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ABSTRACT

Solving NP-hard problems traditionally relies on heuristics, yet manually design-
ing effective heuristics for complex problems remains a significant challenge.
While recent advancements like FunSearch have shown that large language mod-
els (LLMs) can be integrated into evolutionary algorithms (EAs) for heuristic
design, their potential is hindered by limitations in balancing exploitation and
exploration. We introduce Quality-Uncertainty Balanced Evolution (QUBE), a
novel approach that enhances LLM+EA methods by redefining the priority crite-
rion within the FunSearch framework. QUBE employs the Quality-Uncertainty
Trade-off Criterion (QUTC), based on our proposed Uncertainty-Inclusive Qual-
ity metric, to evaluate and guide the evolutionary process. Through extensive
experiments on challenging NP-complete problems, QUBE demonstrates signifi-
cant performance improvements over FunSearch and baseline methods. Our code
will be made public upon acceptance.

Figure 1: Experiment results on online bin packing, the performance is evaluated with “Excess
Ratio”. Our method can steadily find better heuristics than all baselines. Note: FunSearch’s result
on Weibull1k, EoH’s result on OR Library is unavailable. FunSearch* is our reproduction of Fun-
Search, details in Section 4.3. Refer to Appendix E for results on Cap Set and TSP.

1 INTRODUCTION

Many mathematical science problems are NP-complete, making them extremely challenging to
solve but relatively easy to evaluate (Romera-Paredes et al., 2024). Evolutionary Algorithms (EAs)
are widely used to optimize heuristics for such problems (Liu et al., 2023; Mei et al., 2023). Re-
cently, large language models (LLMs) have demonstrated remarkable capabilities in code generation
(Austin et al., 2021; Chen et al., 2021; Li et al., 2023), opening up new avenues for hyper-heuristic
algorithms. These methods, termed “LLM+EA” methods, leverage LLMs as variation operators
within EAs, achieving promising results across diverse domains (Chen et al., 2024; Zheng et al.,
2023; Nasir et al., 2024; Wang et al., 2024). A notable example is FunSearch (Romera-Paredes
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Figure 2: Overview of the QUBE. Left: The overall evolutionary pipeline of QUBE, which builds
upon the structure of FunSearch. Right: Comparison of parent selection strategies. While Fun-
Search selects parents based solely on sample scores, QUBE selects parents based on Uncertainty-
Inclusive Quality (UIQ) we proposed.

et al., 2024), which discovers high-quality heuristics through approximately 2.5 million evolution-
ary steps in a multi-population EA framework.

Theoretically, to optimize heuristics in a “function space”, a method should excel in two key as-
pects: exploitation (deepening search in promising regions) and exploration (broadening search in
unknown regions). However, achieving this balance long remains an open challenge (Weng, 2020;
Sutton et al.). Through analysis, we observe that the priority criterion behind FunSearch’s evolution
process hinders it from exploiting upon current status and performing useful exploration within the
function space, resulting its struggle.

To address the limitations of FunSearch in balancing exploration and exploitation, we propose
Quality-Uncertainty Balanced Evolution (QUBE): a novel framework that enhances heuristic evo-
lution by redefining the priority criterion guiding the evolutionary process. At the core of QUBE
is the Quality-Uncertainty Trade-off Criterion (QUTC), which builds on our proposed Uncertainty-
Inclusive Quality (UIQ) to assess samples. QUBE is experimented on both standard combinatorial
optimization problems and more challenging problems such as Cap Set. As illustrated in Figure 1,
QUBE demonstrates significant improvements over baseline methods1.

We summarize our contributions as follows:

1. We identify a key limitation in FunSearch: its priority criterion fails to effectively balance ex-
ploitation and exploration, thereby constraining its performance in heuristic evolution.

2. We propose QUBE, an LLM+EA method that employs Quality-Uncertainty Trade-off Criterion
(QUTC) enabling balanced exploration & exploitation throughout the evolutionary process.

3. Experimental results across multiple NP-complete problems demonstrate significant improve-
ments: reduction in excess bin usage for online bin packing (OBP), enhanced solution quality
for traveling salesman problem (TSP), and larger cap set discoveries.

2 THOROUGH EXAMINING EXPLORATION AND EXPLOITATION IN
FUNSEARCH

In this section, we first provide an overview of FunSearch and elaborate on two important details:
parent selection during each evolution step, and island reset that periodically takes place. A priority
criterion that affects these core details is identified. Then, we define exploitation and exploration in
FunSearch and analyze how the priority criterion affects the balance between exploitation and ex-
ploration. Finally, we empirically show FunSearch’s deficiency in both exploitation and exploration.

1We only show results for online bin packing here, please refer to Appendix E for more results. See Section
4 for experimental details.
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2.1 OVERVIEW OF FUNSEARCH

FunSearch is an LLM+EA method designed to evolve heuristics of complex combinatorial problems,
represented as Python functions. It employs an LLM as a variation operator within an EA framework
that utilizes multiple populations, or “islands.” An overview of FunSearch’s evolutionary process is
illustrated in the left part of Figure 2.

At each iteration, a randomly selected island undergoes evolution. Two parent samples are chosen,
and the LLM generates new candidates using these parents as few-shot examples. The generated
samples are evaluated for performance, and only those that execute successfullywithout exceptions
or timeoutsare retained. Periodically, underperforming islands are reset by replacing all their sam-
ples with the best-performing sample from a high-performing island. Specifically, half of the lowest-
performing islands are reset in this manner.

A central component of FunSearch is its priority criterion, which governs both parent selection and
island resets. FunSearch’s criterion is based on sample scores: the probability of a sample being
selected as a parent is proportional to the exponential of its score. An island is reset if its highest-
scoring sample performs worse than at least half of the other islands. This mechanism prioritizes
high-performing samples while preserving some diversity across populations.

2.2 EXPLORATION AND EXPLOITATION IN FUNSEARCH

The primary objective of FunSearch is to identify high-performance heuristics through iterative sam-
pling. Achieving this requires effective exploitation of known regions in the function space: gener-
ating samples that incrementally improve upon prior performance. However, limiting the search to
familiar areas risks overlooking heuristics with superior potential. To mitigate this, FunSearch must
also engage in exploration, generating diverse samples from less-explored regions that may ini-
tially appear unpromising. Balancing these two strategies, exploitation and exploration, is essential
for robust heuristic discovery.

The priority criterion plays a pivotal role in managing this balance. At each evolutionary step, it
guides the selection of parent samples used to prompt the LLM for new candidates. To maximize
exploitation, the criterion should prioritize parents with a high likelihood of producing strong off-
spring. Conversely, to encourage exploration, it should also allow for the selection of parents with
uncertain performance, enabling the algorithm to probe novel regions of the function space.

Methods like FunSearch incorporate island reset mechanisms. The priority criterion also determines
which islands to reset. Ideally, islands that have thoroughly exploited their regions but yield consis-
tently low scores should be reset to refocus on promising areas. Yet islands with low performance
but incomplete exploration may be preserved to allow continued search in underexplored spaces.

Ultimately, the priority criterion must strike a careful balance between exploitation and exploration,
as overemphasis on either strategy can compromise the effectiveness of the other.

