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ABSTRACT

Recent advances in image generation, including diffusion models and flow match-
ing, have achieved remarkable success through mathematical foundations. Fur-
thermore, when the underlying data manifold is known, geometry-aware gener-
ative models leveraging differential geometric tools have demonstrated superior
performance by exploiting intrinsic geometric structure. However, natural images
lack explicit geometric priors, forcing existing methods to operate solely in high-
dimensional Euclidean space despite potential geometric constraints in the data. In
this work, we investigate the underlying geometric structure of natural images and
introduce geometry-aware image flow matching methods. Through directional
decomposition analysis, we observe that the majority of semantic information in
images is encoded in their directional components, while scalar components can
be effectively approximated by global average of dataset with minimal impact on
quality. This property appears not only in RGB space, but also extends to various
latent spaces, indicating that natural images can be generally projected on a hyper-
sphere. Building on this finding, we introduce geometry-aware image flow match-
ing: Spherical Optimal Transport Flow Matching (SOT-CFM), which leverages
angular distance metrics, and Spherical Flow Matching (SFM), which constrains
dynamic directly on the hypersphere. Experiments on CIFAR-10 and ImageNet
confirm that our spherical methods achieve competitive or superior performance
compared to their Euclidean counterparts, paving the way for future advances in
geometry-aware image generative modeling.

1 INTRODUCTION

Image generation has seen rapid progress through successive paradigms, from Continuous Normal-
izing Flows (CNF) (Chen et al., 2018; Grathwohl et al., 2018) to Diffusion models (DM) (Song &
Ermon, 2019; Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol,
2021; Karras et al., 2022), and more recently to Flow Matching (FM) (Lipman et al., 2023; Liu et al.,
2022; Albergo et al., 2023) approaches. Each breakthrough has delivered increasingly impressive
results in terms of sample quality, training stability, and generation efficiency. However, despite
these advances, all these methods fundamentally rely on Euclidean geometry assumptions, treating
images as vectors in high-dimensional Euclidean space. While this approach has proven successful,
it may not fully capture the intrinsic geometric structure of natural images. If we could better under-
stand and leverage the true geometry of image data, we might achieve more principled and effective
generative modeling.

In domains where the underlying data manifold is known, geometry-aware generative modeling has
delivered tangible gains. Early work on Riemannian CNF (Mathieu & Nickel, 2020) parameter-
izes flexible densities directly on smooth manifolds by integrating ODEs on the manifold. Sub-
sequent Riemannian score-based (Bortoli et al., 2022) and Riemannian Diffusion models (Huang
et al., 2022) generalized score estimation and diffusion samplers to arbitrary Riemannian mani-
folds via manifold-aware divergences. More recently, Riemannian Flow Matching (RFM)(Chen
& Lipman, 2024) removed simulator bias by matching geodesic velocities with closed-form tar-
get vector fields. In application domains where geometry is dictated by symmetries (e.g., periodic
crystals), FlowMM(Miller et al., 2024) extends RFM with group-equivariant structure, reporting
state-of-the-art structure generation with substantially fewer integration steps. Collectively, these
methods exploit geodesics, parallel transport, and manifold-aware metrics to obtain higher-quality
samples, faster convergence, and more principled training relative to Euclidean baselines when the
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geometric prior is correct. However, a fundamental challenge remains: unlike structured domains
with well-understood geometric priors, the intrinsic manifold structure of natural images is largely
unknown. Images do not come with explicit geometric constraints or symmetries for defining a
Riemannian manifold. This uncertainty has prevented the direct application of geometry-aware gen-
erative modeling to image domains, restricting work to Euclidean methods despite their potential
limitations.

