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Abstract

Variational auto-encoders have proven to capture complicated data distributions and useful
latent representations, while advances in meta-learning have made it possible to extract
prior knowledge from data. We incorporate these two approaches and propose a novel flex-
ible prior, namely the Pseudo-inputs prior, to obtain a richer latent space. We train VAEs
using the Model-Agnostic Meta-Learning (MAML) algorithm and show that it achieves
comparable reconstruction performance with standard training. However, we show that
this MAML-VAE model learns richer latent representations, which we evaluate in terms
of unsupervised few-shot classification as a downstream task. Moreover, we show that
our proposed Pseudo-inputs prior outperforms baseline priors, including the VampPrior, in
both models, while also encouraging high-level representations through its pseudo-inputs.

1. Introduction

Variational auto-encoders (VAEs) (Kingma andWelling, 2014; Rezende et al., 2014) are deep
generative models that allow to learn complicated data distributions. However, VAEs often
make use of the isotropic Gaussian prior that may over-regularize the posterior (Hoffman
and Johnson, 2016), failing to capture its multi-modal nature. For this reason, several
alternative priors have been proposed, such as the Mixture of Gaussians (Dilokthanakul
et al., 2016; Nalisnick et al., 2016; Kopf et al., 2021) or the VampPrior (Tomczak and
Welling, 2018). We propose the Pseudo-inputs prior to provide more flexibility than the
VampPrior while encouraging higher-level representations.

In parallel, high-level representations of the data can also be achieved through meta-
learning, which aims at learning to generalise across tasks so that the model can quickly
adapt to novel ones. This requires learning specific representations that avoid to re-train in
the face of new data (Santoro et al., 2016). We combine VAEs with meta-learning with the
aim of generating better latent representations. Specifically, we employ the Model-Agnostic
Meta-Learning algorithm (MAML) (Finn et al., 2017) to train VAEs, namely MAML-VAE.

The contributions of this work are three-fold:

• We show VAEs trained with MAML achieve comparable performances with standard
training on the full dataset, and better ones on Omniglot with convolutional layers.

• We propose the Pseudo-inputs prior and show it outperforms the standard prior, the
Mixture of Gaussians, and the VampPrior on VAEs and on the meta-learnt MAML-
VAE model, while being more flexible and capturing higher-level representations.

• We show that meta-learning allows to generate richer latent representations, in terms
of higher accuracy in unsupervised few-shot classification, evaluated as a downstream
task. Again, the Pseudo-inputs prior achieves the highest accuracy.
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2. Methods

2.1. MAML-VAE

We use the standard implementation of VAEs, for which the variational posterior is assumed
to be a diagonal Gaussian distribution qϕ(z|x) = N (z;µϕ(x), diag(σ

2
ϕ(x))) modelled with a

neural network parametrised by ϕ. The decoder, on the other hand, is defined as a Bernoulli
distribution modelled by a neural network pθ(x|z) parametrised by θ. Lastly, we indicate
the prior as pλ(z) parametrised by λ. The objective optimised in VAEs is the evidence
lower bound (ELBO), which is computed via a Monte Carlo estimate as

ELBO(x; θ, ϕ, λ) ≃ 1

L

L∑
l=1

[
log pθ(x|z

(l)
ϕ ) + log pλ(z

(l)
ϕ )− log qϕ(z

(l)
ϕ |x)

]
, (1)

where z
(l)
ϕ ∼ qϕ(z|x) using the reparametrization trick (Kingma and Welling, 2014).

In this work, we apply meta-learning to VAE priors by leveraging the MAML algorithm,
since its model-agnostic nature allows to maintain the Bayesian structure of the VAE. In
short, the idea behind the MAML algorithm is to find the optimal parameters of the model
so that in a fixed (small) number of steps over the support set Dsupp they can be adapted
to unseen tasks over the query set Dquery. The sought optimal parameters should thus
be sensitive enough, allowing with small changes to obtain significant improvements in
the loss function. The training and test procedures for the resulting model, which we call
MAML-VAE, are outlined in Appendix A in Algorithm 1 and 2. In contrast to VAEs, where
parameters are updated over an arbitrary number of gradient steps, the MAML-VAE model
allows only a single adaptation step over the support set to adapt to the query set, which
makes the task harder. It has also been suggested that the optimal parameters found by
the MAML algorithm coincide with the optimal parameters for continual learning (Gupta
et al., 2020). Intuitively, this should lead to richer high-level latent representations.

