
Improving Fragment-Based Deep Molecular Generative Models

Panukorn Taleongpong 1 Brooks Paige 1

Abstract
Deep molecular generative models have shown
promising results and paved a new way for drug
discovery. Their ability to explore the molecu-
lar space, estimated to be 1060, is significantly
greater than traditional methods used for the vir-
tual screening of existing databases. We introduce
a novel fragmentation algorithm particularly suit-
able for use in deep generative models. In con-
trast to existing fragmentation algorithms, our pro-
cedure sequentially breaks a molecule using the
Breaking of Retrosynthetically Interesting Chem-
ical Substructure (BRICS) algorithm in such a
manner that the linearization of fragments is di-
rectly invertible, guaranteed to be able to recon-
struct the original molecule from the fragment
sequence. This makes it appropriate for use in
deep generative models trained with sequential
models as likelihoods. We compare with previ-
ous fragment-based SMILES VAE methods and
observe that our approach significantly enhances
coverage of the molecular space and outperforms
on distribution learning benchmarks.

1. Introduction
The process of drug discovery is lengthy, expensive and
highly complex. Typically, the entire process to launch a
drug takes, on average, 13.5 years (Paul et al., 2010) with
a baseline capitalised cost of $2.6 billion (DiMasi et al.,
2016). Traditional methods in drug discovery also suffer
from high drug attrition rates - the failure rate of pharmaceu-
tical development. Overall, many decisions in this process
are made using expert knowledge, which is highly suscep-
tible to bias. With a molecular space estimated to be over
1060 (Bohacek et al., 1996), these biases may result in an
inefficiently explored space. Artificial Intelligence (AI) and
Machine Learning (ML) methods have been increasingly

1Department of Computer Science, University College London,
London, United Kingdom. Correspondence to: Panukorn Tale-
ongpong <p.taleo17@gmail.com or ucabpta@ucl.ac.uk>, Brooks
Paige <b.paige@ucl.ac.uk>.

Accepted at the 1st Machine Learning for Life and Material Sci-
ences Workshop at ICML 2024. Copyright 2024 by the author(s).

popular tools used in the process of drug discovery as they
overcome the challenges of traditional methods in drug dis-
covery and can be applied to help at almost all stages of
the drug discovery process (Kim et al., 2020). This paper
focuses on improving current SMILES-based and Fragment-
based Drug Discovery (FBDD) models, specifically deep
generative models for distribution learning.

2. Literature Review
The most influential work that paved the way for research
in generative models for de novo molecular design is by
Gómez-Bombarelli et al. (2018), who proposed a charac-
ter Variational Autoencoder (CVAE). This model encodes
character-based discrete representations of molecules into
continuous latent vectors. After which, a predictor es-
timates the chemical properties given the latent vectors,
and the decoder converts the continuous vectors back into
the character-based discrete representations of molecules.
Bayesian Optimisation (BO) can then be used to gener-
ate molecules optimised with desired properties. This is a
significant contribution to exploring the molecular space ef-
ficiently without needing prior knowledge of molecular con-
struction. A major issue with SMILES-based models is they
often generate pathological molecules which are difficult to
synthesize, unstable, or even ‘invalid’ due to SMILES parse
errors. Follow-up work has address this by incorporating
higher-order structure in the data representation, rather than
operating on pure text (Kusner et al., 2017; Jin et al., 2018;
Bradshaw et al., 2019). Podda et al. (2020) tackles these
issues by developing a fragment-based language model that
generates a molecule fragment by fragment rather than atom
by atom. This improves validity since fragments are already
chemically valid. Additionally, infrequent fragments are
masked with an identifier token to improve the uniqueness
of molecules generated. During generation, if the masking
token is sampled, a fragment is randomly sampled from the
set of infrequent fragments.

3. Methodology
We improve upon the methodology developed by Podda
et al. (2020) by introducing a more efficient fragmentation
algorithm and using richer molecular embeddings. We refer
to the model and methods by Podda et al. (2020) as the



Improving Fragment-Based Deep Molecular Generative Models

Figure 1: Example of fragments derived from a molecule
using the BRICS algorithm. The asterisks represent dummy
atoms, and the red dotted lines denote the ‘cuts’ in the
molecule.

benchmark, with all experiments in this research undertaken
on the ZINC dataset (Irwin et al., 2012).

