)
(D[𝑖]), 𝑗).

Compared to the oracle condition, here we give a relaxed condi-

tion family named "stage recall complete condition". It has a scalable

factor that can determine the degree of relaxation.

Definition 2 (Stage Recall Complete Condition). When the
cascade ranking system is met the condition, it satisfies 1) F ↓

M𝑇
(Q1) [:

𝑄𝐼] equals to F ↓
Ocl (Q1) [: 𝑄𝐼], 2) for each i<T, F ↓

M𝑖+1
(Q1) [: 𝑚] ∈

F ↓
M𝑖

(Q1) [: 𝑄𝑖+1] for a certain m that𝑚 < 𝑄𝑖+1.

When 𝑄𝐼 ≤ 𝑚 ≤ 𝑄𝑖+1, the "Stage Recall Complete Condition"

is a sufficient condition for the cascade ranking system to achieve

optimality. In particular, when𝑚 = 𝑄𝑖 , the "Stage Recall Complete

Condition" is the necessary and sufficient condition for that. We

can use 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 in Eq 4 to characterize the extent to which

this condition is achieved.

𝑅𝑒𝑐𝑎𝑙𝑙M2,D[𝑖]@𝑚@𝑘 =
1

𝑘

𝑛∑︁
𝑗

1(𝑎 𝑗
𝑖
∈ 𝑅𝑆𝑚𝑖)1(𝑎 𝑗

𝑖
∈ 𝐺𝑆𝑘𝑖)

𝑅𝑆𝑚𝑖 = F ↓
𝑀

(𝑖,𝑗)
2

(D[𝑖]) [:𝑚] 𝐺𝑆𝑘𝑖 = F ↓
𝑀

(𝑖,𝑗)
2

(D[𝑖]) [: 𝑘]
(4)

where 𝑅𝑆𝑚
𝑖

means the ordered recall set with size𝑚 produced

byM2 and𝐺𝑆
𝑘
𝑖
means the ground-truth set with size 𝑘 ordered by

the score vector v𝑖 . 1(·) is the indicator function. Unlike traditional
𝑅𝑒𝑐𝑎𝑙𝑙 , 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 has a scaling factor𝑚 that can specify the size

of the ground-truth set and a scaling factor 𝑘 that can specify the

size of the support set. When 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 is optimized to 1 and

satisfies 𝑄𝑖+1 ≤ 𝑘 ≤ 𝑚 and 𝑄𝑖+1 ≤ 𝑚 ≤ 𝑄1, we say the m-Stage

Recall Complete Condition is achieved forM𝑖 . To this end, using

𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 as a guide for optimization is a relaxed version of

𝑁𝐷𝐶𝐺 and 𝑂𝑃𝐴 without compromising effectiveness.

Back to the question of optimizing the pre-ranking stage in

Figure 1, when the complexity of the training data 𝐷𝑡𝑟𝑎𝑖𝑛 produced

by M 𝑗 ;2< 𝑗≤𝑇 is too high for the model capabilities of M2, it’s

considered to optimize 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 is more suitable than 𝑂𝑃𝐴,

𝑁𝐷𝐶𝐺 and 𝑁𝐷𝐶𝐺@𝑘 . 𝑁𝐷𝐶𝐺@𝑘 is an relaxed metric compared

to 𝑁𝐷𝐶𝐺 that pays more attention to the correctness of the header

order, in which 𝐷𝑖, 𝑗 and 𝐷
∗
𝑖, 𝑗

of 𝑁𝐷𝐶𝐺 in Eq 3 are redefined as:

𝐷𝑖, 𝑗 =

{
𝑝𝑖, 𝑗 if 𝑝𝑖, 𝑗 ≤ 𝑘
∞ if 𝑝𝑖, 𝑗 > 𝑘

𝐷∗
𝑖, 𝑗 =

{
𝑝∗
𝑖, 𝑗

if 𝑝∗
𝑖, 𝑗

≤ 𝑘
∞ if 𝑝∗

𝑖, 𝑗
> 𝑘

(5)

4.2 Learning the Relaxed Targets via
Differentiable Ranking

Many rank-based metrics are non-differentiable, which poses chal-

lenges for optimizing these metrics within the context of deep

learning frameworks. Previous research on LambdaRank[3, 43]

introduced a unified framework for approximate optimization of

ranking metrics, which optimize the model by adopting the change

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Adaptive Neural Ranking Framework: Toward Maximized Business Goal for Cascade Ranking Systems Woodstock ’18, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

in rank metrics caused by swapping the pair as the gradient for

each pair.

Next, let’s first review how the pairwise loss and LambdaLoss

framework can approximately optimize the model towards 𝑂𝐴𝑃 ,

𝑁𝐷𝐶𝐺 , 𝑁𝐷𝐶𝐺@𝐾 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 respectively. To simplify the

statements, let 𝐿𝜆(·) denotes the surrogate loss function for the

optimization goal (·) on M2 and D[𝑖] in LambdaLoss framework.

For any rank metric, it can be optimized through Eq 6 under the

LambdaLoss framework[3, 43].

𝐿𝜆R =

𝑛∑︁
𝑗

𝑛∑︁
ℎ

Δ|R(𝑗, ℎ) |1(𝑣 𝑗
𝑖
> 𝑣ℎ

𝑖
)𝑙𝑜𝑔2 (1 + 𝑒−𝜎 (M

(𝑖,𝑗)
2

−M (𝑖,ℎ)
2

))
𝑛(𝑛 − 1)/2

(6)

where𝜎 is a hyper-parameter,R represents a rankmetric,Δ𝑅(𝑗, ℎ)
means the Δ of R after swapping the position of 𝑗 and ℎ pro-

duced by the model, 1(·) is the indicator function. Specially, if

the R matches the form in Eq 7, the Δ𝑅(𝑗, ℎ) can be formulated as

|𝐺𝑖, 𝑗 −𝐺𝑖,ℎ | | 1

𝐷𝑖,𝑗
− 1

𝐷𝑖,ℎ
|, which is easy to implement under main-

stream deep learning frameworks.

R(D[𝑖],M2) =
𝑛∑︁
𝑗

𝐺𝑖, 𝑗

𝐷𝑖, 𝑗
(7)

For 𝐿𝜆
𝑂𝐴𝑃

, ΔR(𝑖, ℎ) ≡ 1. For 𝐿𝜆
𝑁𝐷𝐶𝐺

and 𝐿𝜆
𝑁𝐷𝐶𝐺@𝑘

, the𝐺 and𝐷

is the vanilla version in 𝑁𝐷𝐶𝐺 and 𝑁𝐷𝐶𝐺@𝑘 . For 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

,

we can define the 𝐺𝑖, 𝑗 and 𝐷𝑖, 𝑗 as 1(𝑎 𝑗𝑖) ∈ 𝐺𝑆
𝑘
𝑖
and 1(𝑎 𝑗

𝑖
) ∈ 𝑅𝑆𝑚

𝑖
respectively.

Although the LambdaLoss framework can provide a surrogate

loss for optimizing 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 , it can only ensure that the gradi-

ent direction of each pair (𝑎 𝑗
𝑖
, 𝑎ℎ

𝑖
) will not let 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 change

in a worse direction. But the size of the gradient on pair (𝑎 𝑗
𝑖
, 𝑎ℎ

𝑖
) is

given by heuristic info ΔR(𝑗, ℎ). There is a concern that the overall

direction of gradient optimization on the entire impression may

not be very suitable for the target metric, even though the study of

Wang et al.(2018)[43] showed that it can optimize a rough upper

bound of the metric. For example, optimizing 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

may

not lead to the best 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 , but 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚′

@𝑘 ′ or 𝐿
𝜆
𝑁𝐷𝐶𝐺@𝑘 ′

does, where 𝑚 ≠ 𝑚′
and 𝑘 ≠ 𝑘′. Another fact is that it is ineffi-

cient and uneconomical to perform a grid search on variants of the

Lambda loss framework in order to better optimize 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 .