2.3 QUANTITATIVE ASSESSMENT OF EXPLORATION AND EXPLOITATION

To analyze the search dynamics of Funsearch, we introduce two evaluation metrics: Recent Best
Score (RBS) and Recent Proportion of Change (RPC). These metrics are designed to approximate
the algorithm’s exploitation and exploration behavior, respectively, over a short time window (win-
dow size is set to K = 500 in practice).

Recent Best Score (RBS) measures the highest score among the K most recent samples. It reflects
the algorithm’s capacity to consistently generate high-performing heuristics within its current search
region. While exploration may occasionally yield high scores, sustained improvements within a
short window are more indicative of effective exploitation.

Recent Proportion of Change (RPC) quantifies the token-level edit distance between each of the
recent K samples and its nearest parent, normalized by sample length. This serves as a tractable
proxy for exploration, since full population-level diversity tracking is computationally infeasible at
our scale2. Thus we focus on structural novelty relative to parent samples. A higher RPC indicates
broader search behavior, while lower values suggest conservative sampling.

2Calculating pairwise edit distance among full population has complexity of O(N2), and in practice would
require days to fully analyze one experiment: 0.1ms × 800002/2 = 3.2e5s ≈ 88.9hour
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Figure 3: The “Recent Best Score” of FunSearch exhibits plateaus in later stages, indicating chal-
lenges in effectively exploiting known regions. In contrast, our method consistently generates
higher-scoring samples, demonstrating superior exploitation capabilities.

As shown in Figure 3, FunSearch’s RBS exhibits sporadic jumps betwee long plateaus, implying less
consistent exploitation. However, our method QUBE shows a steady progress in RBS, suggesting
stable and effective exploitation. This discrepancy arises from FunSearch’s reliance on sample score
as its priority criterion, which does not necessarily correlate with the score of child samples.

Figure 4 further shows that FunSearch maintains a consistently low RPC, implying limited ex-
ploratory reach. Although FunSearch employs techniques such as multi-population evolution and
temperature-based sampling, its exploration strategy lacks discrimination. An effective exploration
strategy should prioritize regions with higher potential for high-scoring samples while avoiding ex-
cessive search in low-potential areas. Ideally, exploration should dominate the early stages when the
function space is largely unexplored, and gradually shift toward exploitation as promising regions
emerge. QUBE exemplifies this adaptive behavior: it starts high in RPC, indicating aggressive ex-
ploration, and gradually reduces it over time, demonstrating balanced exploitation and exploration.

3 QUALITY-UNCERTAINTY BALANCED EVOLUTION OF HEURISTICS

To balance exploration and exploitation in hubristic evolution, we propose Quality-Uncertainty Bal-
anced Evolution (QUBE). We begin by outlining the overall framework of QUBE. We then intro-
duce the Quality-Uncertainty Trade-off Criterion (QUTC), a priority mechanism grounded in our
proposed Uncertainty-Inclusive Quality (UIQ) for sample evaluation. Finally, we demonstrate how
QUBE incorporates QUTC into key components of the evolutionary process, including parent se-
lection and island reset.

3.1 OVERALL FRAMEWORK

At a macro level, the overall structure of our method (Figure 2’s left) aligns with that of FunSearch:
an LLM+EA method with multi-populations. QUBE evolves a Python function that serves as a
heuristic within a search algorithm. The performance of each function sample c is deterministically
evaluated by executing the search algorithm on a fixed set of test instances, yielding a score s(c).
All samples are stored in a database D, which consists of n ≥ 1 islands. Each island I maintains
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Figure 4: FunSearch has a consistently low “Recent Proportion of Change”, reflecting its limited
overall exploration of the function space. In contrast, our method demonstrates both a broader scope
and a more intelligent exploration strategy, enabling more effective discovery of promising regions.

an independent population, with no inter-island communication except during resets. Within each
island, samples are further grouped into clusters C, where all members produce identical outputs
across test instances and thus share the same score s(C).

At each timestep, an island I is randomly selected for sample generation. Two parent samples are
chosen from I using our priority criterion QUTC, and passed as few-shot examples to the LLM to
generate new samples. After evaluation, the newly generated samples are stored back on the same
island I. Periodically, after every Treset sample generation, our method identifies and resets half
of the underperforming islands according to QUTC. This reset strategy helps maintain a dynamic
balance between exploration and exploitation by refreshing stagnant regions of the search space.

3.2 QUALITY-UNCERTAINTY TRADE-OFF CRITERION

To effectively balance exploitation and exploration, our priority criterion QUTC must identify sam-
ples that offer evolutionary advantages, specifically those likely to produce high scores in newly
generated samples, while also considering less-explored regions of the search space, represented by
samples that have been visited less frequently. In practice, we observed significant similarity among
samples within the same cluster. Thus, QUTC prioritizes clusters as a whole rather than individual
samples, ensuring a more efficient and scalable approach to guiding the evolutionary process.

We first introduce Uncertainty-Inclusive Quality (UIQ), the metric used by QUTC to assess sam-
ples. We define the quality of each cluster as the mean score of all child samples generated before
the current timestep, using samples from this cluster as parents. Formally, this is expressed as:

Qt(C) =
1∑

c∈C
|Pc,t|

∑
c∈C

∑
a∈Pc,t

s(a) (1)

where Pc,t denotes the collection of all samples generated with c as a parent before timestep t.
Unlike existing LLM+EA methods that statically assess a sample’s quality using its own score,
Qt(C) dynamically estimates the expected performance of child samples produced by samples in
C. This enables the identification of clusters with evolutionary advantages.

5
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Inspired by Upper Confidence Bound (UCB) (Lai & Robbins, 1985; Auer, 2002), we incorporate
uncertainty based on visiting times of each cluster into its quality Qt(C), resulting in UIQ, Q̃t(C).
Specifically, let Nt(C) be the number of times samples in cluster C are used as parents before
timestep t, and k be a hyperparameter. We define UIQ as:

Q̃t(C) = Qt(C) + k

√
ln t

Nt(C)
(2)

By construction, UIQ integrates both the clusters’ estimated evolutionary quality and the uncer-
tainty associated with this estimate. QUTC ranks and prioritizes clusters based on their UIQ values,
thereby automatically balances exploitation and exploration, which was lacking in FunSearch.

3.3 QUALITY-UNCERTAINTY BALANCED EVOLUTION

Our method QUBE incorporates QUTC into the parent selection at each evolution step and the
evaluation of islands at each island reset procedure.

As illustrated in the right part of Figure 2. After an island I is selected to evolve new samples at
each timestep t, we identify 2 clusters in I with the highest UIQ according to QUTC. We select one
sample per cluster to serve as parents for this step. We bias the choice toward shorter programs in the
cluster (via the length-based weight) to favor simpler heuristics when quality is similar. Specifically,
let lc be the length of sample c measured by the number of characters, the probability of chosen c
within a cluster is proportionate to exp( lc

Tprog
), where Tprog > 0 is a hyperparameter.

At each island reset interval, we assess island quality using the cluster with the highest UIQ. Islands
whose top UIQ falls below the global median are selected for reset. Each reset island is reinitialized
by sampling from the best-performing cluster of a randomly chosen surviving island, ensuring a
promising foundation for continued evolution. This differs from FunSearch, which resets based
on raw performance rank; our island reset avoids discarding islands that still have high potential
(uncertainty) despite lower scores currently.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implement an asynchronous system on a single server with 8 NVIDIA A100 GPUs. LLM
inference service is set up locally using SGLang (Zheng et al., 2024). This enables efficient par-
allel sampling and decouples LLM inference from the rest of the system. We use OpenCoder-8B-
Instruct (Huang et al., 2024) for all experiments, and include ablation studies with Deepseek-coder-
6.7B (Guo et al., 2024). We provide our prompt for LLM in Appendix I.

