
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUBE: ENHANCING AUTOMATIC HEURISTIC DESIGN
VIA QUALITY-UNCERTAINTY BALANCED EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving NP-hard problems traditionally relies on heuristics, yet manually design-
ing effective heuristics for complex problems remains a significant challenge.
While recent advancements like FunSearch have shown that large language mod-
els (LLMs) can be integrated into evolutionary algorithms (EAs) for heuristic
design, their potential is hindered by limitations in balancing exploitation and
exploration. We introduce Quality-Uncertainty Balanced Evolution (QUBE), a
novel approach that enhances LLM+EA methods by redefining the priority crite-
rion within the FunSearch framework. QUBE employs the Quality-Uncertainty
Trade-off Criterion (QUTC), based on our proposed Uncertainty-Inclusive Qual-
ity metric, to evaluate and guide the evolutionary process. Through extensive
experiments on challenging NP-complete problems, QUBE demonstrates signifi-
cant performance improvements over FunSearch and baseline methods. Our code
will be made public upon acceptance.

Figure 1: Experiment results on online bin packing, the performance is evaluated with “Excess
Ratio”. Our method can steadily find better heuristics than all baselines. Note: FunSearch’s result
on Weibull1k, EoH’s result on OR Library is unavailable. FunSearch* is our reproduction of Fun-
Search, details in Section 4.3. Refer to Appendix E for results on Cap Set and TSP.

1 INTRODUCTION

Many mathematical science problems are NP-complete, making them extremely challenging to
solve but relatively easy to evaluate (Romera-Paredes et al., 2024). Evolutionary Algorithms (EAs)
are widely used to optimize heuristics for such problems (Liu et al., 2023; Mei et al., 2023). Re-
cently, large language models (LLMs) have demonstrated remarkable capabilities in code generation
(Austin et al., 2021; Chen et al., 2021; Li et al., 2023), opening up new avenues for hyper-heuristic
algorithms. These methods, termed “LLM+EA” methods, leverage LLMs as variation operators
within EAs, achieving promising results across diverse domains (Chen et al., 2024; Zheng et al.,
2023; Nasir et al., 2024; Wang et al., 2024). A notable example is FunSearch (Romera-Paredes

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the QUBE. Left: The overall evolutionary pipeline of QUBE, which builds
upon the structure of FunSearch. Right: Comparison of parent selection strategies. While Fun-
Search selects parents based solely on sample scores, QUBE selects parents based on Uncertainty-
Inclusive Quality (UIQ) we proposed.

et al., 2024), which discovers high-quality heuristics through approximately 2.5 million evolution-
ary steps in a multi-population EA framework.

Theoretically, to optimize heuristics in a “function space”, a method should excel in two key as-
pects: exploitation (deepening search in promising regions) and exploration (broadening search in
unknown regions). However, achieving this balance long remains an open challenge (Weng, 2020;
Sutton et al.). Through analysis, we observe that the priority criterion behind FunSearch’s evolution
process hinders it from exploiting upon current status and performing useful exploration within the
function space, resulting its struggle.

To address the limitations of FunSearch in balancing exploration and exploitation, we propose
Quality-Uncertainty Balanced Evolution (QUBE): a novel framework that enhances heuristic evo-
lution by redefining the priority criterion guiding the evolutionary process. At the core of QUBE
is the Quality-Uncertainty Trade-off Criterion (QUTC), which builds on our proposed Uncertainty-
Inclusive Quality (UIQ) to assess samples. QUBE is experimented on both standard combinatorial
optimization problems and more challenging problems such as Cap Set. As illustrated in Figure 1,
QUBE demonstrates significant improvements over baseline methods1.

We summarize our contributions as follows:

1. We identify a key limitation in FunSearch: its priority criterion fails to effectively balance ex-
ploitation and exploration, thereby constraining its performance in heuristic evolution.

2. We propose QUBE, an LLM+EA method that employs Quality-Uncertainty Trade-off Criterion
(QUTC) enabling balanced exploration & exploitation throughout the evolutionary process.

3. Experimental results across multiple NP-complete problems demonstrate significant improve-
ments: reduction in excess bin usage for online bin packing (OBP), enhanced solution quality
for traveling salesman problem (TSP), and larger cap set discoveries.

2 THOROUGH EXAMINING EXPLORATION AND EXPLOITATION IN
FUNSEARCH

In this section, we first provide an overview of FunSearch and elaborate on two important details:
parent selection during each evolution step, and island reset that periodically takes place. A priority
criterion that affects these core details is identified. Then, we define exploitation and exploration in
FunSearch and analyze how the priority criterion affects the balance between exploitation and ex-
ploration. Finally, we empirically show FunSearch’s deficiency in both exploitation and exploration.

1We only show results for online bin packing here, please refer to Appendix E for more results. See Section
4 for experimental details.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 OVERVIEW OF FUNSEARCH

FunSearch is an LLM+EA method designed to evolve heuristics of complex combinatorial problems,
represented as Python functions. It employs an LLM as a variation operator within an EA framework
that utilizes multiple populations, or “islands.” An overview of FunSearch’s evolutionary process is
illustrated in the left part of Figure 2.

At each iteration, a randomly selected island undergoes evolution. Two parent samples are chosen,
and the LLM generates new candidates using these parents as few-shot examples. The generated
samples are evaluated for performance, and only those that execute successfullywithout exceptions
or timeoutsare retained. Periodically, underperforming islands are reset by replacing all their sam-
ples with the best-performing sample from a high-performing island. Specifically, half of the lowest-
performing islands are reset in this manner.

A central component of FunSearch is its priority criterion, which governs both parent selection and
island resets. FunSearch’s criterion is based on sample scores: the probability of a sample being
selected as a parent is proportional to the exponential of its score. An island is reset if its highest-
scoring sample performs worse than at least half of the other islands. This mechanism prioritizes
high-performing samples while preserving some diversity across populations.

2.2 EXPLORATION AND EXPLOITATION IN FUNSEARCH

The primary objective of FunSearch is to identify high-performance heuristics through iterative sam-
pling. Achieving this requires effective exploitation of known regions in the function space: gener-
ating samples that incrementally improve upon prior performance. However, limiting the search to
familiar areas risks overlooking heuristics with superior potential. To mitigate this, FunSearch must
also engage in exploration, generating diverse samples from less-explored regions that may ini-
tially appear unpromising. Balancing these two strategies, exploitation and exploration, is essential
for robust heuristic discovery.

The priority criterion plays a pivotal role in managing this balance. At each evolutionary step, it
guides the selection of parent samples used to prompt the LLM for new candidates. To maximize
exploitation, the criterion should prioritize parents with a high likelihood of producing strong off-
spring. Conversely, to encourage exploration, it should also allow for the selection of parents with
uncertain performance, enabling the algorithm to probe novel regions of the function space.

Methods like FunSearch incorporate island reset mechanisms. The priority criterion also determines
which islands to reset. Ideally, islands that have thoroughly exploited their regions but yield consis-
tently low scores should be reset to refocus on promising areas. Yet islands with low performance
but incomplete exploration may be preserved to allow continued search in underexplored spaces.

Ultimately, the priority criterion must strike a careful balance between exploitation and exploration,
as overemphasis on either strategy can compromise the effectiveness of the other.

2.3 QUANTITATIVE ASSESSMENT OF EXPLORATION AND EXPLOITATION

To analyze the search dynamics of Funsearch, we introduce two evaluation metrics: Recent Best
Score (RBS) and Recent Proportion of Change (RPC). These metrics are designed to approximate
the algorithm’s exploitation and exploration behavior, respectively, over a short time window (win-
dow size is set to K = 500 in practice).

Recent Best Score (RBS) measures the highest score among the K most recent samples. It reflects
the algorithm’s capacity to consistently generate high-performing heuristics within its current search
region. While exploration may occasionally yield high scores, sustained improvements within a
short window are more indicative of effective exploitation.

