
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

AGENT-TO-SIM: LEARNING INTERACTIVE BEHAVIOR
MODELS FROM CASUAL LONGITUDINAL VIDEOS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Agent-to-Sim (ATS), a framework for learning interactive behavior
models of 3D agents from casual longitudinal video collections. Different from
prior works that rely on marker-based tracking and multiview cameras, ATS learns
natural behaviors of animal agents non-invasively through video observations
recorded over a long time-span (e.g. a month) in a single environment. Modeling
3D behavior of an agent requires persistent 3D tracking (e.g., knowing which point
corresponds to which) over a long time period. To obtain such data, we develop a
coarse-to-fine registration method that tracks the agent and the camera over time
through a canonical 3D space, resulting in a complete and persistent spacetime 4D
representation. We then train a generative model of agent behaviors using paired
data of perception and motion of an agent queried from the 4D reconstruction. ATS
enables real-to-sim transfer from video recordings of an agent to an interactive
behavior simulator. We demonstrate results on animals given monocular RGBD
videos captured by a smartphone.

1 INTRODUCTION

Plausible paths

Past Tajectory

Consider an image on the right: where will the cat go and how will it
move? Having seen cats interacting with the environment and people
many times, we know that cats often go to the couch and follow humans
around, but run away if people come too close. Our goal is to learn such
a behavior model of physical agents from visual observations, just like
humans can. This is a fundamental problem with practical application in
content generation, VR/AR, robot planning in safety-critical scenarios,
and behavior imitation from the real world (Park et al., 2023; Ettinger
et al., 2021; Puig et al., 2023; Srivastava et al., 2022; Li et al., 2024; Schödl et al., 2000).

In a step towards building faithful models of agent behaviors, we present ATS (Agent-to-Sim), a
framework for learning interactive behavior models of 3D agents observed over a long span of time in
a single environment, as shown in Fig. 1. The benefits of such a setup is multitude: 1) It is accessible,
unlike approaches that capture motion data in a controlled studio with multiple cameras (Mahmood
et al., 2019; Joo et al., 2017; Hassan et al., 2021; Kim et al., 2024), our approach only requires a
single smartphone; 2) It is natural – since the capture happens in the agent’s everyday environment, it
enables observing the full spectrum of natural behavior non-invasively; 3) Furthermore, it allows for
longitudinal behavior capture, e.g., one that happens over a span of a month, which helps capturing a
wider variety of behaviors; 4) In addition, this setup enables modeling the interactions between the
agents and the observer, i.e. the person taking the video.

While learning from casual longitudinal video observations has benefits, it also brings new challenges.
Videos captured over time needs to be registered and reconstructed in a consistent manner. Earlier
methods that reconstruct each video independently (Song et al., 2023; Gao et al., 2022; Park et al.,
2021) is not enough, as they do not solve correspondence across the videos. In this work, we tackle
a more challenging scenario: building a complete and persistent 4D representation from orders of
magnitude more data, e.g., 20k frames of videos, and use them to learn behavior models of an agent.
To this end, we introduce a novel coarse-to-fine registration approach that re-purposes large image
models, such as DiNO-v2 (Oquab et al., 2023), as neural localizers, which register the cameras with
respect to canonical spaces of both the agent and the scene. While TotalRecon (Song et al., 2023)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Observer

Agent

Scene

Time

A) 4D Spacetime Reconstruction

Clip M What happens if “z”?

B) Interactive Behavior Simulator

User: “block the way”User: “stay idle” User: “approach quickly”

Clip 1 … Clip M-1

Early

Late

Figure 1: Learning agent behavior from longitudinal casual video recordings. We answer the
following question: can we simulate the behavior of an agent, by learning from casually-captured
videos of the same agent recorded across a long period of time (e.g., a month)? A) We first reconstruct
videos in 4D (3D & time), which includes the scene, the trajectory of the agent, and the trajectory of
the observer (i.e., camera held by the observer). Such individual 4D reconstructions are registered
across time, resulting in a complete and persistent 4D representation. B) Then we learn a model of
the agent for interactive behavior generation. The behavior model explicitly reasons about goals,
paths, and full body movements conditioned on the agent’s ego-perception and past trajectory. Such
an agent representation allows generation of novel scenarios through conditioning. For example,
conditioned on different observer trajectories, the cat agent chooses to walk to the carpet, stays still
while quivering his tail, or hide under the tray stand.

explored reconstructing both the agent and the scene from a single video, our approach enables
reconstructing multiple videos into a complete and persistent 4D representation containing the agent,
the scene, and the observer. Then, an interactive behavior model can be learned by querying paired
ego-perception and motion data from such 4D representation.

4D Reconstruction Behavior Learning

Agent-to-Sim (Offline)

Interaction Videos Interactive SimulatorInitial Registration

Scene & Agent video

Planned Paths

 Early Late

Figure 2: ATS takes videos of an agent and the scene and produces a interactive behavior simulator.

The resulting framework, as shown in Fig. 2, can simulate interactive behaviors like those described
at the start: agents like pets that leap onto furniture, dart quickly across the room, timidly approach
nearby users, and run away if approached too quickly. Our contributions are summarized as follows:

1. 4D from Video Collections. We build persistent and complete 4D representations from
a collection of casual videos, accounting for deformations of the agent, the observer, and
changes of the scene across time, enabled by a coarse-to-fine registration method.

2. Interactive Behavior Generation. ATS learns behavior that is interactive to both the
observer and 3D scene. We show results of generating plausible animal behaviors reactive
to the observer’s motion, and aware of the 3D scene.

3. Agent-to-Sim (ATS) Framework. We introduce a real-to-sim framework to learn simulators
of interactive agent behavior from casually-captured videos. ATS learns natural agent
behavior, and is scalable to diverse scenarios, such as animal behavior and casual events.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 RELATED WORKS

3D Agent Reconstruction from Monocular Videos. Reconstructing time-varying 3D structures from
monocular videos is challenging due to its under-constrained nature. Given a monocular video, there
are multiple interpretations of the underlying 3D geometry, motion, appearance, and lighting (Szeliski
& Kang, 1997). To deal with the ambiguities, prior methods often rely on category-specific body
prior for e.g., humans (Goel et al., 2023; Loper et al., 2015; Kocabas et al., 2020) and animals (Zuffi
et al., 2017; 2018; 2019). However, parametric body models limits the degrees of freedom they can
capture, and makes it difficult to reconstruct agents from arbitrary categories which do not have a
pre-built body model, for example, mice and bunnies. Another line of works (Yang et al., 2022; Wu
et al., 2021) avoid category-specific 3D priors and learns a flexible shape and deformation model
of the agent (e.g., articulated bones) given pixel priors (e.g., optical flow and object segmentation),
which works for a wider range of categories including human, animals, and cars.

World-space 3D Agent Reconstruction. Beyond reconstructing the agents in the camera space,
recent methods align reconstructed 3D humans to the world coordinate with the help of SLAM and
visual odometry (Ye et al., 2023; Yuan et al., 2022; Kocabas et al., 2023). Sitcoms3D (Pavlakos et al.,
2022) reconstructs both the scene and human parameters, while relying on shot changes to determine
the scale of the scene. TotalRecon (Song et al., 2023) jointly optimizes the 3D agents, camera motion,
and the 3D scene using compositional volume rendering, such that the motion of the agent can be
decoupled from the camera motion and visualized from embodied viewpoints and fixed cameras
in the world space. However, most of the method operates on a few hundreds of frames, and none
of them can reconstruct a complete 4D scene while obtaining persistent 3D tracks over orders of
magnitude more data (e.g., 20k frames of videos). We develop a coarse-to-fine registration method
to register the agent and the environment into a canonical 3D space, which allows us to leverage
large-scale video collection to build agent behavior models.

