

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PARAMETERIZED HARDNESS OF ZONOTYPE CON- TAINMENT AND NEURAL NETWORK VERIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Neural networks with ReLU activations are a widely used model in machine learning. It is thus important to have a profound understanding of the properties of the functions computed by such networks. Recently, there has been increasing interest in the (parameterized) computational complexity of determining these properties. In this work, we close several gaps and resolve an open problem posted by Froese et al. [COLT '25] regarding the parameterized complexity of various problems related to network verification. In particular, we prove that deciding positivity (and thus surjectivity) of a function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ computed by a 2-layer ReLU network is W[1]-hard when parameterized by d . This result also implies that zonotope (non-)containment is W[1]-hard with respect to d , a problem that is of independent interest in computational geometry, control theory, and robotics. Moreover, we show that (a) approximating the maximum within any multiplicative factor in 2-layer ReLU networks, (b) computing the L_p -Lipschitz constant for $p \in (0, \infty]$ in 2-layer networks, and (c) approximating the L_p -Lipschitz constant in 3-layer networks are all NP-hard and W[1]-hard with respect to d . Notably, our hardness results are the strongest known so far and imply that the naive enumeration-based methods for solving these fundamental problems are all essentially optimal under the Exponential Time Hypothesis.

1 INTRODUCTION

Neural networks with rectified linear unit (ReLU) activations are a common model in deep learning. In practice, such networks are trained on finite datasets and are expected to generalize reliably to unseen inputs. However, even minor perturbations of the input may lead to unexpected or erroneous outputs (Szegedy et al., 2014). This highlights the importance of certification of trained models, which in turn requires a detailed understanding of the functions computed by ReLU networks.

A central problem in this context is *network verification*: Given a subset of inputs \mathcal{X} , the question is whether the network's outputs are guaranteed to lie within a prescribed set \mathcal{Y} . Commonly, the sets \mathcal{X} and \mathcal{Y} take the form of balls or are specified by linear constraints. This question has received increasing attention in recent years, particularly due to the deployment of neural networks in safety-critical applications (Bojarski et al., 2016; Weng et al., 2018a; Kouvaros & Lomuscio, 2021; Rössig & Petkovic, 2021; Katz et al., 2022). Recently, Froese et al. (2025b) established a connection between the basic verification task to decide whether a 2-layer ReLU network attains a positive output (which is equivalent to surjectivity) and the classical geometry problem of *zonotope containment*. The latter asks whether one zonotope is contained within another, a question that has been extensively studied due to its applications in areas such as robotics and control (Sadraddini & Tedrake, 2019; Gruber & Althoff, 2020; 2021; Kulmburg & Althoff, 2021; Yang et al., 2022; Kulmburg et al., 2025).

Beyond verification, robustness is often a crucial requirement since trained networks are typically expected to be insensitive to small input perturbations. This property is commonly quantified in terms of the network's *Lipschitz constant*, which should ideally be small (Virmaux & Scaman, 2018; Weng et al., 2018b; Fazlyab et al., 2019; Jordan & Dimakis, 2020).

Network verification (Katz et al., 2022; Sälzer & Lange, 2022; Froese et al., 2025b), estimating the Lipschitz constant (Virmaux & Scaman, 2018; Jordan & Dimakis, 2020) and zonotope containment (Kulmburg & Althoff, 2021) are all known to be (co)NP-hard. This intractability is closely linked to

054 the curse of dimensionality: As the input dimension d grows, the search space becomes prohibitively
 055 large. A natural follow-up question is whether these problems become tractable for low-dimensional
 056 input spaces. This perspective is particularly relevant since, in practice, high-dimensional data is
 057 often assumed to lie near a low-dimensional submanifold of the input space. Motivated by this,
 058 recent work has studied the *parameterized complexity* of neural network problems such as training
 059 (Arora et al., 2018; Froese et al., 2022; Brand et al., 2023; Froese & Hertrich, 2023) and verification
 060 (Froese et al., 2025b). Notably, while checking injectivity of a 2-layer ReLU network with n hidden
 061 neurons can be done in $(d + 1)^d \cdot n^{O(1)}$ time (that is, *fixed-parameter tractability* with respect to d)
 062 (Froese et al., 2025b), the parameterized complexity status of network verification (in particular
 063 positivity) and the Lipschitz constant have been posed as open problems at COLT '25 (Froese et al.,
 064 2025a).

065 1.1 OUR CONTRIBUTIONS

066 We answer the aforementioned questions by proving W[1]-hardness for the parameter input dimension
 067 (thus excluding fixed-parameter tractability under standard complexity assumptions). Moreover,
 068 we show that solving these problems via simple “brute-force” enumeration of the linear regions
 069 of the network’s function is essentially optimal under the Exponential Time Hypothesis (ETH).
 070

071 In Section 3, we give a reduction from the well-known **MULTICOLORED CLIQUE** problem to network
 072 verification in which the network’s input dimension depends linearly on the clique size. This
 073 reduction forms the basis for our hardness results and yields strong lower bounds based on the ETH.
 074 The key difficulty here is that the input dimension must scale linearly with the clique size (in contrast,
 075 standard NP-hardness reductions allow the input dimension to grow without restriction).
 076

077 **Network Verification.** We study the (co)NP-hard problems of deciding positivity, surjectivity, and
 078 approximating the maximum of a 2-layer ReLU network $f: \mathbb{R}^d \rightarrow \mathbb{R}$ (with n hidden neurons), and
 079 also the problem of deciding whether a 3-layer ReLU network computes the constant zero function.
 080 All these problems are special cases of (complements of) verification. For example, positivity
 081 corresponds to checking whether there exists $x \in \mathbb{R}^d$ with $f(x) > 0$, that is, $f(\mathbb{R}^d) \not\subseteq (-\infty, 0]$.
 082 All these problems can be solved in $n^{O(d)} \cdot \text{poly}(N)$ time with simple “brute-force” enumeration
 083 algorithms (see Section 2). In Section 4, we prove W[1]-hardness with respect to d for all problems,
 084 thereby resolving the open question by Froese et al. (2025a). Our reductions imply a running time
 085 lower bound of $n^{\Omega(d)} \cdot \text{poly}(N)$ based on the ETH which shows that the simple enumeration algo-
 086 rithms are essentially optimal. In particular, this implies an $n^{\Omega(d)} \cdot \text{poly}(N)$ -time lower bound for
 087 the general network verification problem.
 088

089 **Zonotope Containment.** In Section 5, we study the coNP-hard problem of deciding whether a
 090 zonotope $Z \subset \mathbb{R}^d$ (given by its generators) is contained in another zonotope $Z' \subset \mathbb{R}^d$. Based on a
 091 duality of 2-layer ReLU networks and zonotopes, we obtain W[1]-hardness with respect to d and an
 092 analogous running time lower bound of $n^{\Omega(d)} \cdot \text{poly}(N)$ assuming the ETH which shows that the
 093 simple vertex enumeration algorithm is essentially optimal.
 094

095 **Lipschitz Constant.** Virmaux & Scaman (2018) proved that computing the L_2 -Lipschitz constant
 096 of a 2-layer ReLU network is NP-hard. In Section 6, we extend this to NP-hardness for every $p \in$
 097 $(0, \infty]$ and even W[1]-hardness with respect to d . Approximating the L_p -Lipschitz constant within
 098 any multiplicative constant for 3-layer ReLU networks is known to be NP-hard (Jordan & Dimakis,
 099 2020; Froese et al., 2025b). We also extend this result to W[1]-hardness with respect to d . Again,
 100 our reductions imply running time lower bounds matching the running times of simple enumeration
 101 algorithms. On the positive side, we show that for the restricted class of *input convex* networks,
 102 computing the L_1 -Lipschitz constant is polynomial-time solvable and the L_∞ -Lipschitz constant is
 103 *fixed-parameter tractable* (FPT) with respect to d . In Section 7, we discuss the equivalence between
 104 Lipschitz constant computation and norm maximization on zonotopes and present a randomized
 105 FPT-approximation algorithm, using results from subspace embeddings.
 106

107 **Limitations.** Our paper is clearly of purely theoretical nature. We aim for a thorough understand-
 108 ing of the problems from a computational complexity perspective. Hence, our results are naturally
 109 worst-case results. Although the algorithms we give are essentially optimal in terms of running time

(assuming the ETH), it might be possible to achieve a better running time by reducing the constant hidden in the exponent. Moreover, additional assumptions on the network structure might render the problems tractable (as in the case of input convex networks for the L_1 -Lipschitz constant). A full literature review (e.g., for the broad field of network verification) is beyond the scope of this paper.

1.2 FURTHER RELATED WORK

Various heuristic methods for network verification have been proposed, including interval bound propagation (Gowal et al., 2018), DeepZ (Wong et al., 2018), DeepPoly (Singh et al., 2019), multi-neuron verification Ferrari et al. (2022), ZonoDual (Jordan et al., 2022), and cutting planes (Zhang et al., 2022). Baader et al. (2024) and Mao et al. (2024) study the expressivity of convex relaxations that are often used in practical network verification algorithms. L_p -norm maximization on zonotopes is also known as the *Longest Vector Sum* problem and has a wide range of applications in pattern recognition, clustering, signal processing, and analysis of large-scale data (Baburin & Pyatkin, 2007; Shenmaier, 2018; 2020). Special cases were studied before (Bodlaender et al., 1990; Ferrez et al., 2005).

2 PRELIMINARIES

Notation. For $n \in \mathbb{N}$, we define $[n] := \{1, \dots, n\}$. For $k, n \in \mathbb{N}$, $k \leq n$, we define $\binom{[n]}{k} := \{A \subseteq [n] : |A| = k\}$. A function $f: \mathbb{R}^d \rightarrow \mathbb{R}^m$ is *positively homogeneous* if $f(\lambda x) = \lambda f(x)$ holds for all $x \in \mathbb{R}^d$ and $\lambda \geq 0$. Given a *generator* matrix $A = (a_1, \dots, a_n) \in \mathbb{R}^{d \times n}$, the corresponding *zonotope* is $Z(A) := \sum_{i=1}^n \text{conv}(\{0, a_i\})$, where the sum is the Minkowski sum of the generators.

L_p -Lipschitz Constant. For $p \in (0, \infty)$ and a vector $x \in \mathbb{R}^d$, we define $\|x\|_p := \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}$, and for $p = \infty$ we set $\|x\|_\infty := \max_{i \in [d]} |x_i|$. For $p \in [1, \infty]$, the function $\|\cdot\|_p$ is the L_p -norm, and for $p \in (0, 1)$, it is the L_p -quasinorm. The L_0 -function is defined by $\|x\|_0 := |\{i \in [d] : x_i \neq 0\}|$. The L_p -Lipschitz constant of a function f is $L_p(f) := \sup_{x \neq y} \frac{\|f(x) - f(y)\|_p}{\|x - y\|_p}$.