2.2. The Pseudo-inputs prior

We propose the Pseudo-inputs prior with the intention of providing a more flexible encod-
ing than the VampPrior, while also learning a high-level representation of the dataset. The
Pseudo-inputs prior encodes a mixture of Gaussians by mapping K learnable h-dimensional
pseudo-inputs {uk}Kk=1 to the mean vectors {µk}Kk=1 in the d-dimensional latent space
through a flexible encoding network fψ(·) : uk 7→ µk. The k-th component of the mixture
is thus simply obtained by feed-forwarding the k-th pseudo input. We verified experimen-
tally that learning the covariance vectors separately leads to better results. Overall, the
probability density encoded by the Pseudo-inputs prior is given by

pλ(z) =
1

K

K∑
k=1

N
(
z; fψ(uk), diag(σ

2
k)
)
, (2)

where λ = {ψ, {uk}Kk=1, {σ2k}Kk=1} are the parameters of the prior. An illustration of the
proposed Pseudo-inputs prior is provided in Figure 1.

This encoding allows to freely define the complexity of the network as well as the dimen-
sion of the pseudo-inputs, proportionally to how informative they are intended to be. We
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Figure 1: Structure of the proposed Pseudo-inputs prior.

could not learn this high-level representation if we instead encoded the mean vectors and
covariances directly. In particular, the Pseudo-inputs prior is meant to learn a particular
parametrisation of the network that allows the pseudo-inputs to adapt to different tasks,
making it suitable for meta-learning as well as transfer and continual learning. We also
suggest that pseudo-inputs could be sampled to alleviate the mode-seeking behaviour of the
Kullback-Leibler divergence (Burda et al., 2016), as outlined in Appendix A.

3. Experiments

3.1. Pseudo-inputs prior: rate-distortion analysis

In order to understand the behavior of the Pseudo-inputs prior, we perform the rate-
distortion analysis (Alemi et al., 2018) and compare it against the standard prior, the
Mixture of Gaussians prior (MoG)—encoding mean and covariance vectors directly—and
the VampPrior. In order to do so, we leverage the β-VAE objective proposed in Higgins
et al. (2017), which is defined as L := RE + βKL with the distortion being the reconstruc-
tion error RE := −

∫
q(x)dx

∫
qϕ(z|x) log pθ(x|z)dz and the rate being the Kullback-Leibler

divergence KL :=
∫
q(x)dx

∫
qϕ(z|x) log

qϕ(x|z)
pλ(z)

dz. In practice, we trained the VAE model

with the β-VAE objective for β ∈ {0.01, 0.1, 0.5, 1, 2, 5, 10}. We compare the priors in terms
of their ELBO (RE+KL) on Omniglot (Lake et al., 2015) and Quickdraw (Jongejan et al.,
2016), which we report in Figure 2 and in Appendix B in Figure 4, respectively.

It is apparent that the least expressive prior is almost everywhere the standard Gaussian,
as it achieves the highest ELBOs for most β values. In contrast, the proposed Pseudo-inputs
prior achieves the lowest ELBO values for β = 0.5, 1, 2 consistently for Omniglot and for
Quickdraw. This β range is actually the most significant as it is the closest to the actual
ELBO bound for β = 1. In fact, only β = 1 constitutes a lower bound on the marginal
log-likelihood while the more extreme values β = 0.01, 0.1, 5, 10 allow only to test the auto-
encoding and auto-decoding behavior. Furthermore, when β > 1, the over-pruning biases
of variational inference are enhanced (Stühmer et al., 2019). In particular, for β = 1,
the proposed Pseudo-inputs prior significantly outperforms the other priors. Therefore,
we can state that based on the rate-distortion analysis, the proposed Pseudo-inputs prior
achieves better performances, consistently for Omniglot and Quickdraw, suggesting it is
more expressive than the VampPrior, the MoG prior, and the standard prior.
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Figure 2: ELBO for VAE trained over β-VAE on Omniglot with standard prior (red), MoG
prior (blue), VampPrior (green), and Pseudo-inputs prior (black). Uncertainties
are computed as 95% confidence interval over 3 random seeds (10,100,1000).