Behavior Prediction and Generation. Behavior prediction has a long history, from simple physics-
based models such as social forces (Helbing & Molnar, 1995; Alahi et al., 2016) to more sophisticated
“planning-based” models that cast prediction as reward optimization (Kitani et al., 2012; Ziebart et al.,
2009; Ma et al., 2017; Ziebart et al., 2008). With the advent of large-scale motion data, generative
models have been used to express behavior multi-modality (Mangalam et al., 2021; Salzmann et al.,
2020; Choi et al., 2021; Seff et al., 2023; Rhinehart et al., 2019). Specifically, diffusion models are
used for behavior modeling for being easily controlled via additional signals such as cost functions
(Jiang et al., 2023) or logical formulae (Zhong et al., 2023). However, to capture plausible behavior
of agents, they require diverse data collected in-the-wild with associated scene context, e.g., 3D
map of the scene (Ettinger et al., 2021). Such data are often manually annotated at a bounding box
level (Girase et al., 2021; Ettinger et al., 2021), which limits the scale and the level of details.

3D Agent Motion Generation. Beyond autonomous driving setup, existing works for human and
animal motion generation (Tevet et al., 2022; Rempe et al., 2023; Xie et al., 2023; Shafir et al.,
2023; Karunratanakul et al., 2023; Pi et al., 2023; Zhang et al., 2018; Starke et al., 2022; Ling et al.,
2020; Fussell et al., 2021) have been primarily using simulated data (Cao et al., 2020; Van Den Berg
et al., 2011) or motion capture data from multi-camera systems (Kim et al., 2024; Mahmood et al.,
2019; Hassan et al., 2021; Luo et al., 2022). Such data provide high-quality body motion, but the
interactions of the agents with the environment are either restricted to a flat ground, or a set of
pre-defined furniture or objects (Hassan et al., 2023; Zhao et al., 2023; Lee & Joo, 2023; Zhang
et al., 2023a; Menapace et al., 2024). Furthermore, the use of simulated data and motion capture
data inherently limits the naturalness of the learned behavior, since agents often behave differently
when being recorded in a capture studio compared to a natural environment. To bridge the gap, we
develop 4D reconstruction methods to obtain high-quality trajectories of agents interacting with a
natural environment, with a simple setup that can be achieved with a smartphone.

3 APPROACH

ATS learns behavior models of an agent in a 3D environment given RGBD videos. Sec. 3.1 describes
our spacetime 4D representation that contains the agent, the scene, and the observer. We fit such
4D representation to a collection of videos in a coarse-to-fine manner, where the camera poses
are initialized from data-driven methods and refined through differentiable rendering optimization

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

(Sec. 3.2). Given the 4D reconstruction, Sec. 3.3 trains an behavior model of the agent that is
interactive to the scene and the observer. We provide a table of notations and modules in Tab. 6-7.

3.1 4D REPRESENTATION: AGENT, SCENE, AND OBSERVER

Given multiple videos of an agent in their familiar environment, recorded over a long time horizon,
our goal is to build a complete and persistent spacetime 4D reconstruction of the underlying world,
including an evolving scene, a deformable agent, and a moving observer. The 4D representation is
factored into time-independent canonical structures and time-varying components.

Canonical Structure T = {Ts,Ta}. The canonical structure contains an agent neural field Ta

and a scene neural field Ts, following NeRF (Mildenhall et al., 2020). Scene properties, including
densities ρ, colors c, and semantic features ψ are represented implicitly with MLPs. To query their
values at any 3D location X, we have

(ρs, cs,ψs) = MLPscene(X,β), (1)

(ρa, ca,ψa) = MLPagent(X). (2)

The scene field takes in a learnable code β (Niemeyer & Geiger, 2021) per-video, which can represent
scenes of slightly different appearance and layout (across videos) with a shared backbone. The MLPs
are initialized with random weights and learned through inverse rendering.

Time-varying Structure D = {ξ,G,W}. The time-varying representation contains an observer
and a deformable agent. The observer is represented by the camera pose ξt ∈ SE(3), defined
as canonical-scene-to-camera transformations. We use BANMo (Yang et al., 2022) to represent
the deformable agent, which contains a root pose G0

t ∈ SE(3), defined as canonical-agent-to-
camera transformations, a set of articulated “bones” with time-varying centers and orientations
{Gb

t}{b=1,...,25}, as well time-independent scales. Skinning weights W are defined as the probability
of a point assigned to bones. Given the bone locations and scales, W is computed as the Mahalanobis
distances between a point and bones, normalized by Softmax. A visual illustration can be found in
Appendix Fig. 7. With this, any 3D location can be mapped between the canonical and the time t
space through blend-skinning (Magnenat et al., 1988),

Xt = GaX =

(
B∑
b=1

WbGb
t

)
X. (3)

The bones are initialized uniformly on a sphere and optimized with inverse rendering.

Inverse Rendering. To learn the 4D representation {T,D}, we minimize the difference between the
rendered pixel values and the observations using differentiable rendering, similar to NeRF (Mildenhall
et al., 2020) training. Here we sample rays in the camera space at time t, use D to map them to the
canonical spaces of the scene and the agent, and query values (e.g., density, color, feature) from the
canonical fields. Their values are composed in ray integration, similar to TotalRecon (Song et al.,
2023). More details about volume rendering can be found in the appendix Sec. A.1. Next, we discuss
how to set up the optimization such that it is well-behaved.

3.2 OPTIMIZATION: COARSE-TO-FINE MULTI-VIDEO REGISTRATION

Due to small view overlaps between videos and the evolution of scenes (Sun et al., 2023), such as
layout changes (e.g., furniture get rearranged) and appearance changes (e.g., table cloth gets replaced),
it is challenging to find correspondence and align multiple videos to a global world coordinate (Sarlin
et al., 2019). To solve this, we design a coarse-to-fine registration approach to robustify registration
by relexing the requirement on precise correspondence. At its core, our method trains per-scene and
per-agent camera pose regressors given template 3D assets, and uses them to align the observer and
the agent to a global space for new videos of an evolving scene. Given the coarse alignment, inverse
rendering is used to jointly optimize the 4D representation and adjust the cameras at a fine-level.

Initialization: Neural Localization. With the observation that large image models have good 3D
and viewpoint awareness (El Banani et al., 2024), we adapt them for camera localization. We learn a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

scene-specific neural localizer that directly regresses the camera pose of an image I with respect to
the canonical representation,

ξ = (R̂0, T̂0) = fθ(ψ), (4)

where fθ is a ResNet-18 (He et al., 2016) and ψ is the DINOv2 (Oquab et al., 2023) feature of the
input image. Geometric correspondence methods, such as DUSt3R (Wang et al., 2023), scale with
O(N2) memory and computation for N images, which becomes infeasible for large-scale datasets
(e.g., 10k images). In contrast, registering each image to a canonical representation reduces the cost
to O(N), making it significantly more efficient and feasible to run at scale. To learn such a neural
localizer, we capture a single template video of scene, and build a 3D map using off-the-shelf SfM
tools, such as PolyCam. Given the template mesh, we synthesize paired data of images I and random
camera poses G∗ = (R∗, t∗) on the fly to train the neural localizer fθ,

argmin
fθ

∑
i

(
∥ log(RT

0 R
∗)∥+ ∥t0 − t∗∥22

)
, (R0, t0) = fθ(ψ(I)), (5)

where ψ(·) is an off-the-shelf DINO-v2-small feature extractor. Geodesic distance (Huynh, 2009)
is used for camera rotation, and L2 error is used for translation. Rotations are represented as unit
quaternions, where we force the real part to be positive to avoid the ambiguity in the representation.
During training, we randomly sample camera poses, and apply image augmentations, including color
jitter and masks to improve generalization. Similarly, we train a camera estimator for the agent. We
first fit dynamic 3DGS (Luiten et al., 2024; Yang et al., 2023a) to a turnaround video of the agent with
complete viewpoint coverage. The dynamic 3DGS is then used to generate synthetic data sampled
from random viewpoints and different time instances to train a regressor that predicts root poses G0

from DINOv2 features. Visuals can be found in Fig. 8-9 of the appendix.