ReLU Networks. A *ReLU layer* with d inputs, m outputs, weights $W \in \mathbb{R}^{m \times d}$, and biases $b \in \mathbb{R}^m$ computes the map $\phi_{W,b}: \mathbb{R}^d \rightarrow \mathbb{R}^m$, $x \mapsto \max(0, Wx + b)$, where the maximum is applied in each component. A *ReLU network* with $\ell \geq 1$ layers and one-dimensional output is defined by ℓ weight matrices $W_i \in \mathbb{R}^{n_i \times n_{i-1}}$ and biases $b_i \in \mathbb{R}^{n_i}$ for $i \in [\ell]$, where $n_0 := d, \dots, n_\ell := 1 \in \mathbb{N}^+$, and computes the *continuous piecewise linear* (CPWL) function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ with

$$f(x) := W_\ell \cdot (\phi_{W_{\ell-1}, b_{\ell-1}} \circ \dots \circ \phi_{W_1, b_1})(x) + b_\ell.$$

Observe that no activation function is applied in the output layer. The $\ell - 1$ ReLU layers are also called *hidden layers*. The *width* and *size* of the network are $\max\{n_1, \dots, n_{\ell-1}\}$ and $\sum_{i=1}^{\ell-1} n_i$, respectively. Additional details can be found in Appendix A.

Polytopes and Duality. There is a duality between positively homogeneous convex CPWL functions from \mathbb{R}^d to \mathbb{R} (the set of which is denoted \mathcal{F}_d) and polytopes in \mathbb{R}^d (denoted \mathcal{P}_d), which we will briefly sketch. Any function $f \in \mathcal{F}_d$ can be written as $f(x) = \max\{a_1^\top x, \dots, a_k^\top x\}$ for some $a_i \in \mathbb{R}^d$, and its *Newton polytope* is $\text{Newt}(f) := \text{conv}(\{a_1, \dots, a_k\})$. Equivalently, f is the *support function* of $\text{Newt}(f)$, that is, $f(x) = \max_{y \in \text{Newt}(f)} y^\top x$. The map $\varphi: \mathcal{F}_d \rightarrow \mathcal{P}_d$, defined by $f \mapsto \text{Newt}(f)$, is a bijection satisfying $\varphi(f+g) = \varphi(f) + \varphi(g)$ and $\varphi(\max\{f, g\}) = \text{conv}(\varphi(f) \cup \varphi(g))$, where $+$ denotes pointwise addition or Minkowski sum, respectively.

Parameterized Complexity. We assume basic knowledge on computational complexity theory. Parameterized complexity is a multivariate approach to study the time complexity of computational problems (Cygan et al., 2015; Downey & Fellows, 2013). A *parameterized problem* $L \subseteq \Sigma^* \times \mathbb{N}$ consists of instances (x, k) where x encodes a classical problem instance and k is a *parameter*. A parameterized problem L is *fixed-parameter tractable* (contained in the class FPT) if it can be solved in $f(k) \cdot |x|^{\mathcal{O}(1)}$ time, where f is an arbitrary function that only depends on k . The class XP contains all parameterized problems which can be solved in polynomial time for constant parameter

values, that is, in $f(k) \cdot |x|^{g(k)}$ time, where g is an arbitrary function that only depends on k . It is known that $\text{FPT} \subsetneq \text{XP}$. The class $\text{W}[1]$ can be defined as the set of all parameterized problems which can be reduced to **CLIQUE** (with parameter solution size) via a *parameterized reduction*. It is known that $\text{FPT} \subseteq \text{W}[1] \subseteq \text{XP}$ and it is widely believed that $\text{W}[1]$ contains problems which are not in FPT (namely the $\text{W}[1]$ -hard problems such as **CLIQUE**). A parameterized reduction from L to L' is an algorithm that maps an instance (x, k) in $f(k) \cdot |x|^{\mathcal{O}(1)}$ time to an instance (x', k') such that $k' \leq g(k)$ for an arbitrary function g and $(x, k) \in L$ if and only if $(x', k') \in L'$.

The *Exponential Time Hypothesis* (Impagliazzo & Paturi, 2001) states that 3-SAT on n variables cannot be solved in $2^{o(n)}$ time. The ETH implies $\text{FPT} \neq \text{W}[1]$ (which implies $\text{P} \neq \text{NP}$), as well as running time lower bounds: For example, **CLIQUE** cannot be solved in $\rho(k) \cdot n^{o(k)}$ time, where k is the size of the requested clique and n is the number of nodes in the graph (Cygan et al., 2015).

2.1 PROBLEM DEFINITIONS AND WARM-UP

For given generator matrices $A \in \mathbb{R}^{d \times n}$ and $B \in \mathbb{R}^{d \times m}$, and a scalar $L \in \mathbb{R}$, we consider the following problems:

- **ZONOTOPES CONTAINMENT:** Is $Z(A) \subseteq Z(B)$?
- **L_p -MAX ON ZONOTOPES:** Is $\max_{x \in Z(A)} \|x\|_p \geq L$?

For an ℓ -layer ReLU network defined by weight matrices $W_i \in \mathbb{R}^{n_i \times n_{i-1}}$ and biases $b_i \in \mathbb{R}^{n_i}$ for $i \in [\ell]$, where $d := n_0, \dots, n_\ell := 1 \in \mathbb{N}^+$ that computes the function $f: \mathbb{R}^d \rightarrow \mathbb{R}$, $f(x) := W_\ell \cdot (\phi_{W_{\ell-1}, b_{\ell-1}} \circ \dots \circ \phi_{W_1, b_1})(x) + b_\ell$, we consider the following problems:

- **ℓ -LAYER RELU POSITIVITY:** Is there an $x \in \mathbb{R}^d$ such that $f(x) > 0$?
- **ℓ -LAYER RELU SURJECTIVITY:** Is f surjective (that is, $\forall y \in \mathbb{R} \exists x \in \mathbb{R}^d : f(x) = y$)?
- **ℓ -LAYER RELU L_p -LIPSCHITZ CONSTANT:** Is $L_p(f) \geq L$?

In fact, all these problems are known to be in XP for the parameter d (simply enumerate vertices of zonotopes and linear regions of ReLU networks; see Appendix B for more details).

Theorem 2.1. *ZONOTOPES CONTAINMENT and L_p -MAX ON ZONOTOPES can be solved in $\mathcal{O}(n^{d-1} \cdot \text{poly}(N))$ time (where n is the number of generators and N is the input bit-length).*

Theorem 2.2. *ℓ -LAYER RELU POSITIVITY, ℓ -LAYER RELU SURJECTIVITY, ℓ -LAYER RELU L_p -LIPSCHITZ CONSTANT, computing the maximum of an ℓ -layer ReLU network over a polyhedron and deciding whether an ℓ -layer ReLU network computes the zero function can be solved in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time (where n is the network width and N is the input bit-length).*

In particular, we prove in Appendix B that network verification for ℓ -layer ReLU networks $f: \mathbb{R}^d \rightarrow \mathbb{R}^m$ is solvable in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time, assuming that \mathcal{X} and \mathcal{Y} are polyhedra in halfspace representation. Later, we will prove that, assuming the ETH, the 2-layer or the 3-layer versions of all of these problems cannot be solved in $\rho(d) \cdot N^{o(d)}$ time for any function ρ , which means that the $\mathcal{O}(n^d \cdot \text{poly}(N))$ - and $\mathcal{O}(n^{2d} \cdot \text{poly}(N))$ -time algorithms (for 2- and 3-layer networks) are essentially optimal with respect to the runtime dependency on d . Note that hardness results for 2- or 3-layer networks also imply hardness for deeper networks with $\ell \geq 3$ layers: simply concatenate the 2- or 3-layer network with trivial additional layers that compute the identity map.

3 REDUCTION FROM MULTICOLORED CLIQUE

In this section, we present a parameterized reduction which forms the basis for the hardness results for all our considered problems. (All proofs that are omitted from the main text as well as some auxiliary statements can be found in Appendix B.) We reduce from the following problem.

MULTICOLORED CLIQUE

Input: A graph $G = (V = V_1 \dot{\cup} \dots \dot{\cup} V_k, E)$, where each node in V_i has color i .

Question: Does G have a k -colored clique (a clique with exactly one node of each color)?

Figure 1: Spike function $s_{r,l}$ for a colored graph (top left). Node labels: $\omega_{r,1} = 1, \omega_{r,2} = 2, \omega_{l,1} = 4, \omega_{l,2} = 8$. Edge labels: $\omega_{r,1,l,1} = 5, \omega_{r,2,l,1} = 6, \omega_{r,1,l,2} = 9, \omega_{r,2,l,2} = 10$.

Figure 2: Penalty function p_c .

MULTICOLORED CLIQUE is NP-hard, W[1]-hard with respect to k and not solvable in $\rho(k) \cdot |V|^{o(k)}$ time for any computable function ρ assuming the ETH (Cygan et al., 2015).

Proposition 3.1. *For every instance $(G = (V = V_1 \dot{\cup} \dots \dot{\cup} V_k, E), k)$ of MULTICOLORED CLIQUE, it is possible to construct in polynomial time a 2-layer ReLU network computing a function $f: \mathbb{R}^k \rightarrow \mathbb{R}$ such that $\max_{x \in \mathbb{R}^k} f(x) = k + \binom{k}{2}$ if and only if G contains a k -colored clique and $\max_{x \in \mathbb{R}^k} f(x) \leq k + \binom{k}{2} - 1$ otherwise.*

Proof Sketch. Let $(G = (V = V_1 \dot{\cup} \dots \dot{\cup} V_k, E), k)$ be an instance of MULTICOLORED CLIQUE, where $V_c = \{v_{c,1}, \dots, v_{c,n_c}\}$ and $E = \bigcup_{(r,l) \in \binom{[k]}{2}} E_{r,l}$, where $E_{r,l}$ denotes the set of edges whose nodes have color r and l . We assign each node $v_{c,i}$ a unique label $\omega_{c,i} \in \mathbb{N}$ such that every edge $\{v_{r,i}, v_{l,j}\}$ gets a unique label $\omega_{r,i,l,j} := \omega_{r,i} + \omega_{l,j}$ (using Sidon sets, see Appendix B for details).