Recent Proportion of Change (RPC) quantifies the token-level edit distance between each of the
recent K samples and its nearest parent, normalized by sample length. This serves as a tractable
proxy for exploration, since full population-level diversity tracking is computationally infeasible at
our scale2. Thus we focus on structural novelty relative to parent samples. A higher RPC indicates
broader search behavior, while lower values suggest conservative sampling.

2Calculating pairwise edit distance among full population has complexity of O(N2), and in practice would
require days to fully analyze one experiment: 0.1ms × 800002/2 = 3.2e5s ≈ 88.9hour

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: The “Recent Best Score” of FunSearch exhibits plateaus in later stages, indicating chal-
lenges in effectively exploiting known regions. In contrast, our method consistently generates
higher-scoring samples, demonstrating superior exploitation capabilities.

As shown in Figure 3, FunSearch’s RBS exhibits sporadic jumps betwee long plateaus, implying less
consistent exploitation. However, our method QUBE shows a steady progress in RBS, suggesting
stable and effective exploitation. This discrepancy arises from FunSearch’s reliance on sample score
as its priority criterion, which does not necessarily correlate with the score of child samples.

Figure 4 further shows that FunSearch maintains a consistently low RPC, implying limited ex-
ploratory reach. Although FunSearch employs techniques such as multi-population evolution and
temperature-based sampling, its exploration strategy lacks discrimination. An effective exploration
strategy should prioritize regions with higher potential for high-scoring samples while avoiding ex-
cessive search in low-potential areas. Ideally, exploration should dominate the early stages when the
function space is largely unexplored, and gradually shift toward exploitation as promising regions
emerge. QUBE exemplifies this adaptive behavior: it starts high in RPC, indicating aggressive ex-
ploration, and gradually reduces it over time, demonstrating balanced exploitation and exploration.

3 QUALITY-UNCERTAINTY BALANCED EVOLUTION OF HEURISTICS

To balance exploration and exploitation in hubristic evolution, we propose Quality-Uncertainty Bal-
anced Evolution (QUBE). We begin by outlining the overall framework of QUBE. We then intro-
duce the Quality-Uncertainty Trade-off Criterion (QUTC), a priority mechanism grounded in our
proposed Uncertainty-Inclusive Quality (UIQ) for sample evaluation. Finally, we demonstrate how
QUBE incorporates QUTC into key components of the evolutionary process, including parent se-
lection and island reset.

3.1 OVERALL FRAMEWORK

At a macro level, the overall structure of our method (Figure 2’s left) aligns with that of FunSearch:
an LLM+EA method with multi-populations. QUBE evolves a Python function that serves as a
heuristic within a search algorithm. The performance of each function sample c is deterministically
evaluated by executing the search algorithm on a fixed set of test instances, yielding a score s(c).
All samples are stored in a database D, which consists of n ≥ 1 islands. Each island I maintains

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: FunSearch has a consistently low “Recent Proportion of Change”, reflecting its limited
overall exploration of the function space. In contrast, our method demonstrates both a broader scope
and a more intelligent exploration strategy, enabling more effective discovery of promising regions.

an independent population, with no inter-island communication except during resets. Within each
island, samples are further grouped into clusters C, where all members produce identical outputs
across test instances and thus share the same score s(C).

At each timestep, an island I is randomly selected for sample generation. Two parent samples are
chosen from I using our priority criterion QUTC, and passed as few-shot examples to the LLM to
generate new samples. After evaluation, the newly generated samples are stored back on the same
island I. Periodically, after every Treset sample generation, our method identifies and resets half
of the underperforming islands according to QUTC. This reset strategy helps maintain a dynamic
balance between exploration and exploitation by refreshing stagnant regions of the search space.

3.2 QUALITY-UNCERTAINTY TRADE-OFF CRITERION

To effectively balance exploitation and exploration, our priority criterion QUTC must identify sam-
ples that offer evolutionary advantages, specifically those likely to produce high scores in newly
generated samples, while also considering less-explored regions of the search space, represented by
samples that have been visited less frequently. In practice, we observed significant similarity among
samples within the same cluster. Thus, QUTC prioritizes clusters as a whole rather than individual
samples, ensuring a more efficient and scalable approach to guiding the evolutionary process.

We first introduce Uncertainty-Inclusive Quality (UIQ), the metric used by QUTC to assess sam-
ples. We define the quality of each cluster as the mean score of all child samples generated before
the current timestep, using samples from this cluster as parents. Formally, this is expressed as:

Qt(C) =
1∑

c∈C
|Pc,t|

∑
c∈C

∑
a∈Pc,t

s(a) (1)

where Pc,t denotes the collection of all samples generated with c as a parent before timestep t.
Unlike existing LLM+EA methods that statically assess a sample’s quality using its own score,
Qt(C) dynamically estimates the expected performance of child samples produced by samples in
C. This enables the identification of clusters with evolutionary advantages.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Inspired by Upper Confidence Bound (UCB) (Lai & Robbins, 1985; Auer, 2002), we incorporate
uncertainty based on visiting times of each cluster into its quality Qt(C), resulting in UIQ, Q̃t(C).
Specifically, let Nt(C) be the number of times samples in cluster C are used as parents before
timestep t, and k be a hyperparameter. We define UIQ as:

Q̃t(C) = Qt(C) + k

√
ln t

Nt(C)
(2)

By construction, UIQ integrates both the clusters’ estimated evolutionary quality and the uncer-
tainty associated with this estimate. QUTC ranks and prioritizes clusters based on their UIQ values,
thereby automatically balances exploitation and exploration, which was lacking in FunSearch.

3.3 QUALITY-UNCERTAINTY BALANCED EVOLUTION

Our method QUBE incorporates QUTC into the parent selection at each evolution step and the
evaluation of islands at each island reset procedure.

As illustrated in the right part of Figure 2. After an island I is selected to evolve new samples at
each timestep t, we identify 2 clusters in I with the highest UIQ according to QUTC. We select one
sample per cluster to serve as parents for this step. We bias the choice toward shorter programs in the
cluster (via the length-based weight) to favor simpler heuristics when quality is similar. Specifically,
let lc be the length of sample c measured by the number of characters, the probability of chosen c
within a cluster is proportionate to exp( lc

Tprog
), where Tprog > 0 is a hyperparameter.

At each island reset interval, we assess island quality using the cluster with the highest UIQ. Islands
whose top UIQ falls below the global median are selected for reset. Each reset island is reinitialized
by sampling from the best-performing cluster of a randomly chosen surviving island, ensuring a
promising foundation for continued evolution. This differs from FunSearch, which resets based
on raw performance rank; our island reset avoids discarding islands that still have high potential
(uncertainty) despite lower scores currently.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implement an asynchronous system on a single server with 8 NVIDIA A100 GPUs. LLM
inference service is set up locally using SGLang (Zheng et al., 2024). This enables efficient par-
allel sampling and decouples LLM inference from the rest of the system. We use OpenCoder-8B-
Instruct (Huang et al., 2024) for all experiments, and include ablation studies with Deepseek-coder-
6.7B (Guo et al., 2024). We provide our prompt for LLM in Appendix I.

The remaining components operate in parallel via multiprocessing. Samplers retrieve parent samples
from a shared database and submit requests to the LLM backend. Generated samples are evaluated
and stored back into the database. For TSP, we use a simplified configuration with a single island and
no reset, as satisfactory results can be achieved with fewer samples. More hyperparameter settings
are provided in Table 4 of the appendix.

4.2 EXPERIMENT PROBLEMS

We assessed the performance of our method on three NP-complete problems:

Online Bin Packing (OBP): OBP aims to accommodate each one of a set of items immediately into
the least number of fixed-sized bins. We conduct experiments on the OR-Library (Beasley, 1990)
which comprises four OBP datasets (OR1 to OR4), as well as generated instances from the Weibull
distribution. Following FunSearch (Romera-Paredes et al., 2024), heuristics are evolved within a
local search framework. Performance of OBP is measured using the “excess ratio”, defined as the
fraction of bins used beyond the L2 lower bound (Martello & Toth, 1990) of the optimal solution.

