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Abstract

Accurately classifying morphology and assessing stability in soft matter self-
assembly often require specialized analysis of small-angle X-ray scattering (SAXS)
data, creating an obstacle to automation. To address this, we introduce MOTIFNet,
a simplified sparse mixture of experts (MoE) model with top-1 routing. By com-
bining temporal convolution and self-attention, MOTIFNet effectively processes
SAXS time series data, enabling morphology classification, SAXS pattern pre-
diction, and the estimation of order-disorder transition (ODT) probabilities. This
model advances automated characterization, accelerating experimentation and
high-throughput studies in soft matter self-assembly.

1 Introduction

Amphiphilic molecules and block polymers can self-assemble into a diverse range of morphologies,
including but not limited to body-centered cubic (BCC), double diamond (DD), double gyroid (DG),
hexagonally packed cylindrical (HEX), lamellar (LAM), O70, and Q214. These self-assembled
structures play crucial roles in determining the material properties and have been explored extensively
in both computational and experimental studies [1–4]. Rapidly identifying these morphologies and
ensuring that the assembled system remains stable over specific future time periods are pivotal steps
in translating these materials into industrial applications [5, 6].

Among the various experimental techniques used to analyze self-assembled morphologies, small-
angle X-ray scattering (SAXS) stands out as a crucial method for both identifying morphology types
and detecting order-disorder transitions (ODTs) [7]. Its numerical analogs have become essential
tools in computational exploration [8, 9]. However, SAXS analysis traditionally relies on specialized
knowledge and manual peak annotation, a process that is not only time-consuming but also demands
considerable experience. The challenge intensifies when it comes to predicting SAXS time series
data, which significantly hinders the automated characterization and high-throughput exploration of
soft matter self-assembly. This bottleneck limits the scalability of SAXS-based studies and poses a
substantial barrier to advancing the field.

To address these challenges, we designed the attention-enhanced temporal convolution network
(ATCN), which builds upon the temporal convolutional network (TCN) architecture [10]. Our
approach integrates a multi-head self-attention layer between two adjacent temporal convolution
layers to enhance the model’s ability to capture relationships among different features [11, 12]. This
design enables the model to better learn the characteristic ratios of SAXS peaks.
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Building on ATCN, we developed the morphological order-disorder transition identification and fore-
casting network (MOTIFNet), a simplified mixture of experts (MoE) model [13, 14]. In MOTIFNet,
we employ a top-1 router to dynamically select from 7 experts, each specialized in one morphology,
thus enabling more accurate and efficient SAXS analysis in soft matter self-assembly.

2 Related Work

Figure 1: MOTIFNet (left) and the detailed architecture of the expert module (right).

The application of deep learning to accelerate research in soft matter self-assembly has gained
significant traction in recent years. For instance, deep learning models like PointNet have been
employed to detect ordered morphologies from molecular simulations [15, 16]. Additionally, CNNs
designed with feature engineering based on discrete Fourier transforms have leveraged the periodicity
inherent in self-assembled structures [17]. Other notable approaches have further expanded this
domain [18–20]. Additionally, machine learning has been employed in SAXS data analysis for tasks
such as protein reconstruction and morphology identification [21–23].

TCNs have obtained prominence in time series analysis due to their excellent parallelization capa-
bilities and relatively low training costs [10]. However, due to their reliance on one-dimensional
convolutions, TCNs often struggle to effectively capture relationships across different features. To
mitigate this limitation, recent studies have explored enhancing TCNs’ ability to recognize feature
dependence by integrating attention mechanisms [24, 25].

The MoE paradigm has been proven effective across a variety of fields, especially in natural language
processing tasks [26]. In particular, the use of sparse activation models, such as those employing a
top-1 router, has demonstrated considerable success in improving efficiency and scalability [27].

3 Methods

Synthetic data preparation To train and evaluate our model, we generated synthetic SAXS time
series data corresponding to 7 morphologies: BCC, DD, DG, HEX, LAM, O70, and Q214. For
each morphology, we calculated the characteristic peak ratios based on their respective space groups
[28], and determined the position ranges, heights, and widths of the primary peak according to
empirical experimental knowledge. Peaks were modeled using Gaussian wave packets. To improve
the generalization and robustness of the model, random noise was introduced into the data. The ODTs
were designed based on experimental observations, characterized by a decrease in the primary peak
height, an increase in its width, and the gradual disappearance of other peaks. During an ODT, the
primary peak experienced a ±3% shift, with the magnitude of this shift following a bimodal normal
distribution. To ensure reliable model evaluation, the generated data was split into training and testing
sets, with 80% of the data allocated for training and the remaining 20% used for testing.

Model design MOTIFNet is composed of 7 experts and a top-1 router, all based on the ATCN
architecture, as illustrated in Figure 1. Each expert in the network is specialized in processing SAXS
data corresponding to one morphology. The top-1 router is responsible for dynamically selecting
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the most appropriate expert for a given input, effectively acting as a morphology classifier. This
approach reduces training and operational costs, enhances the modularity of the model—facilitating
the potential inclusion of additional morphologies—and improves interpretability.

The router is constructed using 3 ATCN blocks with channel sizes of 32, 64, and 128, and a kernel
size of 5. Following the ATCN blocks, convolutional layers are applied to further process the features,
and a softmax layer to produce a 7-class output. The architecture of the expert is shown in Figure 1.