Objective: Feature-metric Loss. To refine the camera registration and learn the full 4D representa-
tion {T,D}, we use differentiable rendering to fit the model to images and DINO-v2 features of M
target videos {Ii,ψi}i={1,...,M}. We model 3D feature fields (Kobayashi et al., 2022) besides colors
in our canonical NeRFs (Eq. 1-2), render them, and apply both photometric and featuremetric losses,

min
T,D

∑
t

(
∥It −RI(t;T,D)∥22 + ∥ψt −Rψ(t;T,D)∥22

)
+ Lreg(T,D), (6)

where R(·) is the renderer described in Sec 3.1. Compared to colors, feature descriptors from large
pixel models (Oquab et al., 2023) are found more robust to appearance and viewpoint changes, which
helps find coarse alignment across videos. We also apply a regularization term that includes eikonal
loss, segmentation loss, flow loss and depth loss similar to TotalRecon (Song et al., 2023). During
optimization, we use both the template videos and the target videos. The camera pose of the template
scene video is set to the ground-truth from Polycam (not optimized). The observer (scene camera)
and the agent’s root pose in the target videos are initialized from the neural pose regressors.

Scene Annealing. To reconstruct a complete 3D scene when some videos are a partial capture (e.g.
half of the room), we encourage the reconstructed scenes across videos to be similar. To do so, we
randomly swap the code β of two videos during optimization, and gradually decrease the probability
of applyig swaps from P = 1.0 → 0.05 over the course of optimization. This regularizes the model
to share structures across all videos, but keeps video-specific details (Fig. 4).

3.3 INTERACTIVE BEHAVIOR GENERATION

Given the 4D representation, we extract a 3D feature volume of the scene Ψ and world-space trajec-
tories of the observer ξw = ξ−1 as well as the agent G0,w = ξwG0,Gb,w = G0,w{Gb}{b=1,...,25},
as shown in Fig. 6. Next, we learn an agent behavior model interactive with the world.

Behavior Representation. We represent the behavior of an agent in the world space over a horizon
T ∗ = 5.6 seconds. This is achieved by a hierarchical model that generates goals (the final location of
agent’s root joint), path (trajectory of the root joint), and full body motion sequentially, as shown
in Fig. 3. The body motion G ∈ R6B×T∗

is conditioned on path P ∈ R3×T∗
, which is further

conditioned on the goal Z ∈ R3. Such decomposition makes it easier to learn individual components
compared to learning a joint model, as shown in Tab. 4 (a).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Score map

History

Observer

History

ωo ωpωs

Ego-perception Trajectory Generation: Goal Path Body Pose→ →
Observer PastScene

Perception Code ω ∈ ℝ192

World-to-Ego Transform (Eq. 12)

Goal
Z ∈ ℝ3

Path
P ∈ ℝ3×T*

Pose
 G ∈ ℝ6B×T*

ω

History

Observer Observer

Score map Score map
θZ θP θG

Figure 3: Pipeline for behavior generation. We encode egocentric information into a perception
code ω, conditioned on which we generate full body motion in a hierarchical fashion. We start by
generating goals Z, then paths P and finally body poses G. Each node is represented by the gradient
of its log distribution, trained with denoising objectives (Eq. 8). Given G, the full body motion of an
agent can be computed via blend skinning (Eq. 3). Gray arrows visualize the output of the denoising
networks, which points to the direction to update the goal and path in the iterative denoising process.

Goal Model. We represent a multi-modal distribution of goals Z ∈ R3 by its score function
s(Z, σ) ∈ R3 (Ho et al., 2020; Song et al., 2020). The score function is implemented as an MLP,

s(Z;σ) = MLPθZ(Z, σ), (7)

trained by predicting the amount of noise ϵ added to the clean goal, given the corrupted goal Z+ ϵ:

argmin
θZ

EZEσ∼q(σ)Eϵ∼N (0,σ2I) ∥MLPθZ(Z + ϵ;σ)− ϵ∥22 . (8)

Trajectory Models. Similar to how we model goals, we represent paths with score function condi-
tioned on goals, and represent body poses with score function conditioned on paths,

s(P|Z;σ) = ControlUNetθP(P,Z, σ), (9)

s(G|P;σ) = ControlUNetθG(G,P, σ). (10)

where the Control UNets contain two standard UNets with identical architecture (Zhang et al., 2023b;
Xie et al., 2023). Taking path generation as an example, the first UNet takes (P, σ) as input to
perform unconditional generation, and the second takes (Z, σ) as inputs to inject goal conditions
densely into the network blocks of the first one. Compared to concatenating the conditioning signals
to the noise latents, this encourages close alignment between the input control and the generation.
The path and full body generation models are trained in the same way as the goal model (Eq. 8), while
replacing Z with P and G. At test time, we use DDPM sampling (Ho et al., 2020) that randomly
samples a Gaussian noise in the state space and iteratively denoise to the final generation.

Ego-Perception of the World. To generate plausible interactive behaviors, we encode the world
egocentrically perceived by the agent, and use it to condition the behavior generation. The ego-
perception code ω contains a scene code ωs, an observer code ωo, and a past code ωp, as detailed later.
The ego-perception code is concatenated to the noise level σ and passed to the denoising networks.
Transforming the world to the egocentric coordinates avoids over-fitting to specific locations of the
scene (Tab. 4-b), as observed in EgoPoser (Jiang et al., 2024). This also allows the model to generate
novel scenarios that were not present in the training dataset. For example, there’s only one data point
where the cat jumps off the dining table, our method can generate diverse motion of cat jumping off
the table while landing at different locations (to the left, middle, and right of the table). Please see
Fig. 15 in the appendix for the corresponding visual.

Scene, Observer, and Past Encoding. We approximate the agent’s ego-perception of the scene as its
surrounding feature volume. The feature volume is queried from the 3D feature field Ψs with Eq. 1
by transforming the sampled ego-coordinates Xa using the agent-to-world transformation at time t,

ωs = ResNet3Dθψ (Ψs(X
w)), Xw = (G0,w

t)Xa. (11)

where ResNet3Dθϕ is a 3D ConvNet with residual connections and ωs ∈ R64.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Our Method TotalRecon (Multi-video) W/o NL W/o FBA W/o Annealing

Figure 4: Comparison on multi-video scene reconstruction. We show birds-eye-view rendering
of the reconstructed scene using the bunny dataset. Compared to TotalRecon that does not register
multiple videos, ATS produces higher-quality scene reconstruction. Neural localizer (NL) and
featuremetric losses (FBA) are shown important for camera registration. Scene annealing is important
for reconstructing a complete scene from partial video captures.

Table 1: Evaluation of Camera Registration.

Method Rotation Error (°) Translation Error (m)

Ours 6.35 0.41
w/o Neural Localizer 37.59 0.83
w/o Featuremetric BA 22.47 1.30
Multi-video TotalRecon 59.19 0.68

Table 2: Dataset used in ATS.

Videos Length Unique Days / Span

Cat 23 25m 39s 9 / 37 days
Human 5 9m 27s 2 / 4 days
Dog 3 7m 13s 1 / 1 day
Bunny 2 1m 48s 1 / 1 day

To encode the observer perceived by the agent, we transform the observer’s past trajectory to the
ego-coordinate of the agent and pass it to an MLP. We use the past N ′ = 8 frames, which corresponds
to T ′ = 0.8s from current time t,

ωo = MLPθo

(
{ξati}

N ′−1
i=0

)
, ξati = (G0,w

t)−1ξwti , ti = t− T ′ + i∆t (12)

where ∆t = 0.1s and ωo ∈ R64. Accounting for the external factors from the “world” enables
interactive behavior generation, where the motion of an agent follows the environment constraints
and is influenced by the trajectory of the observer, as shown in Fig. 5.

Similarly, we encode the root and body motion of the agent in the past T ′ seconds,

ωp = MLPθp({G
{0,...,B},a
ti }N

′−1
i=0), G

{0,...,B},a
ti = (G0,w

t)−1G
{0,...,B},w
ti . (13)

By conditioning on the past motion, we can generate long sequences by chaining individual ones.

4 EXPERIMENTS

Dataset. We collect a dataset that emphasizes interactions of an agent with the environment and the
observer. As shown in Tab. 2, it contains RGBD iPhone video collections of 4 agents in 3 different
scenes, where human and cat share the same scene. The dataset is curated to contain diverse motion
of agents, including walking, lying down, eating, as well as diverse interaction patterns with the
environment, including following the camera, sitting on a coach, etc.