3.1. Fragmentation

Our fragmentation process uses the same procedure
as that performed by Podda et al. (2020) to identify
breakable bonds: the Breaking of Retrosynthetically
Interesting Chemical Substructure (BRICS) algorithm
(Degen et al., 2008). The BRICS algorithm iden-
tifies strategic bonds based on medicinal chemistry
concepts and performs retrosynthetic cuts simultane-
ously. Figure 1 shows an example of a molecule given
by its SMILES representation ‘CCCN(CCc1cccc(-
c2ccccc2)c1)C(=O)C1OC(C(=O)O)=CC(N)C1NC(C)=O’
broken down into fragments using the BRICS algorithm.
These fragments consist of the following ‘*c1cccc(*)c1’,
‘*CCC’, ‘*C(C)=O’, ‘*C1OC(C(=O)O)=CC(N)C1*’,
‘*CC*’, ‘*N(*)*’, ‘*N*’, ‘*C(*)=O’ and ‘*c1ccccc1’.
For our research, and based on the work of (Bowman
et al., 2016), we view fragments as words that make up the
molecule, which is the sentence. Hence, the fragmentation
process must be more constrained to ensure that the
fragments can be sequentially represented and that the
original molecule can be reconstructed. Algorithm 1
details the pseudocode for our breadth-first fragmentation
algorithm. Equivalent to the benchmark algorithm, our
algorithm scans the original molecule in the order imposed
by the canonicalised SMILES representation. When a
BRIC bond is identified, the molecule is cut at that point
with ‘dummy’ atoms attached to the end of the cleavage
sites (Podda et al., 2020). Our algorithm improves upon the
benchmark by ensuring that the molecule is cut to minimise

Algorithm 1 Breadth First Fragmentation

Input: Original Molecule M0 , Fragment F , Fragment
List FL, Counter C, BRIC Bond Limit Blim

Initialize fragComplete = false.
Initialize FL = []
Initialize Blim = 0
F = M0

function Fragment(M0, F , FL, C, Blim):
if fragComplete = true then

return FL

end if
BRICBondsList = getBRICBonds(F )
if LEN(BRICBondsList) < Blim then
fragComplete = true
return FL

else
for Bond b in BRICBondsList do
Fhead, Ftail = BreakOnBond(F , b)
if LEN(getBRICBonds(Fhead) ≤ Blim then

if checkReconstruction(FL, Fhead, Ftail, M0)
== true then

append(FL, Fhead)
Fragment(M0, Ftail, FL, C, Blim = 0)

else if LEN(BRICBondsList) == 1 then
append(FL, F )
fragComplete = true

else if b == BRICBondsList[−1] then
Fragment(M0, Ftail, FL, C, Blim + 1)

end if
else if LEN(getBRICBonds(Ftail) ≤ Blim then

Repeat with Ftail

end if
end for

end if
end function

the number of BRIC bonds in the leaf fragment, allowing
the procedure to be repeated on the internal fragment with
more BRIC bonds. This relaxes the benchmark algorithm’s
key constraint of only allowing fragment extraction from
left to right. Our algorithm produces a tree of fragments
where the root node is the original molecule, and the
leaves are the most simple fragments that make up the
molecule. Although our fragmentation extraction process
is no longer constrained in direction, we must store the
fragments sequentially to represent them as words. We
ensure that the original molecule can be reconstructed at
every fragmentation step, meaning that the final sequence
of fragments can be recombined from right to left to form
the original molecule. Algorithm 2 details the fragment
reconstruction process. Using the same molecule example
as in Figure 1, Figure 2 and Table 1 detail the fragments
produced using our breadth-first recursive fragmentation



Improving Fragment-Based Deep Molecular Generative Models

Algorithm 2 Fragment Reconstruction

Input: Original Molecule M0, Fragment List FL

F = M0

function checkReconstruction(M0, FL:
Fleaf = FL[−1]
for i in LEN(FL)-1 do
Finternal = FL[−i− 2]
Frec = replaceLastDummy(Fleaf , Finternal)

end for
if canonicalise(Frec) == M0 then

return True
else

return False
end if

end function

TYPE FRAGMENT
HEAD FRAGMENT *CCC
RECURSE TAIL N(*)(CCC1CCCC( -

C2CCCCC2)C1)C(=O)
C1OC(C(=O)O)=CC
(N)C1NC(C)=O

TAIL FRAGMENT *CCC1CCCC(-
C2CCCCC2)C1

RECURSE HEAD N(*)(*)C(=O)C1OC
(C(=O)O)=CC(N)
C1NC(C)=O

HEAD FRAGMENT *N(*)*
RECURSE TAIL C(*)(=O)C1OC

(C(=O)O)=CC(N)
C1NC(C)=O

HEAD FRAGMENT *C(*)=O
RECURSE TAIL C1(*)OC(C(=O)O)

=CC(N)C1NC(C)=O
HEAD FRAGMENT *NC1C(N)C=C(

C(=O)O)OC1*
RECURSE TAIL C(*)(C)=O
FINAL FRAGMENT C(*)(C)=O

Table 1: Fragments and Resulting Molecule

algorithm. ‘Head’ and ‘Tail’ fragments are the leaf
fragments concatenated into the final set of fragments in the
order they are produced.