And there is a lack of heuristic information to guide us in pruning

grid search.

To address this challenge, we aim to create a differentiable, ap-

proximate surrogate representation of 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 with a control-

lable approximate error bound. We intend to optimize the model

end-to-end using this surrogate representation as loss directly. By

doing so, the gradient direction of the surrogate loss would align

with the optimization of the 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 under an appropriate de-

gree of relaxation. In other words, optimizing such a surrogate loss

should yield more results in line with the optimization objective.

To design such surrogate loss, let us first introduce a description

method based on permutation and matrix multiplication, which

can express the sorting process and results. One sorting process

F ↑
corresponds to a certain permutation operation, which can be

represented by a permutation matrix. For example, let P denote a

permutation matrix, let 𝑥 = [2, 1, 4, 3]𝑇 and 𝑦 = [4, 3, 2, 1]𝑇 denote

the origin and sorted vector, there exists a unique P that can repre-

sent the hard sorting for 𝑥 . The P for 𝑥 and 𝑦 is shown in Eq 8; the

P, 𝑥 and 𝑦 satisfies 𝑦 = P𝑥 .

𝑦 = P𝑥 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



2

1

4

3

 =

4

3

2

1

 (8)

Let P↓
(·) and P↑

(·) denote the permutation matrices for sorting

(·) in descending and ascending order respectively. We can also

calculate rank metrics based on P. For example, 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 can

be represented based on P as shown in Eq 9, where

∑𝑐𝑜𝑙
is the

column sum for a 2-D matrix, [:𝑚] denotes the slice operation for

a matrix which returns the first𝑚 rows of the matrix, ◦ refers to
the element-wise matrix multiplication operation.

𝑅𝑒𝑐𝑎𝑙𝑙M2,D[𝑖]@𝑚@𝑘 =
1

𝑘

𝑛∑︁
𝑖

(
𝑐𝑜𝑙∑︁

P↓
M (𝑖,·)

2

[:𝑚] ◦
𝑐𝑜𝑙∑︁

P↓
v𝑖 [: 𝑘])

(9)

The process to obtain a P for a hard sort is non-differentiable so we

can’t optimize Equation 9 directly under the deep learning frame-

work. In other words, if we can give a differentiable approximation

of P, denoted as
ˆP, we can optimize rank metrics that are repre-

sented by P via
ˆP directly under the deep learning framework.

We notice that previous research[18, 29, 30] on differentiable sort-

ing can produce a relaxed and differentiable permutation matrix,

which can represent the hard sort approximately with a guaran-

teed theoretical bound. These methods often produce an unimodal

row stochastic matrix or doubly-stochastic matrix. An unimodal

row stochastic matrix is a square matrix in which every entry falls

within the range of [0, 1]. It adheres to the row-stochastic property,

meaning that the sum of entries in each row equals 1. Moreover, a

distinguishing feature of an unimodal matrix is that within each

row, there exists a unique column index associated with the maxi-

mum entry. Furthermore, a doubly-stochastic matrix extends the

requirements of an unimodal row-stochastic matrix by ensuring

that the sum of elements in each column equals 1. In this work, we

adopt NeuralSort[18] to obtain an unimodal row stochastic matrix,

which utilizes a clever mathematical transformation to ensure that

P satisfies this property. The 𝑖-th row of
ˆP produced by NeuralSort

can be formulated as:

ˆPy [𝑖, :] (𝜏) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 [((𝐿 + 1 − 2𝑖)y −𝐴yI)/𝜏] (10)

where I is the vector with all components equal to 1, 𝐴y denote

the matrix of absolute pairwise differences of the elements of y
such that𝐴y [𝑖, 𝑗] = |𝑦𝑖 −𝑦 𝑗 |, 𝜏 is the temperature of softmax which

controls the approximate error of
ˆP and the gradient magnitude of

the inputs.
ˆP will tend to P when 𝜏 tends to 0. A small 𝜏 leads to

a small approximate error but it may cause gradient explosion, so

there is a trade-off when choosing the proper 𝜏 .

Utilizing
ˆP, we can formulate the surrogate loss function de-

noted as 𝐿𝑅𝑒𝑙𝑎𝑥 , as illustrated in Eq 11. Our goal is to enhance the

probability of 𝑎
𝑗
𝑖
∈ 𝑅𝑆𝑚

𝑖
for each 𝑎

𝑗
𝑖
∈ 𝐺𝑆𝑘

𝑖
in

ˆP. To achieve this, we

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

employ a cross-entropy-like loss function. We opt not to take Eq 9

with a replacement from P to
ˆP as the loss because we considered

that cross-entropy may be more suitable for optimizing softmax

outputs, from the perspective of gradient optimization. Since the

permutation matrix is only row stochastic (i.e., each row sums to 1),

we incorporate the scalar
1

𝑚 into Eq.11 to ensure that the sum of val-

ues in
ˆP over the selected columns, denoted by

∑𝑐𝑜𝑙 ˆPM (𝑖,·)
2

[:𝑚],
does not exceed 1.

𝐿𝑅𝑒𝑙𝑎𝑥 = −
𝑛∑︁
𝑗

{[
𝑐𝑜𝑙∑︁

ˆPv𝑖 [: 𝑘]] ◦ [1
𝑚

log(
𝑐𝑜𝑙∑︁

ˆPM (𝑖,·)
2

[:𝑚])]} 𝑗

(11)

4.3 Harnessing the Relaxed Targets with Full
Information Adaptively

In the preceding section, we discussed the scenario where training

data is too complex, and introduced a novel surrogate loss, denoted

as 𝐿𝑅𝑒𝑙𝑎𝑥 , designed to optimize 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 directly. However,

there are cases when the training data may be less complex, and in

such situations, harnessing the information from all pairs may be

advantageous. Yet, determining the appropriate degree of relaxation

is a challenging task, and its ideal degree may not be apparent until

evaluation. Our goal is to establish a training paradigm capable of

automatically and adaptively determining the appropriate degree

of relaxation.

An intuition is that the optimal optimization direction of the

gradient lies between the direction for optimizing toward the re-

laxed condition and the oracle condition. So we propose two losses

that correspond to the relaxed condition and the oracle condition

respectively, and leverage a multi-task learning framework to dy-

namically identify superior optimization directions compared to

those attainable by optimizing individual losses in isolation.

Concretely, we introduce a global loss named 𝐿𝐺𝑙𝑜𝑏𝑎𝑙 shown

in Eq 12 which is also based on
ˆP. 𝐿𝐺𝑙𝑜𝑏𝑎𝑙 optimizes the 𝑂𝑃𝐴 by

enforcing consistency between the permutation matrix of the label

and the predicted result. Specifically, it requires that the cross en-

tropy of each row of
ˆPv𝑖 and

ˆPM (𝑖,·)
2

tends to 1. Drawing inspiration

from the uncertainty-weight method[24], we devise a comprehen-

sive loss, as shown in Eq 13. Different from the uncertainty-weight

method, we only adopt the tunable scalars for 𝐿𝐺𝑙𝑜𝑏𝑎𝑙 , since we

hope 𝐿𝑅𝑒𝑙𝑎𝑥 serves as the primary loss and its magnitude is stable.