4.1 4D RECONSTRUCTION OF AGENT & ENVIRONMENT

Implementation Details. We take a video collection of the same agent as input, and build a
4D reconstruction of the agent, the scene, and the observer. We extract frames at 10 FPS and
compute augmented image measurements, including object segmentation (Yang et al., 2023b), optical
flow (Yang & Ramanan, 2019), DINOv2 features (Oquab et al., 2023). We use AdamW to first
optimize the environment with feature-metric loss for 30k iterations, and then jointly optimize the
environment and agent for another 30k iterations with all losses in Eq. 6. Optimization takes roughly
24 hours. 8 A100 GPUs are used to optimize 23 videos of the cat data, and 1 A100 GPU is used in a
2-3 video setup (for dog, bunny, and human).

Results of Camera Registration. We evaluate camera registration using GT cameras estimated from
annotated 2D correspondences. A visual of the annotated correspondence and 3D alignment can be

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 3: Evaluation of 4D Reconstruction. SV: Single-video. MV: Multi-video.

Method DepthAcc (all) DepthAcc (fg) DepthAcc (bg) LPIPS (all) LPIPS (fg) LPIPS (bg)

Ours 0.708 0.695 0.703 0.613 0.609 0.613
SV TotalRecon 0.533 0.685 0.518 0.641 0.619 0.641
MV TotalRecon 0.099 0.647 0.053 0.634 0.666 0.633

found in Fig. 16 of the appendix. We report camera translation and rotation errors in Tab. 1. We
observe that removing neural localization (Eq. 4) produces significantly larger localization error (e.g.,
Rotation error: 6.35 vs 37.56). Removing feature-metric bundle adjustment (Eq. 6) also increases
the error (e.g., Rotation error: 6.35 vs 22.47). Our method outperforms multi-video TotalRecon by a
large margin due to the above innovations.

A visual comparison on scene registration is shown in Fig. 4. Without the ability to register multiple
videos, TotalRecon produces protruded and misaligned structures (as pointed by the red arrow).
In contrast, our method reconstructs a single coherent scene. With featuremetric alignment (FBA)
alone but without a good camera initialization from neural localization (NL), our method produces
inaccurate reconstruction due to inaccurate global alignment in cameras poses. Removing FBA while
keeping NL, the method fails to accurately localize the cameras and produces noisy scene structures.
Finally, removing scene annealing procures lower quality reconstruction due to the partial capture.

Results of 4D Reconstruction. We evaluate the accuracy of 4D reconstruction using synchronized
videos captured with two moving iPhone cameras looking from opposite views. The results can
be found in Tab. 3. We compute the GT relative camera pose between the two cameras from 2D
correspondence annotations. One of the synchronized videos is used for 4D reconstruction, and the
other one is used as held-out test data. For evaluation, we render novel views from the held-out
cameras and compute novel view depth accuracy DepthAcc (depth accuracy thresholded at 0.1m) for
all pixels, agent, and scene, following TotalRecon. Our method outperforms both the multi-video
and single-video versions of TotalRecon in terms of depth accuracy and LPIPS, due to the ability of
leveraging multiple videos. A visual comparison can be found in Fig. 11. More qualitative results
can be found in Fig. 6, Fig. 10 of the appendix and the supplementary webpage.

4.2 INTERACTIVE AGENT BEHAVIOR PREDICTION

Data. We train the behavior models per agent video collection. The ground-truth agent motion is
extracted from the 4D reconstruction from Sec. 4.1, where we take the world-space root trajectories
and bone trajectories and divide them into sequences of T = 6.4s. The first T ′ = 0.8s are used as
input to predict the goal, path, and body motion in future T ∗ = 5.6s. The ground-truth goal is set as
the position of the agent’s root T ∗s into the future, and ground-truth path and body motion are set as
the trajectory of the agent’s root and bones T ∗s into the future. We use the cat dataset for quantitative
evaluation, where the data are split into a training set of 22 videos and a test set of 1 video.

Implementation Details. Our model consists of three diffusion models, for goal, path, and full body
motion respectively. To train the behavior model, we slice the reconstructed trajectory in the training
set into overlapping window of 6.4s, resulting in 12k data samples. We use AdamW to optimize
the parameters of the scores functions {θZ, θP, θG} and the ego-perception encoders {θψ, θo, θp}
for 120k steps with batch size 1024. Training takes 10 hours on a single A100 GPU. Each diffusion
model is trained with random dropout of the conditioning (Ho & Salimans, 2022).

Metrics. The behavior of an agent can be evaluated along multiple axes, and we focus on goal, path,
and body motion prediction. For goal prediction, we use minimum displacement error (minDE) (Chai
et al., 2019). The evaluation asks the model to produce K = 16 hypotheses, and minDE finds
the one closest to the ground-truth to compute the distance. For path and body motion prediction,
we use minimum average displacement error (minADE), which are similar to goal prediction, but
additionally averages the distance over path and joint angles before taking the min.

Comparisons and Ablations. We compare to related methods in our setup and the quantitative
results are shown in Tab. 4. To predict the goal of an agent, classic methods build statistical models
of how likely an agent visits a spatial location of the scene, referred to as location prior (Ziebart
et al., 2009; Kitani et al., 2012). Given the extracted 3D trajectories of an agent in the egocentric
coordinate, we build a 3D preference map over 3D locations as a histogram, which can be turned

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 4: End-to-end Evaluation of Interactive Behavior Prediction. We report results of predicting
goal, path, orientation, and joint angles, using K = 16 samples across L = 12 trials. The metrics are
minADE with standard deviations (±σ). The lower the better and the best results are in bold.

Method Goal (m) ↓ Path (m) ↓ Orientation (rad) ↓ Joint Angles (rad)↓

Location prior (Ziebart et al., 2009) 0.663±0.307 N.A. N.A. N.A.
Gaussian (Kendall & Gal, 2017) 0.942±0.081 0.440 ±0.002 1.099 ±0.003 0.295 ±0.001

ATS (Ours) 0.448±0.146 0.234 ±0.054 0.550 ±0.112 0.237 ±0.006

(a) hier→1-stage (Tevet et al., 2022) 1.322±0.071 0.575 ±0.026 0.879 ±0.041 0.263 ±0.007

(b) ego→world (Rhinehart & Kitani, 2016) 1.164±0.043 0.577 ±0.022 0.873 ±0.027 0.295 ±0.006

(c) w/o observer ωo 0.647±0.148 0.327 ±0.076 0.620 ±0.092 0.240 ±0.006

(d) w/o scene ωs 0.784±0.126 0.340 ±0.051 0.678 ±0.081 0.243 ±0.007

T*=4.0s (-1.6s) 0.292±0.090 0.153 ±0.030 0.474 ±0.104 0.242 ±0.006

T*=7.2s (+1.6s) 0.579±0.122 0.330 ±0.048 0.539 ±0.061 0.246 ±0.006

Table 5: Evaluation of Spatial Control. We evaluate goal-conditioned path generation and path-
conditoned full body motion generation respectively.

Method Path (m) ↓ Orientation (rad) ↓ Joint Angles (rad)↓

Gaussian (Kendall & Gal, 2017) 0.206±0.002 0.370±0.003 0.232±0.001

ATS (Ours) 0.115±0.006 0.331±0.004 0.213±0.001

(a) ego→world (Rhinehart & Kitani, 2016) 0.209±0.002 0.429±0.006 0.250±0.002

(b) control-unet→code 0.146 ±0.005 0.351 ±0.004 0.220 ±0.001

{User, Past, Environment} {Past, Environment} {Environment} Unconditional

Infeasible region
(e.g., wall;
subfloor)

User trajectory

Past trajectory

Sampled goals

Frontal view

Bird’s eye view

Figure 5: Analysis of conditioning signals. Removing observer and past conditioning makes the
sampled goals more spread out (e.g., regions both in front of and behind the agent); removing the
environment conditioning introduces infeasible goals that penetrate the ground and the walls.

into probabilities and used to sample goals. Since it does not take into account of the scene and the
observer, it fails to accurately predict the goal. We implement a “Gaussian” baseline that represents
the goal, path, and full body motion as Gaussians, by predicting both the mean and variance of
Gaussian distributions (Kendall & Gal, 2017). It is trained on the same data and takes the same
input as ATS. As a result, the “Gaussian” baseline performs worse than ATS since Gaussian cannot
represent multi-modal distributions of agent behaviors, resulting in mode averaging. We implement
a 1-stage model similar to MDM (Tevet et al., 2022) that directly denoises body motion without
predicting goals and paths (Tab. 4-a). Our hierarchical model out-performs 1-stage by a large margin.
We posit hierarchical model makes it easier to learn individual modules. Finally, learning behavior in
the world coordinates (Tab. 4-b) performs worse due to the over-fits to specific scene locations.