In this work, we propose a solution through directional decomposition analysis. We demonstrate
that when images are decomposed into their directional and scalar components—treating each im-
age vector as having both a direction (unit vector) and magnitude (norm)—the vast majority of
semantic information is encoded in the directional component. Remarkably, we find that the scalar
component can be approximated by simply using the dataset’s average norm without significant loss
of reconstruction quality. While this finding may appear intuitive for RGB spaces, it is far less
evident in latent representations learned through reconstruction objectives. Through extensive ex-
periments, we demonstrate that, even in complex latent spaces of diverse autoencoders, directional
component serves as the primary factor for faithful image reconstruction, while the global average
of scalar component suffices to retain most visual content. This observation suggests that natural
images can be effectively regarded as data points lying on a hypersphere with a radius determined
by the dataset’s average magnitude, both in RGB and latent spaces.

This finding enables us to establish geometry-aware image flow matching by either projecting data
onto hyperspheres to leverage spherical geometry or by utilizing directional metrics instead of Eu-
clidean metrics between vectors. Beyond the geometric benefits, this spherical projection provides
a strong training advantage by simplifying the learning task—since all projected data points reside
on the same sphere with predetermined magnitude, models can focus exclusively on learning direc-
tional dynamics rather than jointly optimizing both direction and magnitude components. Lever-
aging these insights, we introduce two approaches that adapt existing flow matching methods to
spherical geometry: Spherical Optimal Transport Conditional Flow Matching (SOT-CFM), which
adapts OT-CFM (Tong et al., 2024; Pooladian et al., 2023) by employing angular distance metrics
instead of Euclidean distances for optimal transport coupling, and Spherical Flow Matching (SFM),
which operates entirely on the hyperspherical manifold by projecting both source and target distri-
butions onto the sphere and using geodesic paths as the optimal transport trajectories between data
points.

We validate our geometric approach through comprehensive experiments on CIFAR-10 and
ImageNet-256, benchmarking our spherical methods against established Euclidean flow matching
baselines such as Independent CFM (I-CFM) and Optimal Transport CFM (OT-CFM). The results
confirm that our spherical projection reduces the cost of matching image vector magnitudes, SOT-
CFM benefits from angular distance metrics, and most significantly, SFM achieves a fundamental
breakthrough as the first successful application of Riemannian manifold-based generative methods
to natural images, establishing a new paradigm that transforms image generation from treating im-
ages as arbitrary vectors to leveraging their intrinsic spherical geometry.

The key contributions of this work are threefold: (1) we reveal that natural images possess in-
herent spherical geometric structure through directional decomposition analysis, (2) we introduce
two geometry-aware flow matching methods (SOT-CFM and SFM) that leverage this structure for
improved generation, and (3) most importantly, we demonstrate the first successful application of
manifold-based generative modeling to natural images, making sophisticated geometric tools acces-
sible to image generation domains for the first time.

2 PRELIMINARY

Conditional Flow Matching (CFM) (Lipman et al., 2023) provides a simulation-free approach for
training Continuous Normalizing Flows (CNFs) by learning a time-dependent vector field ut(x) :
[0, 1]×Rd → Rd that generates a flow from a source distribution p0 to a target data distribution p1.
The flow is governed by the ordinary differential equation:

dx

dt
= ut(xt), x0 ∼ p0. (1)
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Unlike traditional CNF training methods that require expensive simulation during training, Condi-
tional Flow Matching optimizes the regression objective:

LCFM(θ) = Et,x0,x1,xt

[
∥vθ(t, xt)− ut(xt|x0, x1)∥2

]
, (2)

where ut(xt|x0, x1) is the conditional vector field, xt is sampled from the conditional probability
path pt(x|x0, x1), and vθ is the learned vector field parameterized by θ.

Optimal Transport CFM (OT-CFM). Standard Conditonal Flow Matching uses independent cou-
pling between source and target distributions, known as Independent Conditional Flow Matching
(I-CFM), which can result in inefficient transport paths. Optimal Transport Conditional Flow Match-
ing (OT-CFM) (Tong et al., 2024; Pooladian et al., 2023) addresses this by finding optimal pairings
between source and target points using optimal transport theory.