For every color pair $(r, l) \in \binom{[k]}{2}$, we introduce a *spike function* $s_{r,l}: \mathbb{R}^2 \rightarrow [0, 1]$ (see Figure 1) that is zero everywhere except for a set of $|E_{r,l}|$ parallel stripes in which $s_{r,l}$ forms a spike, that is, goes up from 0 to 1 and goes down from 1 to 0 again. The spike function attains value 1 if and only if the sum of its inputs is equal to $\omega_{r,i,l,j}$ for some edge $\{v_{r,i}, v_{l,j}\} \in E_{r,l}$. The spike function can be implemented with $3|E_{r,l}|$ neurons. For every color $c \in [k]$, we create a *penalty function* $p_c: \mathbb{R} \rightarrow [0, 1]$ (see Figure 2) that has a narrow spike around the value $\omega_{c,i}$ for each node $v_{c,i}$ and is zero everywhere else. The penalty function p_c can be implemented with $3n_c$ neurons.

By computing all spike and penalty functions in parallel and summing them up, we obtain a 2-layer ReLU network with $3(|V| + |E|)$ ReLU neurons that computes $f: \mathbb{R}^k \rightarrow [0, k + \binom{k}{2}]$ with

$$f(x_1, \dots, x_k) = \sum_{(r,l) \in \binom{[k]}{2}} s_{r,l}(x_r, x_l) + \sum_{c \in [k]} p_c(x_c).$$

Next, we show that if there exists a k -colored clique $\{v_{1,a_1}, \dots, v_{k,a_k}\}$ in G , then $f((\omega_{1,a_1}, \dots, \omega_{k,a_k})) = k + \binom{k}{2}$. On the other hand, we show that if there is a point $x^* \in \mathbb{R}^k$ with $f(x^*) > k + \binom{k}{2} - 1$, then G has a k -colored clique. The idea is that in this case, all spike and penalty functions must have positive output. For the penalty functions, this means that every input value x_c^* must be close to a value ω_{c,a_c} which corresponds to the node v_{c,a_c} . Since the spike functions only give a positive output if the two node inputs correspond to adjacent nodes, the nodes $v_{1,a_1}, \dots, v_{k,a_k}$ then form a k -colored clique in G . \square

In the following, we will use modifications of this construction to prove our hardness results. All our (parameterized) reductions are in fact *polynomial-time reductions* and thus also prove NP-hardness. We will only state this explicitly if the NP-hardness of the problem was not previously known.

4 HARDNESS OF NETWORK VERIFICATION PROBLEMS

We first prove W[1]-hardness (w.r.t. d) of 2-LAYER RELU POSITIVITY. The NP-hardness of 2-LAYER RELU POSITIVITY was established by Froese et al. (2025b). We prove W[1]-hardness via

Figure 3: Homogenization: the function $\max(0, 2x - 1) - \max(0, 4x - 4) + \max(0, 2x - 3) + 4$ (left) is turned into $\max(0, 2x - y) - \max(0, 4x - 4y) + \max(0, 2x - 3y) + 4|y|$ (right).

the reduction from Proposition 3.1, which relies on the use of biases. To extend the hardness result to other problems, we need to show a stronger statement: that 2-LAYER RELU POSITIVITY remains W[1]-hard even when all biases are equal to zero. For this, we use *homogenized* ReLU networks.

Definition 4.1. Given a 2-layer ReLU network with a single output neuron, its *homogenization* is the ReLU network (with all biases equal to zero) that is obtained by adding an extra input variable y to the network, replacing all biases b of neurons in the first hidden layer by $y \cdot b$ and replacing the bias b of the output neuron by $|y| \cdot b$ using two extra neurons in the hidden layer.

Figure 3 illustrates the effect of homogenization on the function of a 2-layer ReLU network.

Theorem 4.2. 2-LAYER RELU POSITIVITY is W[1]-hard with respect to d and not solvable in $\rho(d) \cdot N^{o(d)}$ time (where N is the input bit-length) for any function ρ assuming the ETH, even if all biases are zero.

Proof Sketch. Setting the output node bias of the ReLU network constructed in the proof of Proposition 3.1 to $1 - k - \binom{k}{2}$ yields a network that has a positive output if and only if the graph G from the MULTICOLORED CLIQUE instance contains a k -colored clique. We then show that homogenizing this network preserves this equivalence, which yields a parameterized reduction from MULTICOLORED CLIQUE to 2-LAYER RELU POSITIVITY without biases (and thus proves W[1]-hardness). Note that the input dimension d of the constructed network is $k + 1$. Hence, any algorithm solving 2-LAYER RELU POSITIVITY in $\rho(d) \cdot N^{o(d)}$ time would imply an algorithm for MULTICOLORED CLIQUE running in $\rho(k) \cdot |V|^{o(k)}$ time (since $N \leq |V|^{\mathcal{O}(1)}$) contradicting the ETH. \square

Theorem 4.2 also implies W[1]-hardness w.r.t. the input dimension d for approximating the maximum of a 2-layer ReLU network over a polyhedron within any multiplicative factor. Froese et al. (2025b, Corollary 13) showed that approximating this value is NP-hard.

Corollary 4.3. Approximating the maximum of a 2-layer ReLU network over a polyhedron within any multiplicative factor is W[1]-hard with respect to its input dimension d and cannot be done in $\rho(d) \cdot N^{o(d)}$ time (where N is the input bit-length) for any function ρ assuming the ETH.

By adding another hidden layer with a single ReLU neuron to the network constructed in the proof of Theorem 4.2, we obtain a 3-layer ReLU network that has a non-zero output if and only if the original 2-layer network has a positive output. This yields the following corollary.

Corollary 4.4. The problem of deciding whether a 3-layer ReLU network computes a non-zero function is W[1]-hard with respect to its input dimension d and not solvable in $\rho(d) \cdot N^{o(d)}$ time (where N is the input bit-length) for any function ρ assuming the ETH.

The NP-hardness of the above problem was established by Froese et al. (2025b). For 2-layer networks, it is solvable in polynomial time (Froese et al., 2025b), which holds also in the presence of biases (Stargalla et al., 2025). Thus, Corollary 4.4 draws an even clearer boundary between the computational complexity of this problem in the 2-layer and 3-layer cases.

Froese et al. (2025b) proved NP-hardness of 2-LAYER RELU SURJECTIVITY and asked whether the problem is fixed-parameter tractable with respect to d . We give a negative answer to this question.

Figure 4: An illustration of the equivalence between 2-LAYER RELU POSITIVITY and ZONOTYPE NON-CONTAINMENT. Let $H = \{y \in \mathbb{R}^d \mid y^T x = b\}$ be a hyperplane that separates y_* from Z^- . Then $g(x) = \max_{y \in Z^+} y^T x - \max_{y \in Z^-} y^T x > y_*^T x - b > 0$.

Theorem 4.5. 2-LAYER RELU SURJECTIVITY is $W[1]$ -hard with respect to d and not solvable in $\rho(d) \cdot N^{o(d)}$ time (where N is the input bit-length) for any function ρ assuming the ETH.

Proof. Recall that a positively homogeneous function $g: \mathbb{R}^d \rightarrow \mathbb{R}$ is surjective if and only if there exist two points $v^+, v^- \in \mathbb{R}^d$ such that $g(v^+) > 0$ and $g(v^-) < 0$. The positively homogeneous function $f: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ of the 2-layer ReLU network from the proof of Theorem 4.2 is in fact surjective if and only if it has a positive point, as $f(\mathbf{0}, 1) < 0$. \square

5 HARDNESS OF ZONOTYPE NON-CONTAINMENT

In this section, we prove $W[1]$ -hardness for ZONOTYPE NON-CONTAINMENT, the complement of ZONOTYPE CONTAINMENT. ZONOTYPE CONTAINMENT is coNP-complete, and can be solved in $O(n^{d-1} \cdot \text{poly}(N))$ time (where N is the input bit-length) by enumerating the vertices of one zonotope, but fixed-parameter tractability with respect to the dimension d remained open so far (Froese et al., 2025a). Moreover, Kulmburg & Althoff (2021) showed that containment is equivalent to maximizing a certain zonotope norm, making it a special case of norm maximization on zonotopes.

Froese et al. (2025b) showed that 2-LAYER RELU POSITIVITY is equivalent to ZONOTYPE NON-CONTAINMENT following from the duality of positively homogeneous convex CPWL functions from \mathbb{R}^d to \mathbb{R} and polytopes in \mathbb{R}^d . We will briefly sketch this equivalence. Let a 2-layer ReLU network without biases be given by $g(x) = \sum_{i=1}^m \lambda_i \max\{0, w_i^T x\}$. We can assume without loss of generality that $\lambda_i \in \{-1, 1\}$ due to the positive homogeneity of $\max\{0, w_i^T x\}$. Hence $g(x) = \sum_{i \in I^+} \max\{0, w_i^T x\} - \sum_{i \in I^-} \max\{0, w_i^T x\}$ for vectors $w_i \in \mathbb{R}^d$, $i \in I^+ \cup I^-$. Defining the zonotopes

$$Z^+ := \varphi\left(\sum_{i \in I^+} \max\{0, w_i^T x\}\right) = \sum_{i \in I^+} \text{conv}(\{0, w_i\}),$$

$$Z^- := \varphi\left(\sum_{i \in I^-} \max\{0, w_i^T x\}\right) = \sum_{i \in I^-} \text{conv}(\{0, w_i\}),$$

it holds that $g = \varphi^{-1}(Z^+) - \varphi^{-1}(Z^-)$. By definition of the support function, $Z^+ \subseteq Z^-$ implies $\varphi^{-1}(Z^+) \leq \varphi^{-1}(Z^-)$. Conversely, if $y_* \in Z^+ \setminus Z^-$, then there is a separating hyperplane $H = \{y \in \mathbb{R}^d : y^T x = b\}$ such that $y_*^T x > b$ and $y^T x < b$ for all $y \in Z^-$. Hence, $g(x) > 0$ (see Figure 4 for an illustration). Since also any pair of zonotopes is of this form, 2-LAYER RELU POSITIVITY is equivalent to ZONOTYPE NON-CONTAINMENT. Thus, Theorem 4.2 implies the following theorem.

Theorem 5.1. ZONOTYPE NON-CONTAINMENT is $W[1]$ -hard with respect to d and not solvable in $\rho(d) \cdot N^{o(d)}$ time (where N is the input bit-length) for any function ρ assuming the ETH.