Setting the limit of atoms per fragment to one for both the
benchmark and our fragmentation algorithm, Figures 3 and
4 clearly show that our algorithm is more efficient. The
efficiency is calculated as:

Fragmentation Efficiency =
Number of fragments

Number of BRICS Bonds + 1
Our algorithm has a mean fragmentation efficiency of 79%
compared to the benchmark, 47%. Discounting molecules
that cannot be fragmented, the number of unique fragments
produced with our algorithm is 93,557, and for the bench-
mark algorithm, it is 186,726, reflecting respective vocabu-
lary sizes. This is significantly larger than the vocabulary

Figure 2: Example of fragments derived from a molecule
using Breadth-First Fragmentation algorithm. The asterisks
represent dummy atoms, and the red dotted lines denote the
‘cuts’ in each recursion.

of other molecular generative models, such as CVAE (35).
This poses the significant issue of infrequent fragments,
which, at sampling time, will have extremely low proba-
bilities. The benchmark method alleviates this issue by
using low-frequency masking and sampling. On the other
hand, our fragmentation algorithm addresses this problem
directly by producing a significantly lower number of unique
fragments. Notably, our algorithm producing fewer unique
fragments also means that more than twice (74%) the num-
ber of molecules in a randomised held-out test set of 20,000
molecules can be reconstructed compared to the benchmark
algorithm (34%).



Improving Fragment-Based Deep Molecular Generative Models

Figure 3: Fragment count histogram using Podda et al.
(2020) (Top) and our method (Bottom).

3.2. Fragment Embedding

By representing a sequence of fragments as s =
(s1, s2, ..., s|s|), where si represents each fragment in a
SMILES string, Podda et al. (2020) trained the embeddings
using a skip-gram Word2Vec model (Mikolov et al., 2013)
with negative sampling (Le & Mikolov, 2014).

For our research, we utilise and compare both the skip-gram
Word2Vec model and pre-trained skip-gram Mol2Vec model
(Jaeger et al., 2018) for fragment embedding. The benefit
of the pre-trained Mol2Vec model is that it has been trained
using over 20 million compounds (ZINC database). Hence,
the molecule substructure embeddings are incredibly rich.
Furthermore, the embeddings can simply be summed to pro-
duce a rich embedding of the whole molecule (Jaeger et al.,
2018). This is particularly beneficial in our model archi-
tecture, which combines fragments sequentially, ensuring a
rich representation of the molecules encoded.

3.3. Training

Our model consists of an encoder and decoder network
as detailed in Figure 5. We utilise Kullback-Leibler (KL)
annealing to prevent posterior collapse and found that a
scheduling weight parameter value of β = 1 × 10−6 is
the most effective in doing so. Our model was trained
end-to-end on the training set D. The overall loss of the

Figure 4: Fragment efficiency using Podda et al. (2020)
(left) and our method (Right).

Figure 5: Our model.

model, L(D) is the sum of the encoder loss, Lenc(x), and
the decoder loss, Ldec(x):

L(D) =
∑
x∈D

(βLenc(x) + Ldec(x)) (1)

Note that the training set used limits the atoms per fragment
to three, which is the same constraint as the benchmark
model.

3.4. Sampling

As our scheduling weight parameter is extremely small,
the latent space is not expected to be effectively represented
with N(0, I). Therefore, we estimated the latent mean z̄ and
standard deviation sz by encoding a sample of the training
set into the latent space using the trained encoder. We then
start the sampling process by sampling a latent vector from
the latent space z ∼ N (z̄, s2z). This is the initial state of
the decoder. An SoS token is inputted into the decoder,
producing an output probability over all tokens through a
softmax layer. The next token is selected greedily and used
as the input for the next decoding step. This process repeats
until an EoS token is sampled or the maximum sampling
length is reached. The molecule is then constructed by
combining the sampled fragments using our reconstruction
algorithm (Algorithm 2). We constrain the sampling process
to terminate only if the final molecule produced is valid. To



Improving Fragment-Based Deep Molecular Generative Models

Figure 6: Our sampling procedure.