Instead of independent sampling from p0 and p1, OT-CFM solves the optimal transport problem:

min
π∈Π(p0,p1)

E(x0,x1)∼π[c(x0, x1)], (3)

where c(x0, x1) is a cost function (typically ∥x0 − x1∥2) and Π(p0, p1) denotes the set of all joint
distributions with marginals p0 and p1. In practice, the exact optimal coupling π cannot be computed
for continuous distributions, so mini-batch optimal transport approximation is employed, where the
optimal coupling is computed only over finite mini-batches. This approach creates simpler flows
with straighter trajectories that are more stable to train and enable faster inference.

Riemannian Flow Matching (RFM). While standard Flow Matching operates in Euclidean space,
many applications benefit from incorporating geometric structure. Riemannian Flow Matching
(RFM) (Chen & Lipman, 2024) extends flow matching to Riemannian manifolds M equipped with
a metric tensor g. On a Riemannian manifold, the flow evolves according to:

dx

dt
= ut(xt), xt ∈ M (4)

where ut(x) ∈ TxM is a time-dependent vector field in the tangent space at x.

The key innovation of RFM is constructing conditional vector fields using geodesics, the shortest
paths on the manifold. For a conditional flow from x0 to x1, the conditional vector field is defined
as

ut(xt|x0, x1) =
d

dt
γt(x0, x1)

∣∣∣∣
s=t

, (5)

where γt(x0, x1) is the geodesic connecting x0 and x1, parameterized by t ∈ [0, 1].

The RFM training objective is given by

LRFM(θ) = Et,x0,x1,xt

[
∥vθ(t, xt)− ut(xt|x0, x1)∥2g

]
, (6)

where ∥ · ∥g denotes the norm induced by the Riemannian metric g.

3 FLOW MATCHING ON SPHERICAL GEOMETRY

In Section 2, we outline the basic principles of Flow Matching and its extensions, showing that
RFM can achieve superior performance when the underlying manifold structure is known. However,
as noted in Section 1, the challenge for image generation lies in the absence of explicit geometric
priors—natural images do not come with predefined manifold structure that can be directly exploited
by existing geometry-aware methods.

In this section, we address this fundamental limitation by demonstrating how geometric structure
can be discovered within image data itself. Our approach centers on a key insight: through analysis
of directional and scalar decomposition, we reveal that images naturally exhibit affinity for spherical
geometry. This discovery enables us to use geometry-aware approaches for image generation for the
first time.
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(a) RGB Space (b) Latent Space (SD3-VAE)

Figure 1: Robustness analysis of spherical projection on ImageNet256. We project the dataset
onto hyperspheres with various scalar (radii) while preserving directional components, then evaluate
reconstruction quality using rFID and LPIPS metrics. The vertical dashed line indicates mean scalar
of the dataset. The results show near-baseline performance (rFID = 0 for RGB, rFID =0.41 for
latent) across a wide range of values around the mean, demonstrating that spherical projection is not
sensitive to scalar choice and confirming that directional information dominates semantic content in
image data.

3.1 VECTOR DECOMPOSITION AND DIRECTIONAL ANALYSIS

To understand the geometric structure underlying image data, we treat each image as a flattened
vector in Rd and begin with a basic mathematical observation: any such vector can be naturally
decomposed into its directional and scalar components. Formally, given an image vector x ∈ Rd,
we can express it as:

x = ∥x∥2 ·
x

∥x∥2
= s · x̂, (7)

where s = ∥x∥2 is the magnitude (scalar component) and x̂ = x/∥x∥2 is the unit direction vector
lying on the (d− 1)-dimensional unit hypersphere Sd−1.

When applied to image data, we can separate each image vector into a direction and a scalar com-
ponent. While the intrinsic manifold structure of image data is not explicitly known, the directional
vectors naturally reside on the unit hypersphere. This geometric constraint suggests that if data
points share similar magnitudes, images can be regarded as lying on a hypersphere of constant
radius. However, we observe that image magnitudes span a broad range, which makes such an as-
sumption invalid in practice. Nevertheless, if the data projected onto a common sphere with a fixed
radius still preserves the semantic content of the images, then it becomes reasonable to treat the
image manifold as spherical.