The remaining components operate in parallel via multiprocessing. Samplers retrieve parent samples
from a shared database and submit requests to the LLM backend. Generated samples are evaluated
and stored back into the database. For TSP, we use a simplified configuration with a single island and
no reset, as satisfactory results can be achieved with fewer samples. More hyperparameter settings
are provided in Table 4 of the appendix.

4.2 EXPERIMENT PROBLEMS

We assessed the performance of our method on three NP-complete problems:

Online Bin Packing (OBP): OBP aims to accommodate each one of a set of items immediately into
the least number of fixed-sized bins. We conduct experiments on the OR-Library (Beasley, 1990)
which comprises four OBP datasets (OR1 to OR4), as well as generated instances from the Weibull
distribution. Following FunSearch (Romera-Paredes et al., 2024), heuristics are evolved within a
local search framework. Performance of OBP is measured using the “excess ratio”, defined as the
fraction of bins used beyond the L2 lower bound (Martello & Toth, 1990) of the optimal solution.

Cap Set (CS): The goal of the Cap Set problem is to find the largest subset of vectors in Zn
3 such

that no three vectors sum to zero. As in FunSearch, we evolve a priority function that ranks vectors

6
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OBP (↓) CS (↑) TSP (↓)
OR1 OR2 OR3 OR4 W-1k W-5k W-10k n=8 TSP20 TSP50 TSP100

FunSearch* 4.48% 4.07% 3.02% 2.06% 1.99% 0.55% 0.31% 464 0.000% 0.000% 0.029%
FunSearch 5.30% 4.19% 3.11% 2.47% - 0.68% 0.32% 512 - - -
EoH - - - - 2.24% 0.80% 0.61% - 0.000% 0.000% 0.025%
QUBE 4.06% 3.73% 1.79% 1.75% 1.54% 0.41% 0.29% 480 0.000% 0.000% 0.023%

Table 1: Main experiment results on each task. The best result for each setting is in bold. Our
method outperforms ”FunSearch*”, our reproduction of FunSearch on all problems, and is better
than FunSearch on online bin packing as well as EoH on TSP.

to guide greedy construction. Experiments are conducted with n = 8, and performance is evaluated
by the size of the largest cap set found.

Traveling Salesman Problem (TSP): TSP aims at finding the shortest routes that visit all given
locations once and return to the starting point. We test QUBE on three settings: TSP20, TSP50, and
TSP100, following prior work (Kool et al., 2018; Liu et al., 2024). Our method evolves the objective
function used in the perturbation phase of a guided local search algorithm (Voudouris et al., 2010).
Performance is assessed using the “excess ratio”, defined as the relative distance to the optimal
solution computed by Concorde3.

Each experiment is run 10 times, and the best result is reported unless otherwise specified. Ablation
studies include average performance and standard deviation to assess robustness. Additional details
on data generation and task-specific implementation are provided in Appendix D.1 and G.

4.3 BASELINES

We compared our method with extensive baselines, including: (1) FunSearch: For OBP and CS,
we report the performance results directly from FunSearch (Romera-Paredes et al., 2024). Since
our hardware and LLM setup differ from those used in the original paper, we also re-implement
FunSearch on our infrastructure following its published methodology. This reproduced version is
denoted as FunSearch*. (2) EoH: For OBP and TSP, we include comparisons with results reported
by EoH (Liu et al., 2024; Zhang et al., 2024).

4.4 MAIN RESULTS

Table 1 summarizes the performance of the best heuristics obtained by each method. By reimagining
the parent selection and island reset with QUTC, QUBE consistently outperforms FunSearch and
other baselines across all benchmarks.This demonstrates that our seemingly simple modifications
yield substantial improvements in heuristic quality.

On OBP, QUBE reduces the excess bin usage by 9.36% ∼ 41.73% compared to FunSearch*, and
10.98% ∼ 42.44% relative to the original FunSearch results on both OR datasets and Weibull-
generated instances. On TSP, although all methods approach the optimal solution, QUBE still
achieves superior performance, with the “excess ratio” 20.69% smaller than “FunSearch*” and
8.00% smaller than EoH. These results highlight QUBE’s ability to generate high-quality heuristics
even in domains with strong existing baselines.

In the Cap Set problem, QUBE finds a set that is 16 elements larger than that found by FunSearch*
for n = 8. While we do not surpass the best result reported in FunSearch, we argue that repro-
ducing their result is prohibitively expensive due to the extreme computational cost of a full cap set
experiment 4. Despite limited trials, QUBE still discovers larger sets than FunSearch* under same
settings, further validating its effectiveness.

4.5 DISCUSSION

To mitigate the influence of randomness on best-run performance, we conduct experiments to verify
that the observed gains stem from our method’s effectiveness in both exploitation and exploration.

3https://www.math.uwaterloo.ca/tsp/concorde.html
4Running a cap set experiment requires generating and evaluating 2.5 million programs, which takes over 3

days on our GPU server. As stated in (Romera-Paredes et al., 2024): among 140 experiments they ran on cap
set problem with n=8, less than 5% yield cap set larger than 480.
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Figure 5: Performance progress on online bin packing. The solid line shows the average score
among 10 experiments at each timestep. The shadow shows the range of best and worst experiments.
FunSearch is shown in dash line since only a final score is available.

Criterion for Parent Selection Criterion for Island Reset Best Avgstd

QUBE (Ours) Q̃p(C, t) Q̃p(C, t) 1.79% 2.76%0.0019

Parent Selection Only Q̃p(C, t) s(C) 2.65% 2.89%0.0018

Quality Only Qt(C) s(C) 2.74% 2.98%0.0012

FunSearch* s(C) s(C) 3.02% 3.07%0.0008

Table 2: Ablation of our method on online bin packing OR3. Best stands for best among 10 runs.
“Avgstd” stands for the average score, with standard deviation shown as the suffix.

We use the OBP task from the OR-Library as the benchmark, comparing our method against Fun-
Search*, our reproduced version of FunSearch.

As shown in Figure 3, QUBE consistently achieves higher RBS than FunSearch*. While Fun-
Search* exhibits early progress followed by prolonged plateaus, QUBE continues to discover im-
proved heuristics throughout the evolutionary process, suggesting that QUBE maintains stronger
exploitation capabilities. We attribute this to our priority criterion QUTC and its UIQ-based sample
evaluation that better aligns with the goal of exploitation.

Figure 4 presents the RPC for both methods. FunSearch* maintains a low and steady RPC, indicat-
ing undirected and random exploration. In contrast, QUBE begins with aggressive exploration and
gradually reduces, adaptively shifting towards exploitation and focused refinement within explored
promising areas. This adaptive behavior reflects a more strategic exploration pattern, consistent with
our analysis in Section 2.3.

Further evidence is provided in Figure 5, which tracks the performance trajectory over time. QUBE
outperforms both FunSearch and FunSearch* from early stages, while also offering a higher im-
provement rate especially in later phases. Together, these results demonstrate that QUBE achieves
a more effective balance between exploration and exploitation, leading to consistently superior and
robust heuristic performance.