MODEL VALID NOVEL UNIQUE SAMPLE
RATE
(MS/MOL)

WORD2VEC EMBEDDING

PODDA 1 0.992 0.460
OURS (C = 10) 1 0.999 0.106 69
OURS (C = 15) 1 0.998 0.325 87
OURS (C = 20) 1 0.997 0.544 112
OURS (C = 25) 1 0.997 0.701 162
MOL2VEC EMBEDDING

OURS (C = 10) 1 0.999 0.144 58
OURS (C = 15) 1 0.997 0.423 79
OURS (C = 20) 1 0.997 0.661 123
OURS (C = 25) 1 0.997 0.793 211
LOW FREQUENCY MASK SAMPLING

PODDA (LFM) 1 0.995 0.998

Table 2: Results of 20,000 molecules sampled

improve the uniqueness of molecules generated, we apply
a factor, c, to the variance when sampling the latent vector
(z ∼ N (z̄, c× s2z)). Figure 6 portrays the general sampling
procedure.

4. Results
The results from sampling 20,000 molecules from our model
using Word2Vec and Mol2Vec embeddings compared to
those reported by Podda et al. (2020) are detailed in table 2.
Furthermore, figures 7 and 8 portray the summary statistics
of the properties of our generated molecules compared to
ZINC. It is clear that our models, regardless of the embed-
ding method, outperform the benchmark significantly in
uniqueness without having to rely on low-frequency mask
sampling. Our models also demonstrate slight improvement
in novelty compared to the benchmark with and without
low-frequency mask sampling. Notably, our model with
Mol2Vec embedding outperforms that with Word2Vec em-
bedding. This may be indicative of a more expressive latent
space when Mol2Vec is used. We also note that improving
uniqueness by simply increasing the factor applied to the
sampling variance comes at a cost to the sampling efficiency.

Figure 7: Top: Statistics of sampled molecular character-
istics. Bottom: Density of sampled molecular properties
where the blue line corresponds to ZINC. Our model: c =
25, Mol2Vec Embedding.

Figure 8: Top: Statistics of sampled molecular character-
istics. Bottom: Density of sampled molecular properties
where the blue line corresponds to ZINC. Our model: c =
25, Word2Vec Embedding.

5. Conclusion
Our results demonstrate advancements in SMILES-based
fragment-based drug discovery models for distribution learn-
ing in the following ways:

1. We propose a novel fragmentation and fragment re-
construction algorithm that produces fragments much
more efficiently whilst guaranteeing the reconstruction
of the original molecule.

2. Our model demonstrates superior performance met-
rics of the generated molecules by simply applying a
factor to the sampling variance rather than using low-
frequency masking.

3. Utilisation of fingerprint-based Mol2Vec fragment en-
coding improves distribution learning results and paves
the way for SMILES-based fragment-based property
prediction and molecular optimisation.

The next steps to extend this model include extending from
a distribution-learning model to a goal-directed model, and
investigating different methods to prevent posterior collapse,
such as average and max pooling (Long et al., 2020).



Improving Fragment-Based Deep Molecular Generative Models

Software and Data
For reproducibility, we publicly release
the code repository for this project at
https://github.com/panukorn17/DEFRAGMO.

References
Awale, M. and Reymond, J.-L. Polypharmacology Browser

PPB2: Target Prediction Combining Nearest Neighbors
with Machine Learning. Journal of Chemical Information
and Modeling, 59(1):10–17, January 2019. ISSN 1549-
9596. doi: 10.1021/acs.jcim.8b00524. URL https://
doi.org/10.1021/acs.jcim.8b00524. Pub-
lisher: American Chemical Society.

Bohacek, R. S., McMartin, C., and Guida, W. C. The art and
practice of structure-based drug design: a molecular mod-
eling perspective. Medicinal Research Reviews, 16(1):3–
50, January 1996. ISSN 0198-6325. doi: 10.1002/(SICI)
1098-1128(199601)16:1⟨3::AID-MED1⟩3.0.CO;2-6.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz,
R., and Bengio, S. Generating Sentences from a Continu-
ous Space. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning, pp.
10–21, Berlin, Germany, August 2016. Association for
Computational Linguistics. doi: 10.18653/v1/K16-1002.
URL https://aclanthology.org/K16-1002.