𝐿𝐺𝑜𝑏𝑎𝑙 = −
𝑛∑︁
𝑗

𝐶𝐸 (ˆPv𝑖 [𝑗, :], ˆPM (𝑖,·)
2

[𝑗, :])

= −
𝑛∑︁
𝑗

𝑛∑︁
ℎ

[ˆPv𝑖 [𝑗, :] ◦ log(ˆPM (𝑖,·)
2

[𝑗, :])]ℎ

(12)

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑅𝑒𝑙𝑎𝑥 + 1

2𝛼2
𝐿𝐺𝑙𝑜𝑏𝑎𝑙 + log(|𝛼 |) (13)

This approach allows us to adaptively balance the influence of

relaxation and the oracle condition during training, which is more

robust to various cascade ranking scenarios. We named this ap-

proach as Adaptive Neural Ranking Framework, abbreviated as

ARF. In this section, we give a simple practice of ARF that adopts

NeuralSort for relaxing the permutation matrix and utilizes a vari-

ant of the uncertainty weight method to balance the optimization

of relaxed and full targets, which are basic and classic methods in

differentiable sorting and multi-task learning areas. In the following

section, we conduct experiments on this specific form of ARF. The

flexibility of the ARF framework allows it to enjoy the benefits of

differentiable sorting methods and multi-task learning methods

upgrades.

5 EXPERIMENTS
5.1 Experiment Setup
To verify the effectiveness of 𝐴𝑅𝐹 , we conduct both offline and

online experiments.

For offline experiments, we collect two datasets from a real-world

online cascade ranking system like figure 1. Both of them are col-

lected by hierarchical random sampling in the pre-ranking space

with different sampling densities, which are considered to have

different learning difficulties. We record the one with higher sam-

pling density as 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 , and the other with lower sampling

density as 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 . The 𝑣 of 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 and 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦
is produced by the ranking stage. The number of sampled mate-

rials per impression in 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 and 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 are 20 and

10 respectively.𝑚 are 14 and 6, 𝑘 are 4 and 2 for 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 and

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 respectively. Note that the industrial benchmarks are

created to test our method in the pre-ranking stage, so the𝑚 and 𝑘

are corresponding to Q3 and Q4 in Figure 1, respectively. In addi-

tion, we also introduce two public datasets, MSLR-WEB30K[32] and

Istella[14], to study the generality of our method and do some in-

depth analysis. In order to train and test like in real cascade ranking

scenarios, we performed some simple strategies such as trunca-

tion for pre-processing on the public datasets. Table 1 presents the

statistics of these benchmarks. The details of the pre-processing

and the creation process of the industrial datasets are shown in

Appendix A.2 and A.1.

The architecture of the model is a basic feedforward neural

network with hidden layers [1024, 512, 256]. The hidden layers

adopt RELU[17] as the activation function. For all input features,

we apply a log1p transformation as in [34]. The architecture is

tuned based on ApproxNDCG and then fixed for all other methods.

The learning rates for various benchmarks vary within the range

of {1e-2, 1e-3, 1e-4}. We only tune the 𝜏 in Eq 10 and the learning

rate for ARF. We conduct a grid search for 𝜏 varies from 0.1 to

10. We implement the baselines based on TF-Ranking[28]. The

training process will stop when the early stop condition is reached

or until 6 epochs have been trained. Note that the offline experiment

settings on the industrial benchmarks are the same as the online

experiments, and details are shown in appendix A.3.

To evaluate offline experiments, we adopt 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 as the

main metric, which is the more important metric than the ranking

metrics such as 𝑁𝐷𝐶𝐺@𝑘 and 𝑁𝐷𝐶𝐺 for cascade ranking systems.

However, we also provide results on 𝑁𝐷𝐶𝐺@𝑘 and 𝑁𝐷𝐶𝐺 in the

experimental results.

For online experiments, we deploy the ARF in the pre-ranking

stage of an online advertising system to study the influence of ARF

in real-world cascade ranking applications. Experiment details are

in section 5.5.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Adaptive Neural Ranking Framework: Toward Maximized Business Goal for Cascade Ranking Systems Woodstock ’18, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Dataset statistics.

Dataset Train & Test Size the range of materials per impression the range of labels

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 3B & 600M 10 [1,10]

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 6B & 1.2B 20 [1,20]

MSLR-WEB30K 8M & 2M [40, 200] [1,5]

Istella 5.6M & 1.4M [40, 200] [1,5]

5.2 Competing Methods
We compare our method with the following state-of-the-art meth-

ods in previous studies.

• Point-wise Softmax. According to [37], we adopt the n-class
classification method by softmax as the most basic baseline. It is

denoted as "Softmax" in the following.

• RankNet. Burges et al.(2005b)[5] propose the RankNet that

constructs a classic pair-wise loss, which aims to optimize 𝑂𝑃𝐴.

• Lambda Framework. Based on the RankNet, Burges(2010)[3]

propose the LambdaRank which can better optimize 𝑁𝐷𝐶𝐺 .

Wang et al.(2018)[43] extend LambdaRank to a probabilistic

framework for ranking metric optimization, which allows to

define metric-driven loss functions; they also propose Lamb-

daLoss which is considered better than vanilla LambdaRank.

In the following, we denote the LambdaLoss as 𝐿𝜆
𝑁𝐷𝐶𝐺

. Ac-

cording to Lambda framework[43], we adopt its variants named

𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

to optimize the metric 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 .

• Approx NDCG. Qin et al.(2010)[33] propose ApproxNDCG that

facilitates a more direct approach to optimize NDCG. The re-

search by Bruch et al.(2019)[2] shows that ApproxNDCG is still

a strong baseline in the deep learning era.

• LambdaLoss@K. Jagerman et al.(2022)[22] pointed out that

𝑁𝐷𝐶𝐺@𝑘 cannot be optimized well based on LambdaLoss[43],

and proposed a more advanced loss for 𝑁𝐷𝐶𝐺@𝑘 . It is denoted

as 𝐿𝜆
𝑁𝐷𝐶𝐺@𝑘

in this work.

• NeuralSort. Grover et al.(2019)[18] propose the NeuralSort that
can obtain a relaxed permutation matrix for a certain sorting.

Since constructing a cross-entropy loss based on
ˆP is straight-

forward, we treat 𝐿𝐺𝑙𝑜𝑏𝑎𝑙 as a baseline named "NeuralSort".

Our work focuses on the optimization of deep neural networks,

so some tree model-based methods such as LambdaMART[3] are

not compared. Besides, the scope of our work does not include

proposing a better differentiable sorting method, so some more

advanced differentiable sorting methods such as PiRank[37] and

DiffSort[29, 30] are not within the scope of our comparison.

5.3 Main Results
Table 2 and Table 3 show themain experimental results on the public

and industrial benchmarks, respectively. For industrial benchmarks,

we set the𝑚 and 𝑘 of 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 according to the number of

samples belonging to Q3 and Q4 in the benchmark. For the public

benchmarks, since these data have no background information

about cascade ranking, we ensure that each query has at least 15

positive documents by the pre-processing (cf., Appendix A.2) and

directly specify𝑚 = 30 and k=15.

We can see that𝐿𝑅𝑒𝑙𝑎𝑥 surpasses all the baselines on𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

on the four benchmarks, which infers 𝐿𝑅𝑒𝑙𝑎𝑥 is an efficient surro-

gate loss for optimizing 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . Another observation is that

Table 2: Offline Experimental Results on Public Learning-
to-rank Benchmarks.𝑚 and 𝑘 are 30 and 15 respectively. ∗
indicates the best results. The number in boldmeans that our
method outperforms all the baselines on the corresponding
metric. ▲ indicates the best results of the baselines.