Cap Set (CS): The goal of the Cap Set problem is to find the largest subset of vectors in Zn
3 such

that no three vectors sum to zero. As in FunSearch, we evolve a priority function that ranks vectors

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

OBP (↓) CS (↑) TSP (↓)
OR1 OR2 OR3 OR4 W-1k W-5k W-10k n=8 TSP20 TSP50 TSP100

FunSearch* 4.48% 4.07% 3.02% 2.06% 1.99% 0.55% 0.31% 464 0.000% 0.000% 0.029%
FunSearch 5.30% 4.19% 3.11% 2.47% - 0.68% 0.32% 512 - - -
EoH - - - - 2.24% 0.80% 0.61% - 0.000% 0.000% 0.025%
QUBE 4.06% 3.73% 1.79% 1.75% 1.54% 0.41% 0.29% 480 0.000% 0.000% 0.023%

Table 1: Main experiment results on each task. The best result for each setting is in bold. Our
method outperforms ”FunSearch*”, our reproduction of FunSearch on all problems, and is better
than FunSearch on online bin packing as well as EoH on TSP.

to guide greedy construction. Experiments are conducted with n = 8, and performance is evaluated
by the size of the largest cap set found.

Traveling Salesman Problem (TSP): TSP aims at finding the shortest routes that visit all given
locations once and return to the starting point. We test QUBE on three settings: TSP20, TSP50, and
TSP100, following prior work (Kool et al., 2018; Liu et al., 2024). Our method evolves the objective
function used in the perturbation phase of a guided local search algorithm (Voudouris et al., 2010).
Performance is assessed using the “excess ratio”, defined as the relative distance to the optimal
solution computed by Concorde3.

Each experiment is run 10 times, and the best result is reported unless otherwise specified. Ablation
studies include average performance and standard deviation to assess robustness. Additional details
on data generation and task-specific implementation are provided in Appendix D.1 and G.

4.3 BASELINES

We compared our method with extensive baselines, including: (1) FunSearch: For OBP and CS,
we report the performance results directly from FunSearch (Romera-Paredes et al., 2024). Since
our hardware and LLM setup differ from those used in the original paper, we also re-implement
FunSearch on our infrastructure following its published methodology. This reproduced version is
denoted as FunSearch*. (2) EoH: For OBP and TSP, we include comparisons with results reported
by EoH (Liu et al., 2024; Zhang et al., 2024).

4.4 MAIN RESULTS

Table 1 summarizes the performance of the best heuristics obtained by each method. By reimagining
the parent selection and island reset with QUTC, QUBE consistently outperforms FunSearch and
other baselines across all benchmarks.This demonstrates that our seemingly simple modifications
yield substantial improvements in heuristic quality.

On OBP, QUBE reduces the excess bin usage by 9.36% ∼ 41.73% compared to FunSearch*, and
10.98% ∼ 42.44% relative to the original FunSearch results on both OR datasets and Weibull-
generated instances. On TSP, although all methods approach the optimal solution, QUBE still
achieves superior performance, with the “excess ratio” 20.69% smaller than “FunSearch*” and
8.00% smaller than EoH. These results highlight QUBE’s ability to generate high-quality heuristics
even in domains with strong existing baselines.

In the Cap Set problem, QUBE finds a set that is 16 elements larger than that found by FunSearch*
for n = 8. While we do not surpass the best result reported in FunSearch, we argue that repro-
ducing their result is prohibitively expensive due to the extreme computational cost of a full cap set
experiment 4. Despite limited trials, QUBE still discovers larger sets than FunSearch* under same
settings, further validating its effectiveness.

4.5 DISCUSSION

To mitigate the influence of randomness on best-run performance, we conduct experiments to verify
that the observed gains stem from our method’s effectiveness in both exploitation and exploration.

3https://www.math.uwaterloo.ca/tsp/concorde.html
4Running a cap set experiment requires generating and evaluating 2.5 million programs, which takes over 3

days on our GPU server. As stated in (Romera-Paredes et al., 2024): among 140 experiments they ran on cap
set problem with n=8, less than 5% yield cap set larger than 480.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Performance progress on online bin packing. The solid line shows the average score
among 10 experiments at each timestep. The shadow shows the range of best and worst experiments.
FunSearch is shown in dash line since only a final score is available.

Criterion for Parent Selection Criterion for Island Reset Best Avgstd

QUBE (Ours) Q̃p(C, t) Q̃p(C, t) 1.79% 2.76%0.0019

Parent Selection Only Q̃p(C, t) s(C) 2.65% 2.89%0.0018

Quality Only Qt(C) s(C) 2.74% 2.98%0.0012

FunSearch* s(C) s(C) 3.02% 3.07%0.0008

Table 2: Ablation of our method on online bin packing OR3. Best stands for best among 10 runs.
“Avgstd” stands for the average score, with standard deviation shown as the suffix.

We use the OBP task from the OR-Library as the benchmark, comparing our method against Fun-
Search*, our reproduced version of FunSearch.

As shown in Figure 3, QUBE consistently achieves higher RBS than FunSearch*. While Fun-
Search* exhibits early progress followed by prolonged plateaus, QUBE continues to discover im-
proved heuristics throughout the evolutionary process, suggesting that QUBE maintains stronger
exploitation capabilities. We attribute this to our priority criterion QUTC and its UIQ-based sample
evaluation that better aligns with the goal of exploitation.

Figure 4 presents the RPC for both methods. FunSearch* maintains a low and steady RPC, indicat-
ing undirected and random exploration. In contrast, QUBE begins with aggressive exploration and
gradually reduces, adaptively shifting towards exploitation and focused refinement within explored
promising areas. This adaptive behavior reflects a more strategic exploration pattern, consistent with
our analysis in Section 2.3.

Further evidence is provided in Figure 5, which tracks the performance trajectory over time. QUBE
outperforms both FunSearch and FunSearch* from early stages, while also offering a higher im-
provement rate especially in later phases. Together, these results demonstrate that QUBE achieves
a more effective balance between exploration and exploitation, leading to consistently superior and
robust heuristic performance.

4.6 ABLATION STUDY

To better understand the contributions of individual components in QUBE, we conduct an abla-
tion study on the OR3 dataset of the Online Bin Packing (OBP) task. All variants share the same
implementation setup as described in Section 4.1, unless otherwise specified.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

LLM Method Best Run Avgstd

OpenCoder-8B-Instruct FunSearch* 3.02% 3.07%0.0008

QUBE (Ours) 1.79% 2.76%0.0016

Deepseek-coder-6.7b FunSearch* 3.09% 3.19%0.0011

QUBE (Ours) 2.69% 2.89%0.0017

Table 3: Results of different LLMs on online bin packing OR3. Our method consistently outper-
forms FunSearch across different LLM variants.

We evaluate the following variants of our method:

Parent Selection Only: This variant adopts QUBE’s parent selection strategy, selecting clusters
with the top-2 Q̃t(C) at each timestep. The island reset mechanism is identical with FunSearch*.

Quality Only: This variant selects parents based on the top-2 Qt(C), which reflects our definition
of sample quality without incorporating uncertainty. Island resets follow the FunSearch*.

FunSearch*: Our replica of FunSearch as introduced in Section 4.3.

Table 2 reports both the best and average excess ratios (with standard deviation) across 10 runs for
each variant. The performance gap between FunSearch* and Quality Only highlights the impor-
tance of using Qt(C) over raw scores s(C) to evaluate sample quality. Unlike s(C), which may
be intuitively straightforward, Qt(C) provides an unbiased estimate of expected offspring quality,
leading to more effective exploitation.

Further improvements observed in Parent Selection Only demonstrate the value of incorporating
uncertainty into the priority criterion. By smartly allowing underrepresented clusters to be selected
as parents, QUBE explores less visited regions of the function space that may yield high-quality
heuristics over time. This mechanism enables adaptive exploration without sacrificing exploitation.

Finally, the performance difference between QUBE and Parent Selection Only underscores the
impact of our island reset strategy. Unlike FunSearch, which resets islands based on current scores,
QUBE targets islands unlikely to produce high-quality offspring. This forward-looking approach
preserves exploratory potential and avoids prematurely discarding promising regions.