3.2. MAML-VAE and VAE comparison

In this section, we compare performances between the VAE model and the proposed MAML-
VAE model. Furthermore, we show the proposed Pseudo-inputs prior outperforms baseline
priors in both models on both Omniglot and Quickdraw. We provide details about how
Omniglot and Quickdraw are organised into tasks for meta-learning and about the models
in Appendix A. We also compare the models implemented with convolutional layers, namely
the MAML-CVAE and CVAE models, to see whether convolutions help generate a latent
space suitable for unsupervised few-shot classification and, if so, in what proportion to the
MAML-VAE and VAE models. Whenever the “MAML-” prefix is used, all parameters
(including the prior, if applicable) are learnt through the MAML algorithm, while standard
training is used otherwise. The results obtained are reported in Table 1.

On the one hand, results clearly show the proposed Pseudo-inputs prior outperforms
baseline priors. This is true on Omniglot and Quickdraw and consistently across all four
models. This suggests that results are robust and that the Pseudo-inputs prior is suitable
both for standard and meta-learning, since it is able to efficiently learn a dataset-specific
representation and a higher-level one. On the other hand, results show that the VAE and
the MAML-VAE models, and their convolutional counterparts CVAE and MAML-CVAE,
achieve comparable performances across different priors on Omniglot and Quickdraw. The
difference is more evident when convolutional layers are employed as the MAML-CVAE
model outperforms the CVAE model over all priors on Omniglot while it achieves worse
results on Quickdraw. This is notable, as meta-learning is in general a harder task.

3.3. Unsupervised few-shot classification in the latent space

In order to quantify whether the latent space learnt in the MAML-VAE model is richer
than the one learnt with VAEs, we measure its suitability to unsupervised few-shot clas-
sification, which we evaluate as a downstream task of prototypical networks (Snell et al.,
2017). Specifically, we exploit prototypical networks to evaluate the embedding generated
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Omniglot Quickdraw

prior MAML-VAE VAE MAML-VAE VAE

standard 108.57± 1.13 108.20± 0.03 187.51± 0.19 186.56± 0.14
MoG 108.00± 0.44 107.37± 0.24 185.84± 0.16 183.24± 0.17

VampPrior 107.07± 0.61 106.99± 0.01 185.29± 0.46 183.19± 0.15
Pseudo-inputs 106.30± 0.08 106.44± 0.08 184.01± 0.30 181.16± 0.05

prior MAML-CVAE CVAE MAML-CVAE CVAE

standard 93.07± 0.90 95.59± 0.36 160.49± 0.18 159.82± 0.60
MoG 92.70± 0.21 93.95± 0.32 156.23± 0.48 154.09± 0.34

VampPrior 92.15± 3.46 98.16± 0.89 155.66± 1.29 158.90± 0.63
Pseudo-inputs 87.73± 0.07 93.37± 0.21 152.85± 0.36 150.02± 0.40

Table 1: Negative marginal test log-likelihood for MAML-VAE and VAE models (fully con-
nected) and for MAML-CVAE and CVAE models (convolutional). Uncertainties
are computed as 68% confidence interval over 3 random seeds (10,100,1000). Bold
indicates best performing prior.

by variational posterior qϕ∗(z|x) depending on whether it was learnt through the VAE or the
MAML-VAE model. Note that the variational posterior is trained through either standard
training or the MAML algorithm and that the learnt parameters are left unchanged. This
makes the task unsupervised since the models, and hence the variational posteriors, are
trained without any label information. Instead of averaging over samples of the variational
posterior, we evaluate the latent space generated by its mean vector µϕ∗(x) directly. Let us
now consider a few-shot task as an N -way classification with S support and Q query shots,
taken respectively from Dsupp and Dquery, both drawn from the test set Dtest. At test time,
the support set allows to obtain {csuppk }Nk=1 prototypical representations of the N classes as:

csuppk =
1

|Dk|
∑

(xi,yi)∈Dsupp
k

µϕ∗(xi), (3)

where Dk is the set of support points labelled with class k. The accuracy of the unsupervised
few-shot classification task is then computed on the query set based on the prototypical
class representations obtained on the support set. This is computed as softmax over the
Euclidean distance between the class prototypes {csuppk }Nk=1 and the encoded query points.