4.6 ABLATION STUDY

To better understand the contributions of individual components in QUBE, we conduct an abla-
tion study on the OR3 dataset of the Online Bin Packing (OBP) task. All variants share the same
implementation setup as described in Section 4.1, unless otherwise specified.

8
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LLM Method Best Run Avgstd

OpenCoder-8B-Instruct FunSearch* 3.02% 3.07%0.0008

QUBE (Ours) 1.79% 2.76%0.0016

Deepseek-coder-6.7b FunSearch* 3.09% 3.19%0.0011

QUBE (Ours) 2.69% 2.89%0.0017

Table 3: Results of different LLMs on online bin packing OR3. Our method consistently outper-
forms FunSearch across different LLM variants.

We evaluate the following variants of our method:

Parent Selection Only: This variant adopts QUBE’s parent selection strategy, selecting clusters
with the top-2 Q̃t(C) at each timestep. The island reset mechanism is identical with FunSearch*.

Quality Only: This variant selects parents based on the top-2 Qt(C), which reflects our definition
of sample quality without incorporating uncertainty. Island resets follow the FunSearch*.

FunSearch*: Our replica of FunSearch as introduced in Section 4.3.

Table 2 reports both the best and average excess ratios (with standard deviation) across 10 runs for
each variant. The performance gap between FunSearch* and Quality Only highlights the impor-
tance of using Qt(C) over raw scores s(C) to evaluate sample quality. Unlike s(C), which may
be intuitively straightforward, Qt(C) provides an unbiased estimate of expected offspring quality,
leading to more effective exploitation.

Further improvements observed in Parent Selection Only demonstrate the value of incorporating
uncertainty into the priority criterion. By smartly allowing underrepresented clusters to be selected
as parents, QUBE explores less visited regions of the function space that may yield high-quality
heuristics over time. This mechanism enables adaptive exploration without sacrificing exploitation.

Finally, the performance difference between QUBE and Parent Selection Only underscores the
impact of our island reset strategy. Unlike FunSearch, which resets islands based on current scores,
QUBE targets islands unlikely to produce high-quality offspring. This forward-looking approach
preserves exploratory potential and avoids prematurely discarding promising regions.

Together, these results validate QUBE’s effectiveness in balancing exploitation and exploration, thus
leading to robust and superior performance.

4.7 CHOICE OF LLMS

To assess the robustness of QUBE against variations in unrelated factors such as the choice of
LLM, we conduct experiments on the OR3 dataset from OBP task. In addition to OpenCoder-
8b-Instruct (Huang et al., 2024), we test with Deepseek-coder-6.7b (Guo et al., 2024), a smaller
model with potentially weaker code generation capabilities.

As shown in Table 3, QUBE consistently outperforms FunSearch* regardless of the LLM used.
While OpenCoder yields stronger results overall, the relative advantage of QUBE remains stable
across models. These findings suggest that QUBE’s performance gains stem from its algorithmic
design rather than reliance on specific LLM capabilities, and that further improvements may be
possible with more powerful models on complex tasks such as Cap Set.

5 CONCLUSION

In this paper, we analyze the limitations of FunSearch, a representative LLM+EA framework for
heuristic optimization, and identify its shortcomings in balancing exploitation and exploration. To
address these issues, we propose QUBE, a novel method inspired by the principles of UCB. QUBE
introduces a quality-uncertainty trade-off mechanism that guides evolutionary search more effec-
tively. Extensive experiments across multiple NP-complete problems demonstrate that QUBE con-
sistently outperforms baseline methods. These results highlight QUBE’s robustness and its potential
to unlock stronger heuristic discovery, paving the way for broader applications of LLM-driven evo-
lution in complex problem domains.
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6 ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work focuses on improving heuristic evolu-
tion methods through algorithmic design, without involving human subjects, sensitive personal data,
or proprietary datasets. All experiments are conducted on publicly available benchmark datasets
(e.g., OR-Library for Online Bin Packing, standard TSP instances, and Cap Set formulations), en-
suring reproducibility and transparency.

The proposed method, QUBE, is designed to enhance the efficiency and robustness of heuristic
discovery in combinatorial optimization. It does not introduce or amplify risks related to fairness,
discrimination, privacy, or security. While our approach leverages large language models (LLMs),
we do not rely on or modify their internal parameters, nor do we generate or deploy human-facing
content. All model usage complies with licensing terms and responsible AI practices.

QUBE as well as FunSearch, requires generating codes using LLMs and running these codes on
some test instances. This might have safety issues, since the code generated by LLM may have
unpredictable outcome. In our experiment, we witnessed codes generated by LLM trying to modify
(write and read) irrelevant local files. We tried our best to overcome this risk in our experiments by
restricting permission to access local disk, running codes in safe namespaces, etc.

We acknowledge that improvements in automated heuristic generation may influence decision-
making systems in broader applications. We encourage future work to consider domain-specific
ethical implications when deploying such methods in sensitive contexts.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. The main text provides
a detailed description of the QUBE framework (see Sections 3 and 4). All experimental settings,
including datasets, evaluation metrics, and baseline comparisons, are described in Section 4 and fur-
ther elaborated in Appendix D.1 and G. Hyperparameter settings and search procedures are reported
in Appendix F and Table 4. Upon acceptance, we will release our source code and scripts as supple-
mentary material to facilitate replication of our results. Any additional clarifications or instructions
for running the experiments will be included in the code repository.
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A RELATED WORK

A.1 HEURISTICS FOR MATH PROBLEMS

Heuristics are typically used to search solutions for NP-hard problems such as the Traveling Sales-
man Problem (TSP) (Liu et al., 2023), online bin packing (OBP) (Coffman Jr et al., 1984), cap
set problem (Grochow, 2019; Tao & Vu, 2006) etc. They guide the search direction to find rel-
atively good solutions within a reasonable time. While it’s hard to hand craft a good heuristic,
hyper-heuristics algorithms (Burke et al., 2003) like EA can automatically optimize heuristics from
a trivial on (Jia et al., 2023; Mei et al., 2023). Since the boost of deep learning, various relevant
methods have been used to assist EA (Bengio et al., 2021; Hudson et al., 2022; Hottung et al.,
2020).

A.2 LLM+EA

The effectiveness of EA heavily relies on the ability of variation operators to generate diverse and
promising new candidates, a process that typically demands substantial domain-specific knowl-
edge (O’Neill et al., 2010). Recent research has explored the integration of EAs with LLM’s gen-
erative potential, termed LLM+EA methods (Lehman et al., 2024). These methods leverage the
few-shot generation capabilities of LLMs as variation operators, extending their applications to di-
verse domains such as neural architecture search (Chen et al., 2024), text-based tasks (Meyerson
et al., 2023), optimization (Brahmachary et al., 2024), and molecular design (Wang et al., 2024).