Together, these results validate QUBE’s effectiveness in balancing exploitation and exploration, thus
leading to robust and superior performance.

4.7 CHOICE OF LLMS

To assess the robustness of QUBE against variations in unrelated factors such as the choice of
LLM, we conduct experiments on the OR3 dataset from OBP task. In addition to OpenCoder-
8b-Instruct (Huang et al., 2024), we test with Deepseek-coder-6.7b (Guo et al., 2024), a smaller
model with potentially weaker code generation capabilities.

As shown in Table 3, QUBE consistently outperforms FunSearch* regardless of the LLM used.
While OpenCoder yields stronger results overall, the relative advantage of QUBE remains stable
across models. These findings suggest that QUBE’s performance gains stem from its algorithmic
design rather than reliance on specific LLM capabilities, and that further improvements may be
possible with more powerful models on complex tasks such as Cap Set.

5 CONCLUSION

In this paper, we analyze the limitations of FunSearch, a representative LLM+EA framework for
heuristic optimization, and identify its shortcomings in balancing exploitation and exploration. To
address these issues, we propose QUBE, a novel method inspired by the principles of UCB. QUBE
introduces a quality-uncertainty trade-off mechanism that guides evolutionary search more effec-
tively. Extensive experiments across multiple NP-complete problems demonstrate that QUBE con-
sistently outperforms baseline methods. These results highlight QUBE’s robustness and its potential
to unlock stronger heuristic discovery, paving the way for broader applications of LLM-driven evo-
lution in complex problem domains.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work focuses on improving heuristic evolu-
tion methods through algorithmic design, without involving human subjects, sensitive personal data,
or proprietary datasets. All experiments are conducted on publicly available benchmark datasets
(e.g., OR-Library for Online Bin Packing, standard TSP instances, and Cap Set formulations), en-
suring reproducibility and transparency.

The proposed method, QUBE, is designed to enhance the efficiency and robustness of heuristic
discovery in combinatorial optimization. It does not introduce or amplify risks related to fairness,
discrimination, privacy, or security. While our approach leverages large language models (LLMs),
we do not rely on or modify their internal parameters, nor do we generate or deploy human-facing
content. All model usage complies with licensing terms and responsible AI practices.

QUBE as well as FunSearch, requires generating codes using LLMs and running these codes on
some test instances. This might have safety issues, since the code generated by LLM may have
unpredictable outcome. In our experiment, we witnessed codes generated by LLM trying to modify
(write and read) irrelevant local files. We tried our best to overcome this risk in our experiments by
restricting permission to access local disk, running codes in safe namespaces, etc.

We acknowledge that improvements in automated heuristic generation may influence decision-
making systems in broader applications. We encourage future work to consider domain-specific
ethical implications when deploying such methods in sensitive contexts.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. The main text provides
a detailed description of the QUBE framework (see Sections 3 and 4). All experimental settings,
including datasets, evaluation metrics, and baseline comparisons, are described in Section 4 and fur-
ther elaborated in Appendix D.1 and G. Hyperparameter settings and search procedures are reported
in Appendix F and Table 4. Upon acceptance, we will release our source code and scripts as supple-
mentary material to facilitate replication of our results. Any additional clarifications or instructions
for running the experiments will be included in the code repository.

REFERENCES

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

John E. Beasley. Or-library: distributing test problems by electronic mail. Journal of the operational
research society, 41(11):1069–1072, 1990.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimiza-
tion: A methodological tour d’horizon. Eur. J. Oper. Res., 290(2):405–421, 2021.

Shuvayan Brahmachary, Subodh M Joshi, Aniruddha Panda, Kaushik Koneripalli, Arun Ku-
mar Sagotra, Harshil Patel, Ankush Sharma, Ameya D Jagtap, and Kaushic Kalyanaraman.
Large language model-based evolutionary optimizer: Reasoning with elitism. arXiv preprint
arXiv:2403.02054, 2024.

Edmund K. Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and Sonia Schulenburg.
Hyper-heuristics: An emerging direction in modern search technology. In Handbook of Meta-
heuristics, volume 57 of International Series in Operations Research & Management Science,
pp. 457–474. Kluwer / Springer, 2003.

Angelica Chen, David Dohan, and David So. Evoprompting: language models for code-level neural
architecture search. Advances in Neural Information Processing Systems, 36, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Edward G Coffman Jr, Michael R Garey, and David S Johnson. Approximation algorithms for bin-
packingan updated survey. In Algorithm design for computer system design, pp. 49–106. Springer,
1984.

Joshua Grochow. New applications of the polynomial method: the cap set conjecture and beyond.
Bulletin of the American Mathematical Society, 56(1):29–64, 2019.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming - the rise of code intelligence. CoRR, abs/2401.14196,
2024.

André Hottung, Shunji Tanaka, and Kevin Tierney. Deep learning assisted heuristic tree search for
the container pre-marshalling problem. Comput. Oper. Res., 113, 2020.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
JH Liu, Chenchen Zhang, Linzheng Chai, et al. Opencoder: The open cookbook for top-tier code
large language models. arXiv preprint arXiv:2411.04905, 2024.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. In ICLR. OpenReview.net, 2022.

Ya-Hui Jia, Yi Mei, and Mengjie Zhang. Learning heuristics with different representations for
stochastic routing. IEEE Trans. Cybern., 53(5):3205–3219, 2023.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Adv. Appl. Math.,
6(1):422, March 1985. ISSN 0196-8858. doi: 10.1016/0196-8858(85)90002-8. URL https:
//doi.org/10.1016/0196-8858(85)90002-8.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution Through Large Models, pp. 331–366. Springer Nature Singapore, Singapore, 2024.
ISBN 978-981-99-3814-8. doi: 10.1007/978-981-99-3814-8 11. URL https://doi.org/
10.1007/978-981-99-3814-8_11.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large lan-
guage model. arXiv preprint arXiv:2311.15249, 2023.

Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In Forty-first International Conference on Machine Learning, 2024.

Silvano Martello and Paolo Toth. Lower bounds and reduction procedures for the bin packing
problem. Discrete applied mathematics, 28(1):59–70, 1990.

Yi Mei, Qi Chen, Andrew Lensen, Bing Xue, and Mengjie Zhang. Explainable artificial intelligence
by genetic programming: A survey. IEEE Trans. Evol. Comput., 27(3):621–641, 2023.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Muhammad Umair Nasir, Sam Earle, Julian Togelius, Steven James, and Christopher Cleghorn.
Llmatic: neural architecture search via large language models and quality diversity optimization.
In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1110–1118, 2024.

11

https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1007/978-981-99-3814-8_11
https://doi.org/10.1007/978-981-99-3814-8_11


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael O’Neill, Leonardo Vanneschi, Steven M. Gustafson, and Wolfgang Banzhaf. Open issues
in genetic programming. Genet. Program. Evolvable Mach., 11(3-4):339–363, 2010.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 53728–53741. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Prashant Sankaran and Katie McConky. Rethinking selection in generational genetic algorithms to
solve combinatorial optimization problems: An upper bound-based parent selection strategy for
recombination, 2024. URL https://arxiv.org/abs/2410.03863.

Anja Šurina, Amin Mansouri, Lars C.P.M. Quaedvlieg, Amal Seddas, Maryna Viazovska, Em-
manuel Abbe, and Caglar Gulcehre. Algorithm discovery with LLMs: Evolutionary search
meets reinforcement learning. In Second Conference on Language Modeling, 2025. URL
https://openreview.net/forum?id=dNW3RGW0gi.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.

Terence Tao and Van H Vu. Additive combinatorics, volume 105. Cambridge University Press,
2006.

Christos Voudouris, Edward PK Tsang, and Abdullah Alsheddy. Guided local search. In Handbook
of metaheuristics, pp. 321–361. Springer, 2010.

Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Strieth-Kalthoff,
Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, et al. Efficient evolutionary search over
chemical space with large language models. arXiv preprint arXiv:2406.16976, 2024.

Lilian Weng. Exploration strategies in deep reinforcement learning. lilian-
weng.github.io, Jun 2020. URL https://lilianweng.github.io/posts/
2020-06-07-exploration-drl/.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
arXiv preprint arXiv:2402.01145, 2024.

Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Understanding the
importance of evolutionary search in automated heuristic design with large language models. In
International Conference on Parallel Problem Solving from Nature, pp. 185–202. Springer, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured
language model programs. arXiv preprint arXiv:2312.07104, 2024.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://arxiv.org/abs/2410.03863
https://openreview.net/forum?id=dNW3RGW0gi
https://lilianweng.github.io/posts/2020-06-07-exploration-drl/
https://lilianweng.github.io/posts/2020-06-07-exploration-drl/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 HEURISTICS FOR MATH PROBLEMS

Heuristics are typically used to search solutions for NP-hard problems such as the Traveling Sales-
man Problem (TSP) (Liu et al., 2023), online bin packing (OBP) (Coffman Jr et al., 1984), cap
set problem (Grochow, 2019; Tao & Vu, 2006) etc. They guide the search direction to find rel-
atively good solutions within a reasonable time. While it’s hard to hand craft a good heuristic,
hyper-heuristics algorithms (Burke et al., 2003) like EA can automatically optimize heuristics from
a trivial on (Jia et al., 2023; Mei et al., 2023). Since the boost of deep learning, various relevant
methods have been used to assist EA (Bengio et al., 2021; Hudson et al., 2022; Hottung et al.,
2020).

A.2 LLM+EA

The effectiveness of EA heavily relies on the ability of variation operators to generate diverse and
promising new candidates, a process that typically demands substantial domain-specific knowl-
edge (O’Neill et al., 2010). Recent research has explored the integration of EAs with LLM’s gen-
erative potential, termed LLM+EA methods (Lehman et al., 2024). These methods leverage the
few-shot generation capabilities of LLMs as variation operators, extending their applications to di-
verse domains such as neural architecture search (Chen et al., 2024), text-based tasks (Meyerson
et al., 2023), optimization (Brahmachary et al., 2024), and molecular design (Wang et al., 2024).

Subsequent studies have focused on refining LLM+EA methodologies by enhancing LLM through
prompting, reflection and other generation strategies. For instance, EoH (Liu et al., 2024) intro-
duces five distinct prompts tailored for exploration and modification, moving beyond the single
fixed prompt used in earlier approaches. Additionally, EoH suggests that LLMs should first gener-
ate a textual description before implementing code. Similarly, ReEvo (Ye et al., 2024) incorporates
LLM reflection into the process, enabling the model to generate improved samples based on insights
derived from historical data. Despite these advancements, existing LLM+EA methods still face
challenges in scalability, efficiency, and their applicability to more complex problems. Recently,
Evotune (Šurina et al., 2025) proposed to finetune the LLM sampler using sample pairs collected
during the sampling process with the DPO (Rafailov et al., 2023) objective. Despite their varying
degrees of effectiveness, these methods have yet to address the fundamental issues inherent in the
EA framework.

Concurrent to our work, Sankaran & McConky (2024) proposed UBS, which also incorporates UCB.
However, their approach applies UCB solely for parent selection within a conventional EA frame-
work. Moreover, their experiments are conducted on relatively small-scale problems (fewer than
200 iterations), whereas our study addresses challenging combinatorial optimization tasks that re-
quire up to two million samples for effective resolution. Distinctively, we define sample quality
based on its evolutionary advantage: specifically, the mean performance of its generated offspring.
This diverges from all existing methodologies. To the best of our knowledge, our method QUBE, is
the first to employ an online confidence-bound-driven selection mechanism grounded in a sample’s
evolutionary priority within this context.

A.3 FUNSEARCH AND BEYOND

Existing LLM+EA methods have predominantly operated on a limited scale, typically generating
fewer than 10,000 samples throughout the evolutionary process. These approaches have not yet
fully leveraged the generative potential of LLMs or the evolution power of EAs. As a result, their
applications have largely been confined to conventional combinatorial optimization problems, such
as the TSP and OBP, which require relatively few evolutionary steps to yield meaningful results.

In contrast, FunSearch (Romera-Paredes et al., 2024) represents a significant leap in scaling
LLM+EA methods, generating approximately 2.5 million samples during its evolutionary process.
FunSearch extends beyond theoretical and mathematical domains, addressing complex and signif-
icant challenges such as the cap set and admissible set problems. By significantly scaling up the
generation of sample, FunSearch has demonstrated that LLM+EA algorithms can achieve state-of-

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the-art (SOTA) solutions to exceptionally difficult problems, surpassing the capabilities of all prior
LLM+EA methods.

B LIMITATIONS

Despite making non-trivial improvements on combinatorial optimization problems like online bin
packing and TSP, our method fails to outperform heuristics searched by FunSearch (Romera-Paredes
et al., 2024) on the cap set problems. Although this may potentially diminish the superiority of our
method on large-scale complex problems, we have made every effort to demonstrate the advantage of
our method over “FunSearch*” on the cap set problem under comparable settings. The performance
of the best heuristics discovered is related to the choice of LLM, the number of samples generated
and some random factors. Besides, to the best of our knowledge, no research work has ever sur-
passed or even tested the result of FunSearch (Romera-Paredes et al., 2024) in the cap set problem
due to its extremely high computation requirements. We see this as an opportunity to further extend
the capability and efficiency of LLM+EA methods.

Moreover, our method as well as FunSearch, requires generating codes using LLMs and running
these codes on some devices. This might be dangerous, since the code generated by LLM may be
unpredictable and hard to explain. In our experiment, we observed codes generated by LLM trying
to modify (write and read) local files. We tried our best to overcome this risk in our experiments by
restricting permission to access local disk, running codes in safe namespaces, etc.

C LLM USAGE STATEMENT

In this project, LLMs were used solely to assist with writing and polishing the manuscript. Specifi-
cally, LLMs were employed to improve clarity, grammar, and academic tone during the drafting and
revision of textual content. No LLMs were used for research ideation, experimental design, data
analysis, or generation of scientific content. All conceptual contributions, methodological innova-
tions, and experimental results are entirely the work of the authors.

The authors take full responsibility for the content of this paper, including any text that may have
been refined with the help of LLMs. No LLM qualifies for authorship under ICLR’s Code of Ethics.

D MORE EXPERIMENT DETAILS

D.1 CONSTRUCTION OF DATA

We list further details of our experiments here.

For OR datasets of online bin packing, we directly run our method and baseline methods on the test
instances of each subset (OR1 ∼ OR4). The offline lower bound for each instance in these datasets
is available, and the excess ratio for each subset is calculated directly using the sum of all used bins
and the sum of all lower bounds of all instances.

For Weibull datasets of online bin packing, we generate 5 test instances for each setting following
settings in Romera-Paredes et al. (2024), with 1k, 5k, 10k items each for Weibull1k, Weibull5k,
Weibull10k respectively. Each bin’s capacity is set to 100. The size of each item is sampled from
Weibull(45, 3) distribution, clipped to 0∼100, and finally rounded to an integer between 1 and 100.
The offline lower bound for each instance in Weibull datasets is calculated following Martello &
Toth (1990).

The input for the cap set problem is simply the number of dimensions n. Since the cap set problem
is already solved for n ≤ 6, we experimented with n = 8. Our method generates a heuristic within
a guided greedy construction of cap set. Each heuristic can be evaluated through the size of the cap
set found using itself.

The test instances for TSP are generated following the same setting as previous works (Kool et al.,
2018; Liu et al., 2024). For each setting (TSP20, TSP50, TSP100) 1000 test instances are generated,
each with 20, 50, or 100 locations randomly initialized from [0, 1]2, respectively.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Hyperparameter OBP Cap Set TSP
OR Weibull

LLM Samplers Number of samplers 16 16 16 16
LLM nucleus sampling p 0.95 0.95 0.95 0.95
LLM sampling temperature t 1.0 1.0 1.0 1.0
Samples generated per prompt: ns 4 4 4 1
Total number of samples 80K 80K 2M 2K

Evaluators Number of evaluators 50 50 50 50
Timeout limit (in seconds) 30 60 90 90

DataBase Number of islands: n 10 10 10 1
UIQ hyperparameter for uncertainty: k 0.0008 0.0001 32.0 10−5

Island reset interval: Treset 32,768 32,768 262,144 -
Temperature for choosing sample: Tprog 1.0 1.0 1.0 1.0

Table 4: Implementation details for our method as well as baseline methods.