6 HARDNESS OF COMPUTING THE LIPSCHITZ CONSTANT

Jordan & Dimakis (2020) established the NP-hardness for approximating the L_p -Lipschitz constant for $p = 1$ and $p = \infty$ for 3-layer ReLU networks within a multiplicative factor of $\Omega(N^{1-\varepsilon})$ for every constant $\varepsilon > 0$, where N is the encoding size of the ReLU network. The NP-hardness result of Froese et al. (2025b) for 2-LAYER RELU POSITIVITY implies NP-hardness for approximating

378 the L_p -Lipschitz constant for $p \in [0, \infty]$ within any multiplicative factor for 3-layer ReLU networks.
 379 We extend this by showing W[1]-hardness of the problem.

380 **Corollary 6.1.** *For all $p \in [0, \infty]$, approximating the L_p -Lipschitz constant of a 3-layer ReLU
 381 network by any multiplicative factor is W[1]-hard with respect to its input dimension d and cannot
 382 be done in $\rho(d) \cdot N^{o(d)}$ time (where N is the input bit-length) for any function ρ assuming the ETH.*
 383

384 *Proof.* Adding a hidden layer with a single ReLU neuron to the construction in the proof of Theorem
 385 4.2 yields a 3-layer network which computes a function with a non-zero L_p -Lipschitz constant
 386 if and only if the original 2-layer network has a positive output. Hence, any multiplicative approxi-
 387 mation could be used to decide 2-LAYER RELU POSITIVITY. \square
 388

389 Virmaux & Scaman (2018) established the NP-hardness of 2-LAYER RELU L_2 -LIPSCHITZ CON-
 390 STANT. We extend the NP-hardness to $p \in (0, \infty]$ and show W[1]-hardness w.r.t. d .

391 **Theorem 6.2.** *For all $p \in (0, \infty]$, 2-LAYER RELU L_p -LIPSCHITZ CONSTANT is NP-hard, W[1]-
 392 hard with respect to d and not solvable in $\rho(d) \cdot N^{o(d)}$ time (where N is the input bit-length) for any
 393 function ρ assuming the ETH.*
 394

395 *Proof Sketch.* First, we show that for any positively homogeneous CPWL function $f: \mathbb{R}^d \rightarrow \mathbb{R}$,
 396 we have $L_p(f) = \max_{\|x\|_p \leq 1} |f(x)|$. The idea is now to scale all y coefficients of the function
 397 $g: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ computed by the homogenized network constructed in the proof of Proposition 3.1 by
 398 a sufficiently small amount ε to obtain the positively homogeneous CPWL function $h: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$.
 399 Then, every $x^* \in \arg \max_{x \in \mathbb{R}^k} h(x, 1)$ has (sufficiently) small entries, as scaling the y coefficients
 400 is equivalent to scaling the spike and penalty functions. We then show that $L_p(h)$ is almost equal
 401 to $\mathcal{L} := \max_{x \in \mathbb{R}^k} h(x, 1)$, as we can scale down a maximizer $x^* \in \arg \max_{x \in \mathbb{R}^k} h(x, 1)$ with a y^*
 402 that is only slightly smaller than 1 to obtain a feasible point $y^*(x, 1)$ for $\max_{\|(x, y)\|_p \leq 1} |h(x, y)|$
 403 with value $|h(y^* \cdot x, y^*)| = y^* |h(x^*, 1)|$, which proves $\mathcal{L} \geq L_p(h) \geq \mathcal{L} \cdot y^*$ (so $L_p(h) \approx \mathcal{L}$). We
 404 conclude the proof by showing that the hardness of computing \mathcal{L} transfers to computing $L_p(h)$. \square
 405

406 On the positive side, we show that for a special subclass of ReLU networks, computing the L_1 - and
 407 L_∞ -Lipschitz constant is tractable.

408 **Input Convex Neural Networks.** A ReLU network is *input-convex* (ICNN) if the weight mat-
 409 rices of all but the first layer have only nonnegative entries, resulting in a convex function $f(x) =$
 410 $\max\{a_1^\top x + b_1, \dots, a_k^\top x + b_k\}$. The L_p -Lipschitz constant of f is given by the maximum, taken over
 411 all linear regions C of f , of the L_p -Lipschitz constant of f restricted to C , where $f(x) = a_C^\top x + b_C$
 412 for all $x \in C$. Using the well-known equality $L_p(g) = \max_{x \in \mathbb{R}^d} \|\nabla g(x)\|_q$ for smooth functions
 413 $g: \mathbb{R}^d \rightarrow \mathbb{R}$ (Jordan & Dimakis, 2020), we derive that the L_p -Lipschitz constant of f restricted to
 414 the region C is equal to $\|a_C\|_q$ and thus $L_p(f) = \max_{C \text{ linear region of } f} \|a_C\|_q = \max_i \|a_i\|_q$, where $\|\cdot\|_q$
 415 is the *dual* norm of the L_p -norm. Note that the function f of the ICNN has the same L_p -Lipschitz
 416 constant as the function $g(x) = \max\{a_1^\top x, \dots, a_k^\top x\}$ computed by the same network where all
 417 biases are set to 0, which implies that we might assume without loss of generality that the network
 418 does not have biases and hence computes a function f that is convex and positively homogeneous.

419 Hertrich & Loho (2024) showed that there is a small *extended formulation* of $\text{Newt}(f)$ for a function
 420 f computed by an ICNN without biases. More precisely, their proofs reveal that for a function
 421 $f: \mathbb{R}^d \rightarrow \mathbb{R}$ computed by an ICNN, there is a polytope $Q \subseteq \mathbb{R}^{d+m}$ and a projection $\pi: \mathbb{R}^{d+m} \rightarrow \mathbb{R}^d$
 422 such that $\pi(Q) = \text{Newt}(f)$ and the encoding size of (Q, π) is polynomial in the encoding size of f ,
 423 where Q is given in half-space representation. Using this, we prove the following proposition.

424 **Proposition 6.3.** *Let $f: \mathbb{R}^d \rightarrow \mathbb{R}$ be an ICNN with encoding size N . Then $L_1(f)$ can be computed
 425 in $\text{poly}(N)$ time and $L_\infty(f)$ can be computed in $O(2^d \text{poly}(N))$ time.*

426 *Proof.* By the discussion above, we can assume without loss of generality that there are no bi-
 427 ases and f is positively homogeneous. In this case, the definition of the support function im-
 428 plies that $L_p(f) = \max_{y \in \text{Newt}(f)} \|y\|_q$. By Hertrich & Loho (2024), there exists a poly-
 429 tope Q and a projection π with $\text{poly}(N)$ encoding size such that $L_p(f) = \max_{y \in Q} \|\pi(y)\|_q$.
 430 For $p = \infty$ and $p = 1$, this maximization can be reduced to finitely many LPs: Indeed,

432 $\max_{y \in Q} \|\pi(y)\|_\infty = \max_{c \in \{\pm e_1, \dots, \pm e_d\}} \max_{y \in Q} c^\top \pi(y)$, which requires solving only $2d$ LPs,
 433 while $\max_{y \in Q} \|\pi(y)\|_1 = \max_{c \in \{\pm 1\}^d} \max_{y \in Q} c^\top \pi(y)$, which requires solving 2^d LPs. Since
 434 LPs can be solved in polynomial time, the statements follow. \square
 435

436 7 NORM MAXIMIZATION ON ZONOTOPES

439 We close with a short section describing a connection between Lipschitz constants of neural net-
 440 works and norm maximization on zonotopes. For 2-layer ICNNs $f: \mathbb{R}^d \rightarrow \mathbb{R}$, we can restrict
 441 ourselves without loss of generality to the case where all output weights are equal to 1. In this
 442 case, as shown by Froese et al. (2025a), the Newton polytope $\text{Newt}(f)$ is a zonotope and computing
 443 $L_p(f)$ is equivalent to maximizing the dual norm of the L_p -norm over this zonotope.
 444

445 Baburin & Pyatkin (2007) showed that maximizing the L_∞ -norm on zonotopes is solvable in
 446 polynomial time and maximizing the L_1 -norm on zonotopes is fixed-parameter tractable for d
 447 (our Proposition 6.3 generalizes these results). Note that Theorem 5.1 implies that maximizing
 448 a zonotope-norm over a zonotope is W[1]-hard with respect to the dimension d (since zonotope
 449 containment is equivalent to this problem (Kulmburg & Althoff, 2021)). For $p \in (1, \infty)$, how-
 450 ever, it is an open question whether L_p -maximization on zonotopes is fixed-parameter tractable
 451 for d (Froese et al., 2025a). Shenmaier (2018) proved NP-hardness and inapproximability for
 452 $p \in [1, \infty)$ and showed a randomized (sampling based) $(1 - \varepsilon)$ -approximation with probability
 453 $1 - 1/\varepsilon$ in time $(1 + 2/\varepsilon)^d \text{poly}(d, n)$ for every $\varepsilon \in (0, 1)$ and an arbitrary norm. We show that
 454 known results from *subspace embedding* theory can also be used to obtain randomized approxima-
 455 tions, which is an interesting application of these results. The worst-case running time, however, is
 456 worse, but in practice the actual running time might still be faster. Bozzai et al. (2023) observed that
 457 results for ℓ_1 subspace embeddings (Cohen & Peng, 2015) yield *zonotope order reductions*, that is,
 458 approximations of zonotopes with few generators. More precisely, the following can be derived.