To explore this hypothesis, we project image datasets onto hyperspheres of varying radii in both
RGB and various latent spaces, preserving only the directional components while modifying the
scalar component. We then measure reconstruction quality using rFID and LPIPS metrics compared
to the original dataset. As shown in Fig. 1a, rFID remains near zero across a wide range of radii in
RGB space and LPIPS stays consistently low. Remarkably, as shown in Fig. 1b, we observe similar
robustness patterns in SD3-VAE’s latent space. Furthermore, we find that this phenomenon extends
across multiple autoencoder latent spaces used in the LDM framework, demonstrating the generality
of this finding (see Table 1).

These findings show that most of the meaningful information in images lies in the directional com-
ponent, while the scalar component can be well-approximated by a global average. Based on this
observation, we can project all data onto a single hypersphere, which offers significant advantages
for generative modeling. First, by eliminating the need to match scalar components, the model
can dedicate its entire capacity to learning the semantically important directional variations, reduc-
ing training complexity. Second, this spherical projection naturally enables geometry-aware image
generative modeling by providing an explicit geometric structure to exploit.
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(a) I-CFM (b) OT vs SOT Matching (c) SFM

Figure 2: Comparison of different flow matching strategies. (a) I-CFM: Samples from a prior distri-
bution (x0, blue circles •) are randomly paired with data samples (x1, red squares ■) via straight-line
paths in Euclidean space. (b) OT vs. SOT Matching: Standard OT (solid red ) minimizes Eu-
clidean distance, potentially creating pairings with large angular differences. SOT (dashed cyan )
matches points by angular proximity, better preserving semantic structure. (c) SFM: Flows are con-
strained to a spherical manifold with geodesic paths (great-circle arcs) between samples and tangent
vector fields (ut).

3.2 SPHERICAL OT-CFM (SOT-CFM) WITH ANGULAR METRICS

The observation that image semantics are primarily encoded in directional components provides a
natural motivation to revisit OT-CFM (Tong et al., 2024; Pooladian et al., 2023) through the lens of
spherical geometry. Recall that OT-CFM seeks an optimal coupling between the source distribution
p0 and target distribution p1 by minimizing the expected transport cost in Eq. (3), where the cost
c(x0, x1) is typically the squared Euclidean distance ∥x0 − x1∥2. While this Euclidean formulation
is effective for datasets without known geometric structure, our analysis suggests that the Euclidean
formulation underrepresents the directional nature of image semantics. Since directional information
dominates semantic content, the angular separation between images—rather than their Euclidean
distance—provides a more meaningful measure of similarity. This insight suggests that transport
costs should reflect the geometry of the underlying data manifold.

We therefore introduce Spherical OT-CFM (SOT-CFM), which replaces the Euclidean cost with a
metric that operates directly on the directional components of the data. Specifically, we define the
transport cost as the angular distance between two data points x0 and x1:

cang(x0, x1) = arccos

(
⟨x0, x1⟩

∥x0∥2∥x1∥2

)
. (8)

This angular cost function is invariant to the magnitudes of x0 and x1, ensuring that the optimal
transport plan prioritizes matching images based on their core semantic content (direction) rather
than their scalar attributes.

3.3 SPHERICAL FLOW MATCHING

While SOT-CFM addresses transport cost issues by replacing Euclidean distance with angular dis-
tance, the spherical nature of image data can be leveraged more directly. Rather than only modifying
the coupling strategy, we propose Spherical Flow Matching (SFM), which constrains both source
and target distributions to the hypersphere manifold Sd−1 and defines flow paths as geodesics on the
manifold, allowing the entire flow dynamics to operate within the spherical geometry.

This approach is well-motivated for generative modeling: in high dimensions, samples from a Gaus-
sian distribution naturally concentrate near the surface of a hypersphere. This property allows us to
project both the source Gaussian distribution and target image data onto the same hypersphere, en-
abling flow dynamics that operate entirely within the geometric space where semantic information
resides.
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On the hypersphere, the shortest path connecting any two points is the geodesic, which has a closed-
form expression as spherical linear interpolation (slerp):

x̃t = γt(x̃0, x̃1) =
sin((1− t)θ)

sin θ
x̃0 +

sin(tθ)

sin θ
x̃1, t ∈ [0, 1], (9)

where x̃0 = r · x0/∥x0∥2 and x̃1 = r · x1/∥x1∥2 are the projected vectors on the hypersphere of
radius r, and θ = arccos(⟨x̃0, x̃1⟩/r2) is the angle between them.