Method/Metric

MSLR- WEB30K Istella

Recall@m@k ↑ NDCG@k ↑ NDCG ↑ Recall@m@k ↑ NDCG@k ↑ NDCG ↑
Softmax 0.413 0.416 0.721 0.357 0.069 0.359

RankNet 0.405 0.447 0.737 0.608 0.530 0.694

ApproxNDCG 0.440▲ 0.504▲ 0.765▲ 0.628▲ 0.588▲ 0.736▲

NeuralSort 0.423 0.486 0.756 0.573 0.519 0.684

𝐿𝜆
𝑁𝐷𝐶𝐺

0.409 0.453 0.743 0.626 0.537 0.703

𝐿𝜆
𝑁𝐷𝐶𝐺@𝑘

0.411 0.461 0.745 0.609 0.540 0.705

𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

0.416 0.461 0.744 0.593 0.522 0.686

𝐿𝑅𝑒𝑙𝑎𝑥 (ours) 0.445 0.511 0.765 0.644 0.583 0.729

𝐴𝑅𝐹 (ours) 0.446* 0.513* 0.767* 0.651* 0.598* 0.739*

the improvements in 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 achieved by 𝐿𝑅𝑒𝑙𝑎𝑥 are rela-

tively modest on the 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 dataset, indicating that when

the learning task is inherently simpler, the sole emphasis on re-

laxed targets may be less crucial. ARF, which harnesses the relaxed

targets with the full targets by multi-task learning, brings further

improvement and outperforms all the baselines on all evaluation

metrics, which shows the effectiveness and generalization of our

approach.

Among the baselines, ApproxNDCG and 𝐿𝜆
𝑁𝐷𝐶𝐺@𝑘

achieve the

highest 𝑁𝐷𝐶𝐺 and 𝑁𝐷𝐶𝐺@𝑘 on different benchmarks, respec-

tively. The 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 scores achieved by different baselines

on various benchmarks exhibit lower consistency, which reflects

the limitations of the Lambda framework in effectively optimizing

𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . The performance of Softmax on the Istella dataset

is very poor, which may be because the label of the Istella dataset

is very unbalanced. We noticed that ApproxNDCG achieves an im-

provement by a large margin compared to other baselines on public

datasets. This may be due to the fact that our model architecture

is tuned based on ApproxNDCG and the public benchmark is not

big enough to erase this bias introduced by the tuning process. In

contrast, the performance of ApproxNDCG on industrial bench-

marks is more moderate. On larger-scale industrial datasets, each

method’s performance tends to be more stable. Compared to public

data sets, the metrics on industrial datasets are generally higher,

and the absolute differences between different methods are also

smaller. This is likely due to differences in data distribution and

models of the industrial and public benchmarks, such as industrial

datasets have fewer materials per impression and the label repeti-

tion rate is lower when compared to the public datasets, and the

model for industrial datasets is more complex (cf., Appendix A.3).

5.4 In-Depth Analysis
In this part, we conduct an in-depth analysis of our model. Due to

the limit of time and space, we take the Istella dataset as the testbed,

unless otherwise stated.

In table 2, we simply set the𝑚 and 𝑘 as 30 and 15 during training

and testing. But the 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 score under other 𝑚 and 𝑘 is

curious, the same goes for the methods 𝐿𝑅𝑒𝑙𝑎𝑥 and 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

which take𝑚 and 𝑘 as hyper-parameters. In other words, we would

like to know if the 𝐿𝑅𝑒𝑙𝑎𝑥 is a more consistent surrogate loss than

the 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

of the Lambda framework with respect to the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Offline Experimental Results on Industry Bench-
marks drawn fromCascadeRanking System. For 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 ,
the𝑚 is 6 and the 𝑘 is 2. For 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 , the𝑚 is 14 and the
𝑘 is 4.

Method/Metric

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑
Recall@m@k ↑ NDCG@k ↑ NDCG ↑ Recall@m@k ↑ NDCG@k ↑ NDCG ↑

Softmax 0.893 0.904 0.971 0.854 0.902 0.972

RankNet 0.928 0.924 0.978 0.890 0.932 0.979

ApproxNDCG 0.935 0.944 0.984 0.893 0.948 0.984▲

NeuralSort 0.940▲ 0.945 0.984 0.884 0.947 0.982

𝐿𝜆
𝑁𝐷𝐶𝐺

0.928 0.938 0.982 0.882 0.939 0.980

𝐿𝜆
𝑁𝐷𝐶𝐺@𝑘

0.935 0.948▲ 0.985▲ 0.897 0.950▲ 0.984▲

𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

0.931 0.937 0.979 0.902▲ 0.929 0.978

𝐿𝑅𝑒𝑙𝑎𝑥 (ours) 0.942 0.945 0.981 0.910 0.943 0.983

ARF (ours) 0.958* 0.949* 0.985* 0.917* 0.951* 0.989*

Table 4: Online experiment results of 10% traffic for 15 days
in comparison with traditional learning-to-rank methods

Metric 𝐿𝑎𝑚𝑏𝑑𝑎𝐿𝑜𝑠𝑠@𝑘 𝐴𝑅𝐹

Revenue 0.0% +1.5%

Conversion 0.0% +2.3%

metric 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . Figure 2 displays heatmaps for both 𝐿𝑅𝑒𝑙𝑎𝑥
and 𝐿𝜆

𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘
with respect to the 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 metric. In the

heatmap, brighter blocks on the diagonal from the upper left to

the lower right indicate a higher consistency between the sur-

rogate loss and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . Compared to 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

under

the Lambda framework, we can see that 𝐿𝑅𝑒𝑙𝑎𝑥 not only achieves

overall better results under various𝑚 and 𝑘 but also shows better

consistency with 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . These results further demonstrate

the advancement of 𝐿𝑅𝑒𝑙𝑎𝑥 . More experimental results are shown

in Appendix B.

5.5 Online Experiments
To the best of our knowledge, ARF is the first learning-to-rank

method that is designed for cascade ranking systems, and exist-

ing public datasets can’t simulate the real environment of cascade

ranking systems well. Therefore, it is quite important to verify the

actual effect of our method in a real large-scale cascade ranking

system. We applied the ARF method to the pre-ranking stage of

an online advertising system and conducted an online A/B test

for 15 days. The experimental traffic of the base and exp group is

both 10%. Table 4 shows the online experiment results. Since we

conduct the online experiments mainly to measure the real-world

influence of the improvement of Recall, we only select a typical base-

line method for online experiments. Our online baseline method is

𝐿𝑎𝑚𝑏𝑑𝑎𝐿𝑜𝑠𝑠@𝑘 , which also achieves good results on the industrial

benchmarks. More implementation details are in Appendix A.3.

We can see from table 4 that compared to 𝐿𝑎𝑚𝑏𝑑𝑎𝐿𝑜𝑠𝑠@𝑘 , 𝐴𝑅𝐹

has brought about a 1.5% increase in platform advertising revenue

and a 2.3% increase in the number of platform user conversions.

Such an improvement is considered significant in our advertising

scenario.