Logarithmic and exponential transformations To handle the variability in the magnitude of the
input data, a logarithmic transformation is applied to each element Xijt in the input sequence:

X̃ijt = log(1 + max(Xijt, 0))

This transformation ensures that all inputs are non-negative, facilitating stable logarithmic operations.
After the network produces the output Ŷ ′, the inverse transformation is applied to restore the data to
its original scale as Ŷijt = exp(min(Ŷ ′

ijt, 10))− 1. The minimum operation prevents excessively
large values that could destabilize training or inference.

Attention-enhanced temporal convolution network (ATCN) Each ATCN block outputs a trans-
formed tensor with the same dimensions as the input. The temporal convolution is defined as:

Conv1DCausal
k,d (X)ijt =

k−1∑
s=0

Wjs ·Xi,j,t−ds · I(t− ds ≥ 0)

where k is the kernel size, d is the dilation rate, and Wjs represents the convolutional filter weights.
The indicator function I(t− ds ≥ 0) ensures the convolution only considers current and past time
steps, preserving temporal causality.

The multi-head attention mechanism applied to queries Q, keys K, and values V is denoted as
Attn(Q,K, V ). The operations within an ATCN block can be summarized as:

Youtput = σ
(
Conv1DCausal

k2,d2
(Attn (Y1, Y1, Y1)) + I(N ̸= N ′) · Conv1D1,1(X) + I(N = N ′) ·X

)
where Y1 = Conv1DCausal

k1,d1
(X) is the output of the first convolution, implicitly adjusted to match the

input length by removing excess padding, σ is a non-linear activation function (typically ReLU),
and I(N ̸= N ′) applies a 1 × 1 convolution if the input and output dimensions differ, ensuring
compatibility in residual connections [29].

Loss function The expert is trained using two loss functions: RMSE for SAXS data prediction and
cross-entropy loss for binary ODT classification. The total loss is: L = LSAXS + λLODT , where λ is
a hyperparameter balancing the importance of the SAXS prediction and the ODT classification.

Table 1: Performance comparison

Models

Performance CNN TCN ATCN
Classification (accuracy) 0.98 0.97 0.99
ODT indication (accuracy) 0.69 0.77 0.83
SAXS prediction (RMSE loss) 175.6 85.3 19.1

4 Results and Discussion

In our experiments, we compared the performance of 3 neural network architectures—CNN, TCN,
and ATCN—in constructing MOTIFNet and evaluated their effectiveness on the synthetic dataset.
The layers, channel sizes, and kernel sizes for all 3 models were kept consistent with those depicted
in Figure 1. As shown in Table 1, the ATCN-based MOTIFNet outperforms the other 2 architectures
across all tasks, particularly excelling in ODT indicator accuracy and SAXS prediction.

MOTIFNet demonstrated high performance, as illustrated in Figure 2, where the top-1 router achieved
nearly 100% classification accuracy, which ensures that the input data is reliably assigned to the
corresponding expert. The ODT indicator also showed high accuracy, calculated on a per-time-step
basis. However, its performance was slightly weaker during the time steps where an ODT is about to
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Figure 2: (left) Confusion matrix of the router. (right) Accuracy of ODT indicators.

begin or end, which lowers the overall accuracy. The DD morphology exhibited greater variance in
accuracy due to more dramatic peak height decreases during the ODT, as the peaks in DD are much
taller than other morphologies.

To further explore the interpretability of MOTIFNet, we employed integrated gradients on nu-
merical SAXS data from molecular simulations of the DG morphology, as shown in Figure 3
[30]. We computed the feature importance, corresponding to the horizontal axis q in SAXS.
The DG structure, associated with the Ia3d space group symmetry, is characterized by peak ra-
tios at

√
6,
√
8,
√
16,

√
20,

√
22,

√
24,

√
26,

√
48 [28]. For this molecular system, the peaks at√

6,
√
8,
√
20,

√
22,

√
24,

√
26 are particularly prominent.

In comparison to TCN, the feature importance heatmap obtained from ATCN’s integrated gradients
analysis reveals that ATCN effectively captures these significant peaks, aligning closely with the
expected peak positions in the simulated DG data. Specifically, ATCN correctly identifies the
key peaks in the DG morphology, which the TCN fails to highlight with the same accuracy. This
observation underscores ATCN’s enhanced interpretability and reliability in identifying morphological
features inherent to the DG structure, thereby validating the interpretability of MOTIFNet.

Figure 3: (left) Simulation snapshot of DG morphology. (right) Numerical SAXS from molecular
simulation and integrated gradients analysis. Upper heatmap: ATCN; Lower heatmap: TCN.

5 Conclusions

In this work, we designed the ATCN and utilized it as the foundation for MOTIFNet, a model tailored
for the classification, stability assessment, and pattern prediction of SAXS time series data. By
simplifying the MoE architecture, MOTIFNet provides modularity, lightweight implementation,
and exceptional performance on synthetic datasets. It also demonstrated strong performance in
simulation data. We believe that MOTIFNet has the potential to significantly accelerate the automated
characterization of soft matter self-assembly, offering valuable insights for the analysis of other time
series data from spectroscopic measurements. The model’s adaptability and strong performance
suggest that it could become a vital tool in both computational and experimental studies, paving the
way for further advancements in high-throughput materials research.
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