We evaluated the models on Omniglot over various N -way S-shot classification tasks:
results for the MAML-VAE and VAE model are reported in Table 2 while for the MAML-
CVAE and CVAE models in Appendix B in Table 4. On the one hand, we see that the
MAML-VAE model achieves significantly higher accuracy than the VAE model across all
priors, which indicates that meta-learning encourages a significantly richer latent space.
When convolutional layers are employed, the difference shrinks, which indicates that in-
creased capacity of the convolutional encoder and decoder allows for a less expressive prior
distribution. However, when either the VampPrior or the Pseudo-inputs prior are employed,
it is still beneficial to exploit both contributions. On the other hand, we showed that the
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(N ; S,Q) (5; 1, 19) (5; 5, 15) (20; 1, 19) (20; 5, 15)

std
MAML-VAE 57.08± 0.66 75.86± 0.54 33.72± 0.26 52.86± 0.30

VAE 49.23± 0.60 69.43± 0.54 28.91± 0.35 47.76± 0.28

MoG
MAML-VAE 59.74± 0.69 76.50± 0.52 35.17± 0.29 53.63± 0.30

VAE 51.95± 0.61 71.41± 0.54 30.63± 0.25 49.54± 0.28

Vamp
MAML-VAE 61.04± 0.66 78.74± 0.52 37.90± 0.30 57.86± 0.29

VAE 52.18± 0.60 70.52± 0.59 30.31± 0.26 49.41± 0.28

Pseudo
MAML-VAE 61.05± 0.65 79.96± 0.49 37.88± 0.31 59.23± 0.28

VAE 52.24± 0.62 72.17± 0.49 30.49± 0.24 49.83± 0.28

Table 2: Accuracy in unsupervised few-shot classification as a downstream task of prototyp-
ical networks on Omniglot between the MAML-VAE and VAE models. Accuracy
is evaluated over N -way classification with S support images and Q query images.
Uncertainties are computed as 95% confidence interval over 1000 tasks. Bold indi-
cates best performing training algorithm while boxes indicate overall best method.

proposed Pseudo-inputs prior achieves the highest accuracy when compared to the other
priors across all models and even more so when convolutional layers are employed. No-
tably, we even achieve comparable results with the unsupervised meta-learning approach
CACTUs (Hsu et al., 2019), as detailed in Appendix B in Table 5.

4. Related Work

In recent years, many different priors have been proposed for VAEs (e.g., Fortuin et al.,
2019a, 2020; Manduchi et al., 2019, 2021; Jazbec et al., 2020, 2021; Ashman et al., 2020).
However, to the best of our knowledge, none of these approaches used meta-learning to
improve the priors using related tasks. The prior most related to our approach is the
VampPrior (Tomczak andWelling, 2018), which we also use as a baseline in our experiments.

While meta-learning (Thrun and Pratt, 1998; Baxter, 2000) has also been recently con-
nected to Bayesian models (e.g., Grant et al., 2018; Finn et al., 2018; Yoon et al., 2018;
Fortuin et al., 2019b; Rothfuss et al., 2021), it has not yet been used for VAEs.

5. Conclusion

We have shown that meta-learning, and specifically the MAML algorithm, can be benefi-
cial for VAEs, since it enables richer latent representations. In particular, we have shown
that the MAML-VAE model achieves comparable performances with VAEs in terms of test
marginal log-likelihood, despite meta-learning being a much harder task, while it yields
better performances in downstream few-shot classification tasks. Moreover, we have pro-
posed the Pseudo-inputs prior, which allows to flexibly encode a mixture of Gaussians while
also learning a high-level representation of the data through its pseudo-inputs. We have
shown that this prior outperforms the standard prior, the Mixture of Gaussians, and the
VampPrior, in standard supervised and meta-learning settings, and on different data sets.
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Probabilistic Time Series Imputation. In International Conference on Artificial Intelli-
gence and Statistics, pages 1651–1661. PMLR, 2020.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
Gradient-Based Meta-Learning as Hierarchical Bayes. In International Conference on
Learning Representations, 2018.