D.2 HYPERPARAMETER SETTING

Apart from implementation details mentioned in Section 4.1, we list the hyperparameter settings in
Table 4. One hyperparameter, specifically k used in Equation 2 for UIQ, is searched for the optimal
value. We show the results in Appendix F. The values of other hyperparameters are either identical
to FunSearch Romera-Paredes et al. (2024) or carefully chosen to ensure the results are suitable for
our implementation and hardware while also comparable among baselines.

E MORE RESULTS FOR FIGURE 1

In Figure 1 of Section 1, we only show experiment results on online bin packing. We plot more
experiment results in Figure 6. Our method finds a larger cap set than “FunSearch*” and outperforms
all baseline methods on TSP100. Since the result on TSP20 and TSP50 is all 0 for all method, which
is equal to the theoretical best, we are not showing them in plots.

F HYPERPARAMETER SEARCH RESULTS

The value for the hyperparameters used in our method, namely UIQ’s hyperparameter k, is searched.
To search for the best value for k, we run experiments on “Parent Selection Only” method as de-
scribed in Section 4.6. Apart from the cap set problem, each setting is run 10 times to calculate the
average performance.

For OR dataset of OBP, we investigated that the appropriate value for k should be between 0.01 to
0.0001 so as to balance the quality term and uncertainty term well. Experiments are run on OR3
dataset. We provide experiment results for k in Table 5.

k Best Run Avg
0.01 2.87% 2.97%

0.008 2.84% 3.05%
0.004 2.97% 3.03%
0.002 2.89% 3.12%
0.001 2.74% 2.86%

0.0008 2.59% 2.79%
0.0004 2.72% 2.84%
0.0002 2.68% 2.82%
0.0001 2.70% 2.89%

Table 5: Hyperparameter search result for k on OR3 online bin packing. The optimal k is 0.0008.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: More experiment results on cap set n=8 and TSP100. For TSP a smaller excess ratio
is better, while for cap set a larger found set size is better.Our method still shows superiority over
baseline methods.

For Weibull dataset of OBP, we investigated that the appropriate value for k should be between
0.001 to 0.00001 so as to balance the quality term and uncertainty term well. Experiments are run
on Weibull5k dataset. We provide experiment results for k in Table 6.

Similarly, for cap set problem, we experimented kr within the range of 16 to 64. Since it cost heavily
to run cap set experiments, we only run 5 runs for each setting and show the results in Table ??.

G CODE SPECIFICATION FOR EACH TASK

In this section, we show the code specifications for each task. The function decorated with “@evo-
lution” is evolved in experiments and the score of each function can be acquired by running the
function decorated with “@run” on each test instance.

For online bin packing, the code specification is shown in Table 8. For the cap set problem the code
specification is shown in Table 9. For TSP, the code specification is shown in Table 10.

k Best Run Avg
0.001 1.73% 1.86%

0.0008 1.65% 1.90%
0.0004 1.67% 1.83%
0.0002 1.62% 1.75%
0.0001 1.54% 1.72%
0.00008 1.59% 1.79%
0.00004 1.64% 1.82%
0.00002 1.60% 1.78%
0.00001 1.70% 1.88%

Table 6: Hyperparameter search result for k on Weibull5k online bin packing. The optimal k is
0.0001.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

k Best Run Avg
16 464 452.8
32 464 464
48 464 451.2
64 448 448

Table 7: Hyperparameter search result for k on cap set n=8. We use “Parent Selection Only” for
experiment. The optimal value is 32.

H BEST HEURISTICS DISCOVERED

We show the best heuristics discovered by our method for each task here. The whole part of the
function LLM samplers outputs are shown without any modification, which is why some part of the
answers might sound nonsense.

For online bin packing OR1 the best heuristic discovered is shown in Table 11. For OR2, the best
heuristic is shown in Table 12. For OR3, the best heuristic is shown in Table 13. For OR4, the best
heuristic is shown in Table 14.

For cap set n=8, our best heuristic finds a cap set of 480 vectors. The corresponding heuristic is
shown in Table 15.

I LLM PROMPTS

We write task-specific natural instructions for LLM samplers in MarkDown style, since the LLM we
choose is capable of understanding and generating in MarkDown style. In all prompts shown below,
“{Parent1}” and “{Parent2}” are replaced with two parents selected at each time step.

For online bin packing, the prompt we use is shown in Table 16. For cap set problem, the prompt
we use is shown in Table 17. For TSP, the prompt we use is shown in Table 18.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

import os
import numpy as np

class BinPackProblem:
def __init__(self, id, capacity, n_items, best_answer, items):
self.id = id
self.capacity = capacity
self.n_items = n_items
self.best_answer = best_answer
self.items = np.array(items)
assert len(items) == n_items
bins = [capacity] * n_items
self.bins = np.array(bins)

def get_valid_bin_indices(item, bins: np.ndarray) -> np.ndarray:
return np.nonzero((bins - item) >= 0)[0]

def online_binpack(items: tuple[float, ...], bins: np.ndarray) -> tuple[
list[list[float, ...], ...], np.
ndarray]:

packing = [[] for _ in bins]
for item in items:
valid_bin_indices = get_valid_bin_indices(item, bins)
priorities = priority(item, bins[valid_bin_indices])
best_bin = valid_bin_indices[np.argmax(priorities)]
bins[best_bin] -= item
packing[best_bin].append(item)

packing = [bin_items for bin_items in packing if bin_items]
return packing, bins

@run
def evaluate_binpack(problem):
items = problem.items
bins = problem.bins
best_answer = problem.best_answer
capacity = problem.capacity
_, bins_packed = online_binpack(items, bins)
solved_answer = (bins_packed != capacity).sum()
cnt = best_answer - solved_answer
ratio = cnt / best_answer
return ratio

@evolution
def priority(item: float, bins: np.ndarray) -> np.ndarray:
# Returns the priority with which we want to add ’item’ to the bins
return 0.0

Table 8: Code specification for online bin packing.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

"""Finds large cap sets."""
import itertools
import numpy as np

def solve(n: int) -> np.ndarray:
"""Returns a large cap set in ‘n‘ dimensions."""
all_vectors = np.array(list(itertools.product((0, 1, 2), repeat=n)),

dtype=np.int32)
# Powers in decreasing order for compatibility with ‘itertools.product

‘, so
# that the relationship ‘i = all_vectors[i] @ powers‘ holds for all ‘i

‘.
powers = 3 ** np.arange(n - 1, -1, -1)
# Precompute all priorities.
priorities = np.array([priority(tuple(vector), n) for vector in

all_vectors])
# Build ‘capset‘ greedily, using priorities for prioritization.
capset = np.empty(shape=(0, n), dtype=np.int32)
while np.any(priorities != -np.inf):
# Add a vector with maximum priority to ‘capset‘, and set priorities

of
# invalidated vectors to ‘-inf‘, so that they never get selected.
max_index = np.argmax(priorities)
vector = all_vectors[None, max_index] # [1, n]
blocking = np.einsum(’cn,n->c’, (- capset - vector) % 3, powers) # [

C]
priorities[blocking] = -np.inf
priorities[max_index] = -np.inf
capset = np.concatenate([capset, vector], axis=0)

return capset

@run
def evaluate(n: int) -> int:
"""Returns the size of an ‘n‘-dimensional cap set."""
capset = solve(n)
return len(capset)