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M., and
Hernández-Lobato, J. M. A Model to Search for
Synthesizable Molecules. In Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/
46d0671dd4117ea366031f87f3aa0093-Abstract.
html.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 1724–1734,
Doha, Qatar, October 2014. Association for Computa-
tional Linguistics. doi: 10.3115/v1/D14-1179. URL
https://aclanthology.org/D14-1179.

Degen, J., Wegscheid-Gerlach, C., Zaliani, A., and Rarey, M.
On the Art of Compiling and Using ’Drug-Like’ Chemi-
cal Fragment Spaces. ChemMedChem, 3(10):1503–1507,
2008. ISSN 1860-7187. doi: 10.1002/cmdc.200800178.
URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/cmdc.200800178. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cmdc.200800178.

DiMasi, J. A., Grabowski, H. G., and Hansen, R. W. Inno-
vation in the pharmaceutical industry: New estimates of
R&D costs. Journal of Health Economics, 47:20–33, May
2016. ISSN 0167-6296. doi: 10.1016/j.jhealeco.2016.01.
012. URL https://www.sciencedirect.com/
science/article/pii/S0167629616000291.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic Chemical
Design Using a Data-Driven Continuous Representa-
tion of Molecules. ACS Central Science, 4(2):268–
276, February 2018. ISSN 2374-7943. doi: 10.1021/
acscentsci.7b00572. URL https://doi.org/10.
1021/acscentsci.7b00572. Publisher: American
Chemical Society.

He, J., Spokoyny, D., Neubig, G., and Berg-Kirkpatrick, T.
Lagging Inference Networks and Posterior Collapse in
Variational Autoencoders. February 2022. URL https:
//openreview.net/forum?id=rylDfnCqF7.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. Beta-
VAE: LEARNING BASIC VISUAL CONCEPTS WITH
A CONSTRAINED VARIATIONAL FRAMEWORK.
pp. 22, 2017.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. ZINC: A Free Tool to Discover Chem-
istry for Biology. Journal of Chemical Information and
Modeling, 52(7):1757–1768, July 2012. ISSN 1549-9596,
1549-960X. doi: 10.1021/ci3001277. URL https:
//pubs.acs.org/doi/10.1021/ci3001277.

Jaeger, S., Fulle, S., and Turk, S. Mol2vec: Unsupervised
Machine Learning Approach with Chemical Intuition.
Journal of Chemical Information and Modeling, 58(1):
27–35, January 2018. ISSN 1549-9596. doi: 10.1021/acs.
jcim.7b00616. URL https://doi.org/10.1021/
acs.jcim.7b00616. Publisher: American Chemical
Society.

Jin, W., Barzilay, R., and Jaakkola, T. Junction Tree Vari-
ational Autoencoder for Molecular Graph Generation.
In Proceedings of the 35th International Conference on
Machine Learning, pp. 2323–2332. PMLR, July 2018.
URL https://proceedings.mlr.press/v80/
jin18a.html. ISSN: 2640-3498.

Kim, H., Kim, E., Lee, I., Bae, B., Park, M., and Nam,
H. Artificial Intelligence in Drug Discovery: A Compre-
hensive Review of Data-driven and Machine Learning
Approaches. Biotechnology and Bioprocess Engineer-
ing, 25(6):895–930, 2020. ISSN 1226-8372. doi: 10.

https://github.com/panukorn17/DEFRAGMO
https://doi.org/10.1021/acs.jcim.8b00524
https://doi.org/10.1021/acs.jcim.8b00524
https://aclanthology.org/K16-1002
https://proceedings.neurips.cc/paper/2019/hash/46d0671dd4117ea366031f87f3aa0093-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46d0671dd4117ea366031f87f3aa0093-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46d0671dd4117ea366031f87f3aa0093-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46d0671dd4117ea366031f87f3aa0093-Abstract.html
https://aclanthology.org/D14-1179
https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.200800178
https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.200800178
https://www.sciencedirect.com/science/article/pii/S0167629616000291
https://www.sciencedirect.com/science/article/pii/S0167629616000291
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://openreview.net/forum?id=rylDfnCqF7
https://openreview.net/forum?id=rylDfnCqF7
https://pubs.acs.org/doi/10.1021/ci3001277
https://pubs.acs.org/doi/10.1021/ci3001277
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1021/acs.jcim.7b00616
https://proceedings.mlr.press/v80/jin18a.html
https://proceedings.mlr.press/v80/jin18a.html


Improving Fragment-Based Deep Molecular Generative Models

1007/s12257-020-0049-y. URL https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC7790479/.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes, May 2014. URL http://arxiv.org/abs/
1312.6114. arXiv:1312.6114 [cs, stat].