Gunshi Gupta, Karmesh Yadav, and Liam Paull. La-maml: Look-ahead meta learning for
continual learning, 2020.
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Appendix A. Dataset and models

Omniglot Omniglot (Lake et al., 2015) contains images of handwritten characters from
50 alphabets: 30 are intended for training (background set) and 20 for test (evaluation
set). Each character is drawn 20 times from 20 different people. For both the VAE and
MAML-VAE models we refer to the background-evaluation split. However, the MAML
algorithm requires the dataset to be organised into tasks, which we do in N-way K-shot
fashion, where training is performed over K support points for a task that consists of N
classes. Specifically, we identify a task as learning a particular character, so each task is
defined by the 20 handwritten images of each character, which are split into support and
query images. Overall, the dataset so defined is composed of 1020 tasks for training, 170
for validation and 420 for test, for a total of 20400, 3400 and 8400 data points, respectively.
For the Omniglot meta-learning dataset we leverage the Torchmeta implementation (Deleu
et al., 2019), which allows to easily build N-way K-shot tasks. In order to ensure images
were normalised identically, we used the Torchmeta package for the VAE model as well.

Quickdraw Quickdraw (Jongejan et al., 2016) is a dataset containing 50 million drawings
belonging to 345 classes obtained by asking different users to draw the object represented
by each class. Since the objects can be drawn in several ways, examples belonging to the
same class may look significantly different. The meta-learning task on Quickdraw is thus
to capture the “idea” of the represented object, which is a much more challenging task
than learning a specific character as in Omniglot. To our knowledge there is no easy-to-use
meta-learning implementation of the Quickdraw data set, so we decided to build our own.
We selected 200 drawings for each class and we split training, validation and test so that
each contains disjoint sets of classes. We picked 50 classes for training, 10 for validation
and 25 for test, for a total of 10000, 2000 and 5000 data points, respectively. We report the
classes used in each split in Table 3. When choosing the classes for training, validation and
test we paid attention to keep a consistent variety of shapes.

Table 3: Classes used in each split of our reduced Quickdraw dataset: 50 classes for training,
10 for validation and 25 for test. Each class contains 200 data points.

train validation test

airplane, ambulance, angel, ant, anvil, apple,
arm, asparagus, axe, backpack, banana, ban-
dage, barn, baseball, basket, basketball, bat,
bathtub, beach, bear, beard, bed, bee, belt,
bench, bicycle, binoculars, bird, blackberry,
blueberry, book, boomerang, bottlecap, bowtie,
bracelet, brain, bread, bridge, broccoli, broom,
bucket, bulldozer, bus, bush, butterfly, cactus,
cake, calculator, calendar, camel

crayon,
crocodile,
crown, cup,
diamond,
dishwasher,
dog, dol-
phin,
donut, door

camera, camouflage,
campfire, candle, cannon,
canoe, car, carrot, castle,
cat, cello, chair, chan-
delier, church, circle,
clarinet, clock, cloud,
compass, computer,
cookie, cooler, couch,
cow, crab

Both Quickdraw and Omniglot consist of square grey images composed of 28×28 pixels.
In this work we decided to binarise each image by applying a filter, namely a mask for which
pixels greater than 0.5 are set to 1 while those that are smaller than 0.5 are set to 0. This
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way a sharper and more continuous image is obtained. In contrast, it is also common to
binarise the images through a Bernoulli sampling (Tomczak and Welling, 2018). However,
this technique does not guarantee that the resulting shape is continuous, which is a crucial
aspect both for the Omniglot and the Quickdraw dataset. In fact, in both cases the images
are created through a (mostly) continuous stroke of pen. Examples of how the Bernoulli
sampling can distort the resulting images and a comparison with our filtering approach are
reported across Figure 3(a)-3(h).

(a) grey-scaled (b) filtered (c) Sample 1 (d) Sample 2

(e) grey-scaled (f ) filtered (g) Sample 1 (h) Sample 2

Figure 3: Two grey-scaled Omniglot characters (a) and (e) are binarised. Filtered images
preserve the continuity of the pen stroke as in (b) and (f). Bernoulli sampling
produces highly different and discontinuous samples as in (c)/(d) and (g)/(h).