Analyzing Interactions. We analyse the agent’s interactions with the environment and the observer
by removing the conditioning signals and study their influence on behavior prediction. In Fig. 5,
we show that by gradually removing conditional signals, the generated goal samples become more
spread out. In Tab. 4, we drop one of the conditioning signals at a time, and find that dropping either
the observer conditioning or the environment conditioning increases behavior prediction errors. We
evaluated the performance with different prediction horizon T ∗ = {4.0, 5.6, 7.2}s and found the
longer the horizon, the more difficult it is to predict the goals and future paths.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Spatial Control. Besides generating behaviors conditioned on agent’s perception, we could also
condition on user-provided spatial signals (e.g., goal and path) to steer the generated behavior. The
results are reported in Tab. 5. When evaluating path generation and body motion generation, the output
is conditioned on the ground-truth goal and path respectively, as the goal and path T ∗ = 5.6s into the
future in the 4D reconstruction. We found ATS performs better than “Gaussians” for behavior control
due to its ability to represent complex distributions. Furthermore, egocentric representation produces
better behavior generation results. Finally, replacing control-unet architecture by concatenating
spatial control with perception codes produces worse alignment (e.g., Path error: 0.115 vs 0.146).

5 CONCLUSION

We have presented a method for learning interactive behavior of agents grounded in 3D environments.
Given multiple casually-captured video recordings, we build persistent 4D reconstructions including
the agent, the environment, and the observer. Such data collected over a long time period allows us
to learn a behavior model of the agent that is reactive to the observer and respects the environment
constraints. We validate our design choices on casual video collections, and show better results than
prior work for 4D reconstruction and interactive behavior prediction.

Shot 1

Shot 2

Shot 3

Shot 4

Shot 5

Registered 4D
Reconstruction

…

Figure 6: Results of 4D reconstruction. Top: reference images and renderings. Background color
represents correspondence. Colored blobs on the cat representB = 25 bones (e.g., head is represented
by the yellow blob). The magenta colored lines represents reconstructed trajectories of each blob in
the world space. Bottom: Bird’s eye view of the reconstructed scene and agent trajectories, registered
to the same scene coordinate. Each colored line represents a unique video sequence where boxes and
spheres indicate the starting and the end location.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
Savarese. Social lstm: Human trajectory prediction in crowded spaces. In CVPR, pp. 961–971,
2016. 3

Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai, Minh Vo, and Jitendra Malik. Long-term
human motion prediction with scene context. In ECCV, pp. 387–404. Springer, 2020. 3

Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multipath: Multiple proba-
bilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449,
2019. 8

Ho Kei Cheng and Alexander G. Schwing. XMem: Long-term video object segmentation with an
atkinson-shiffrin memory model. In ECCV, 2022. 16

Chiho Choi, Srikanth Malla, Abhishek Patil, and Joon Hee Choi. Drogon: A trajectory prediction
model based on intention-conditioned behavior reasoning. In CoRL, pp. 49–63. PMLR, 2021. 3

Mohamed El Banani, Amit Raj, Kevis-Kokitsi Maninis, Abhishek Kar, Yuanzhen Li, Michael
Rubinstein, Deqing Sun, Leonidas Guibas, Justin Johnson, and Varun Jampani. Probing the 3d
awareness of visual foundation models. In CVPR, pp. 21795–21806, 2024. 4

Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning
Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. Large scale interactive motion forecasting for
autonomous driving: The waymo open motion dataset. In ICCV, pp. 9710–9719, 2021. 1, 3

Levi Fussell, Kevin Bergamin, and Daniel Holden. Supertrack: Motion tracking for physically
simulated characters using supervised learning. ACM Transactions on Graphics (TOG), 40(6):
1–13, 2021. 3

Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Monocular
dynamic view synthesis: A reality check. NeurIPS, 35:33768–33780, 2022. 1

Harshayu Girase, Haiming Gang, Srikanth Malla, Jiachen Li, Akira Kanehara, Karttikeya Mangalam,
and Chiho Choi. Loki: Long term and key intentions for trajectory prediction. In ICCV, pp.
9803–9812, 2021. 3

Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa*, and Jitendra Malik*.
Humans in 4D: Reconstructing and tracking humans with transformers. In ICCV, 2023. 3

Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and Michael J
Black. Stochastic scene-aware motion prediction. In ICCV, pp. 11374–11384, 2021. 1, 3

Mohamed Hassan, Yunrong Guo, Tingwu Wang, Michael Black, Sanja Fidler, and Xue Bin Peng.
Synthesizing physical character-scene interactions. In SIGGRAPH 2023 Conference Proceedings,
pp. 1–9, 2023. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016. 5

Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical review E, 51
(5):4282, 1995. 3

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022. 8, 16

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:
6840–6851, 2020. 6

Du Q Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of Mathematical Imaging
and Vision, 35:155–164, 2009. 5

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin Sapp, Yin Zhou, Dragomir Anguelov, et al.
Motiondiffuser: Controllable multi-agent motion prediction using diffusion. In CVPR, pp. 9644–
9653, 2023. 3

Jiaxi Jiang, Paul Streli, Manuel Meier, and Christian Holz. Egoposer: Robust real-time egocentric
pose estimation from sparse and intermittent observations everywhere. In ECCV, pp. 277–294.
Springer, 2024. 6

Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Banerjee, Timothy Godisart,
Bart Nabbe, Iain Matthews, et al. Panoptic studio: A massively multiview system for social
interaction capture. TPAMI, 41(1):190–204, 2017. 1

Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, and Siyu Tang. Guided
motion diffusion for controllable human motion synthesis. In ICCV, pp. 2151–2162, 2023. 3, 16

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In NIPS, 2017. 9

Jeonghwan Kim, Jisoo Kim, Jeonghyeon Na, and Hanbyul Joo. Parahome: Parameterizing everyday
home activities towards 3d generative modeling of human-object interactions. arXiv preprint
arXiv:2401.10232, 2024. 1, 3

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023. 16

Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and Martial Hebert. Activity forecasting. In
ECCV, pp. 201–214. Springer, 2012. 3, 8

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
feature field distillation. Advances in Neural Information Processing Systems, 35:23311–23330,
2022. 5

Muhammed Kocabas, Nikos Athanasiou, and Michael J. Black. Vibe: Video inference for human
body pose and shape estimation. In CVPR, June 2020. 3

Muhammed Kocabas, Ye Yuan, Pavlo Molchanov, Yunrong Guo, Michael J Black, Otmar Hilliges,
Jan Kautz, and Umar Iqbal. Pace: Human and camera motion estimation from in-the-wild videos.
arXiv preprint arXiv:2310.13768, 2023. 3

Jiye Lee and Hanbyul Joo. Locomotion-action-manipulation: Synthesizing human-scene interactions
in complex 3d environments. In ICCV, 2023. 3

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
Martín, Chen Wang, Gabrael Levine, Wensi Ai, Benjamin Martinez, et al. Behavior-1k: A
human-centered, embodied ai benchmark with 1,000 everyday activities and realistic simulation.
arXiv preprint arXiv:2403.09227, 2024. 1

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. Character controllers using
motion vaes. ACM Transactions on Graphics (TOG), 39(4):40–1, 2020. 3

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023. 16

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL:
A skinned multi-person linear model. SIGGRAPH Asia, 2015. 3

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3D Gaussians:
Tracking by Persistent Dynamic View Synthesis. 3DV, 2024. 5

Haimin Luo, Teng Xu, Yuheng Jiang, Chenglin Zhou, Qiwei Qiu, Yingliang Zhang, Wei Yang, Lan
Xu, and Jingyi Yu. Artemis: articulated neural pets with appearance and motion synthesis. ACM
Transactions on Graphics (TOG), 41(4):1–19, 2022. 3