459 **Theorem 7.1.** *There is a polynomial-time algorithm which, given a matrix $A \in \mathbb{R}^{d \times n}$ and $\varepsilon > 0$,
 460 outputs a matrix $A' \in \mathbb{R}^{d \times r}$ with $r \in \mathcal{O}(d \log d \varepsilon^{-2})$ such that with high probability*

$$(1 + \varepsilon)^{-1} Z(A') \subseteq Z(A) \subseteq (1 + \varepsilon) Z(A').$$

461 This order reduction yields a simple randomized approximation algorithm.
 462

463 **Theorem 7.2.** *Let $\|\cdot\|$ be any norm on \mathbb{R}^d (computable in time T). There is a randomized algorithm
 464 which, given a matrix $A \in \mathbb{R}^{d \times n}$ and $\varepsilon > 0$, outputs a value $\alpha \in \mathbb{R}$ in $\mathcal{O}((cd \log d / \varepsilon^2)^{d-1} \cdot T +$
 465 $\text{poly}(n))$ time (for some constant $c > 0$) such that with high probability*

$$(1 + \varepsilon)^{-1} \alpha \leq \max_{x \in Z(A)} \|x\| \leq (1 + \varepsilon) \alpha.$$

466 *Proof.* Note that every norm is convex and convex functions attain their maximum on a polytope
 467 at a vertex. On input (A, ε) , we run the algorithm from Theorem 7.1 to obtain a matrix A' with
 468 $r \in \mathcal{O}(d \log d \varepsilon^{-2})$ columns in polynomial time. The zonotope $Z(A')$ has at most $\mathcal{O}(r^{d-1})$ ver-
 469 tices (Zaslavsky, 1975), which can be enumerated in $\mathcal{O}(r^{d-1})$ time (Ferrez et al., 2005). We
 470 simply return the maximum $\|\cdot\|$ -value α of these vertices. Then, with high probability, it holds
 471 $(1 + \varepsilon)^{-1} Z(A') \subseteq Z(A) \subseteq (1 + \varepsilon) Z(A')$, which implies
 472

$$\max_{x \in (1 + \varepsilon)^{-1} Z(A')} \|x\| = (1 + \varepsilon)^{-1} \alpha \leq \max_{x \in Z(A)} \|x\| \leq (1 + \varepsilon) \alpha = \max_{x \in (1 + \varepsilon) Z(A')} \|x\|,$$

473 due to absolute homogeneity of norms. \square
 474

475 8 CONCLUSION

476 We proved the strongest hardness results for various computational problems related to ReLU net-
 477 work verification known so far. Note that nearly all considered problems can be phrased in terms of
 478 maximizing a certain norm over a zonotope; a problem with numerous applications in other areas.
 479 Most importantly, our results imply that simple “brute-force” enumeration algorithms are basically
 480 best possible with respect to the dependency of the running time on the input dimension. Thus, we
 481 settled the parameterized complexity of a wide range of problems almost completely. Moreover, our
 482

486 results show that it does not help to assume that the network weights are sparse and small, since
 487 our constructions use only a constant number of (polynomially bounded) non-zero weights for each
 488 ReLU neuron. It is thus not easy to formulate a general guidance to circumvent this hardness in
 489 practice. One would have to make very specific assumptions on the network structure to ensure
 490 that the number of linear regions is small and easy to enumerate. It is not clear which assumptions
 491 would be natural here and whether networks trained on real-world data satisfy them. Alternatively,
 492 one might use techniques (possibly incorporated into the training process) that guarantee efficient
 493 verification or use special architectures (such as ICNNs). We also discussed some tractable cases for
 494 restricted subclasses of problems as well as a randomized FPT-approximation. Overall, our hardness
 495 results prove and justify that such techniques and the use of heuristics are indeed required in practice
 496 to achieve reasonable running times.

497 The most prominent open question is the fixed-parameter tractability of L_p -maximization on zono-
 498 topes for $p \in (1, \infty)$ when parameterized by d . Recall that this is equivalent to 2-LAYER RELU
 499 L_p -LIPSCHITZ CONSTANT with only positive output weights. As a first step, one might try to find
 500 a deterministic FPT-approximation for norm maximization on zonotopes (e.g., by derandomizing
 501 the subspace embedding approach). Also, the complexity of computing $L_0(f)$ for 2-layer ReLU
 502 networks is open. In general, it is an interesting question whether the constants in the exponents of
 503 the running times can be improved, e.g., is ZONOTYPE CONTAINMENT solvable in $\mathcal{O}(n^{cd})$ time for
 504 any $c < 1$?

505 REFERENCES

506 Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
 507 networks with rectified linear units. In *International Conference on Learning Representations*,
 508 2018.

509 Maximilian Baader, Mark Niklas Mueller, Yuhao Mao, and Martin Vechev. Expressivity of ReLU-
 510 networks under convex relaxations. In *International Conference on Learning Representations*,
 511 2024.

512 A. E. Baburin and A. V. Pyatkin. Polynomial algorithms for solving the vector sum problem. *Journal*
 513 *of Applied and Industrial Mathematics*, 1(3):268–272, 2007.

514 Hans L. Bodlaender, Peter Gritzmann, Victor Klee, and Jan van Leeuwen. Computational complex-
 515 ity of norm-maximization. *Combinatorica*, 10(2):203–225, 1990.

516 Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
 517 Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
 518 and Karol Zieba. End to end learning for self-driving cars. *CoRR*, abs/1604.07316, 2016.

519 Rainie Bozzai, Victor Reis, and Thomas Rothvoss. The vector balancing constant for zonotopes.
 520 In *2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)*, pp. 1292–
 521 1300. IEEE, 2023.

522 Cornelius Brand, Robert Ganian, and Mathis Rocton. New complexity-theoretic frontiers of
 523 tractability for neural network training. *Advances in Neural Information Processing Systems*,
 524 36, 2023.

525 Michael B. Cohen and Richard Peng. ℓ_p row sampling by lewis weights. In *Proceedings of the 47th*
 526 *Annual ACM on Symposium on Theory of Computing (STOC '15)*, pp. 183–192. ACM, 2015.

527 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, D  aniel Marx, Marcin
 528 Pilipczuk, Michal Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*. Springer, 2015.

529 Rodney G. Downey and Michael R. Fellows. *Fundamentals of Parameterized Complexity*. Springer,
 530 2013.

531 H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes
 532 with applications. *SIAM Journal on Computing*, 15(2):341–363, 1986.

540 Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
 541 and accurate estimation of lipschitz constants for deep neural networks. *Advances in Neural*
 542 *Information Processing Systems*, 32, 2019.

543

544 Claudio Ferrari, Mark Niklas Müller, Nikola Jovanović, and Martin Vechev. Complete verification
 545 via multi-neuron relaxation guided branch-and-bound. In *International Conference on Learning*
 546 *Representations*, 2022.

547

548 J.-A. Ferrez, Komei Fukuda, and Thomas M. Liebling. Solving the fixed rank convex quadratic
 549 maximization in binary variables by a parallel zonotope construction algorithm. *European Journal*
 550 *of Operations Research*, 166(1):35–50, 2005.

551

552 Vincent Froese and Christoph Hertrich. Training neural networks is np-hard in fixed dimension.
 553 *Advances in Neural Information Processing Systems*, 36, 2023.

554

555 Vincent Froese, Christoph Hertrich, and Rolf Niedermeier. The computational complexity of ReLU
 556 network training parameterized by data dimensionality. *Journal of Artificial Intelligence Re-*
 557 *search*, 74:1775–1790, 2022.

558

559 Vincent Froese, Moritz Grillo, Christoph Hertrich, and Martin Skutella. Open problem: Fixed-
 560 parameter tractability of zonotope problems. In *Proceedings of Thirty Eighth Conference on*
 561 *Learning Theory*, volume 291 of *Proceedings of Machine Learning Research*, pp. 6210–6214.
 562 PMLR, 2025a.

563

564 Vincent Froese, Moritz Grillo, and Martin Skutella. Complexity of injectivity and verification of
 565 relu neural networks (extended abstract). In *Proceedings of Thirty Eighth Conference on Learn-*
 566 *ing Theory*, volume 291 of *Proceedings of Machine Learning Research*, pp. 2188–2189. PMLR,
 567 2025b.

568

569 Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
 570 sato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli. On the effectiveness of interval
 571 bound propagation for training verifiably robust models. *CoRR*, abs/1810.12715, 2018.

572

573 Felix Gruber and Matthias Althoff. Computing safe sets of linear sampled-data systems. *IEEE*
 574 *Control Systems Letters*, 5(2):385–390, 2020.

575

576 Felix Gruber and Matthias Althoff. Scalable robust output feedback mpc of linear sampled-data
 577 systems. In *2021 60th IEEE Conference on Decision and Control (CDC)*, pp. 2563–2570. IEEE,
 578 2021.

579

580 Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns.
 581 *Advances in Neural Information Processing Systems*, 32, 2019.

582

583 Christoph Hertrich and Georg Loho. Neural networks and (virtual) extended formulations. *CoRR*,
 584 abs/2411.03006, 2024.

585

586 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k -SAT. *Journal of Computer*
 587 *and System Sciences*, 62(2):367–375, 2001.

588

589 Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant of relu
 590 networks. *Advances in Neural Information Processing Systems*, 33, 2020.

591

592 Matt Jordan, Jonathan Hayase, Alex Dimakis, and Sewoong Oh. Zonotope domains for lagrangian
 593 neural network verification. *Advances in Neural Information Processing Systems*, 35, 2022.

594

595 Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: a
 596 calculus for reasoning about deep neural networks. *Formal Methods in System Design*, 60(1):
 597 87–116, 2022.

598

599 Panagiotis Kouvaros and Alessio Lomuscio. Towards scalable complete verification of ReLU neural
 600 networks via dependency-based branching. In *Proceedings of the Thirtieth International Joint*
 601 *Conference on Artificial Intelligence (IJCAI '21)*, pp. 2643–2650, 2021.

594 Adrian Kulmburg and Matthias Althoff. On the co-NP-completeness of the zonotope containment
 595 problem. *European Journal of Control*, 62:84–91, 2021.
 596

597 Adrian Kulmburg, Lukas Schafer, and Matthias Althoff. Approximability of the containment prob-
 598 lem for zonotopes and ellipsotopes. *IEEE Transactions on Automatic Control*, 2025.

599 Yuhao Mao, Yani Zhang, and Martin Vechev. On the expressiveness of multi-neuron convex relax-
 600 ations. *arXiv preprint arXiv:2410.06816*, 2024.
 601

602 Abdul Majid Mian and S Chowla. On the b2 sequences of sidon. *Proc. Nat. Acad. Sci. India. Sect.*
 603 *A*, 14:3–4, 1944.
 604

605 Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
 606 regions of deep neural networks. *Advances in Neural Information Processing Systems*, 27, 2014.

607 Kevin O’Bryant. A complete annotated bibliography of work related to sidon sequences. *The*
 608 *Electronic Journal of Combinatorics [electronic only]*, 11, 2004.
 609

610 Ansgar Rössig and Milena Petkovic. Advances in verification of ReLU neural networks. *Journal of*
 611 *Global Optimization*, 81(1):109–152, 2021.