Sampling the pseudo-inputs The encoder fψ is a mapping from the pseudo-inputs
space to the latent space. Instead of learning the pseudo-inputs, they may also be defined
over some simple distribution so that its samples are then drawn and mapped in the latent
space. One way to do so is to sample the pseudo-inputs from the standard Gaussian
distribution uk ∼ N (ck, σ

21d), where σ
2 is an hyper-parameter and ck a fixed (or trainable)

mean vector, and to do so at each forward pass. Intuitively, the parameter σ2 controls
the variance of the encoded samples µ̂k, which are obtained as µ̂k = fψ(ck + σϵ) with
ϵ ∼ N (0, 1d). Assuming the optimisation converges, samples of the pseudo-inputs are then
mapped into samples of the encoded prior distribution. Sampling the pseudo-inputs at each
forward pass during optimisation does not guarantee convergence though. However, if the
analogous problem where pseudo-inputs are trainable converges, then for sufficiently small
ϵ it also converges for trainable ck values. We show in our experiments that ck need not to
be trainable for convergence and we suggest that sampling pseudo-inputs allows to alleviate
the mode-seeking behaviour typical of the Kullback-Leibler divergence (Burda et al., 2016).
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Algorithm 1: MAML-VAE: meta-training

Input: Dtrain
Output: Φ
Initialise Φ := {θ, ϕ, λ};
while not converged do

Sample a mini-batch of task(s) τ from Dsupp,Dquery ∼ Dtrain;
for each task τ ∈ Dsupp do

Φ′ ← Φ− ηin∇ΦLτ (Φ);
end
Φ← Φ− ηout∇Φ

∑
τ∼Dquery Lτ

(
Φ′(Φ)

)
;

end

Algorithm 2: MAML-VAE: meta-test

Input: Φ∗,Dtest
Output: L
L← 0;
for Dsupp,Dquery in Dtest do

Φ′ ← Φ∗ − ηin∇ΦLτ (Φ∗);
L← L+

∑
τ∼Dquery Lτ (Φ′(Φ∗));

end
L← L/|Dtest|

Details about the VAE and MAML-VAE models The VAE model is trained with
a learning rate of 0.0005 whereas the MAML-VAE model with an inner learning rate ηin =
0.05 and an outer learning rate ηout = 0.0005. The MAML-VAE model is trained in a 1-way
fashion with 5 support and 15 query shots (20 images per task). We employ ADAM (Kingma
and Ba, 2017) as optimizer for the VAE model and for the MAML-VAE model in the outer-
loop, while in the inner loop we use simple stochastic gradient descent. The computational
bottleneck of the MAML-VAE model is in the outer-loop, which requires back-propagating
through the gradients of the inner-loop. Therefore, in MAML-VAE we take a single gradient
update in the inner loop. In each model we perform 100 warm-up steps (Bowman et al.,
2016) to ensure that the reconstruction error and the Kullback-Leibler term in the ELBO
are properly optimised. Furthermore, the stop criterion used for training is in all settings
a 50 look-ahead steps early stopping. As suggested in (Tomczak and Welling, 2018), we
use a 40-dimensional latent space for both the VAE and MAML-VAE models. Both models
are implemented on top of their code, which relies on PyTorch (Paszke et al., 2019). We
also provide an implementation of the models that exploits convolutional layers, which we
call the CVAE and MAML-CVAE models. In order to make a fair comparison we maintain
the same architecture, only replacing fully connected layers with convolutional ones. The
trained models are evaluated in terms of the marginal log-likelihood on the test set, which
is computed using the importance weighting estimate proposed in the IWAE model (Burda
et al., 2016) with 5000 samples. Concerning the Pseudo-inputs prior, its encoder fψ is
implemented with three fully connected layers of dimension h× 100, 100× 100, and 100× d
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with h = 50 and d = 40. We applied the Exponential Linear Unit (ELU) (Clevert et al.,
2016) as activation function on each layer. In order to make a fair comparison, the MoG
prior, the VampPrior and the Pseudo-inputs prior are all implemented with 100 components.

Appendix B. Further results
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Figure 4: ELBO for VAE trained over β-VAE on Quickdraw with standard prior (red), MoG
prior (blue), VampPrior (green), and Pseudo-inputs prior (black). Uncertainties
are computed as 95% confidence interval over 3 random seeds (10,100,1000).