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Wei-Chiu Ma, De-An Huang, Namhoon Lee, and Kris M Kitani. Forecasting interactive dynamics of
pedestrians with fictitious play. In CVPR, pp. 774–782, 2017. 3

Thalmann Magnenat, Richard Laperrière, and Daniel Thalmann. Joint-dependent local deformations
for hand animation and object grasping. In Proceedings of Graphics Interface’88, pp. 26–33.
Canadian Inf. Process. Soc, 1988. 4

Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black.
Amass: Archive of motion capture as surface shapes. In ICCV, pp. 5442–5451, 2019. 1, 3

Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, waypoints &
paths to long term human trajectory forecasting. In ICCV, pp. 15233–15242, 2021. 3

Willi Menapace, Aliaksandr Siarohin, Stéphane Lathuilière, Panos Achlioptas, Vladislav Golyanik,
Sergey Tulyakov, and Elisa Ricci. Promptable game models: Text-guided game simulation via
masked diffusion models. ACM Transactions on Graphics, 43(2):1–16, 2024. 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020. 4,
16

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative
neural feature fields. In CVPR, pp. 11453–11464, 2021. 4, 16

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2023. 1, 5, 7, 16

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023. 1

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M.
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In ICCV, 2021. 1

Georgios Pavlakos, Ethan Weber, Matthew Tancik, and Angjoo Kanazawa. The one where they
reconstructed 3d humans and environments in tv shows. In ECCV, pp. 732–749. Springer, 2022. 3

Huaijin Pi, Sida Peng, Minghui Yang, Xiaowei Zhou, and Hujun Bao. Hierarchical generation of
human-object interactions with diffusion probabilistic models. In ICCV, pp. 15061–15073, 2023. 3

Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Partsey,
Ruta Desai, Alexander Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A co-habitat for
humans, avatars, and robots. In ICLR, 2023. 1

Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris Kitani, Karsten Kreis, Sanja Fidler, and
Or Litany. Trace and pace: Controllable pedestrian animation via guided trajectory diffusion. In
CVPR, pp. 13756–13766, 2023. 3

Nicholas Rhinehart and Kris M Kitani. Learning action maps of large environments via first-person
vision. In CVPR, pp. 580–588, 2016. 9

Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. Precog: Prediction condi-
tioned on goals in visual multi-agent settings. In ICCV, pp. 2821–2830, 2019. 3

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++: Dynamically-
feasible trajectory forecasting with heterogeneous data. In ECCV, pp. 683–700. Springer, 2020.
3

Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to fine:
Robust hierarchical localization at large scale. In CVPR, pp. 12716–12725, 2019. 4

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Arno Schödl, Richard Szeliski, David H Salesin, and Irfan Essa. Video textures. In SIGGRAPH,
2000, 2000. 1

Ari Seff, Brian Cera, Dian Chen, Mason Ng, Aurick Zhou, Nigamaa Nayakanti, Khaled S Refaat,
Rami Al-Rfou, and Benjamin Sapp. Motionlm: Multi-agent motion forecasting as language
modeling. In ICCV, pp. 8579–8590, 2023. 3

Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H Bermano. Human motion diffusion as a
generative prior. arXiv preprint arXiv:2303.01418, 2023. 3

Chonghyuk Song, Gengshan Yang, Kangle Deng, Jun-Yan Zhu, and Deva Ramanan. Total-recon:
Deformable scene reconstruction for embodied view synthesis. In ICCV, 2023. 1, 3, 4, 5, 16, 20

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020. 6

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martín-Martín, Fei Xia, Kent Elliott
Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, Karen Liu, et al. Behavior: Benchmark for
everyday household activities in virtual, interactive, and ecological environments. In CoRL, pp.
477–490, 2022. 1

Sebastian Starke, Ian Mason, and Taku Komura. Deepphase: Periodic autoencoders for learning
motion phase manifolds. ACM Transactions on Graphics (TOG), 41(4):1–13, 2022. 3

Tao Sun, Yan Hao, Shengyu Huang, Silvio Savarese, Konrad Schindler, Marc Pollefeys, and Iro
Armeni. Nothing stands still: A spatiotemporal benchmark on 3d point cloud registration under
large geometric and temporal change. arXiv preprint arXiv:2311.09346, 2023. 4

Richard Szeliski and Sing Bing Kang. Shape ambiguities in structure from motion. TPAMI, 19(5):
506–512, 1997. 3

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
Human motion diffusion model. arXiv preprint arXiv:2209.14916, 2022. 3, 9, 16

Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body collision
avoidance. In Robotics Research: The 14th International Symposium ISRR, pp. 3–19. Springer,
2011. 3

Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson, Pratul P
Srinivasan, Dor Verbin, Jonathan T Barron, Ben Poole, et al. Reconfusion: 3d reconstruction with
diffusion priors. arXiv preprint arXiv:2312.02981, 2023. 21

Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Dove: Learning deformable
3d objects by watching videos. arXiv preprint arXiv:2107.10844, 2021. 3

Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. Omnicontrol: Control any
joint at any time for human motion generation. arXiv preprint arXiv:2310.08580, 2023. 3, 6

Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. In
NeurIPS, 2019. 7, 16

Gengshan Yang, Minh Vo, Neverova Natalia, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo.
Banmo: Building animatable 3d neural models from many casual videos. In CVPR, 2022. 3, 4, 17

Gengshan Yang, Jeff Tan, Alex Lyons, Neehar Peri, and Deva Ramanan. Lab4d - A framework for
in-the-wild 4D reconstruction from monocular videos, June 2023a. URL https://github.
com/lab4d-org/lab4d. 5, 16, 17

Jinyu Yang, Mingqi Gao, Zhe Li, Shang Gao, Fangjing Wang, and Feng Zheng. Track anything:
Segment anything meets videos, 2023b. 7, 16

Vickie Ye, Georgios Pavlakos, Jitendra Malik, and Angjoo Kanazawa. Decoupling human and camera
motion from videos in the wild. In CVPR, pp. 21222–21232, 2023. 3

14

https://github.com/lab4d-org/lab4d
https://github.com/lab4d-org/lab4d

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Ye Yuan, Umar Iqbal, Pavlo Molchanov, Kris Kitani, and Jan Kautz. Glamr: Global occlusion-aware
human mesh recovery with dynamic cameras. In CVPR, pp. 11038–11049, 2022. 3

Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided human
motion diffusion model. In ICCV, pp. 16010–16021, 2023. 22

Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong Guo, Sanja Fidler, Xue Bin Peng, and
Kayvon Fatahalian. Learning physically simulated tennis skills from broadcast videos. ACM
Transactions on Graphics (TOG), 42(4):1–14, 2023a. 3

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural networks for
quadruped motion control. ACM Transactions on Graphics (TOG), 37(4):1–11, 2018. 3

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, 2023b. 6

Kaifeng Zhao, Yan Zhang, Shaofei Wang, Thabo Beeler, and Siyu Tang. Synthesizing diverse human
motions in 3d indoor scenes. arXiv preprint arXiv:2305.12411, 2023. 3

Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen, Sushant Veer, Tong Che, Baishakhi Ray,
and Marco Pavone. Guided conditional diffusion for controllable traffic simulation. In ICRA, pp.
3560–3566. IEEE, 2023. 3

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008. 3

Brian D Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Peterson, J Andrew
Bagnell, Martial Hebert, Anind K Dey, and Siddhartha Srinivasa. Planning-based prediction for
pedestrians. In IROS, pp. 3931–3936. IEEE, 2009. 3, 8, 9

Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and Michael J. Black. 3D menagerie: Modeling the
3D shape and pose of animals. In CVPR, 2017. 3

Silvia Zuffi, Angjoo Kanazawa, and Michael J. Black. Lions and tigers and bears: Capturing non-rigid,
3D, articulated shape from images. In CVPR, 2018. 3

Silvia Zuffi, Angjoo Kanazawa, Tanya Berger-Wolf, and Michael Black. Three-d safari: Learning to
estimate zebra pose, shape, and texture from images “in the wild”. In ICCV, 2019. 3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A APPENDIX

A.1 COMPOSITE VOLUME RENDERING

To render an image, we use composite volume rendering (Niemeyer & Geiger, 2021), where we
sample rays in the camera space at time t, use D to map them to the canonical spaces of the scene and
the agent, and query values (e.g., density ρ, color c, feature ψ) from the canonical fields. Their values
are composed in ray integration. The composite density ρi at sample i along the ray is computed as
the sum of the scene and agent’s density, and the composite color ci is computed as the weighted
sum of each component’s color,

ρi = ρs + ρa, ci =
ρscs + ρaca

ρi
. (14)

We can then use volume rendering equations (Mildenhall et al., 2020) to compute a color image,

c =

N∑
i=1

τiαici, τi =

i−1∏
k=1

(1− αk) , αi = 1− e−ρiδi , (15)

where N = 128 is the number of sampled points along camera ray, τi is the transmittance, αi is the
alpha value for sample point i and δi is the distance between sample point i and the (i + 1). The
same method can be applied to render feature images by replacing color values with features.