6 CONCLUSION
Learning-to-rank is widely used in cascade ranking systems but

traditional works usually focus on ranking metrics such as 𝑁𝐷𝐶𝐺 ,

Recall@3@10

Recall@5@15

Recall@8@20

Recall@10@25

Recall@15@30

Recall@20@35

LλRecall@3@10

LλRecall@5@15

LλRecall@8@20

LλRecall@10@25

LλRecall@15@30

LλRecall@20@35

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Recall@3@10

Recall@5@15

Recall@8@20

Recall@10@25

Recall@15@30

Recall@20@35

LRelax@3@10

LRelax@5@15

LRelax@8@20

LRelax@10@25

LRelax@15@30

LRelax@20@35
0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Figure 2: The heatmap of the results on 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 of
𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

and 𝐿𝑅𝑒𝑙𝑎𝑥@𝑚@𝑘 under different 𝑚 and 𝑘 , on
Istella dataset.

which is not an appropriate metric compared to 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 for

cascade ranking systems. Existing learning-to-rank methods such

as LambdaFramework are not well-defined for 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . Thus,

we propose a novel surrogate loss named 𝐿𝑅𝑒𝑙𝑎𝑥 for 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

based on differentiable sorting techniques. Considering that the

combinations of data and models in different cascade ranking sys-

tems may be very diverse, we further propose the Adaptive Neural

Ranking Framework that harnesses the relaxed targets 𝐿𝑅𝑒𝑙𝑎𝑥 with

the information of all pairs via multi-task learning methods, to

achieve robust learning-to-rank for cascade ranking.

We conduct comprehensive experiments on both public and

industrial datasets, results show that our surrogate loss 𝐿𝑅𝑒𝑙𝑎𝑥
significantly outperforms the baseline on its optimization target,

namely 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . Profoundly, 𝐿𝑅𝑒𝑙𝑎𝑥 shows higher consis-

tency with 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 than the baselines that take 𝑚 and 𝑘

as hyper-parameters, which infers that 𝐿𝑅𝑒𝑙𝑎𝑥 is more relevant to

𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 . ARF brings further improvements on different in-

dustrial scenarios and public datasets which infers our approach

achieves a robust learning-to-rank for cascade ranking. ARF is de-

ployed in an online advertising system, results show significant

commercial value of our approach in real-world cascade ranking

applications.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Adaptive Neural Ranking Framework: Toward Maximized Business Goal for Cascade Ranking Systems Woodstock ’18, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. 2020.

Fast Differentiable Sorting and Ranking. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event (Proceedings of Machine Learning Research, Vol. 119). PMLR, 950–959.

http://proceedings.mlr.press/v119/blondel20a.html

[2] Sebastian Bruch, Masrour Zoghi, Michael Bendersky, and Marc Najork. 2019.

Revisiting approximate metric optimization in the age of deep neural networks.

In Proceedings of the 42nd international ACM SIGIR conference on research and
development in information retrieval. 1241–1244.

[3] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An

overview. Learning 11, 23-581 (2010), 81.

[4] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient

descent. In Machine Learning, Proceedings of the Twenty-Second International
Conference (ICML 2005), Bonn, Germany, August 7-11, 2005 (ACM International
Conference Proceeding Series, Vol. 119). ACM, 89–96. https://doi.org/10.1145/

1102351.1102363

[5] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient

descent. In Machine Learning, Proceedings of the Twenty-Second International
Conference (ICML 2005), Bonn, Germany, August 7-11, 2005 (ACM International
Conference Proceeding Series, Vol. 119). ACM, 89–96. https://doi.org/10.1145/

1102351.1102363

[6] Guanqun Cao, Alexandros Iosifidis, Moncef Gabbouj, Vijay Raghavan, and Raju

Gottumukkala. 2021. Deep Multi-View Learning to Rank. IEEE Trans. Knowl.
Data Eng. 33, 4 (2021), 1426–1438. https://doi.org/10.1109/TKDE.2019.2942590

[7] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen Hon.

2006. Adapting ranking SVM to document retrieval. In SIGIR 2006: Proceedings of
the 29th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Seattle, Washington, USA, August 6-11, 2006. ACM, 186–

193. https://doi.org/10.1145/1148170.1148205

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Machine Learning,
Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis,
Oregon, USA, June 20-24, 2007 (ACM International Conference Proceeding Series,
Vol. 227). ACM, 129–136. https://doi.org/10.1145/1273496.1273513

[9] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J. Shane Culpepper. 2017.

Efficient Cost-Aware Cascade Ranking in Multi-Stage Retrieval. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017. ACM, 445–454.

https://doi.org/10.1145/3077136.3080819

[10] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich.

2018. GradNorm: Gradient Normalization for Adaptive Loss Balancing in

Deep Multitask Networks. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018 (Proceedings of Machine Learning Research, Vol. 80). PMLR, 793–802.

http://proceedings.mlr.press/v80/chen18a.html

[11] David Cossock and Tong Zhang. 2006. Subset Ranking Using Regression. In

Learning Theory, 19th Annual Conference on Learning Theory, COLT 2006, Pitts-
burgh, PA, USA, June 22-25, 2006, Proceedings (Lecture Notes in Computer Science,
Vol. 4005). Springer, 605–619. https://doi.org/10.1007/11776420_44

[12] Koby Crammer and Yoram Singer. 2001. Pranking with Ranking. In Advances in
Neural Information Processing Systems 14 [Neural Information Processing Systems:
Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia,
Canada]. MIT Press, 641–647. https://proceedings.neurips.cc/paper/2001/hash/

5531a5834816222280f20d1ef9e95f69-Abstract.html

[13] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. 2019. Differen-

tiable Ranking and Sorting using Optimal Transport. In Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada. 6858–6868. https://proceedings.neurips.cc/paper/2019/hash/

d8c24ca8f23c562a5600876ca2a550ce-Abstract.html

[14] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,

Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Fast Ranking

with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees. ACM
Trans. Inf. Syst. 35, 2 (2016), 15:1–15:31. https://doi.org/10.1145/2987380

[15] Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer. 1998. An Efficient

Boosting Algorithm for Combining Preferences. In Proceedings of the Fifteenth
International Conference on Machine Learning (ICML 1998), Madison, Wisconsin,
USA, July 24-27, 1998. Morgan Kaufmann, 170–178.

[16] Luke Gallagher, Ruey-Cheng Chen, Roi Blanco, and J. Shane Culpepper. 2019.

Joint Optimization of Cascade Ranking Models. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, WSDM 2019,
Melbourne, VIC, Australia, February 11-15, 2019. ACM, 15–23. https://doi.org/10.

1145/3289600.3290986

[17] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier

Neural Networks. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April
11-13, 2011 (JMLR Proceedings, Vol. 15). JMLR.org, 315–323. http://proceedings.

mlr.press/v15/glorot11a/glorot11a.pdf

[18] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic

Optimization of Sorting Networks via Continuous Relaxations. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=H1eSS3CcKX

[19] Guy Hadash, Oren Sar Shalom, and Rita Osadchy. 2018. Rank and rate: multi-task

learning for recommender systems. In Proceedings of the 12th ACM Conference
on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018.
ACM, 451–454. https://doi.org/10.1145/3240323.3240406

[20] YunHe, Xue Feng, Cheng Cheng, Geng Ji, YunsongGuo, and James Caverlee. 2022.

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient

Magnitudes of Auxiliary Tasks. In WWW ’22: The ACM Web Conference 2022,
Virtual Event, Lyon, France, April 25 - 29, 2022. ACM, 2205–2215. https://doi.org/

10.1145/3485447.3512093

[21] Xu Huang, Defu Lian, Jin Chen, Liu Zheng, Xing Xie, and Enhong Chen. 2023.

Cooperative Retriever and Ranker in Deep Recommenders. In Proceedings of the
ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May
2023. ACM, 1150–1161. https://doi.org/10.1145/3543507.3583422

[22] Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael Bendersky, and Marc Najork.