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M.
Grammar variational autoencoder. In Proceedings of
the 34th International Conference on Machine Learning
- Volume 70, ICML’17, pp. 1945–1954, Sydney, NSW,
Australia, August 2017. JMLR.org.

Lamb, A. M., ALIAS PARTH GOYAL, A. G., Zhang,
Y., Zhang, S., Courville, A. C., and Bengio, Y.
Professor Forcing: A New Algorithm for Train-
ing Recurrent Networks. In Advances in Neu-
ral Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https:
//papers.neurips.cc/paper/2016/hash/
16026d60ff9b54410b3435b403afd226-Abstract.
html.

Landrum, G. Fingerprints in the RDKit. pp. 23, 2012.

Le, Q. and Mikolov, T. Distributed Representations of Sen-
tences and Documents. In Proceedings of the 31st Interna-
tional Conference on Machine Learning, pp. 1188–1196.
PMLR, June 2014. URL https://proceedings.
mlr.press/v32/le14.html. ISSN: 1938-7228.

Long, T., Cao, Y., and Cheung, J. C. K. On Posterior
Collapse and Encoder Feature Dispersion in Sequence
VAEs, November 2020. URL http://arxiv.org/
abs/1911.03976. arXiv:1911.03976 [cs, stat].

Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter,
S. DeepTox: Toxicity Prediction using Deep Learning.
Frontiers in Environmental Science, 3, 2016. ISSN 2296-
665X. URL https://www.frontiersin.org/
articles/10.3389/fenvs.2015.00080.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J.
Efficient Estimation of Word Representations in Vec-
tor Space, 2013. URL http://arxiv.org/abs/
1301.3781.

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger,
C. C., Munos, B. H., Lindborg, S. R., and Schacht, A. L.
How to improve R&D productivity: the pharmaceutical
industry’s grand challenge. Nature Reviews Drug Dis-
covery, 9(3):203–214, March 2010. ISSN 1474-1784.
doi: 10.1038/nrd3078. URL https://www.nature.
com/articles/nrd3078. Number: 3 Publisher: Na-
ture Publishing Group.

Podda, M., Bacciu, D., and Micheli, A. A Deep Generative
Model for Fragment-Based Molecule Generation. In
Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, pp. 2240–2250.
PMLR, June 2020. URL https://proceedings.
mlr.press/v108/podda20a.html. ISSN: 2640-
3498.

Riniker, S. and Landrum, G. A. Open-source platform to
benchmark fingerprints for ligand-based virtual screening.
Journal of Cheminformatics, 5(1):26, May 2013. ISSN
1758-2946. doi: 10.1186/1758-2946-5-26. URL https:
//doi.org/10.1186/1758-2946-5-26.

Rogers, D. and Hahn, M. Extended-Connectivity Fin-
gerprints. Journal of Chemical Information and Mod-
eling, 50(5):742–754, May 2010. ISSN 1549-9596,
1549-960X. doi: 10.1021/ci100050t. URL https:
//pubs.acs.org/doi/10.1021/ci100050t.

Todeschini, R. and Consonni, V. Handbook of
molecular descriptors. WileyVCH, Weinheim, vol-
ume 11. September 2000. ISBN 978-3-527-
29913-3. doi: 10.1002/9783527613106. URL
https://onlinelibrary.wiley.com/doi/
book/10.1002/9783527613106. Journal Abbre-
viation: Handbook of Molecular Descriptors Publication
Title: Handbook of Molecular Descriptors.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
Computation, 1:270–280, 1989. ISSN 1530-888X. doi:
10.1162/neco.1989.1.2.270. Place: US Publisher: MIT
Press.