Following the geodesic path, we can derive the conditional vector field ut at any point x̃t along
the trajectory. By construction, this vector field ut is always in the tangent space Txt

Sd−1 for all
t ∈ [0, 1]. Our goal is to train a model vθ(t, xt) to predict this tangent vector. Unlike Euclidean
flow matching, SFM measures the discrepancy using the Riemannian inner product induced by the
hypersphere geometry. Specifically, for a base point xt and tangent vectors u, v ∈ TxtSd−1, the
inner product is:

⟨u, v⟩g(x̃t) = u⊤v, (10)
since the hypersphere inherits the Euclidean metric restricted to the tangent space. The SFM loss is
thus formulated as:

LSFM(θ) = Et,x̃0,x̃1,x̃t

[
∥vθ(t, x̃t)− ut(x̃t|x̃0, x̃1)∥2

]
. (11)

By optimizing this geometrically-grounded loss, SFM effectively constrains the entire generative
process to the hypersphere, where crucial semantic information resides. This approach is a critical
step forward as it successfully introduces manifold-based generative methods, which have previ-
ously been confined to theoretical or synthetic datasets, into the practical domain of natural image
generation for the first time. Our work demonstrates that geometry-aware frameworks can break
free from theoretical constraints to become viable tools for real-world image synthesis, establishing
a foundation for future models that exploit the intrinsic geometric structure of natural data.

3.4 MAGNITUDE PREDICTION FOR FINE-GRAINED ADJUSTMENTS

While hyperspherical projection using the global average magnitude s̄ = 1
N

∑N
i=1 ∥xi∥2 for dataset

{xi}Ni=1 effectively preserves essential information, it incurs a slight loss in reconstruction fidelity.
To address this limitation, we introduce a lightweight Magnitude Refinement Network (Nϕ) for fine-
grained adjustments. The network takes the unit direction vector x̂ as input and predicts a magnitude
correction ∆sϕ, which approximates the true deviation ∆s = s− s̄. The final refined vector is then
constructed as

xpred = (s̄+∆sϕ) · x̂. (12)

The network Nϕ is optimized with a composite loss that combines pixel-level reconstruction (MSE)
and perceptual similarity (LPIPS). For models operating directly in image space (e.g., RGB), the
objective is

Limg(ϕ) = Ex,xpred

[
∥x− xpred∥22 + λLLPIPS(x, xpred)

]
. (13)

For latent-space models, we apply the same refinement process to the unit latent vector ẑ, yielding
zpred = (s̄+∆sϕ) · ẑ. The losses are computed after decoding through D, with an additional latent
consistency term:

Llatent(ϕ) = Ez,zpred

[
∥x−D(zpred)∥22 + λ1 LLPIPS(x,D(zpred)) + λ2∥z − zpred∥22

]
. (14)

This refinement strategy enhances representations that are already well-approximated by the global
average, further improving reconstruction fidelity while introducing negligible computational over-
head at inference time.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two standard image generation benchmarks: CIFAR-
10 (Krizhevsky et al., 2009) and ImageNet-256 (Russakovsky et al., 2015). CIFAR-10 consists of

6
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50,000 training images across 10 classes at 32×32 resolution, while ImageNet-256 contains approx-
imately 1.28 million training images from 1,000 classes at 256×256 resolution. For ImageNet-256,
we perform class-conditional generation to evaluate our methods’ ability to incorporate semantic
conditioning.

Model Architecture. For CIFAR-10, we employ a standard U-Net architecture (Dhariwal & Nichol,
2021) commonly used in diffusion and flow matching methods. For ImageNet-256, we adopt DC-
AE (Chen et al., 2024) as the autoencoder for efficiency and DiT XL/1 (Peebles & Xie, 2023) as the
diffusion model. And we adopt MobileNetV2 (Sandler et al., 2018) for magnitude prediction.