2022. On Optimizing Top-K Metrics for Neural Ranking Models (SIGIR ’22).
Association for Computing Machinery, New York, NY, USA, 2303–2307. https:

//doi.org/10.1145/3477495.3531849

[23] Ingmar Kanitscheider, Joost Huizinga, David Farhi, William Hebgen Guss, Bran-

don Houghton, Raul Sampedro, Peter Zhokhov, Bowen Baker, Adrien Ecoffet,

Jie Tang, Oleg Klimov, and Jeff Clune. 2021. Multi-task curriculum learning in

a complex, visual, hard-exploration domain: Minecraft. CoRR abs/2106.14876

(2021). arXiv:2106.14876 https://arxiv.org/abs/2106.14876

[24] Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-Task Learning Using

Uncertainty to Weigh Losses for Scene Geometry and Semantics. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer

Society, 7482–7491. https://doi.org/10.1109/CVPR.2018.00781

[25] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

2017. Self-Normalizing Neural Networks. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA. 971–980. https://proceedings.

neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html

[26] Ping Li, Christopher J. C. Burges, and QiangWu. 2007. McRank: Learning to Rank

Using Multiple Classification and Gradient Boosting. In Advances in Neural Infor-
mation Processing Systems 20, Proceedings of the Twenty-First Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 3-6, 2007. Curran Associates, Inc., 897–904. https://proceedings.neurips.
cc/paper/2007/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html

[27] Zhen Li, Chongyang Tao, Jiazhan Feng, Tao Shen, Dongyan Zhao, Xiubo Geng,

and Daxin Jiang. 2023. FAA: Fine-grained Attention Alignment for Cascade

Document Ranking. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023. Association for Computational Linguistics, 1688–1700. https:

//doi.org/10.18653/v1/2023.acl-long.94

[28] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael

Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan

Wolf. 2019. TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. ACM,

2970–2978. https://doi.org/10.1145/3292500.3330677

[29] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. 2021. Dif-

ferentiable Sorting Networks for Scalable Sorting and Ranking Supervision. In

Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139).
PMLR, 8546–8555. http://proceedings.mlr.press/v139/petersen21a.html

[30] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. 2022. Mono-

tonic Differentiable Sorting Networks. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net. https://openreview.net/forum?id=IcUWShptD7d

[31] Jiarui Qin, Jiachen Zhu, Bo Chen, Zhirong Liu, Weiwen Liu, Ruiming Tang, Rui

Zhang, Yong Yu, andWeinan Zhang. 2022. RankFlow: Joint Optimization of Multi-

Stage Cascade Ranking Systems as Flows. In SIGIR ’22: The 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, Madrid,
Spain, July 11 - 15, 2022. ACM, 814–824. https://doi.org/10.1145/3477495.3532050

[32] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). arXiv:1306.2597 http://arxiv.org/abs/1306.2597

[33] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework

for direct optimization of information retrieval measures. Inf. Retr. 13, 4 (2010),
375–397. https://doi.org/10.1007/s10791-009-9124-x

9

http://proceedings.mlr.press/v119/blondel20a.html
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1109/TKDE.2019.2942590
https://doi.org/10.1145/1148170.1148205
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/3077136.3080819
http://proceedings.mlr.press/v80/chen18a.html
https://doi.org/10.1007/11776420_44
https://proceedings.neurips.cc/paper/2001/hash/5531a5834816222280f20d1ef9e95f69-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/5531a5834816222280f20d1ef9e95f69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d8c24ca8f23c562a5600876ca2a550ce-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d8c24ca8f23c562a5600876ca2a550ce-Abstract.html
https://doi.org/10.1145/2987380
https://doi.org/10.1145/3289600.3290986
https://doi.org/10.1145/3289600.3290986
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://openreview.net/forum?id=H1eSS3CcKX
https://doi.org/10.1145/3240323.3240406
https://doi.org/10.1145/3485447.3512093
https://doi.org/10.1145/3485447.3512093
https://doi.org/10.1145/3543507.3583422
https://doi.org/10.1145/3477495.3531849
https://doi.org/10.1145/3477495.3531849
https://arxiv.org/abs/2106.14876
https://arxiv.org/abs/2106.14876
https://doi.org/10.1109/CVPR.2018.00781
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://doi.org/10.18653/v1/2023.acl-long.94
https://doi.org/10.18653/v1/2023.acl-long.94
https://doi.org/10.1145/3292500.3330677
http://proceedings.mlr.press/v139/petersen21a.html
https://openreview.net/forum?id=IcUWShptD7d
https://doi.org/10.1145/3477495.3532050
https://arxiv.org/abs/1306.2597
http://arxiv.org/abs/1306.2597
https://doi.org/10.1007/s10791-009-9124-x

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[34] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui

Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers still

Outperformed by Gradient Boosted Decision Trees?. In International Conference
on Learning Representations. https://openreview.net/forum?id=Ut1vF_q_vC

[35] Amnon Shashua and Anat Levin. 2002. Ranking with Large Margin Principle:

Two Approaches. InAdvances in Neural Information Processing Systems 15 [Neural
Information Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver, British
Columbia, Canada]. MIT Press, 937–944. https://proceedings.neurips.cc/paper/

2002/hash/51de85ddd068f0bc787691d356176df9-Abstract.html

[36] Xiang-Rong Sheng, Liqin Zhao, Guorui Zhou, Xinyao Ding, Binding Dai, Qiang

Luo, Siran Yang, Jingshan Lv, Chi Zhang, Hongbo Deng, and Xiaoqiang Zhu.

2021. One Model to Serve All: Star Topology Adaptive Recommender for Multi-

Domain CTR Prediction. In CIKM ’21: The 30th ACM International Conference on
Information and Knowledge Management, Virtual Event, Queensland, Australia,
November 1 - 5, 2021. ACM, 4104–4113. https://doi.org/10.1145/3459637.3481941

[37] Robin M. E. Swezey, Aditya Grover, Bruno Charron, and Stefano Ermon.

2021. PiRank: Scalable Learning To Rank via Differentiable Sorting. In Ad-
vances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual. 21644–21654. https://proceedings.neurips.cc/paper/2021/hash/

b5200c6107fc3d41d19a2b66835c3974-Abstract.html

[38] Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progres-

sive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for

Personalized Recommendations. In RecSys 2020: Fourteenth ACM Conference on
Recommender Systems, Virtual Event, Brazil, September 22-26, 2020. ACM, 269–278.

https://doi.org/10.1145/3383313.3412236

[39] Michael J. Taylor, John Guiver, Stephen Robertson, and Tom Minka. 2008. Soft-

Rank: optimizing non-smooth rank metrics. In Proceedings of the International
Conference onWeb Search andWeb Data Mining, WSDM 2008, Palo Alto, California,
USA, February 11-12, 2008. ACM, 77–86. https://doi.org/10.1145/1341531.1341544

[40] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model

for efficient ranked retrieval. In Proceeding of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2011,
Beijing, China, July 25-29, 2011. ACM, 105–114. https://doi.org/10.1145/2009916.

2009934

[41] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model

for efficient ranked retrieval. In Proceeding of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2011,
Beijing, China, July 25-29, 2011. ACM, 105–114. https://doi.org/10.1145/2009916.

2009934

[42] Xuewei Wang, Qiang Jin, Shengyu Huang, Min Zhang, Xi Liu, Zhengli Zhao,

Yukun Chen, Zhengyu Zhang, Jiyan Yang, Ellie Wen, Sagar Chordia, Wenlin

Chen, and Qin Huang. 2023. Towards the Better Ranking Consistency: A Multi-

task Learning Framework for Early Stage Ads Ranking. CoRR abs/2307.11096

(2023). https://doi.org/10.48550/arXiv.2307.11096 arXiv:2307.11096

[43] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.