Subsequent studies have focused on refining LLM+EA methodologies by enhancing LLM through
prompting, reflection and other generation strategies. For instance, EoH (Liu et al., 2024) intro-
duces five distinct prompts tailored for exploration and modification, moving beyond the single
fixed prompt used in earlier approaches. Additionally, EoH suggests that LLMs should first gener-
ate a textual description before implementing code. Similarly, ReEvo (Ye et al., 2024) incorporates
LLM reflection into the process, enabling the model to generate improved samples based on insights
derived from historical data. Despite these advancements, existing LLM+EA methods still face
challenges in scalability, efficiency, and their applicability to more complex problems. Recently,
Evotune (Šurina et al., 2025) proposed to finetune the LLM sampler using sample pairs collected
during the sampling process with the DPO (Rafailov et al., 2023) objective. Despite their varying
degrees of effectiveness, these methods have yet to address the fundamental issues inherent in the
EA framework.

Concurrent to our work, Sankaran & McConky (2024) proposed UBS, which also incorporates UCB.
However, their approach applies UCB solely for parent selection within a conventional EA frame-
work. Moreover, their experiments are conducted on relatively small-scale problems (fewer than
200 iterations), whereas our study addresses challenging combinatorial optimization tasks that re-
quire up to two million samples for effective resolution. Distinctively, we define sample quality
based on its evolutionary advantage: specifically, the mean performance of its generated offspring.
This diverges from all existing methodologies. To the best of our knowledge, our method QUBE, is
the first to employ an online confidence-bound-driven selection mechanism grounded in a sample’s
evolutionary priority within this context.

A.3 FUNSEARCH AND BEYOND

Existing LLM+EA methods have predominantly operated on a limited scale, typically generating
fewer than 10,000 samples throughout the evolutionary process. These approaches have not yet
fully leveraged the generative potential of LLMs or the evolution power of EAs. As a result, their
applications have largely been confined to conventional combinatorial optimization problems, such
as the TSP and OBP, which require relatively few evolutionary steps to yield meaningful results.

In contrast, FunSearch (Romera-Paredes et al., 2024) represents a significant leap in scaling
LLM+EA methods, generating approximately 2.5 million samples during its evolutionary process.
FunSearch extends beyond theoretical and mathematical domains, addressing complex and signif-
icant challenges such as the cap set and admissible set problems. By significantly scaling up the
generation of sample, FunSearch has demonstrated that LLM+EA algorithms can achieve state-of-
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the-art (SOTA) solutions to exceptionally difficult problems, surpassing the capabilities of all prior
LLM+EA methods.

B LIMITATIONS

Despite making non-trivial improvements on combinatorial optimization problems like online bin
packing and TSP, our method fails to outperform heuristics searched by FunSearch (Romera-Paredes
et al., 2024) on the cap set problems. Although this may potentially diminish the superiority of our
method on large-scale complex problems, we have made every effort to demonstrate the advantage of
our method over “FunSearch*” on the cap set problem under comparable settings. The performance
of the best heuristics discovered is related to the choice of LLM, the number of samples generated
and some random factors. Besides, to the best of our knowledge, no research work has ever sur-
passed or even tested the result of FunSearch (Romera-Paredes et al., 2024) in the cap set problem
due to its extremely high computation requirements. We see this as an opportunity to further extend
the capability and efficiency of LLM+EA methods.

Moreover, our method as well as FunSearch, requires generating codes using LLMs and running
these codes on some devices. This might be dangerous, since the code generated by LLM may be
unpredictable and hard to explain. In our experiment, we observed codes generated by LLM trying
to modify (write and read) local files. We tried our best to overcome this risk in our experiments by
restricting permission to access local disk, running codes in safe namespaces, etc.

C LLM USAGE STATEMENT

In this project, LLMs were used solely to assist with writing and polishing the manuscript. Specifi-
cally, LLMs were employed to improve clarity, grammar, and academic tone during the drafting and
revision of textual content. No LLMs were used for research ideation, experimental design, data
analysis, or generation of scientific content. All conceptual contributions, methodological innova-
tions, and experimental results are entirely the work of the authors.

The authors take full responsibility for the content of this paper, including any text that may have
been refined with the help of LLMs. No LLM qualifies for authorship under ICLR’s Code of Ethics.

D MORE EXPERIMENT DETAILS

D.1 CONSTRUCTION OF DATA

We list further details of our experiments here.

For OR datasets of online bin packing, we directly run our method and baseline methods on the test
instances of each subset (OR1 ∼ OR4). The offline lower bound for each instance in these datasets
is available, and the excess ratio for each subset is calculated directly using the sum of all used bins
and the sum of all lower bounds of all instances.

For Weibull datasets of online bin packing, we generate 5 test instances for each setting following
settings in Romera-Paredes et al. (2024), with 1k, 5k, 10k items each for Weibull1k, Weibull5k,
Weibull10k respectively. Each bin’s capacity is set to 100. The size of each item is sampled from
Weibull(45, 3) distribution, clipped to 0∼100, and finally rounded to an integer between 1 and 100.
The offline lower bound for each instance in Weibull datasets is calculated following Martello &
Toth (1990).

The input for the cap set problem is simply the number of dimensions n. Since the cap set problem
is already solved for n ≤ 6, we experimented with n = 8. Our method generates a heuristic within
a guided greedy construction of cap set. Each heuristic can be evaluated through the size of the cap
set found using itself.

The test instances for TSP are generated following the same setting as previous works (Kool et al.,
2018; Liu et al., 2024). For each setting (TSP20, TSP50, TSP100) 1000 test instances are generated,
each with 20, 50, or 100 locations randomly initialized from [0, 1]2, respectively.
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Hyperparameter OBP Cap Set TSP
OR Weibull

LLM Samplers Number of samplers 16 16 16 16
LLM nucleus sampling p 0.95 0.95 0.95 0.95
LLM sampling temperature t 1.0 1.0 1.0 1.0
Samples generated per prompt: ns 4 4 4 1
Total number of samples 80K 80K 2M 2K

Evaluators Number of evaluators 50 50 50 50
Timeout limit (in seconds) 30 60 90 90

DataBase Number of islands: n 10 10 10 1
UIQ hyperparameter for uncertainty: k 0.0008 0.0001 32.0 10−5

Island reset interval: Treset 32,768 32,768 262,144 -
Temperature for choosing sample: Tprog 1.0 1.0 1.0 1.0

Table 4: Implementation details for our method as well as baseline methods.

D.2 HYPERPARAMETER SETTING

Apart from implementation details mentioned in Section 4.1, we list the hyperparameter settings in
Table 4. One hyperparameter, specifically k used in Equation 2 for UIQ, is searched for the optimal
value. We show the results in Appendix F. The values of other hyperparameters are either identical
to FunSearch Romera-Paredes et al. (2024) or carefully chosen to ensure the results are suitable for
our implementation and hardware while also comparable among baselines.

E MORE RESULTS FOR FIGURE 1

In Figure 1 of Section 1, we only show experiment results on online bin packing. We plot more
experiment results in Figure 6. Our method finds a larger cap set than “FunSearch*” and outperforms
all baseline methods on TSP100. Since the result on TSP20 and TSP50 is all 0 for all method, which
is equal to the theoretical best, we are not showing them in plots.

F HYPERPARAMETER SEARCH RESULTS

The value for the hyperparameters used in our method, namely UIQ’s hyperparameter k, is searched.
To search for the best value for k, we run experiments on “Parent Selection Only” method as de-
scribed in Section 4.6. Apart from the cap set problem, each setting is run 10 times to calculate the
average performance.