612 Sadra Sadraddini and Russ Tedrake. Linear encodings for polytope containment problems. In *2019*
 613 *IEEE 58th conference on decision and control (CDC)*, pp. 4367–4372. IEEE, 2019.
 614

615 Marco Sälzer and Martin Lange. Reachability in simple neural networks. *Fundamenta Informaticae*,
 616 189(3-4):241–259, 2022.
 617

618 A. Schrijver. *Theory of Linear and Integer programming*. Wiley-Interscience, 1986.
 619

620 Vladimir Shenmaier. Complexity and approximation of finding the longest vector sum. *Computa-*
 621 *tional Mathematics and Mathematical Physics*, 58(6):850–857, 2018.
 622

623 Vladimir Shenmaier. Complexity and algorithms for finding a subset of vectors with the longest
 624 sum. *Theoretical Computer Science*, 818:60–73, 2020.
 625

626 Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certi-
 627 fying neural networks. *Proceedings of the ACM on Programming Languages*, 3(POPL), 2019.
 628

629 Moritz Stargalla, Christoph Hertwich, and Daniel Reichman. The computational complexity of
 630 counting linear regions in ReLU neural networks. *arXiv preprint arXiv:2505.16716*, 2025. Ac-
 631 cepted for publication at NeurIPS 2025.
 632

633 Alfred Stöhr. Gelöste und ungelöste Fragen über basen der natürlichen zahlenreihe. ii. *Journal für*
 634 *die reine und angewandte Mathematik*, 194:111–140, 1955.
 635

636 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
 637 low, and Rob Fergus. Intriguing properties of neural networks. In *International Conference on*
 638 *Learning Representations*, 2014.
 639

640 Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
 641 efficient estimation. *Advances in Neural Information Processing Systems*, 31, 2018.
 642

643 Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
 644 and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In
 645 *International Conference on Machine Learning*, 2018a.
 646

647 Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
 648 Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach.
 649 In *International Conference on Learning Representations*, 2018b.
 650

651 Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
 652 defenses. *Advances in Neural Information Processing Systems*, 31, 2018.
 653

648 Liren Yang, Hang Zhang, Jean-Baptiste Jeannin, and Necmiye Ozay. Efficient backward reachability
 649 using the minkowski difference of constrained zonotopes. *IEEE Transactions on Computer-Aided
 650 Design of Integrated Circuits and Systems*, 41(11):3969–3980, 2022.

651 Thomas Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by
 652 hyperplanes. *Memoirs of the American Mathematical Society*, 1(154), 1975.

653 Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
 654 General cutting planes for bound-propagation-based neural network verification. *Advances in
 655 Neural Information Processing Systems*, 35, 2022.

658 A ADDITIONAL MATERIAL

660 A.1 ADDITIONAL PRELIMINARIES

662 **Geometry of ReLU Networks.** We repeat basic definitions from polyhedral geometry, see Schri-
 663 jver (1986) for more details. A *polyhedron* P is the intersection of finitely many closed halfspaces.
 664 A *polyhedral cone* $C \subseteq \mathbb{R}^d$ is a polyhedron such that $\lambda u + \mu v \in C$ for every $u, v \in C$ and
 665 $\lambda, \mu \in \mathbb{R}_{\geq 0}$. A cone is *pointed* if it does not contain a straight line. A *ray* ρ is a one-dimensional
 666 pointed cone; a vector r is a *ray generator* of ρ if $\rho = \{\lambda r : \lambda \geq 0\}$. A *polyhedral complex* \mathcal{P}
 667 is a finite collection of polyhedra such that $\emptyset \in \mathcal{P}$, if $P \in \mathcal{P}$, then all faces of P are in \mathcal{P} , and if
 668 $P, P' \in \mathcal{P}$, then $P \cap P'$ is a face of P and P' . A *cell* is a full-dimensional element of a polyhedral
 669 complex. A *hyperplane arrangement* \mathcal{H} is a finite collection of hyperplanes in \mathbb{R}^d .

670 A *ReLU network* computing the CWPL function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ with

$$672 f(x) := W_\ell \cdot (\phi_{W_{\ell-1}, b_{\ell-1}} \circ \cdots \circ \phi_{W_1, b_1})(x) + b_\ell,$$

673 is affine linear on each cell of an associated polyhedral complex Σ_f (the one induced by the closure
 674 of the full-dimensional activation regions (Hanin & Rolnick, 2019) of the network). In particular,
 675 the encoding size of every polyhedron in this complex is polynomially bounded in the encoding size
 676 of the neural network (Froese et al., 2025b). It is well known that for 2-layer ReLU networks, Σ_f
 677 corresponds to a hyperplane arrangement (Montúfar et al., 2014).

678 **Hyperplane Arrangements.** Any hyperplane arrangement with n hyperplanes in d dimensions
 679 has at most $\mathcal{O}(n^d)$ many cells (Zaslavsky, 1975), and it is possible to enumerate them in $\mathcal{O}(n^d)$
 680 time (Edelsbrunner et al., 1986). All zero- and one-dimensional faces of a hyperplane arrangement
 681 can be enumerated in $\mathcal{O}(n^d \cdot \text{poly}(N))$ and $\mathcal{O}(n^{d-1} \cdot \text{poly}(N))$ time, respectively, where N is the
 682 encoding size of the hyperplane arrangement, since they arise from an intersection of d and $d-1$
 683 hyperplanes. An ℓ -layer ReLU network partitions \mathbb{R}^d into at most $\mathcal{O}(n^{(\ell-1)d})$ cells, where n is the
 684 width of the network. We can enumerate these cells in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time, where N is the
 685 encoding size of the ReLU network (the first hidden layer gives a hyperplane arrangement; with
 686 every subsequent hidden layer, a cell is intersected with at most n hyperplanes, partitioning the cell
 687 into at most n^d cells).

689 A.2 ADDITIONAL FIGURES

691 Figure 5 illustrates how the sum of the spike function $s_{r,l}$ and penalty functions p_r, p_l in the proof
 692 of Proposition 3.1 behaves for a fixed color pair.

694 B PROOFS

696 B.1 PROOF OF THEOREM 2.1

698 **Proof. ZONOTYPE (NON-)CONTAINMENT.** It is well-known that a zonotope $Z \subset \mathbb{R}^d$ with n
 699 generators has $\mathcal{O}(n^{d-1})$ vertices which can be enumerated in $\mathcal{O}(n^{d-1})$ time (Ferrez et al., 2005).
 700 Note that Z is contained in another zonotope Z' if and only if all vertices of Z are contained in Z' .
 701 Hence, by enumerating the vertices of Z and checking containment in Z' (e.g. by solving a linear
 702 program), we obtain an $\mathcal{O}(n^{d-1} \cdot \text{poly}(N))$ -time algorithm.

Figure 5: Illustration of the area around node values for a fixed color pair for non-adjacent and adjacent nodes. The values are based on the example given in Figure 1. For non-adjacent nodes, only the two penalty functions intersect, while for adjacent nodes, the penalty functions intersect also with the spike function.

L_p -MAX ON ZONOTOPES. We can enumerate in $\mathcal{O}(n^{d-1} \cdot \text{poly}(N))$ time all vertices of the zonotope and thus obtain an $\mathcal{O}(n^{d-1} \cdot \text{poly}(N) \cdot T)$ time algorithm, where T denotes the time to evaluate the L_p -norm of a vector in \mathbb{R}^d .

□

B.2 PROOF OF THEOREM 2.2

Before going into the proof of Theorem 2.2, we first prove that network verification for ℓ -layer ReLU networks over polyhedra is solvable in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time.

Lemma B.1. *Let $f: \mathbb{R}^d \rightarrow \mathbb{R}^m$ be an ℓ -layer ReLU network and let $P \subseteq \mathbb{R}^d$ and $Q \subseteq \mathbb{R}^m$ be polyhedra given in halfspace representation. Then, we can decide whether $f(P) \subseteq Q$ holds in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time (where n is the network width and N the combined encoding size of the network and the polyhedra).*

Proof. Let $Q = \{x \in \mathbb{R}^m : v_i^\top x \leq u_i, i \in [k]\}$. Then, we have $f(P) \subseteq Q$ if and only if for every cell $C \in \Sigma_f$ and every constraint $i \in [k]$, we have

$$u_i \geq \max_{x \in C \cap P} v_i^\top f_C(x) = \max_{x \in C \cap P} v_i^\top (A_C^\top x + b_C) = v_i^\top b_C + \max_{x \in C \cap P} (A_C^\top v_i)^\top x,$$

where f_C is the affine linear function of f restricted to C , that is, $f(x) = f_C(x) := A_C^\top x + b_C$ for all $x \in C$. Note that the above condition can be verified by solving a linear program whose encoding size is polynomially bounded in N . Since linear programs can be solved in polynomial time and cells can be enumerated in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time, it follows that we can check whether $f(P) \subseteq Q$ holds in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time. □

Proof of Theorem 2.2. Let $f: \mathbb{R}^d \rightarrow \mathbb{R}$ with $f(x) = W_\ell \cdot (\phi_{W_{\ell-1}, b_{\ell-1}} \circ \dots \circ \phi_{W_1, b_1})(x) + b_\ell$ be the function computed by an ℓ -layer ReLU network and let Σ_f be the corresponding polyhedral complex. Further, let n denote the width and N the encoding size of the network and let $f': \mathbb{R}^d \rightarrow \mathbb{R}$ with $f'(x) := W_\ell \cdot (\phi_{W_{\ell-1}, \mathbf{0}} \circ \dots \circ \phi_{W_1, \mathbf{0}})(x)$ be the function of the ReLU network without biases.

756 **Computing the Maximum over a Polyhedron P .** Here, we assume that the maximum
757 $\max_{x \in P} f(x)$ exists and N denotes the combined encoding size of the network and the polyhe-
758 dron P . We can compute this maximum by enumerating cells of Σ_f and solving the linear program
759 $\max_{x \in C \cap P} f_C(x)$ for each cell $C \in \Sigma_f$, where f_C is the affine linear function of f restricted to C , that is,
760 $f(x) = f_C(x) := a_C^\top x + b_C$ for all $x \in C$. Note that the encoding size of the linear program is poly-
761 nomially bounded in N . Since linear programs can be solved in polynomial time and cells can be
762 enumerated in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time, it follows that $\max_{x \in P} f(x) = \max_{C \text{ cell of } \Sigma_f} \max_{x \in C \cap P} f_C(x)$
763 can be computed in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time.