2018. The LambdaLoss Framework for Ranking Metric Optimization. In Pro-
ceedings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-26, 2018. ACM, 1313–1322.

https://doi.org/10.1145/3269206.3271784

[44] YiningWang, LiweiWang, Yuanzhi Li, Di He, and Tie-Yan Liu. 2013. A Theoretical

Analysis of NDCG Type Ranking Measures. In COLT 2013 - The 26th Annual
Conference on Learning Theory, June 12-14, 2013, Princeton University, NJ, USA
(JMLR Workshop and Conference Proceedings, Vol. 30). JMLR.org, 25–54. http:

//proceedings.mlr.press/v30/Wang13.html

[45] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. 2021. Gradient Vaccine:

Investigating and Improving Multi-task Optimization in Massively Multilingual

Models. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/

forum?id=F1vEjWK-lH_

[46] Mingrui Wu, Yi Chang, Zhaohui Zheng, and Hongyuan Zha. 2009. Smoothing

DCG for learning to rank: a novel approach using smoothed hinge functions.

In Proceedings of the 18th ACM Conference on Information and Knowledge Man-
agement, CIKM 2009, Hong Kong, China, November 2-6, 2009. ACM, 1923–1926.

https://doi.org/10.1145/1645953.1646266

[47] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. List-

wise approach to learning to rank: theory and algorithm. In Machine Learning,
Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki,
Finland, June 5-9, 2008 (ACM International Conference Proceeding Series, Vol. 307).
ACM, 1192–1199. https://doi.org/10.1145/1390156.1390306

[48] Jun Xu and Hang Li. 2007. AdaRank: a boosting algorithm for information

retrieval. In SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Amsterdam, The
Netherlands, July 23-27, 2007. ACM, 391–398. https://doi.org/10.1145/1277741.

1277809

[49] Jian Yang, Shuming Ma, Haoyang Huang, Dongdong Zhang, Li Dong, Shao-

han Huang, Alexandre Muzio, Saksham Singhal, Hany Hassan, Xia Song, and

Furu Wei. 2021. Multilingual Machine Translation Systems from Microsoft for

WMT21 Shared Task. In Proceedings of the Sixth Conference on Machine Transla-
tion, WMT@EMNLP 2021, Online Event, November 10-11, 2021. Association for

Computational Linguistics, 446–455. https://aclanthology.org/2021.wmt-1.54

[50] Jian Yang, JunchengWan, ShumingMa, Haoyang Huang, Dongdong Zhang, Yong

Yu, Zhoujun Li, and Furu Wei. 2021. Learning to Select Relevant Knowledge for

Neural Machine Translation. In Natural Language Processing and Chinese Com-
puting - 10th CCF International Conference, NLPCC 2021, Qingdao, China, October
13-17, 2021, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13028).
Springer, 79–91. https://doi.org/10.1007/978-3-030-88480-2_7

[51] Jian Yang, Yuwei Yin, Shuming Ma, Dongdong Zhang, Zhoujun Li, and Furu Wei.

2022. High-resource Language-specific Training for Multilingual Neural Machine

Translation. In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022. ijcai.org, 4461–
4467. https://doi.org/10.24963/ijcai.2022/619

[52] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Haus-

man, and Chelsea Finn. 2020. Gradient Surgery for Multi-Task Learn-

ing. In Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual. https://proceedings.neurips.cc/paper/2020/hash/

3fe78a8acf5fda99de95303940a2420c-Abstract.html

[53] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. 2007. A

support vector method for optimizing average precision. In SIGIR 2007: Proceed-
ings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Amsterdam, The Netherlands, July 23-27,
2007. ACM, 271–278. https://doi.org/10.1145/1277741.1277790

[54] Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. 2023.

Blind Image Quality Assessment via Vision-Language Correspondence: A Mul-

titask Learning Perspective. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023. IEEE,
14071–14081. https://doi.org/10.1109/CVPR52729.2023.01352

[55] Yu Zhang and Qiang Yang. 2022. A Survey on Multi-Task Learning. IEEE Trans.
Knowl. Data Eng. 34, 12 (2022), 5586–5609. https://doi.org/10.1109/TKDE.2021.

3070203

[56] Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen,

and Gordon Sun. 2007. A General Boosting Method and its Application to

Learning Ranking Functions for Web Search. In Advances in Neural Information
Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007. Curran Associates, Inc., 1697–1704. https://proceedings.neurips.cc/

paper/2007/hash/8d317bdcf4aafcfc22149d77babee96d-Abstract.html

10

https://openreview.net/forum?id=Ut1vF_q_vC
https://proceedings.neurips.cc/paper/2002/hash/51de85ddd068f0bc787691d356176df9-Abstract.html
https://proceedings.neurips.cc/paper/2002/hash/51de85ddd068f0bc787691d356176df9-Abstract.html
https://doi.org/10.1145/3459637.3481941
https://proceedings.neurips.cc/paper/2021/hash/b5200c6107fc3d41d19a2b66835c3974-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b5200c6107fc3d41d19a2b66835c3974-Abstract.html
https://doi.org/10.1145/3383313.3412236
https://doi.org/10.1145/1341531.1341544
https://doi.org/10.1145/2009916.2009934
https://doi.org/10.1145/2009916.2009934
https://doi.org/10.1145/2009916.2009934
https://doi.org/10.1145/2009916.2009934
https://doi.org/10.48550/arXiv.2307.11096
https://arxiv.org/abs/2307.11096
https://doi.org/10.1145/3269206.3271784
http://proceedings.mlr.press/v30/Wang13.html
http://proceedings.mlr.press/v30/Wang13.html
https://openreview.net/forum?id=F1vEjWK-lH_
https://openreview.net/forum?id=F1vEjWK-lH_
https://doi.org/10.1145/1645953.1646266
https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/1277741.1277809
https://aclanthology.org/2021.wmt-1.54
https://doi.org/10.1007/978-3-030-88480-2_7
https://doi.org/10.24963/ijcai.2022/619
https://proceedings.neurips.cc/paper/2020/hash/3fe78a8acf5fda99de95303940a2420c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3fe78a8acf5fda99de95303940a2420c-Abstract.html
https://doi.org/10.1145/1277741.1277790
https://doi.org/10.1109/CVPR52729.2023.01352
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203
https://proceedings.neurips.cc/paper/2007/hash/8d317bdcf4aafcfc22149d77babee96d-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/8d317bdcf4aafcfc22149d77babee96d-Abstract.html

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Adaptive Neural Ranking Framework: Toward Maximized Business Goal for Cascade Ranking Systems Woodstock ’18, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A MORE IMPLEMENT DETAILS
A.1 Data Creation Process of Industrial

Benchmarks
To create the industrial benchmarks, we draw the data with a hi-

erarchical random sampling strategy from the log of an online

advertising system. The online advertising system adopts a four-

stage cascade ranking architecture as shown in Figure 1.

For 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 , we draw 2 ads from Q4, 4 ads from Q3 and 4

ads from Q2, for each impression. In order to create a more complex

dataset, we increase the number of samples and the sampling ratio

in spaces Q3 and Q4 for each impression based on 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑒𝑎𝑠𝑦 ,

thus creating 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 . Specifically, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 has 4 and 10

ads corresponding to Q4 and Q3 for each impression, respectively.