Yang, Z., Hu, Z., Salakhutdinov, R., and Berg-Kirkpatrick,
T. Improved Variational Autoencoders for Text
Modeling using Dilated Convolutions. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, pp. 3881–3890. PMLR, July 2017.
URL https://proceedings.mlr.press/v70/
yang17d.html. ISSN: 2640-3498.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790479/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790479/
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://papers.neurips.cc/paper/2016/hash/16026d60ff9b54410b3435b403afd226-Abstract.html
https://papers.neurips.cc/paper/2016/hash/16026d60ff9b54410b3435b403afd226-Abstract.html
https://papers.neurips.cc/paper/2016/hash/16026d60ff9b54410b3435b403afd226-Abstract.html
https://papers.neurips.cc/paper/2016/hash/16026d60ff9b54410b3435b403afd226-Abstract.html
https://proceedings.mlr.press/v32/le14.html
https://proceedings.mlr.press/v32/le14.html
http://arxiv.org/abs/1911.03976
http://arxiv.org/abs/1911.03976
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00080
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00080
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://www.nature.com/articles/nrd3078
https://www.nature.com/articles/nrd3078
https://proceedings.mlr.press/v108/podda20a.html
https://proceedings.mlr.press/v108/podda20a.html
https://doi.org/10.1186/1758-2946-5-26
https://doi.org/10.1186/1758-2946-5-26
https://pubs.acs.org/doi/10.1021/ci100050t
https://pubs.acs.org/doi/10.1021/ci100050t
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527613106
https://onlinelibrary.wiley.com/doi/book/10.1002/9783527613106
https://proceedings.mlr.press/v70/yang17d.html
https://proceedings.mlr.press/v70/yang17d.html


Improving Fragment-Based Deep Molecular Generative Models

Appendix
Molecular Representation

Molecular representation is a critical consideration in drug
discovery. It constrains what models can be used and has
distinct advantages and limitations. This section details
two popular molecular representations used in this paper:
SMILES and molecular fingerprints.

SMILES

The Simplified Molecular Input Line Entry System
(SMILES) represents a molecular graph as a sequence of
atoms and bonds using short ASCII strings. The atoms in
SMILES strings are represented by the abbreviations of their
elements. The key advantage of SMILES representation of
molecules is that it is highly interpretable, allowing deep
learning and language models to be easily applied. However,
a significant disadvantage is that they lack invariance. Simi-
lar molecules can be represented by significantly different
SMILES strings. Furthermore, the same SMILES string
may also have many valid forms due to molecule confor-
mation. For example, CCO, OCC, and C(O)C are the same
molecule as portrayed in Figure 9. Canonicalisation is used
to solve this issue. This process transforms the string into
its graphical molecular form and then produces a SMILES
string that is unique for the molecule.

Figure 9: Molecular structure of CCO, OCC, and C(O)C

MOLECULAR FINGERPRINTS

Molecular fingerprints are chemical structure representa-
tions originally developed to aid chemical substructure
searching (Todeschini & Consonni, 2000). Rogers & Hahn
(2010) extended this by introducing Extended-Connectivity
Fingerprints designed to capture molecular features relevant
to molecular activity. This is done by assigning identifiers to
the atoms in a molecule, concatenating neighbouring atom
identifiers, applying a hash function to represent identifier
arrays as integers and adding this to the set of fingerprints.
Figure 10 demonstrates this algorithm. This representation

Figure 10: Example molecular fingerprint process

is highly popular due to its superior performance in the vir-
tual screening (Riniker & Landrum, 2013) and molecular
activity prediction (Mayr et al., 2016; Awale & Reymond,
2019) tasks. It is also highly interpretable and simple to
apply using RDKit (Landrum, 2012). However, key disad-
vantages of this algorithm include its high dependence on
initial conditions, the fact that similar substructures can be
mapped onto different bits, sparseness, and hashing colli-
sions.

Fragmentation

Figures 11 and 12 show the most frequent fragments pro-
duced by Podda et al. (2020) and our fragmentation algo-
rithms, respectively, when constrained to having at least
one atom per fragment. Since our models are trained on
fragments generated by our algorithm when constrained to
having at least three atoms per fragment, we reproduce the
fragment count histogram and fragment efficiency under
these conditions in Figures 13 and 14, respectively.

Figure 11: Most frequent fragments with Podda’s method.

Training

EMBEDDING

The process of embedding molecules using Mol2Vec con-
sists of two steps: constructing a molecular sentence with
a specified Morgan fingerprint radius and generating the



Improving Fragment-Based Deep Molecular Generative Models

Figure 12: Most frequent fragments with our method.

molecular embedding from the pre-trained Mol2Vec model.
The key difference between using the skip-gram Word2Vec
model (benchmark) and the skip-gram Mol2Vec model
(ours) is that the former considers an individual fragment
as a one-hot-encoded vector before training the model to
attain the embedding of that fragment. The latter consid-
ers the molecule (or, in our case, fragment) substructures
through the Morgan Algorithm (Rogers & Hahn, 2010) be-
fore training the model to produce the embedding of the
substructure, which is then summed to generate the embed-
ding of the entire fragment. Figure 15 and 16 portray the
architectures used to train the fragment embeddings for the
benchmark and our models, respectively. Figure 17 portrays
the architecture used to look up fragment embeddings with
Mol2Vec. Table 3 details the hyper-parameters used to train
each embedding model.