764 **ℓ -LAYER RELU POSITIVITY.** Follows from applying Lemma B.1 to $P = \mathbb{R}^d$ and $Q = (-\infty, 0]$,
765 since there being a point $x \in \mathbb{R}^d$ with $f(x) > 0$ is equivalent to $f(\mathbb{R}^d) \not\subseteq (-\infty, 0]$.
766

767 **ℓ -LAYER RELU SURJECTIVITY.** Froese et al. (2025b, Lemma 14) show that for surjectivity, f is
768 surjective if and only if f' is surjective, which is equivalent to there being two points $r^+, r^- \in \mathbb{R}^d$
769 with $f'(r^-) < 0 < f'(r^+)$. We can check this in $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N))$ time by applying the
770 algorithm for ℓ -LAYER RELU POSITIVITY to f' and $-f'$.
771

772 **ℓ -LAYER RELU L_p -LIPSCHITZ CONSTANT.** Note that the L_p -Lipschitz constant of f is equal to
773 the maximum L_q -norm value (where L_q is the dual norm of the L_p -norm, so $1/p + 1/q = 1$) of any
774 gradient of the linear function that arises by restricting f to a cell of Σ_f . Thus, by enumerating all
775 cells of Σ_f , we obtain an $\mathcal{O}(n^{(\ell-1)d} \cdot \text{poly}(N) \cdot T)$ time algorithm, where T denotes the time to
776 evaluate the L_q -norm of a vector in \mathbb{R}^d .
777

778 **ℓ -LAYER RELU ZERO FUNCTION CHECK.** Follows from applying Lemma B.1 to $P = \mathbb{R}^d$ and
779 $Q = \{0\}$. \square

780 B.3 PROOF OF PROPOSITION 3.1

782 Before going into detail, we first introduce a useful definition and prove a preliminary result.

783 **Definition B.2.** A *Sidon set* is a set of positive integers $A = \{a_1, \dots, a_m\}$ where the sums $a_i + a_j$
784 with $i \leq j$ are all different.
785

786 For a survey on Sidon sets, we refer to (O’Bryant, 2004). The greedy Sidon set, introduced by Mian
787 & Chowla (1944), is recursively constructed as follows: take $a_1 = 1$, and for $n > 1$, let a_n be
788 the smallest nonnegative integer such that $\{a_1, \dots, a_n\}$ is a Sidon set (see A005282). Stöhr (1955)
789 noted that $a_n \in \mathcal{O}(n^3)$ holds. We note that the greedy Sidon set of size n can be computed in $n^{\mathcal{O}(1)}$
790 time. We use the following result.

791 **Lemma B.3.** Let A be a Sidon set of size n , and let W_1, \dots, W_k be a partition of A into disjoint
792 subsets. Then, for every pair $i, j \in \binom{[k]}{2}$, the sums $a + b$ with $a \in W_i, b \in W_j$ are all different.
793

794 *Proof.* Suppose that there are two pairs $(a, b) \neq (c, d) \in W_i \times W_j$ with $a + b = c + d$. Then, there
795 exist elements $a_i, a_j, a_r, a_l \in A$ such that $a_i = a, a_j = b, a_r = c, a_l = d$ with $\{i, j\} \neq \{r, l\}$ and
796 $a_i + a_j = a_r + a_l$, which contradicts the fact that A is a Sidon set. \square

797 In other words, given an element $w \in W_i + W_j$, there is exactly one pair $(w_i, w_j) \in W_i \times W_j$ with
798 $w = w_i + w_j$.
799

800 *Proof of Proposition 3.1.* Let $(G = (V = V_1 \dot{\cup} \dots \dot{\cup} V_k, E), k)$ be an instance of MULTICOLORED
801 CLIQUE, where $V_c = \{v_{c,1}, \dots, v_{c,n_c}\}$ for $c \in [k]$ and $E = \bigcup_{(r,l) \in \binom{[k]}{2}} E_{r,l}$, where $E_{r,l}$ denotes
802 the set of edges whose nodes have color r and l . Further, let A be the greedy Sidon set of size $|V|$
803 and let W_1, \dots, W_k be a partition of A into k disjoint subsets such that $|W_i| = n_i$ holds. Note that
804 this allows us to assign each node $v_{c,i}$ to a unique element $\omega_{c,i}$ of A , namely the i -th element of V_c .
805 For every edge $\{v_{r,i}, v_{l,j}\}$, we define the constant $\omega_{r,i,l,j} := \omega_{r,i} + \omega_{l,j}$. Since A is a Sidon set, the
806 value $\omega_{r,i,l,j}$ uniquely determines the edge $\{v_{r,i}, v_{l,j}\}$. We construct a ReLU network with k input
807 variables x_1, \dots, x_k and $3(|V| + |E|)$ hidden neurons as follows.
808

809 For every color $c \in [k]$, we introduce a *node selection* gadget which ensures that the input value x_c
810 encodes a node in V_c . To this end, we create a “penalty function” $p_c: \mathbb{R} \rightarrow [0, 1]$ (see Figure 2) that

810 has n_c narrow spikes around the value $\omega_{c,i}$ (that is, it goes up from 0 to 1 and down to 0 again) for
 811 each $v_{c,i} \in V_c$ and is zero everywhere else:

$$812 \quad 813 \quad 814 \quad 815 \quad p_c(x) := \begin{cases} 8(x - \omega_{c,i} + \frac{1}{8}), & \text{if } x \in [\omega_{c,i} - \frac{1}{8}, \omega_{c,i}], i \in [n_c] \\ 1 - 8(x - \omega_{c,i}), & \text{if } x \in (\omega_{c,i}, \omega_{c,i} + \frac{1}{8}], i \in [n_c] \\ 0, & \text{if } x \notin \bigcup_{i \in V_c} [\omega_{c,i} - \frac{1}{8}, \omega_{c,i} + \frac{1}{8}] \end{cases}.$$

816 The penalty function p_c can be implemented with $3n_c$ hidden neurons:

$$817 \quad 818 \quad 819 \quad 820 \quad p_c(x) = \sum_{i \in [n_c]} (\max(0, 8(x - \omega_{c,i} + \frac{1}{8})) - \max(0, 16(x - \omega_{c,i})) + \max(0, 8(x - \omega_{c,i} - \frac{1}{8}))).$$

821 Next, we introduce an *edge verification* gadget which verifies that each pair of nodes selected by the
 822 node selection gadgets is connected by an edge. For every pair of colors $(r, l) \in \binom{[k]}{2}$, we define a
 823 “spike function” $s_{r,l}: \mathbb{R}^2 \rightarrow [0, 1]$ (see Figure 1) that is zero everywhere except for a set of $|E_{r,l}|$
 824 parallel stripes in which $s_{r,l}$ forms a spike.

$$825 \quad 826 \quad 827 \quad 828 \quad 829 \quad 830 \quad s_{r,l}(x, y) := \begin{cases} 4(x + y - \omega_{r,i,l,j} - \frac{1}{4}), & \text{if } x + y \in [\omega_{r,i,l,j} - \frac{1}{4}, \omega_{r,i,l,j}], \{v_{r,i}, v_{l,j}\} \in E_{r,l} \\ 1 - 4(x + y - \omega_{r,i,l,j}), & \text{if } x + y \in (\omega_{r,i,l,j}, \omega_{r,i,l,j} + \frac{1}{4}], \{v_{r,i}, v_{l,j}\} \in E_{r,l} \\ 0, & \text{if } x + y \notin \bigcup_{\{v_{r,i}, v_{l,j}\} \in E_{r,l}} [\omega_{r,i,l,j} - \frac{1}{4}, \omega_{r,i,l,j} + \frac{1}{4}] \end{cases}.$$

831 Note that Lemma B.3 implies that $s_{r,l}(x, y) \leq 1$ holds for any input $(x, y) \in \mathbb{R}^2$, as the sums
 832 $\omega_{r,i} + \omega_{l,i} = \omega_{r,i,l,j}$ for $\{v_{r,i}, v_{l,j}\} \in E_{r,l}$ are all integral and different. Thus, the spike functions
 833 attain value 1 if and only if its inputs correspond to two nodes that share an edge. The spike function
 834 can be implemented with $3|E_{r,l}|$ hidden neurons:

$$835 \quad 836 \quad 837 \quad 838 \quad 839 \quad s_{r,l}(x, y) = \sum_{\{v_{r,i}, v_{l,j}\} \in E_{r,l}} (\max(0, 4(x + y - \omega_{r,i,l,j} + \frac{1}{4})) - \max(0, 8(x + y - \omega_{r,i,l,j})) \\ + \max(0, 4(x + y - \omega_{r,i,l,j} - \frac{1}{4}))).$$

840 By computing all penalty and spike functions in parallel and summing them up at the output neuron,
 841 we obtain a ReLU network that computes the function $f: \mathbb{R}^k \rightarrow \mathbb{R}$ with

$$842 \quad 843 \quad 844 \quad 845 \quad f(x_1, \dots, x_k) = \sum_{(r,l) \in \binom{[k]}{2}} s_{r,l}(x_r, x_l) + \sum_{c \in [k]} p_c(x_c).$$

846 Since every spike and penalty function is lower bounded by 0 and upper bounded by 1, it follows
 847 that f is lower bounded by 0 and upper bounded by $k + \binom{k}{2}$.

848 First, we show that the existence of a k -colored clique in G implies $\max_{x \in \mathbb{R}^k} f(x) = k + \binom{k}{2}$.
 849 Suppose that $\{v_{1,a_1}, \dots, v_{k,a_k}\} \subset V$ forms a k -colored clique in G . Then, we claim that the point
 850 $x^* = (\omega_{1,a_1}, \dots, \omega_{k,a_k})$ is a point with $f(x^*) = k + \binom{k}{2}$. First, note that $p_c(x_c^*) = 1$ holds for all
 851 $c \in [k]$. Further, for each pair of colors $(r, l) \in \binom{[k]}{2}$, $s_{r,l}(x_r^*, x_l^*) = 1$ holds, since $\{v_{r,a_r}, v_{l,a_l}\}$ is
 852 an edge in E_{rl} . Thus, we have $f(x^*) = k + \binom{k}{2}$.