@evolution
def priority(element: tuple[int, ...], n: int) -> float:
"""Returns the priority with which we want to add ‘element‘ to the cap

set."""
return 0.0

Table 9: Code specification for cap set problem.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

import numpy as np
import random
import math

def euclidean_distance(city1, city2):
return math.sqrt((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)

def calculate_total_distance(route, distance_matrix):
return sum(distance_matrix[route[i]][route[i+1]] for i in range(len(

route)-1)) + distance_matrix[
route[-1]][route[0]]

def two_opt(route, distance_matrix):
best_route = route.copy()
improved = True
while improved:

improved = False
for i in range(1, len(route)-2):

for j in range(i+1, len(route)):
if j-i == 1: continue
new_route = route[:i] + route[i:j][::-1] + route[j:]
if calculate_total_distance(new_route, distance_matrix) <

calculate_total_distance
(best_route,
distance_matrix):

best_route = new_route
improved = True

route = best_route
return best_route

@run
def guided_local_search(cities, max_iterations=100, alpha=0.1):

num_cities = len(cities)
distance_matrix = np.zeros((num_cities, num_cities))
for i in range(num_cities):

for j in range(i+1, num_cities):
distance_matrix[i][j] = distance_matrix[j][i] =

euclidean_distance(
cities[i], cities[j])

init_distance_matrix=copy.deepcopy(distance_matrix)
# Initialize route
route = list(range(num_cities))
best_route=route
# Initialize penalties
penalties = np.zeros((num_cities, num_cities))
for iteration in range(max_iterations):

# Local search with 2-opt
route = two_opt(route, distance_matrix)
# Update route
if calculate_total_distance(route, init_distance_matrix) <

calculate_total_distance(
best_route,
init_distance_matrix):

best_route=route
# Evolve distance_matrix
distance_matrix=distance_matrix+update_dist(distance_matrix,

best_route)
return best_route, calculate_total_distance(best_route,

init_distance_matrix)

@evolution
def update_dist(distance_matrix, current_route):

’’’ calculates an update to current distance matrix. ’’’
return np.zeros_like(distance_matrix)

Table 10: Code specification for TSP.20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

def priority(item: float, bins: np.ndarray) -> np.ndarray:
penalty_factor_v3 = 0.7

D_item_val, C_int_fit, B_valid_region, a_of_K2_val = 4.5, 3.5, 2.6, 4.7

item_weight = item / 4650

scores = np.zeros(len(bins))

K_values = np.array([0.28, 0.31, 0.35])

B_values = np.array([0.15, 0.3, 0.25])

b_weights = np.array([2750/4650, 2950/4650, 3050/4650, 3150/4650])

for index, bin_num in enumerate(bins):
quantity_1D = index * bin_num
calc_2D_quantity = bin_num * bin_num

if index <= 3400:
b_weight = b_weights[0]

elif index<=3800:
b_weight = b_weights[1]

else:
b_weight = b_weights[3]

P_item = (index * b_weight) * (quantity_1D / calc_2D_quantity)

# Further improvements here.

improved_P_item = P_item * (index**52) * (item_weight**67) * (index**
2.5) * (item_weight**4.0) * (
index**3.4) * (item_weight**3.2)
* (index**3.0) * (item_weight**

3.3)

valid_region = abs(quantity_1D / calc_2D_quantity - 1)

if index <= 3000:
K = (K_values[0] * penalty_factor_v3) + ((1 - penalty_factor_v3) *

K_values[1])
elif index<=3800:

K = K_values[1]
else:

K = K_values[2]

if index <= 3500:
B_val = (B_values[0] * penalty_factor_v3) + ((1 - penalty_factor_v3

) * B_values[1])
elif index<=3800:

B_val = B_values[1]
else:

B_val = B_values[2]

intersection_fit = ((index * item_weight / (abs(bin_num - item)))**42
) * K * 2400000

improved_D_item_val = D_item_val * ((bins[index]/item) ** 2.8) * (1.0
+ index / 95000)

improved_C_int_fit = C_int_fit * (95 / (index+6))
improved_B_valid_region = B_val + (1-B_val) * (valid_region**2.5)
improved_a_of_K2_val = a_of_K2_val / (1 + index / 95000)

P_final = improved_D_item_val * ((improved_P_item + C_int_fit *
intersection_fit) / (
improved_B_valid_region * (
improved_a_of_K2_val +
valid_region)))

scores[index] = P_final

return scores

Table 11: The best heuristic searched by our method for OR1 online bin packing.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

def priority(item: float, bins: np.ndarray) -> np.ndarray:
bins_difference = np.abs(bins - item)

low_threshold, high_threshold = 8, 23
diff_mid = (high_threshold + low_threshold) / 2

p_vect4 = np.where(bins_difference <= low_threshold, bins_difference *
(-1) * 22,

np.where(bins_difference <= diff_mid, bins_difference *
(-1) * 34,

np.where(bins_difference <= high_threshold,
bins_difference *
(-1) * 46,
bins_difference *
(-1) * 2)))

p_vect4[np.abs(bins_difference) <= high_threshold / 2] += 35
p_vect4[np.abs(bins_difference) <= diff_mid] += 50
p_vect4[np.abs(bins_difference) <= low_threshold + high_threshold / 2]

+= 64

for i, val in enumerate(bins_difference):
if val <= 25:

bins_difference[i] = bins_difference[i] * (i + 1) * 72
else:

break

if np.any(np.abs(np.where(bins_difference <= 25, bins_difference * (-1)
* 100, bins_difference * (-1) *

13)) <= 150):
p_vect4[np.abs(np.where(bins_difference <= 25, bins_difference * (-1)

* 95, bins_difference * (-1) *
13)) <= 150] += 42

best_global = sorted(p_vect4)
best_three_values = best_global[0:3]
worst_bin_index = np.where(p_vect4 == max(best_three_values))[0][0]

if worst_bin_index < len(p_vect4):
p_vect4[worst_bin_index] = min(p_vect4) * 0.98

return p_vect4

Table 12: The best heuristic searched by our method for OR2 online bin packing.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

def priority(item: float, bins: np.ndarray) -> np.ndarray:
probabilities = np.zeros(len(bins), dtype=float)

for i in range(len(bins)):
current_bin_space = bins[i]

if item <= current_bin_space:
remainingSpaceFactor = current_bin_space / (current_bin_space +

item)
enhanced_load_factor = item/current_bin_space

# Improved estimation formula: f(x) = a * x ** p * exp(x)

"""
Non-uniform impact approach based on the load intensity:
Enhance the evaluated importance of loading by approaching loader-

bins outcomes.
"""
additional_impact_factor = 0.00

if enhanced_load_factor < 0.95:
modified_priority = (0.99 * ((remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.
55 +
additional_impact_factor) *
1500 - 95 / (
remainingSpaceFactor ** 1.25
)) * (130 + 0.0095 * i) * np
.exp(-i * 0.022)

elif enhanced_load_factor < 0.99:
modified_priority = (1.00 * ((remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.
45 +
additional_impact_factor) *
1600 - 45 / (
remainingSpaceFactor ** 1.30
)) * (140 + 0.0105 * i) * np
.exp(-i * 0.022)

else:
modified_priority = (1.01 * ((remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.
35 +
additional_impact_factor) *
1700 - 35 / (
remainingSpaceFactor ** 1.35
)) * (160 + 0.0115 * i) * np
.exp(-i * 0.023)

# Added/displaced non-uniform interpolated/smooth kernel-duty
system aspects

modified_priority -= 500 + 70 * np.cos(enhanced_load_factor + 0.07)
+ 600 * np.tanh(2.84 * (

enhanced_load_factor - 0.93))
+ 80 * np.cos(2 * i / len(bins
)) + 880 * np.sin(2 * i / len(
bins))