Training Configuration. For CIFAR-10, we train all models for 200,000 iterations with a batch size
of 512, learning rate of 2×10−4, and Adam optimizer (Kingma & Ba, 2014). Training is performed
on a single NVIDIA A6000 GPU. For ImageNet-256, we train for 140,000 iterations with a batch
size of 1,024, learning rate of 2 × 10−4, and AdamW optimizer (Loshchilov & Hutter, 2017) with
weight decay of 0 and β = (0.9, 0.95). Training is conducted on 2 NVIDIA A100 40G GPUs.

Baselines. We compare our proposed methods against two fundamental flow matching approaches:
Independent Conditional Flow Matching (I-CFM) and Optimal Transport Conditional Flow Match-
ing (OT-CFM). These baselines represent the current standard for flow-based generative modeling
and provide a fair comparison for evaluating the benefits of our geometric-aware approaches. Our
implementation builds upon the codebase of OT-CFM (Tong et al., 2024) and LightningDiT (Yao
et al., 2025).

Evaluation Metrics. We evaluate all methods using standard generative modeling metrics computed
on 50,000 generated samples. For quantitative assessment, we report Generative Fréchet Inception
Distance (gFID) (Heusel et al., 2017) to measure the distributional distance between generated and
real images, sFID (Nash et al., 2021), a variation of FID using spatial features, better captures spatial
relationships and high-level structure in image distributions, Inception Score (IS) (Salimans et al.,
2016) to evaluate sample quality and diversity, and Precision and Recall (Nichol & Dhariwal, 2021)
to assess fidelity and coverage of the generated distribution.

Space rFID LPIPS

Baseline Mean Projected Baseline Mean Projected

RGB 0 0.05 (+0.05) 0 0.02 (+0.02)
SD2-VAE 0.71 1.14 (+0.43) 0.13 0.15 (+0.02)
SD3-VAE 0.20 0.40 (+0.20) 0.06 0.08 (+0.02)
VMAE 0.89 0.88 (-0.01) 0.06 0.06 (+0.00)
DC-AE 1.02 1.57 (+0.55) 0.17 0.18 (+0.01)

Table 1: Impact of hyperspherical projection on reconstruction quality across different representa-
tion spaces. Values show rFID and LPIPS metrics comparing original data with data projected onto
hyperspheres using mean magnitude (Mean Projected). Changes from baseline are shown in paren-
theses.

4.2 ANALYSIS OF REPRESENTATION SPACES

Before presenting our main results, we validate our core hypothesis about the spherical nature of
image data across different representation spaces. Table 1 shows the impact of projecting datasets
onto hyperspheres with global average magnitude s̄ while preserving directional components. We
evaluate reconstruction quality using rFID (FID between original and projected data) and LPIPS
metrics. The results confirm our hypothesis that across RGB space and multiple autoencoder latent
spaces (SD2-VAE, SD3-VAE, VMAE, DC-AE), projecting data onto a hypersphere with average
radius preserves most semantic information. Notably, the SD3-VAE latent space shows particularly
robust behavior with only a 0.20 increase in rFID, while VMAE demonstrates near-perfect preser-
vation with a negligible −0.01 change. Additionally, LPIPS maintains near-baseline performance
across all representation spaces. This validates our assumption that directional information domi-
nates semantic content across diverse representation spaces.
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Method Source Target CIFAR10 Class-Conditional ImageNet256

gFID↓ gFID↓ sFID↓ IS↑ Precision↑ Recall↑

I-CFM N D 4.29 5.56 7.42 199.25 0.7724 0.5124
I-CFM (ours) N D̃ 4.10 5.01 7.89 231.70 0.8056 0.5432

OT-CFM N D 4.30 5.56 7.59 193.99 0.7656 0.5381
SOT-CFM (ours) N D 4.11 5.15 7.64 210.02 0.7839 0.5182
SOT-CFM (ours) N D̃ 4.12 5.28 7.32 204.41 0.7742 0.5172