A.2 DETAILS ON MODEL AND DATA

Illustration figures. Fig. 7 shows the representation of the agents. Fig. 8 illustrates our coarse-to-fine
multi-video registration method. We provide Fig. 9 to illustrate the training of the neural scene
localizer as well as the agent pose regressor.

Table of Notation. A table of notation used in the paper can be found in Tab. 6.

Summary of I/O. A summary of inputs and outputs of the method is shown in Tab. 7

Data Collection. We collect RGBD videos using an iPhone, similar to TotalRecon (Song et al., 2023).
To train the neural localizer, we use Polycam to take the walkthrough video and extract a textured
mesh. For behavior capture, we use Record3D App to record videos and extract color images and
depth images.

Data processing. We extract frames from the videos at 10 FPS, and use off-the-shelf models
to produce augmented image measurements, including optical flow (Yang & Ramanan, 2019) and
DINOv2 features (Oquab et al., 2023). To get object segmentation, we use Grounding DINO (Liu et al.,
2023) to annotate a bounding box given text description of the agent (e.g., cat), and SAM (Kirillov
et al., 2023) to segment the agent in the first frame of the video. The segmentation is tracked over all
the frames using XMem (Cheng & Schwing, 2022; Yang et al., 2023b). The pre-processing code is
taken from an open-source project (Yang et al., 2023a).

Diffusion Model Architecture. The score function of the goal is implemented as 6-layer MLP with
hidden size 128. The the score functions of the paths and body motions are implemented as 1D UNets
taken from GMD (Karunratanakul et al., 2023). The sampling frequency is set to be 0.1s, resulting a
sequence length of 56. The environment encoder is implemented as a 6-layer 3D ConvNet with kernel
size 3 and channel dimension 128. The local feature volume is queried with a grid Xa ∈ R64×8×64,
which encodes a 6.4m× 0.8m× 6.4m box around the agent along the width (X), height (Y), and
length (Z) dimension. The observer encoder and history encoder are implemented as a 3-layer MLP
with hidden size 128.

Diffusion Model Training and Testing. We use a linear noise schedule at training time and
50 denoising steps. We train all the diffusion models (goal, path and pose) with classifier-free
guidance (Ho & Salimans, 2022; Tevet et al., 2022) that randomly sets conditioning signals to
zeros Z = ∅ randomly. This allows us to control the trade-off between interactive behavior and
unconditional behavior generation, as shown in Fig. 14. At test time, each goal denoising step takes
2ms and each path/body denoising step takes 9ms on an A100 GPU.

Camera Pose Annotations for Evaluation. We annotate GT camera poses from 2D correspondence
annotations. The relative camera pose is computed as follows: 1) We manually annotate seven pairs

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Canonical SpaceTime t Space

Blend Skinning
Deformation

Color: Skinning Weights WBones Gt

feature ψa

density ρa

color ca

X

Figure 7: Agent Representation. We use BANMo (Yang et al., 2022) to obtain the deformation model
of the agent, which optimizes for the canonical NeRF, articulated bones Gt, as well as as well as the
skinning W weights using inverse rendering.

Scene Video
(~200 frames)

Target videos
(~10k frames)

Agent Video
(~200 frames)

Agent
PoseNet

Scene
Localizer

PolyCam

Dynamic
3DGS

Optimization (Eq. 6)

Observer &
agent

trajectories

Scene Mesh

Agent Splats

Neural Initializer (Eq. 5)

Training

Initialization (Eq. 4)

Inverse
Rendering

Gradients

Training

Figure 8: Coarse-to-fine Registration. 1) Given template recordings, including a walk-through video
of the scene and a video that covers enough views of the agent, we build template reconstruction of
the environment and the agent using existing algorithms, Polycam and Lab4d (Yang et al., 2023a). 2)
Then we use the 3D reconstructions as data generator to train a scene localizer and an agent pose
prediction network. 3) Given a collection of target videos to reconstruct, we use the neural localizers
to initialize the corresponding scene and agent camera poses, and jointly optimized them with the
canonical neural fields and motion parameters.

of 2D point correspondences between the two frames; 2) 2D points are then back-projected to 3D give
the depth map from iPhone; 3) We solve Procrustes registration between two sets of corresponding 3D
points to obtain relative camera poses. A visual of the annotated correspondence and 3D alignment
can be found in Fig. 16 of the appendix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Generate Random
Viewpoints

(R*, T*)

Rendering Regressor
fθ(ψ(I))

(R0, T0)

arg min
θ ∑

j
(∥ log(RT0(θ)R*)∥ + ∥t0(θ) − t*∥22),

Generate Random
Viewpoints

(R*, T*)

Rendering Regressor
fθ(ψ(I))

(R0, T0)

arg min
θ ∑

j
(∥ log(RT0(θ)R*)∥ + ∥t0(θ) − t*∥22),

Template scene mesh

Template agent 3DGS

Figure 9: Training neural scene localizer (top) and agent pose regressor (bottom). Given a template
3D mesh of the scene or tempalte Gaussians splats (3DGS) of an agent, we generate random camera
viewpoints and render images on the fly. The networks are trained to regress the camera rotation and
translation given DINO-v2 features of a single image ψ(I). The model is trained for 8k iterations
with batchsize of 128. This mechanism enables us to obtain good initialization for the input videos to
register them in the consistent world coordinate frame.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 6: Table of Notation.

Symbol Description

Global Notations
B The number of bones of an agent. By defatult B = 25.
M The number of videos.
Ni The number of image frames extracted from video i.
Ii The sequence of color images {I1, . . . , INi} extracted from video i.
ψi The sequence of DINOv2 feature images {ψ1, . . . ,ψNi} extracted from video i.
Ti The length of video i.
T ∗ The time horizon of behavior diffusion. By default T ∗ = 5.6s.
T ′ The time horizon of past conditioning. By default T ′ = 0.8s
Z ∈ R3 Goal of the agent, defined as the location at the end of T ∗.
P ∈ R3×T∗

Path of the agent, defined as the root body trajectory over T ∗.
G ∈ R6B×T∗

Pose of the agent, defined as the 6DoF rigid motion of bones over T ∗.
ωs ∈ R64 Scene code, representing the scene perceived by the agent.
ωo ∈ R64 Observer code, representing the observer perceived by the agent.
ωp ∈ R64 Past code, representing the history of events happened to the agent.

Learnable Parameters of 4D Reconstruction
T Canonical NeRFs, including a scene MLP and an agent MLP.
βi ∈ R128 Per-video code that allows NeRFs to represent variations across videos.
D Time-varying parameters, including {ξ,G,W}.
ξt ∈ SE(3) The camera pose that transforms the scene to the camera coordinates at t.
G0
t ∈ SE(3) The camera pose that transforms the canonical agent to the camera coordinates at t.

Gb
t ∈ SE(3) The transformation that moves bone b from its rest state to time t state.

W ∈ RB Skinning weights of a point, defined as the probability of belonging to bones.
fθ PoseNet that takes a DINOv2 feature image as input and produces camera pose.

Learnable Parameters of Behavior Generation
MLPθZ Goal MLP that represent the score function of goal distributions.
ControlUNetθP Path UNet that represents the score function of path distributions.
ControlUNetθG Pose UNet that represents the score function of pose distributions.
ResNet3Dθψ Scene perception network that produces ωs from 3D feature grids ψ.
MLPθo Observer MLP that produces ωo from observer’s past trajectory in T ′.
MLPθp Past MLP that produces ωp from agent’s past trajectory in T ′.