# Adjust differently for injected non-trivial items using maximum
performance complexity system

modified_priority -= 35 * (1-enhanced_load_factor) ** 0.98

# Insert updated, optimized weights for different scenarios

probabilities[i] = modified_priority

return probabilities

Table 13: The best heuristic searched by our method for OR3 online bin packing.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

def priority(item: float, bins: np.ndarray) -> np.ndarray:
def improved_prior_func(_value):
if _value < item / 9:

if bins.size > 700:
return 260**(35 * item / 350 - 2.5 * _value)

elif bins.size > 350:
return 140**(30 * item / 350 - 1 * _value)

else:
return 140**(50 * item / 350 - 2.5 * _value) # Colocalization

elif _value < item / 5:
if bins.size > 700:
return 180**(35 * item / 350 - 1 * _value)

elif bins.size > 350:
return 110**(40 * item / 350 - 0.5 * _value) #Quorum sensing

else:
return 140**(40 * item / 350 - 0.6 * _value) # Quorum sound

BiellLIF

elif _value < item:
if bins.size > 700:
return 95 * item /(145 + item)

elif bins.size > 350:
return 80 * item /(125 + item)

else:
return 80 * item /(130 + item) #Rotulina colleague

asymmetrically restructuring
translators replication

achieved in cell-process

else:
if bins.size > 700:
return 105 * item /(130 + item)

elif bins.size > 350:
return 95 * item /(120 + item)

else:
return 95 * item /(110 + item) #Biulation sncRNA

oscillations

return np.vectorize(improved_prior_func)(bins - item)

Table 14: The best heuristic searched by our method for OR4 online bin packing.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

def solve(n: int) -> np.ndarray:
score = np.sum(element) * 220.00 * 3.0
zeros = [idx for idx, val in enumerate(element) if val == 0]
# If there are at least two zeros.
if len(zeros) >= 2:
score = np.abs(np.sum(zeros)) * 230.00 * 2400.0

# If there are at least three zeros.
if len(zeros) >= 3:
d = np.array(zeros)[1:] - np.array(zeros)[:-1]
d_sorted = np.sort(d)
r = d_sorted[-1]
if r % 2 == 0:

score = np.abs(zeros[0] - zeros[1]) * 250.00 * 3400.0
# If there are at least four zeros.
if len(zeros) >= 4:
score = np.sum(element) * 260.50 * 35.0

# If there are more than three zeros and less than six zeros.
if len(zeros) > 3 and len(zeros) < 6:
score += 35000.0 * np.sum(zeros)

# If there are more than five zeros and less than nine zeros.
if len(zeros) > 5 and len(zeros) < 9:
score += 36000.0 * np.sum(element)

# If there are six or more zeros.
if len(zeros) >= 6:
score *= np.sum(np.array(element))

# Add some score based on the minimum and maximum elements.
score += np.sum(element) * np.min(np.array(element[:2])) * np.max(np.

array(element)) * 100.00
# If there is one zero, multiply the score by 120.
if len(zeros) == 1:
score *= 120.0

# Subtract some value based on the sum of the elements.
score -= np.sum(element) * np.sum(element[:2]) / 4.5
# If there are no zeros, multiply the score by 115.
if len(zeros) == 0:
score *= 1.15

# Multiply the score by 40.
score *= 40.00
# If there are seven or more zeros, add some value to the score.
if len(zeros) >= 7:
score += np.sum(element) * 250.00 * 120.0
score *= 1.85

if len(zeros) > 9 and len(zeros) < 12:
score += np.sum(element) * 260.50 * 90.0

# If there are twelve or more zeros, add some value to the score.
if len(zeros) >= 12:
score += np.sum(element) * 280.50 * 140.0

if len(zeros) > 14:
score *= np.sum(zeros)

# Multiply the score by the maximum element plus 40.
score *= np.max(np.array(element)) + 40.00
if np.sum(element) <= 12:
score *= 1.75

# If there are five or fewer zeros, multiply the score by 27.
if len(zeros) <= 5:
score *= 27.0

# Add 12000 to the score.
score += 12000.0
# If there are ten or fewer zeros, add 20000 to the score.
if len(zeros) <= 10:
score += 20000.0

# If there are fifteen or fewer zeros, add 30000 to the score.
if len(zeros) <= 15:
score += 30000.0

# Further improved version of ‘priority_v2‘.
score *= 1.75
# Final improvement of the score.
score *= 1.45
return score

Table 15: The heuristic searched by our method that leads to a cap set of size 480 on n=8.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Online 1D bin packing problem is a combinatorial optimization problems. The goal of online
bin packing is to assign each of a series of items into the smallest number of fixed-sized bins.
Generally, heuristics are used to solve online bin packing efficiently. Priority function is defined
in heuristic to help rank and search for best candidates.
You are given two priority functions ”priority v0” and ”priority v1”, then you are asked to com-
plete the following priority function ”priority v2” such that it is an improved version of ”prior-
ity v1”. This priority function will be used in heuristic to ranks the priority of bins given incoming
item.
Here are the requirements:
1. Just complete the ”priority v2” function and do note answer anything else.
2. Do not use ”print” function in your answer.

“‘ python
# Finds good assignment for online 1d bin packing.
import numpy as np

def priority v0(item: float, bins: np.ndarray) -¿ np.ndarray:
””” Returns the priority with which we want to add ’item’ to the bins ”””

{Parent1}

def priority v1(item: float, bins: np.ndarray) -¿ np.ndarray:
””” Improved version of priority v0 ”””

{Parent2}

def priority v2(item: float, bins: np.ndarray) -¿ np.ndarray:
””” Improved version of priority v1 ”””

Table 16: Prompt Template for online bin packing

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The cap set problem calculates the largest possible set of vectors in $
mathbb{Z}n̂ 3$ (known as a cap set) such that no three vectors sum to zero. Geometrically, no
three points of a cap set lie on a line.
Generally, heuristics can be used to solve cap set problem. Priority function for solving the cap
set problem ranks the priority with which we want to add a vector into the cap set.
Given two priority functions ”priority v0” and ”priority v1” where ”priority v1” is an improved
version of ”priority v0”, your task is to complete the following function priority v2 such that it is
an improved version of priority v1. Just complete the code and do not answer anything else. Do
not use any ‘print‘ function in your answer.

Here are the requiremnets:
1. Just complete the ”priority v2” function and do note answer anything else.
2. Do not use ”print” function in your answer.

“‘ python
# Find large cap sets
import numpy as np
import itertools
def priority v0(n: int) -¿ np.ndarray:

””” Returns a large cap set in ’n’ dimensions.”””
{Parent1}

def priority v1(n: int) -¿ np.ndarray:
””” Improved version of priority v0 ”””

{Parent2}

def priority v2(n: int) -¿ np.ndarray:
””” Improved version of priority v1 ”””

Table 17: Prompt Template for cap set problem

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

TSP problem finds shortest paths that travels all places and return to the starting point. Guided
local search can be used to iteratively update solution to TSP problems. A function updates the
distance matrix according to current shortest paths, such that further local search on the updated
distance matrix may lead to better answer.
You are given two update functions ”update dist v0” and ”update dist v1”, then you are asked to
complete the following priority function ”update dist v2” such that it is an improved version of
”update dist v1”. This priority function will be used in heuristic to ranks the priority of bins given
incoming item.
Here are the requirements:
1. Just complete the ”update dist v2” function and do note answer anything else.
2. Do not use ”print” function in your answer.

“‘ python
import numpy as np
import random
import math
import copy

def update dist v0(distance matrix ,current route):
””” Updates the distance matrix according to current best route searched”””

{Parent1}

def update dist v1(distance matrix ,current route):
””” Improved version of update dist v0 ”””

{Parent2}

def update dist v2(distance matrix ,current route):
””” Improved version of update dist v1 ”””

Table 18: Prompt Template for TSP.

28


	Introduction
	Thorough Examining Exploration and Exploitation in FunSearch
	Overview of FunSearch
	Exploration and Exploitation in FunSearch
	Quantitative Assessment of Exploration and Exploitation

	Quality-Uncertainty Balanced Evolution of Heuristics
	Overall Framework
	Quality-Uncertainty Trade-off Criterion
	Quality-Uncertainty Balanced Evolution

	Experiments
	Implementation Details
	Experiment problems
	Baselines
	Main Results
	Discussion
	Ablation Study
	Choice of LLMs

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Related Work
	Heuristics for Math Problems
	LLM+EA
	FunSearch and Beyond

	Limitations
	LLM Usage Statement
	More Experiment Details
	Construction of Data
	Hyperparameter Setting

	More Results for Figure 1
	Hyperparameter Search Results
	Code Specification for Each Task
	Best Heuristics Discovered
	LLM Prompts