SFM N D inapplicable
SFM (ours) Ñ D̃ 3.79 6.22 10.84 218.88 0.7531 0.5140

Table 2: Generative performance comparison on unconditional CIFAR-10 and class-conditional
ImageNet-256 (with CFG scale 2). N and Ñ denote the Gaussian and spherically projected Gaus-
sian distributions (which is nearly identical to uniform distribution on the sphere), respectively.
D and D̃ denote the original and spherically projected datasets, respectively. SFM is inherently
designed for spherical manifolds and cannot be directly applied to Euclidean data. Bold values in-
dicate the best performance within each method family.

4.3 QUANTITATIVE COMPARISON

We present our main experimental results in Table 2, comparing our proposed spherical methods
against Euclidean baselines on the CIFAR-10 and ImageNet-256 datasets. The results validate that
leveraging the inherent spherical geometry of image data leads to benefits in generative performance
and enables the first successful application of manifold-based generative modeling to natural images.

Utilizing Spherical Geometry. Our first set of experiments confirms that projecting the data onto
a hypersphere before training consistently improves standard Euclidean methods. Results for the
spherically projected dataset D̃ include post-processing magnitude adjustment. Spherical projection
consistently improves I-CFM performance, reducing the FID from 4.29 to 4.10 on CIFAR-10 and
from 5.56 to 5.01 on ImageNet-256, which corresponds to a substantial 10% improvement on this
more challenging benchmark.

Furthermore, our SOT-CFM, which is designed to focus on semantically meaningful directional
information by using an angular transport cost, outperforms its direct baseline. On CIFAR-10, SOT-
CFM achieves an gFID of 4.11, a notable improvement over OT-CFM’s 4.30. Interestingly, we
observe that combining spherical projection with SOT-CFM yields marginal performance degra-
dation, with gFID slightly increasing from 4.11 to 4.12 on CIFAR-10 and from 5.15 to 5.28 on
ImageNet-256. Collectively, these results provide strong evidence for our claim that leveraging the
directional components of image data is an effective path to better generation.

Spherical Flow Matching. Our SFM method, which defines source and target distributions as well
as flow paths on the hyperspherical manifold, achieves the strongest performance on CIFAR-10 with
an gFID of 3.79 and outperforming all other variants.

However, on ImageNet-256, SFM does not surpass existing methods, achieving an gFID of 6.22.
We attribute this performance gap primarily to our current implementation being a foundational
Riemannian-based approach that has not yet benefited from the extensive engineering optimizations
typically applied to such challenging scenarios. Although SFM does not achieve state-of-the-art
performance at this stage, it demonstrates meaningful results and represents a successful application
of Riemannian-based methods to natural image generation. To our knowledge, this is the first gener-
ative model to operate within a Riemannian manifold for image generation task. This breakthrough
makes sophisticated geometric tools accessible in the natural image domain, serving as an important
bridge between theoretical manifold-based methods and practical large-scale applications.

5 RELATED WORKS

Flow Matching. Flow Matching learns vector fields that transport noise to data distributions. Unlike
Continuous Normalizing Flows (CNFs) (Chen et al., 2018; Grathwohl et al., 2018), which suffer

8
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from expensive trace computations, Flow Matching (Lipman et al., 2023; Liu et al., 2022; Albergo
et al., 2023) uses a simulation-free objective to directly regress onto the conditional vector field,
improving scalability.

Building on these foundations, Flow Matching has been extended to support diverse probability
paths (Gat et al., 2024; Stark et al., 2024; Cheng et al., 2025; Kapusniak et al., 2024). The method
has found applications across multiple domains, including image generation (Esser et al., 2024; Dao
et al., 2023; Ren et al., 2024), audio synthesis (Guan et al., 2024; Liu et al., 2023; Prajwal et al.,
2024), video generation (Jin et al., 2025; Polyak et al., 2024), molecular modeling (Dunn & Koes,
2024; Song et al., 2023), and text generation (Hu et al., 2024).