(N ; S,Q) (5; 1, 19) (5; 5, 15) (20; 1, 19) (20; 5, 15)

std
MAML-CVAE 57.56± 0.63 77.22± 0.51 39.21± 0.29 59.47± 0.30

CVAE 58.62± 0.64 78.19± 0.51 40.47± 0.28 61.16± 0.29

MoG
MAML-CVAE 59.12± 0.66 78.89± 0.51 39.92± 0.32 59.51± 0.30

CVAE 61.63± 0.65 79.90± 0.48 41.97± 0.32 62.20± 0.29

Vamp
MAML-CVAE 64.35± 0.68 81.81± 0.49 44.46± 0.32 64.02± 0.30

CVAE 61.97± 0.68 80.64± 0.51 42.57± 0.32 62.79± 0.30

Pseudo
MAML-CVAE 64.98± 0.66 83.57± 0.45 45.46± 0.33 66.08± 0.28

CVAE 62.44± 0.66 80.40± 0.49 42.47± 0.32 62.39± 0.30

Table 4: Accuracy in unsupervised few-shot classification as a downstream task of proto-
typical networks on Quickdraw between the MAML-CVAE and CVAE models.
Accuracy is evaluated over N -way classification with S support and Q query im-
ages. Uncertainties are computed as 95% confidence interval over 1000 tasks.
Bold font indicates best performing training algorithm. Boxes indicate overall
best method or both if the confidence intervals overlap.
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Comparison with other unsupervised approaches We compare our results to a com-
mon baseline for unsupervised few-shot classification that exploits meta-learning: the CAC-
TUs model (Hsu et al., 2019). However, note that our model is not intended for unsuper-
vised few-shot classification, but is rather used to evaluate the generated latent space. The
CACTUs model automatically builds tasks from unlabelled data and then exploits meta-
learning to find a learning procedure that allows to solve the constructed tasks. In order to
construct tasks from unlabelled data it learns an appropriate embedding function mapping
from the data space and then generates a partition over the embedded data-points lever-
aging k-means (MacQueen, 1967). The meta-learner is then trained over the so-defined
labelled data through either the MAML algorithm (“CACTUs-MAML”) or prototypical
networks (“CACTUs-ProtoNets”). However, the learnt embedding may be used directly
for downstream supervised learning. In particular, we consider the implementations with
a linear classifier (“Emb. linear classifier”) and a MLP with one hidden layer of 128 units
(“Emb. MLP classifier”), which include the most performing ones. Two unsupervised em-
bedding learning algorithms are used: ACAI (Berthelot et al., 2018) and BiGAN (Donahue
et al., 2017; Dumoulin et al., 2017). In Table 5 we compare their results and their baselines
against our most performing models in terms of few-shot classification accuracy.

(N ; S,Q) (5; 1, 19) (5; 5, 15) (20; 1, 19) (20; 5, 15)

ACAI
Emb. linear classifier 61.08± 1.32 81.82± 0.58 43.20± 0.69 66.33± 0.36
Emb. MLP classifier 51.95± 0.82 77.20± 0.65 30.65± 0.39 58.62± 0.41
CACTUs-ProtoNets 68.12± 0.84 83.58± 0.61 47.75± 0.43 66.27± 0.37
CACTUs-MAML 68.84± 0.80 87.78± 0.50 48.09± 0.41 73.36± 0.34

BiGAN
Emb. linear classifier 48.28± 1.25 68.72± 0.66 27.80± 0.61 45.82± 0.37
Emb. MLP classifier 40.54± 0.79 62.56± 0.79 19.92± 0.32 40.71± 0.40
CACTUs-ProtoNets 54.74± 0.82 71.69± 0.73 33.40± 0.37 50.62± 0.39
CACTUs-MAML 58.18± 0.81 78.66± 0.65 35.56± 0.36 58.62± 0.38

ours
CVAE - Pseudo 62.44± 0.66 80.40± 0.49 42.47± 0.32 62.39± 0.30
MAML-CVAE - Pseudo 64.98± 0.66 83.57± 0.45 45.46± 0.33 66.08± 0.28

Table 5: Accuracy comparison in few-shot classification tasks on Omniglot between our
methods MAML-CVAE and CVAE and the CACTUs model together with its
baselines (Hsu et al., 2019). The results are obtained as the average over 1000
tasks and uncertainties are computed as 95% confidence interval.

The comparison shows that the MAML-CVAE model implemented with Pseudo-inputs
prior outperforms all BiGAN implementations. Furthermore, it achieves comparable accu-
racy to the ACAI implementation of CACTUs-ProtoNets but lower accuracy with respect
to the ACAI implementation of CACTUs-MAML. We regard this as a significant result as
our method was not meant for unsupervised few-shot classification.
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