For OR dataset of OBP, we investigated that the appropriate value for k should be between 0.01 to
0.0001 so as to balance the quality term and uncertainty term well. Experiments are run on OR3
dataset. We provide experiment results for k in Table 5.

k Best Run Avg
0.01 2.87% 2.97%

0.008 2.84% 3.05%
0.004 2.97% 3.03%
0.002 2.89% 3.12%
0.001 2.74% 2.86%

0.0008 2.59% 2.79%
0.0004 2.72% 2.84%
0.0002 2.68% 2.82%
0.0001 2.70% 2.89%

Table 5: Hyperparameter search result for k on OR3 online bin packing. The optimal k is 0.0008.
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Figure 6: More experiment results on cap set n=8 and TSP100. For TSP a smaller excess ratio
is better, while for cap set a larger found set size is better.Our method still shows superiority over
baseline methods.

For Weibull dataset of OBP, we investigated that the appropriate value for k should be between
0.001 to 0.00001 so as to balance the quality term and uncertainty term well. Experiments are run
on Weibull5k dataset. We provide experiment results for k in Table 6.

Similarly, for cap set problem, we experimented kr within the range of 16 to 64. Since it cost heavily
to run cap set experiments, we only run 5 runs for each setting and show the results in Table ??.

G CODE SPECIFICATION FOR EACH TASK

In this section, we show the code specifications for each task. The function decorated with “@evo-
lution” is evolved in experiments and the score of each function can be acquired by running the
function decorated with “@run” on each test instance.

For online bin packing, the code specification is shown in Table 8. For the cap set problem the code
specification is shown in Table 9. For TSP, the code specification is shown in Table 10.

k Best Run Avg
0.001 1.73% 1.86%

0.0008 1.65% 1.90%
0.0004 1.67% 1.83%
0.0002 1.62% 1.75%
0.0001 1.54% 1.72%
0.00008 1.59% 1.79%
0.00004 1.64% 1.82%
0.00002 1.60% 1.78%
0.00001 1.70% 1.88%

Table 6: Hyperparameter search result for k on Weibull5k online bin packing. The optimal k is
0.0001.
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k Best Run Avg
16 464 452.8
32 464 464
48 464 451.2
64 448 448

Table 7: Hyperparameter search result for k on cap set n=8. We use “Parent Selection Only” for
experiment. The optimal value is 32.

H BEST HEURISTICS DISCOVERED

We show the best heuristics discovered by our method for each task here. The whole part of the
function LLM samplers outputs are shown without any modification, which is why some part of the
answers might sound nonsense.

For online bin packing OR1 the best heuristic discovered is shown in Table 11. For OR2, the best
heuristic is shown in Table 12. For OR3, the best heuristic is shown in Table 13. For OR4, the best
heuristic is shown in Table 14.

For cap set n=8, our best heuristic finds a cap set of 480 vectors. The corresponding heuristic is
shown in Table 15.

I LLM PROMPTS

We write task-specific natural instructions for LLM samplers in MarkDown style, since the LLM we
choose is capable of understanding and generating in MarkDown style. In all prompts shown below,
“{Parent1}” and “{Parent2}” are replaced with two parents selected at each time step.

For online bin packing, the prompt we use is shown in Table 16. For cap set problem, the prompt
we use is shown in Table 17. For TSP, the prompt we use is shown in Table 18.
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import os
import numpy as np

class BinPackProblem:
def __init__(self, id, capacity, n_items, best_answer, items):
self.id = id
self.capacity = capacity
self.n_items = n_items
self.best_answer = best_answer
self.items = np.array(items)
assert len(items) == n_items
bins = [capacity] * n_items
self.bins = np.array(bins)

def get_valid_bin_indices(item, bins: np.ndarray) -> np.ndarray:
return np.nonzero((bins - item) >= 0)[0]

def online_binpack(items: tuple[float, ...], bins: np.ndarray) -> tuple[
list[list[float, ...], ...], np.
ndarray]:

packing = [[] for _ in bins]
for item in items:
valid_bin_indices = get_valid_bin_indices(item, bins)
priorities = priority(item, bins[valid_bin_indices])
best_bin = valid_bin_indices[np.argmax(priorities)]
bins[best_bin] -= item
packing[best_bin].append(item)

packing = [bin_items for bin_items in packing if bin_items]
return packing, bins

@run
def evaluate_binpack(problem):
items = problem.items
bins = problem.bins
best_answer = problem.best_answer
capacity = problem.capacity
_, bins_packed = online_binpack(items, bins)
solved_answer = (bins_packed != capacity).sum()
cnt = best_answer - solved_answer
ratio = cnt / best_answer
return ratio

@evolution
def priority(item: float, bins: np.ndarray) -> np.ndarray:
# Returns the priority with which we want to add ’item’ to the bins
return 0.0

Table 8: Code specification for online bin packing.
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"""Finds large cap sets."""
import itertools
import numpy as np

def solve(n: int) -> np.ndarray:
"""Returns a large cap set in ‘n‘ dimensions."""
all_vectors = np.array(list(itertools.product((0, 1, 2), repeat=n)),

dtype=np.int32)
# Powers in decreasing order for compatibility with ‘itertools.product

‘, so
# that the relationship ‘i = all_vectors[i] @ powers‘ holds for all ‘i

‘.
powers = 3 ** np.arange(n - 1, -1, -1)
# Precompute all priorities.
priorities = np.array([priority(tuple(vector), n) for vector in

all_vectors])
# Build ‘capset‘ greedily, using priorities for prioritization.
capset = np.empty(shape=(0, n), dtype=np.int32)
while np.any(priorities != -np.inf):
# Add a vector with maximum priority to ‘capset‘, and set priorities

of
# invalidated vectors to ‘-inf‘, so that they never get selected.
max_index = np.argmax(priorities)
vector = all_vectors[None, max_index] # [1, n]
blocking = np.einsum(’cn,n->c’, (- capset - vector) % 3, powers) # [

C]
priorities[blocking] = -np.inf
priorities[max_index] = -np.inf
capset = np.concatenate([capset, vector], axis=0)

return capset

@run
def evaluate(n: int) -> int:
"""Returns the size of an ‘n‘-dimensional cap set."""
capset = solve(n)
return len(capset)

@evolution
def priority(element: tuple[int, ...], n: int) -> float:
"""Returns the priority with which we want to add ‘element‘ to the cap

set."""
return 0.0

Table 9: Code specification for cap set problem.
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import numpy as np
import random
import math

def euclidean_distance(city1, city2):
return math.sqrt((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)

def calculate_total_distance(route, distance_matrix):
return sum(distance_matrix[route[i]][route[i+1]] for i in range(len(

route)-1)) + distance_matrix[
route[-1]][route[0]]

def two_opt(route, distance_matrix):
best_route = route.copy()
improved = True
while improved:

improved = False
for i in range(1, len(route)-2):

for j in range(i+1, len(route)):
if j-i == 1: continue
new_route = route[:i] + route[i:j][::-1] + route[j:]
if calculate_total_distance(new_route, distance_matrix) <

calculate_total_distance
(best_route,
distance_matrix):

best_route = new_route
improved = True

route = best_route
return best_route

@run
def guided_local_search(cities, max_iterations=100, alpha=0.1):

num_cities = len(cities)
distance_matrix = np.zeros((num_cities, num_cities))
for i in range(num_cities):

for j in range(i+1, num_cities):
distance_matrix[i][j] = distance_matrix[j][i] =

euclidean_distance(
cities[i], cities[j])

init_distance_matrix=copy.deepcopy(distance_matrix)
# Initialize route
route = list(range(num_cities))
best_route=route
# Initialize penalties
penalties = np.zeros((num_cities, num_cities))
for iteration in range(max_iterations):