Table 7: Summary of inputs and outputs at different stages of the method.

Stage Description

Overall Input: A walk-through video of the scene and videos with agent interactions.
Output: An interactive behavior generator of the agent.

Localizer Training Input: 3D reconstruction of the environment and the agent.
Output: Neural localizer fθ.

Neural Localization Input: Neural localizer fθ and the agent interaction videos.
Output: Camera poses for each video frame.

4D Reconstruction Input: A collection of videos and their corresponding camera poses.
Output: Scene feature volume Ψ, motion of the agent G and observer ξ.

Behavior Learning Input: Scene feature volume Ψ, motion of the agent G and observer ξ.
Output: An interactive behavior generator of the agent.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

A.3 ADDITIONAL RESULTS

Results on more agents. In the main paper, we show results for cat videos. We show results on more
agents, including a human, a dog, and a bunny in the supplementary webpage.

Comparison to TotalRecon. In the main paper, we compare to TotalRecon on scene reconstruction
by providing it multiple videos. Here, we include additional comparison in their the original single
video setup. We find that TotalRecon fails to build a good agent model, or a complete scene model
given limited observations, while our method can leverage multiple videos as inputs to build a better
agent and scene model. The results are shown in Fig. 10.

TotalRecon

Reference image

Distortion
Incomplete

No distortion
Complete

Complete shape Good alignment Missing limbs Misaligned limbs

Ours

Figure 10: Qualitative comparison with TotalRecon (Song et al., 2023) on 4D reconstruction. Top:
reconstruction of the agent at at specific frame. Total-recon produces shapes with missing limbs and
bone transformations that are misaligned with the shape, while our method produces complete shapes
and good alignment. Bottom: reconstruction of the environment. TotalRecon produces distorted and
incomplete geometry (due to lack of observations from a single video), while our method produces
an accurate and complete environment reconstruction.

Visual Ablation on Scene Awareness. We show final camera and agent registration to the canonical
scene in Fig. 13. The registered 3D trajectories provides statistics of agent’s and user’s preference
over the environment.

Histogram of Agent / Observer Visitation. We show final camera and agent registration to the
canonical scene in Fig. 12. The registered 3D trajectories provides statistics of agent’s and user’s
preference over the environment.

A.4 LIMITATIONS AND FUTURE WORKS

Environment Reconstruction. To build a complete reconstruction of the environment, we register
multiple videos to a shared canonical space. However, the transient structures (e.g., cushion that
can be moved over time) may not be reconstructed well due to lack of observations. We notice
displacement of chairs and appearance of new furniture in our capture data. Our method is robust
to these in terms of camera localization (Tab. 1 and Fig. 17). However, 3D reconstruction of these
transient components is challenging. As shown in Fig 17, our method fails to reconstruct notable
layout changes when they are only observed in a few views, e.g., the cushion and the large boxes

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Input view GT color and depth ATS (ours) Multi-video TotalRecon Single-video TotalRecon

Figure 11: Qualitative comparison on 4D reconstruction (Tab. 3). We compare with TotalRecon
on 4D reconstruction quality. We show novel views rendered with a held-out camera that looks from
the opposite side. ATS is able to leverage multiple videos captured at different times to reconstruct the
wall (blue box) and the tripod stand (red box) even they are not visible in the input views. Multi-video
TotalRecon produces blurry RGB and depth due to bad camera registration. The original TotalRecon
takes a single video as input and therefore fails to reconstruct the regions (the tripod and the wall)
that are not visible in the input video.

Path generation with scene code ωs Without scene code ωs

Infeasible
region (partial

wall)

Infeasible
region (partial

wall)

Figure 12: Visual ablation on scene awareness. We demonstrate the effect of the scene
code ωs through goal-conditioned path generation (bird’s-eye-view, blue sphere→goal; gradient
color→generated path; gray blocks→locations that have been visited in the training data). Condi-
tioned on scene, the generated path abide by the scene geometry, while removing the scene code, the
generated paths go through the wall in between two empty spaces.

(left) and the box (right). We leave this as future work. Leveraging generative image prior to in-paint
the missing regions is a promising direction to tackle this problem (Wu et al., 2023).

Scaling-up. We demonstrate our approach on four types of agents with different morphology living
in different environments. For the cat, we use 23 video clips over a span of a month. This isn’t
large-scale but we believe this is an important step to go beyond a single video. In terms of robustness,
we showed a meaningful step towards scaling up 4D reconstruction by neural initialization (Eq. 6).
The major difficulty towards large-scale deployment is the cost and robustness of 4D reconstruction
using test-time optimization.

Multi-agent Interactions. ATS only handles interactions between the agent and the observer.
Interactions with other agents in the scene are out of scope, as it requires data containing more
than one agent. Solving re-identification and multi-object tracking in 4D reconstruction will enable
introducing multiple agents. We leave learning multi-agent behavior from videos as future work.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Agent trajectories

Agent preference (visitation) User preference (visitation)

User trajectories

Low High Low High

Color: shot id

Figure 13: Given the 3D trajectories of the agent and the user accumulated over time (top), one could
compute their preference represented by 3D heatmaps (bottom). Note the high agent preference over
table and sofa.

Interactivity (Guidance scale) = 1 Interactivity (Guidance scale) = 0.5 Interactivity (Guidance scale) = 0

Figure 14: Interactivity of the agent. By changing the classifier-free guidance scale s, we can find
a trade-off between interactive behavior and unconditional behavior. We demonstrate the control
over interactivity by goal-conditioned path generation (bird’s-eye-view, blue sphere→goal; gradient
color→generated path). With a higher classifier-free guidance scale s, the model is controlled more
by the conditional generator, and therefore exhibits higher interactivity. s = 0 corresponds to fully
unconditional generation.

Complex Scene Interactions. Our approach treat the background as a rigid component without
accounting for movable and articulated scene structures, such as doors and drawers. To reconstruct
complex interactions with the environment, one approach is to extend the scene representation to be
hierarchical (with a kinematic tree), such that it consists of articulated models of interactable objects.
To generate plausible interactions between the agent and the scene (e.g., opening a door), one could
extend the agent representation G to include both the agent and the articulated objects (e.g., door).

Physical Interactions. Our method reconstructs and generates the kinematics of an agent, which
may produce physically-implausible results (e.g., penetration with the ground and foot sliding). One
promising way to deal with this problem is to add physics constraints to the reconstruction and motion
generation (Yuan et al., 2023).

Long-term Behavior. The current ATS model is trained with time-horizon of T ∗ = 6.4 seconds.
We observe that the model only learns mid-level behaviors of an agent (e.g., trying to move to a
destination; staying at a location; walking around). We hope incorporating a memory module and
training with longer time horizon will enable learning higher-level behaviors of an agent.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 15: Generalization ability of the behavior model. Thanks to the ego-centric encoding
design (Eq. 12), a specific behavior can be learned and generalized to novel situations even it was
seen once. Although there’s only one data point where the cat jumps off the dining table, our method
can generate diverse motion of cat jumping off the table while landing at different locations (to the
left, middle, and right of the table) as shown in the visual.

Figure 16: GT correspondence and 3D alignment.
Left: Annotated 2D correspondence between the canon-
ical scene (top) and the input image (bottom). Right: we
visualize the GT camera registration by transforming
the input frame 3D points (blue, back-projected from
depth) to the canonical frame (red). The points align
visually.

Figure 17: Robustness to layout
changes. We find our camera localiza-
tion to be robust to layout changes, e.g.,
the cushion and the large boxes (left) and
the box (right). However, it fails to recon-
struct layout changes, especially when
they are only observed in a few views.

A.5 SOCIAL IMPACT

Our method is able to learn interactive behavior from videos, which could help build simulators for
autonomous driving, gaming, and movie applications. It is also capable of building personalized
behavior models from casually collected video data, which can benefit users who do not have access
to a motion capture studio. On the negative side, the behavior generation model could be used as
“deepfake” and poses threats to user’s privacy and social security.

23