Geometry-Aware Generative Modeling. Incorporating geometric priors has proven effective for
data on known manifolds. Riemannian Continuous Normalizing Flows (Mathieu & Nickel, 2020)
first integrated differential geometry into flow-based models via manifold-aware ODEs. Similarly,
Riemannian Score-Based (Bortoli et al., 2022) and Diffusion Models (Huang et al., 2022) extended
diffusion processes to Riemannian manifolds, improving performance on structured data. More re-
cently, Riemannian Flow Matching (RFM) (Chen & Lipman, 2024) enabled simulation-free training
on manifolds, and FlowMM (Miller et al., 2024) extended it with group-equivariance for efficient
crystal generation.

Optimal Transport in Generative Modeling. Optimal Transport (OT) provides a theoretical foun-
dations for generative models, notably used in Wasserstein GANs (Arjovsky et al., 2017) for stable
adversarial training. In Flow Matching, OT offers principled pairings between source and target
points (Tong et al., 2024; Pooladian et al., 2023), leading to shorter transport paths with improved
efficiency. However, existing OT methods often rely on Euclidean metrics which may not be optimal
for high-dimensional image data where directional similarity could be more meaningful. Scalable
algorithms like Sinkhorn iterations (Cuturi, 2013) and progressive solvers (Kassraie et al., 2024)
have made OT practical for large-scale tasks. Further refinements address challenges in minibatch
conditional settings through class-aware penalties (Cheng & Schwing, 2025) or partial optimal trans-
port (Nguyen et al., 2022), while others learn the coupling strategy directly from data (Lin et al.,
2025).

Autoencoders in the Latent Diffusion Framework. Latent diffusion models rely on an autoen-
coder to compress images into a meaningful latent space. The Autoencoder-KL from Stable Diffu-
sion (Rombach et al., 2022) established this approach, which was later scaled up in SDXL (Podell
et al., 2023) and Stable Diffusion v3 (Esser et al., 2024) for improved perceptual fidelity and condi-
tioning strategies. Beyond these, alternative encoders have been proposed to enhance latent repre-
sentations. VA-VAE (Yao et al., 2025) addresses the reconstruction-generation trade-off in latent dif-
fusion by aligning the VAE latent space with a pretrained vision foundation model. MAEtok (Chen
et al., 2025) and VMAE (Lee et al., 2025) combined latent diffusion with masked autoencoding,
improving latent space quality. In parallel, deep compression autoencoders (DC-AE) (Chen et al.,
2024) were designed to reduce latent dimensionality while maintaining fidelity.

6 CONCLUSION

In this work, we investigate the role of geometric structure in image generation by identifying a
spherical property of natural images through directional decomposition, where semantic information
is largely encoded in directions while scalar components can be approximated by dataset averages.
Building on this observation, we introduce geometry-aware flow matching methods for images,
SOT-CFM and SFM, which employ angular metrics and geodesic dynamics on the hypersphere
to produce geometrically consistent generative paths. Experiments on CIFAR-10 and ImageNet-
256 show that these spherical approaches achieve comparable or better performance than Euclidean
baselines across multiple metrics and representation spaces, including RGB and modern autoen-
coder latents, indicating their broad applicability in image domains. Overall, our results establish
that leveraging the intrinsic geometric structure of image data provides a principled and effective
perspective for generative modeling. This work opens the door to geometry-aware approaches in
image generation, demonstrating that even when explicit geometric priors are unknown, careful
analysis can reveal exploitable manifold structure that improves upon standard Euclidean methods.

9
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have taken extensive measures to provide all essential
implementation details and experimental configurations. Specifically, Section 4.1 presents the com-
plete experimental setup, covering datasets, model architectures, training procedures, evaluation
metrics, as well as all hyperparameter and architectural choices that were adopted in our experi-
ments. In addition, the source code, together with detailed instructions for replication, will be made
publicly available upon publication.

USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only as a general-purpose assist tool for grammar checking, sentence refinement,
LaTeX syntax validation, table formatting, and as a code assistant for debugging and formatting
scripts. They did not contribute to the research ideation, methodological design, analysis, or writing
of substantive scientific content.
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