# Local search with 2-opt
route = two_opt(route, distance_matrix)
# Update route
if calculate_total_distance(route, init_distance_matrix) <

calculate_total_distance(
best_route,
init_distance_matrix):

best_route=route
# Evolve distance_matrix
distance_matrix=distance_matrix+update_dist(distance_matrix,

best_route)
return best_route, calculate_total_distance(best_route,

init_distance_matrix)

@evolution
def update_dist(distance_matrix, current_route):

’’’ calculates an update to current distance matrix. ’’’
return np.zeros_like(distance_matrix)

Table 10: Code specification for TSP.20
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def priority(item: float, bins: np.ndarray) -> np.ndarray:
penalty_factor_v3 = 0.7

D_item_val, C_int_fit, B_valid_region, a_of_K2_val = 4.5, 3.5, 2.6, 4.7

item_weight = item / 4650

scores = np.zeros(len(bins))

K_values = np.array([0.28, 0.31, 0.35])

B_values = np.array([0.15, 0.3, 0.25])

b_weights = np.array([2750/4650, 2950/4650, 3050/4650, 3150/4650])

for index, bin_num in enumerate(bins):
quantity_1D = index * bin_num
calc_2D_quantity = bin_num * bin_num

if index <= 3400:
b_weight = b_weights[0]

elif index<=3800:
b_weight = b_weights[1]

else:
b_weight = b_weights[3]

P_item = (index * b_weight) * (quantity_1D / calc_2D_quantity)

# Further improvements here.

improved_P_item = P_item * (index**52) * (item_weight**67) * (index**
2.5) * (item_weight**4.0) * (
index**3.4) * (item_weight**3.2)
* (index**3.0) * (item_weight**

3.3)

valid_region = abs(quantity_1D / calc_2D_quantity - 1)

if index <= 3000:
K = (K_values[0] * penalty_factor_v3) + ((1 - penalty_factor_v3) *

K_values[1])
elif index<=3800:

K = K_values[1]
else:

K = K_values[2]

if index <= 3500:
B_val = (B_values[0] * penalty_factor_v3) + ((1 - penalty_factor_v3

) * B_values[1])
elif index<=3800:

B_val = B_values[1]
else:

B_val = B_values[2]

intersection_fit = ((index * item_weight / (abs(bin_num - item)))**42
) * K * 2400000

improved_D_item_val = D_item_val * ((bins[index]/item) ** 2.8) * (1.0
+ index / 95000)

improved_C_int_fit = C_int_fit * (95 / (index+6))
improved_B_valid_region = B_val + (1-B_val) * (valid_region**2.5)
improved_a_of_K2_val = a_of_K2_val / (1 + index / 95000)

P_final = improved_D_item_val * ((improved_P_item + C_int_fit *
intersection_fit) / (
improved_B_valid_region * (
improved_a_of_K2_val +
valid_region)))

scores[index] = P_final

return scores

Table 11: The best heuristic searched by our method for OR1 online bin packing.
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def priority(item: float, bins: np.ndarray) -> np.ndarray:
bins_difference = np.abs(bins - item)

low_threshold, high_threshold = 8, 23
diff_mid = (high_threshold + low_threshold) / 2

p_vect4 = np.where(bins_difference <= low_threshold, bins_difference *
(-1) * 22,

np.where(bins_difference <= diff_mid, bins_difference *
(-1) * 34,

np.where(bins_difference <= high_threshold,
bins_difference *
(-1) * 46,
bins_difference *
(-1) * 2)))

p_vect4[np.abs(bins_difference) <= high_threshold / 2] += 35
p_vect4[np.abs(bins_difference) <= diff_mid] += 50
p_vect4[np.abs(bins_difference) <= low_threshold + high_threshold / 2]

+= 64

for i, val in enumerate(bins_difference):
if val <= 25:

bins_difference[i] = bins_difference[i] * (i + 1) * 72
else:

break

if np.any(np.abs(np.where(bins_difference <= 25, bins_difference * (-1)
* 100, bins_difference * (-1) *

13)) <= 150):
p_vect4[np.abs(np.where(bins_difference <= 25, bins_difference * (-1)

* 95, bins_difference * (-1) *
13)) <= 150] += 42

best_global = sorted(p_vect4)
best_three_values = best_global[0:3]
worst_bin_index = np.where(p_vect4 == max(best_three_values))[0][0]

if worst_bin_index < len(p_vect4):
p_vect4[worst_bin_index] = min(p_vect4) * 0.98

return p_vect4

Table 12: The best heuristic searched by our method for OR2 online bin packing.
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def priority(item: float, bins: np.ndarray) -> np.ndarray:
probabilities = np.zeros(len(bins), dtype=float)

for i in range(len(bins)):
current_bin_space = bins[i]

if item <= current_bin_space:
remainingSpaceFactor = current_bin_space / (current_bin_space +

item)
enhanced_load_factor = item/current_bin_space

# Improved estimation formula: f(x) = a * x ** p * exp(x)

"""
Non-uniform impact approach based on the load intensity:
Enhance the evaluated importance of loading by approaching loader-

bins outcomes.
"""
additional_impact_factor = 0.00

if enhanced_load_factor < 0.95:
modified_priority = (0.99 * ((remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.
55 +
additional_impact_factor) *
1500 - 95 / (
remainingSpaceFactor ** 1.25
)) * (130 + 0.0095 * i) * np
.exp(-i * 0.022)

elif enhanced_load_factor < 0.99:
modified_priority = (1.00 * ((remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.
45 +
additional_impact_factor) *
1600 - 45 / (
remainingSpaceFactor ** 1.30
)) * (140 + 0.0105 * i) * np
.exp(-i * 0.022)

else:
modified_priority = (1.01 * ((remainingSpaceFactor / (1 -

enhanced_load_factor)) - 2.
35 +
additional_impact_factor) *
1700 - 35 / (
remainingSpaceFactor ** 1.35
)) * (160 + 0.0115 * i) * np
.exp(-i * 0.023)

# Added/displaced non-uniform interpolated/smooth kernel-duty
system aspects

modified_priority -= 500 + 70 * np.cos(enhanced_load_factor + 0.07)
+ 600 * np.tanh(2.84 * (

enhanced_load_factor - 0.93))
+ 80 * np.cos(2 * i / len(bins
)) + 880 * np.sin(2 * i / len(
bins))