In 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦ℎ𝑎𝑟𝑑 , each impression has a total of 20 ads. The label

of each ad is produced based on M3. The ads in Q3 and Q4 have

the predicted score of M3 naturally. The ads in Q2 don’t have the

predicted score of M3 when its impression occurs normally in the

online system, so we use the M3 to score these ads offline after

the raw training data is collected. In this way, we can give all ads

a unified and fair ranking, and the ranking scores are generated

byM3. The rank in descending order of the ad is regarded as the

training label. Based on these industrial benchmarks, we can better

simulate the application effect of learning-to-rank methods in the

cascade ranking system than based on the public datasets.

A.2 Pre-processing for Public Benchmarks
Here we give more details of the pre-processing process of the

public benchmarks. To evaluate 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 and perform the

in-depth analysis in section 5.4, we filter the query which has no

more than 40 documents. And we truncate the query which has

more than 200 documents. In this way, we control the number of

documents per query from 40 to 200, which is similar to a stage of

cascade ranking (The maximum number of documents per query

is approximately 5 times the minimum value). For the truncated

queries, we perform random sampling with the replacement of the

documents and ensure that there are at least 15 positive documents.

A positive document is a document whose score is bigger than 0.

A.3 Online Deployment
For online experiments, the model architecture and the hyper-

parameters are somewhat different from the offline experiments,

which are tuned to our online environment. So we give these im-

plementation details here.

Regarding the features, we adopt both sparse features and dense

features for describing the information of the user and the ads in

the online advertising system. Sparse feature means the feature

whose embedding is obtained from the embedding lookup tables.

Dense feature embedding is the raw values of itself. The sparse

features of the user mainly include the action list of ads and user

profile (e.g. age, gender and region). The action list mainly includes

the action type, the frequency, the target ad, and the timestamp.

The sparse features of the ads mainly include the IDs of the ad

and its advertiser. The dense features of the user mainly include

some embeddings produced by other pre-trained models. The dense

features of the ads mainly include some side information and the

multimodal features by some multimodal understanding models.

We adopt a 5-layer feed-forward neural networkwith units [1024,

256, 256, 256, 1]. The activation function of the hidden layer is

SELU[25]. We adopt batch normalization for each hidden layer and

the normalization momentum is 0.999. We employ the residual

connection for each layer if its next layer has the same units. We

adopt the Adam Optimizer and set the learning rate to 0.01. We per-

form a log1p transformation on the statistics-based dense features,

following Qin et al.(2021)[34].

We train the models under an online learning paradigm. To fairly

compare different methods, we cold-start train different models at

the same time. We put the model online for observation after a

week of training to ensure that the model has converged.

A.4 More details for offline experiments on
industrial datasets

For offline experiments, we use the same settings as the online

deployment, such as the model, features, and hyperparameters.

The model architecture introduced in appendix A.3 is tuned

on the RankNet method because it is our early online applicated

method. The features are also just an online version drawn from

the online history strategies. We do not tune the learning rate and

adopt 1e-2 directly for all the methods since there is only a mild

influence of the learning rate on the performance under the online

learning scenario in our cascade ranking system. We only tune the

𝜏 for NeuralSort, 𝐿𝑅𝑒𝑙𝑎𝑥 , and ARF, which varies from 0.1 to 10.

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 In-Depth Analysis
Here we show additional analysis, which is not presented in the

main text due to space limit (cf., Section 5.5).

Figure 3a and Figure 3b show the heatmap of 𝐿𝜆
𝑅𝑒𝑎𝑐𝑙𝑙@𝑚@𝑘

and

𝐿𝑅𝑒𝑙𝑎𝑥 on the MSLR-WEB30K dataset. Consistently with the Istella

dataset, 𝐿𝑅𝑒𝑙𝑎𝑥 yields overall better results than 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

under

various𝑚 and 𝑘 . Compared to the Istella dataset, 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

and

𝐿𝑅𝑒𝑙𝑎𝑥 are not so sensitive to𝑚 and 𝑘 . This means if we want to

optimize 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 , we do not need to fine-tune the𝑚 and 𝑘

of the surrogate loss carefully. This is also a special case with high

consistency between loss and metric. To sum all, the conclusion we

can draw from Figures 3a and Figure 3b is that both 𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

and 𝐿𝑅𝑒𝑙𝑎𝑥 show high consistency with 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 on the MSLR-

WEB30K data set, and the consistency between them seems to be

similar (or comparable).

We also give the results of 𝐿𝑎𝑚𝑏𝑑𝑎𝐿𝑜𝑠𝑠@𝑘 on public datasets

MSLR-WEB30K and Istella, which only has𝑘 as the hyper-parameter,

shown in Figure 3c and Figure 3d respectively.

Compared to 𝐿𝑎𝑚𝑏𝑑𝑎𝐿𝑜𝑠𝑠@𝑘 , 𝐿𝑅𝑒𝑙𝑎𝑥 also achieves overall better

results on the two public benchmarks under different𝑚 and 𝑘 , and

𝐿𝑅𝑒𝑙𝑎𝑥 also shows apparent higher consistency to 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 on

Istella dataset and shows comparable consistency to 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

on MSLR-WEB30K dataset.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Recall@3@10

Recall@5@15

Recall@8@20

Recall@10@25

Recall@15@30

Recall@20@35

LλRecall@3@10

LλRecall@5@15

LλRecall@8@20

LλRecall@10@25

LλRecall@15@30

LλRecall@20@35

0.25

0.30

0.35

0.40

0.45

(a)
The heatmap of the results on 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 of
𝐿𝜆
𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘

, on MSLR-WEB30K dataset.

Recall@3@10

Recall@5@15

Recall@8@20

Recall@10@25

Recall@15@30

Recall@20@35

LRelax@3@10

LRelax@5@15

LRelax@8@20

LRelax@10@25

LRelax@15@30

LRelax@20@35
0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

(b) The heatmap of the results on 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 of 𝐿𝑅𝑒𝑙𝑎𝑥 , on
MSLR-WEB30K dataset.

Recall@3@10

Recall@5@15

Recall@8@20

Recall@10@25

Recall@15@30

Recall@20@35

LλNDCG@3

LλNDCG@5

LλNDCG@8

LλNDCG@10

LλNDCG@15

LλNDCG@20
0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

(c) The heatmap of the results on 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 of 𝐿𝜆
𝑁𝐷𝐶𝐺@𝑘

,
on MSLR-WEB30K dataset.

Recall@3@10

Recall@5@15

Recall@8@20

Recall@10@25

Recall@15@30

Recall@20@35

LλNDCG@3

LλNDCG@5

LλNDCG@8

LλNDCG@10

LλNDCG@15

LλNDCG@20 0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

(d) The heatmap of the results on 𝑅𝑒𝑐𝑎𝑙𝑙@𝑚@𝑘 of 𝐿𝜆
𝑁𝐷𝐶𝐺@𝑘

,
on Istella dataset.

Figure 3: More heatmap results on public benchmarks.

12

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning to Rank and Cascade Ranking
	2.2 Differentiable Sorting
	2.3 Multi-task Learning

	3 Problem Formulation
	4 Approach
	4.1 The Relaxation of Learning Targets for Cascade Ranking
	4.2 Learning the Relaxed Targets via Differentiable Ranking
	4.3 Harnessing the Relaxed Targets with Full Information Adaptively

	5 Experiments
	5.1 Experiment Setup
	5.2 Competing Methods
	5.3 Main Results
	5.4 In-Depth Analysis
	5.5 Online Experiments

	6 Conclusion
	References
	A More Implement Details
	A.1 Data Creation Process of Industrial Benchmarks
	A.2 Pre-processing for Public Benchmarks
	A.3 Online Deployment
	A.4 More details for offline experiments on industrial datasets

	B ADDITIONAL EXPERIMENTAL RESULTS
	B.1 In-Depth Analysis