MODEL

Our model’s encoder utilises Gated Recurrent Units (GRUs)
(Cho et al., 2014). Fragment embeddings xi are processed
to hidden representations hi through the following process

Figure 13: Fragment efficiency using Podda et al. (2020)
(left) and our method (Right).

HYPER-
PARAMETER

WORD2VEC
(BENCHMARK
MODEL)

PRE-TRAINED
MOL2VEC
(OUR MODEL)

EMBEDDING SIZE 100 100
EMBEDDING WIN-
DOW SIZE

3 10

DATA THE TRAINING
SET

ZINC

MORGAN FINGER-
PRINT RADIUS

- 1

Table 3: The hyper-parameters used to train each embedding
model

via the GRUs:

ri = sigmoid(Wrxi + Urhi−1 + br) (2)
ui = sigmoid(Wuxi + Uuhi−1 + bu) (3)

ĥi = tanh(Whxi + Uh(ri ⊙ hi−1) + bh) (4)

hi = ui ⊙ ĥi + (1− ui)⊙ hi−1 (5)

• ri, ui, ĥi and hi are the reset gate, update gate, candi-
date activation, and output vectors of the ith fragment,
respectively.

• W , U , and b are the learned weights matrices and
biases.

• ⊙ is the element-wise multiplication operation.

The encoder is trained to minimise the KL divergence:

Lenc(x) = −KL(N (µ, σ2I)||N (0, I)) (6)

• µ and log (σ2) is learnt through a one-layer neural net
i.e. µ = Wµh+ bµ and log (σ2) = Wσh+ bσ .

• W is the learned weight matrix, b is the learned bias
vector, and h is the final output vector from the GRUs.



Improving Fragment-Based Deep Molecular Generative Models

Figure 14: Fragment count histogram using Podda et al.
(2020) (Top) and our method (Bottom).

Figure 15: Word2Vec architecture used to train the fragment
embeddings for the benchmark model

The decoder is a recurrent model with GRU units that pro-
duce the probability of the next fragment given the current
fragment in the sequence. Using the reparameterisation trick
(Kingma & Welling, 2014), the hidden stage is initialised
as:

z = h0 = µ+ σϵ, where ϵ ∼ N (0, I) (7)

The decoder utilises teacher forcing during training
(Williams & Zipser, 1989) to provide the correct next frag-
ment rather than the model sampling from the fragment
distribution. This forces the RNN to remain close to the
ground-truth fragment sequence (Lamb et al., 2016). The
probability of the next fragment is then computed as follows:

P (xi+1|xi, hi−1) = softmax(Wouthi + bout) (8)

Figure 16: Mol2Vec architecture used to train the unique
molecule substructure embeddings

Figure 17: Architecture used to lookup the fragment embed-
dings for our model

where hi = GRU(xi, hi−1). With teacher enforcing, the
decoder is trained to minimise the cross-entropy loss be-
tween the correct sequence of fragments and their predicted
probabilities as follows:

Ldec(x) = −
|x|∑
i=1

log P (xi+1|xi, hi−1) (9)

The final hyper-parameters used to train our model are de-
tailed in Table 4.

KL ANNEALING

KL annealing (Bowman et al., 2016) is used to overcome
KL vanishing, symptomatic of posterior collapse (Bowman
et al., 2016; Yang et al., 2017; Higgins et al., 2017). This
is particularly problematic for RNN-based VAE models
(He et al., 2022). Posterior collapse occurs during training
when the model falls into the local optimum of the ELBO
objective and the variational posterior qϕ(z|x) mimics the
model prior p(z) leading to the decoder ignoring the latent
vectors. KL annealing is applied through a scheduled weight



Improving Fragment-Based Deep Molecular Generative Models

HYPER-PARAMETER BENCHMARK VALUE OUR VALUE
EPOCHS 4 4

BATCH SIZE 128 128
HIDDEN LAYERS 2 2

HIDDEN SIZE 128 128
LATENT SIZE 100 100

DROPOUT 0.3 0.3
EMBEDDING SIZE 64 100
LEARNING RATE 1E-05 1E-05

KL ANNEALING (β) 0.9 1E-06

Table 4: Hyper-parameters used to train the (Podda et al.,
2020) and our models

parameter β ∈ [0, 1] on the KL term in the loss function:

Lenc(x) = β ×−KL(N (µ, σ2I)||N (0, I)) (10)