# Adjust differently for injected non-trivial items using maximum
performance complexity system

modified_priority -= 35 * (1-enhanced_load_factor) ** 0.98

# Insert updated, optimized weights for different scenarios

probabilities[i] = modified_priority

return probabilities

Table 13: The best heuristic searched by our method for OR3 online bin packing.
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def priority(item: float, bins: np.ndarray) -> np.ndarray:
def improved_prior_func(_value):
if _value < item / 9:

if bins.size > 700:
return 260**(35 * item / 350 - 2.5 * _value)

elif bins.size > 350:
return 140**(30 * item / 350 - 1 * _value)

else:
return 140**(50 * item / 350 - 2.5 * _value) # Colocalization

elif _value < item / 5:
if bins.size > 700:
return 180**(35 * item / 350 - 1 * _value)

elif bins.size > 350:
return 110**(40 * item / 350 - 0.5 * _value) #Quorum sensing

else:
return 140**(40 * item / 350 - 0.6 * _value) # Quorum sound

BiellLIF

elif _value < item:
if bins.size > 700:
return 95 * item /(145 + item)

elif bins.size > 350:
return 80 * item /(125 + item)

else:
return 80 * item /(130 + item) #Rotulina colleague

asymmetrically restructuring
translators replication

achieved in cell-process

else:
if bins.size > 700:
return 105 * item /(130 + item)

elif bins.size > 350:
return 95 * item /(120 + item)

else:
return 95 * item /(110 + item) #Biulation sncRNA

oscillations

return np.vectorize(improved_prior_func)(bins - item)

Table 14: The best heuristic searched by our method for OR4 online bin packing.
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def solve(n: int) -> np.ndarray:
score = np.sum(element) * 220.00 * 3.0
zeros = [idx for idx, val in enumerate(element) if val == 0]
# If there are at least two zeros.
if len(zeros) >= 2:
score = np.abs(np.sum(zeros)) * 230.00 * 2400.0

# If there are at least three zeros.
if len(zeros) >= 3:
d = np.array(zeros)[1:] - np.array(zeros)[:-1]
d_sorted = np.sort(d)
r = d_sorted[-1]
if r % 2 == 0:

score = np.abs(zeros[0] - zeros[1]) * 250.00 * 3400.0
# If there are at least four zeros.
if len(zeros) >= 4:
score = np.sum(element) * 260.50 * 35.0

# If there are more than three zeros and less than six zeros.
if len(zeros) > 3 and len(zeros) < 6:
score += 35000.0 * np.sum(zeros)

# If there are more than five zeros and less than nine zeros.
if len(zeros) > 5 and len(zeros) < 9:
score += 36000.0 * np.sum(element)

# If there are six or more zeros.
if len(zeros) >= 6:
score *= np.sum(np.array(element))

# Add some score based on the minimum and maximum elements.
score += np.sum(element) * np.min(np.array(element[:2])) * np.max(np.

array(element)) * 100.00
# If there is one zero, multiply the score by 120.
if len(zeros) == 1:
score *= 120.0

# Subtract some value based on the sum of the elements.
score -= np.sum(element) * np.sum(element[:2]) / 4.5
# If there are no zeros, multiply the score by 115.
if len(zeros) == 0:
score *= 1.15

# Multiply the score by 40.
score *= 40.00
# If there are seven or more zeros, add some value to the score.
if len(zeros) >= 7:
score += np.sum(element) * 250.00 * 120.0
score *= 1.85

if len(zeros) > 9 and len(zeros) < 12:
score += np.sum(element) * 260.50 * 90.0

# If there are twelve or more zeros, add some value to the score.
if len(zeros) >= 12:
score += np.sum(element) * 280.50 * 140.0

if len(zeros) > 14:
score *= np.sum(zeros)

# Multiply the score by the maximum element plus 40.
score *= np.max(np.array(element)) + 40.00
if np.sum(element) <= 12:
score *= 1.75

# If there are five or fewer zeros, multiply the score by 27.
if len(zeros) <= 5:
score *= 27.0

# Add 12000 to the score.
score += 12000.0
# If there are ten or fewer zeros, add 20000 to the score.
if len(zeros) <= 10:
score += 20000.0

# If there are fifteen or fewer zeros, add 30000 to the score.
if len(zeros) <= 15:
score += 30000.0

# Further improved version of ‘priority_v2‘.
score *= 1.75
# Final improvement of the score.
score *= 1.45
return score

Table 15: The heuristic searched by our method that leads to a cap set of size 480 on n=8.
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Online 1D bin packing problem is a combinatorial optimization problems. The goal of online
bin packing is to assign each of a series of items into the smallest number of fixed-sized bins.
Generally, heuristics are used to solve online bin packing efficiently. Priority function is defined
in heuristic to help rank and search for best candidates.
You are given two priority functions ”priority v0” and ”priority v1”, then you are asked to com-
plete the following priority function ”priority v2” such that it is an improved version of ”prior-
ity v1”. This priority function will be used in heuristic to ranks the priority of bins given incoming
item.
Here are the requirements:
1. Just complete the ”priority v2” function and do note answer anything else.
2. Do not use ”print” function in your answer.

“‘ python
# Finds good assignment for online 1d bin packing.
import numpy as np

def priority v0(item: float, bins: np.ndarray) -¿ np.ndarray:
””” Returns the priority with which we want to add ’item’ to the bins ”””

{Parent1}

def priority v1(item: float, bins: np.ndarray) -¿ np.ndarray:
””” Improved version of priority v0 ”””

{Parent2}

def priority v2(item: float, bins: np.ndarray) -¿ np.ndarray:
””” Improved version of priority v1 ”””

Table 16: Prompt Template for online bin packing
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The cap set problem calculates the largest possible set of vectors in $
mathbb{Z}n̂ 3$ (known as a cap set) such that no three vectors sum to zero. Geometrically, no
three points of a cap set lie on a line.
Generally, heuristics can be used to solve cap set problem. Priority function for solving the cap
set problem ranks the priority with which we want to add a vector into the cap set.
Given two priority functions ”priority v0” and ”priority v1” where ”priority v1” is an improved
version of ”priority v0”, your task is to complete the following function priority v2 such that it is
an improved version of priority v1. Just complete the code and do not answer anything else. Do
not use any ‘print‘ function in your answer.

Here are the requiremnets:
1. Just complete the ”priority v2” function and do note answer anything else.
2. Do not use ”print” function in your answer.

“‘ python
# Find large cap sets
import numpy as np
import itertools
def priority v0(n: int) -¿ np.ndarray:

””” Returns a large cap set in ’n’ dimensions.”””
{Parent1}

def priority v1(n: int) -¿ np.ndarray:
””” Improved version of priority v0 ”””

{Parent2}

def priority v2(n: int) -¿ np.ndarray:
””” Improved version of priority v1 ”””

Table 17: Prompt Template for cap set problem
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TSP problem finds shortest paths that travels all places and return to the starting point. Guided
local search can be used to iteratively update solution to TSP problems. A function updates the
distance matrix according to current shortest paths, such that further local search on the updated
distance matrix may lead to better answer.
You are given two update functions ”update dist v0” and ”update dist v1”, then you are asked to
complete the following priority function ”update dist v2” such that it is an improved version of
”update dist v1”. This priority function will be used in heuristic to ranks the priority of bins given
incoming item.
Here are the requirements:
1. Just complete the ”update dist v2” function and do note answer anything else.
2. Do not use ”print” function in your answer.

“‘ python
import numpy as np
import random
import math
import copy

def update dist v0(distance matrix ,current route):
””” Updates the distance matrix according to current best route searched”””

{Parent1}

def update dist v1(distance matrix ,current route):
””” Improved version of update dist v0 ”””

{Parent2}

def update dist v2(distance matrix ,current route):
””” Improved version of update dist v1 ”””

Table 18: Prompt Template for TSP.
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