853 Now, we show that if there is a point $x^* \in \mathbb{R}^k$ with $f(x^*) > k + \binom{k}{2} - 1$, then G has a k -colored
 854 clique. Suppose that $x^* \in \mathbb{R}^k$ is such a point. For this to be the case, the output of all spike and
 855 penalty functions must be strictly greater than zero, that is, we have $p_c(x_c^*) > 0$ for every $c \in [k]$
 856 and $s_{r,l}(x_r^*, x_l^*) > 0$ for every pair $(r, l) \in \binom{[k]}{2}$, since otherwise $f(x^*) \leq k + \binom{k}{2} - 1$ holds. For
 857 every $c \in [k]$, $p_c(x_c^*) > 0$ implies by definition that there is exactly one element $a_c \in V_c$ with
 858 $x_c^* \in (\omega_{c,a_c} - \frac{1}{8}, \omega_{c,a_c} + \frac{1}{8})$. In other words, the input x_c^* corresponds to the node v_{c,a_c} . We now
 859 claim that $\{v_{1,a_1}, \dots, v_{k,a_k}\}$ forms a k -colored clique in G . To see this, observe that for every pair
 860 $(r, l) \in \binom{[k]}{2}$, $s_{r,l}(x_r^*, x_l^*) > 0$ together with $x_r^* + x_l^* \in (\omega_{r,a_r,l,a_l} - \frac{1}{4}, \omega_{r,a_r,l,a_l} + \frac{1}{4})$ implies
 861 by definition of $s_{r,l}$ that $\{v_{r,a_r}, v_{l,a_l}\}$ is an edge, which proves that $\{v_{1,a_1}, \dots, v_{k,a_k}\}$ is indeed a
 862 k -colored clique. \square

864 B.4 PROOF OF THEOREM 4.2
865

866 Before proving Theorem 4.2, we first prove an auxiliary lemma.

867 **Lemma B.4.** *Let $f: \mathbb{R}^d \rightarrow \mathbb{R}$, $f(x) = \sum_{i=1}^n c_i \max\{0, a_i^\top x + b_i\} + B$ be the function that is
868 computed by a 2-layer ReLU network, where a_i, b_i, c_i, B are the weights and biases of this network,
869 and let $h: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ be the function computed by the homogenization of this network. Then, we
870 have $h(x, 1) = h(-x, -1)$ if and only if $\sum_{i=1}^n c_i(a_i^\top x + b_i) = 0$.*871
872 *Proof.* We have $h(x, y) = \sum_{i=1}^n c_i \max\{0, a_i^\top x + b_i y\} + B|y|$ and thus
873

874
$$h(x, 1) - h(-x, -1) = \sum_{i=1}^n c_i(\max\{0, a_i^\top x + b_i\} - \max\{0, -(a_i^\top x + b_i)\}) = \sum_{i=1}^n c_i(a_i^\top x + b_i).$$

875
876

□

877
878 *Proof of Theorem 4.2.* We give a parameterized reduction from MULTICOLORED CLIQUE. Let
879 $(G = (V = V_1 \dot{\cup} \dots \dot{\cup} V_k, E), k)$ be an instance of MULTICOLORED CLIQUE, and let $f: \mathbb{R}^k \rightarrow \mathbb{R}$
880 be the function of the network constructed in the proof of Proposition 3.1. Next, we modify the
881 network by setting the bias of the output node to $1 - k - \binom{k}{2}$. Let $g: \mathbb{R}^k \rightarrow \mathbb{R}$ be the function of this
882 modified network and let $h: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ be the function computed by the homogenization of this
883 modified network. By construction, we have $h(x, 1) = g(x) = f(x) + 1 - k - \binom{k}{2}$ for every $x \in \mathbb{R}^k$.
884 Note that $h(-x, -1) = h(x, 1)$ holds for every $x \in \mathbb{R}^k$, which follows directly from the definition
885 of f and Lemma B.4. Since the underlying network has no biases, the function g computed by the
886 network is positively homogeneous and thus $h(\lambda x, \lambda y) = \lambda h(x, y)$ holds for every $\lambda \geq 0$.
887888 By Proposition 3.1, G has a k -colored clique if and only if g has a positive point, since
889 $\max_{x \in \mathbb{R}^k} g(x) = 1$ holds if G has a k -colored clique and $\max_{x \in \mathbb{R}^k} g(x) \leq 0$ otherwise. To
890 finish the proof, observe that h has a positive point if and only if g has a positive point. If g has
891 a positive point x^* , then h also has a positive point $(x^*, 1)$. On the other hand, if h has a pos-
892 itive point (x^+, y^+) , then by positive homogeneity $\text{sgn}(y^+) \cdot \frac{x^+}{|y^+|}$ is a positive point for g , since
893 $0 < \frac{1}{|y^+|} h(x^+, y^+) = h(\frac{x^+}{|y^+|}, \text{sgn}(y^+)) = g(\text{sgn}(y^+) \cdot \frac{x^+}{|y^+|})$. Note that $y^+ = 0$ is not possible,
894 since $h(x, 0) = 0$ for every $x \in \mathbb{R}^k$ by construction, as deleting biases leads to the cancellation of
895 all terms in the spike and penalty functions. □
896897 B.5 PROOF OF COROLLARY 4.3
898899 *Proof.* We give a parameterized reduction from MULTICOLORED CLIQUE to approximating the
900 maximum of a 2-layer ReLU network. Let $(G = (V = V_1 \dot{\cup} \dots \dot{\cup} V_k, E), k)$ be an instance of
901 MULTICOLORED CLIQUE, let $f: \mathbb{R}^k \rightarrow \mathbb{R}$ be the function of the network constructed in the proof
902 of Proposition 3.1 and let $g: \mathbb{R}^k \rightarrow \mathbb{R}$ be the function of the same network with an additional bias
903 of $1 - k - \binom{k}{2}$ at the output node, that is, $g(x) = f(x) + 1 - k - \binom{k}{2}$ holds for every $x \in \mathbb{R}^k$. With
904 Proposition 3.1, it follows that we have $\max_{x \in \mathbb{R}^k} g(x) = 1$ if and only if G has a k -colored clique
905 and $\max_{x \in \mathbb{R}^k} g(x) \leq 0$ otherwise. Thus, approximating the maximum of this network within any
906 multiplicative factor over the polytope $P = [0, n^3]^d$ would allow us to distinguish between the two
907 cases, which implies the theorem. □
908909 B.6 PROOF OF THEOREM 5.1
910911 *Proof.* Follows from Theorem 4.2 and the equivalence to 2-LAYER RELU POSITIVITY without
912 biases (Froese et al., 2025b, Proposition 18). □
913914 B.7 PROOF OF THEOREM 6.2
915916 *Proof.* We give a parameterized reduction (which is also a polynomial reduction) from MULTICOLO-
917 ORED CLIQUE to 2-LAYER RELU L_p -LIPSCHITZ CONSTANT. We first discuss the case $p \in [1, \infty]$
918 and later discuss which modifications are necessary to extend the proof to $p \in (0, 1)$.

Let $(G = (V = V_1 \dot{\cup} \dots \dot{\cup} V_k, E), k)$ be an instance of MULTICOLORED CLIQUE. Further, let $g: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ be the function computed by the homogenized network constructed in the proof of Proposition 3.1.

Note that for any positively homogeneous CPWL function $f: \mathbb{R}^d \rightarrow \mathbb{R}$, the L_p -Lipschitz constant can be rewritten to $L_p(f) = \max_{\|x\|_p \leq 1} |f(x)|$, which follows from the fact that $L_p(f)$ is the maximum L_p -Lipschitz constant of f restricted to any of the full-dimensional cones $C \in \Sigma_f$, where $f(x) = a_C^\top x$ for all $x \in C$ (f is linear on C) and the L_p -Lipschitz constant of the linear function in this cell is equal to $\max_{\|x\|_p \leq 1} |a_C^\top x|$ (Jordan & Dimakis, 2020).

We now scale all y coefficients of g by $\varepsilon := \frac{1}{2k \cdot a_n \cdot (k + \binom{k}{2})}$, where $a_n \in \mathcal{O}(n^3)$ is the maximum element of the greedy Sidon set of size n , and obtain the modified positively homogeneous CPWL function $h: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$. Now, every maximizer x^* of $\max_{x \in \mathbb{R}^k} h(x, 1)$ satisfies $|x_i^*| \leq a_n \cdot \varepsilon$, since every maximizer x' of $\max_{x \in \mathbb{R}^k} g(x, 1)$ previously satisfied $|x_i'| \leq a_n$. This follows from the fact that scaling the y coefficients is equivalent to scaling the spike and penalty functions in the reduction. Now, we define

$$\mathcal{L} := \max_{x \in \mathbb{R}^k} h(x, 1)$$

and claim the following:

$$\mathcal{L} \geq L_p(h) \geq \mathcal{L}(1 - k \cdot a_n \cdot \varepsilon).$$

The inequality $\mathcal{L} \geq L_p(h)$ follows from the fact that if $(x^*, y^*) \in \arg \max_{\|(x, y)\|_p \leq 1} h(x, y)$, then $|y^*| \leq 1$ and

$$L_p(h) = h(x^*, y^*) = |y^*| \cdot h\left(\frac{x^*}{|y^*|}, \text{sgn}(y^*)\right) \leq h\left(\frac{x^*}{|y^*|}, \text{sgn}(y^*)\right) \leq \max_{x \in \mathbb{R}^k} h(x, 1) = \mathcal{L}$$

holds. The second inequality follows from the fact that if x^* is a maximizer of $\max_{x \in \mathbb{R}^k} h(x, 1)$, then $|x_i^*| \leq a_n \cdot \varepsilon$ and thus

$$\|(1 - k \cdot a_n \cdot \varepsilon) \cdot (x^*, 1)\|_p \leq \|(1 - k \cdot a_n \cdot \varepsilon) \cdot (x^*, 1)\|_1 \leq (1 - k \cdot a_n \cdot \varepsilon) + \sum_{i=1}^k |x_i^*| \leq 1$$

holds, which makes $(1 - k \cdot a_n \cdot \varepsilon) \cdot (x^*, 1)$ a feasible point for $\max_{\|(x, y)\|_p \leq 1} h(x, y)$.

Given this estimation, we now make a case distinction: if G has a k -colored clique, then $\mathcal{L} = (k + \binom{k}{2}) \cdot \varepsilon$ and

$$L_p(h) \geq (1 - k \cdot a_n \cdot \varepsilon) \cdot (k + \binom{k}{2}) \cdot \varepsilon = (1 - \frac{1}{2(k + \binom{k}{2})}) \cdot (k + \binom{k}{2}) \cdot \varepsilon = (k + \binom{k}{2} - \frac{1}{2}) \cdot \varepsilon.$$

On the other hand, if G does not have a k -colored clique, then

$$L_p(h) \leq \mathcal{L} \leq (k + \binom{k}{2} - 1) \cdot \varepsilon.$$

Therefore, we have a separation of the L_p -Lipschitz constant $L_p(h)$ depending on whether G has a k -colored clique or not. With this, the 2-LAYER RELU L_p -LIPSCHITZ CONSTANT instance consisting of $L = (k + \binom{k}{2} - \frac{1}{2}) \cdot \varepsilon$ and the underlying network of h is a yes-instance if and only if G is a yes-instance of MULTICOLORED CLIQUE, which concludes the proof.

For every $p \in (0, 1) \cap \mathbb{Q}$, we can scale the network with $\varepsilon := \frac{1}{a_n \cdot k^N} \cdot \left(p \left(1 - \frac{k + \binom{k}{2} - \frac{1}{2}}{k + \binom{k}{2}} \right) \right)^N$, where $N = \lceil 1/p \rceil$. Note that since p is a fixed rational constant, ε is also rational and still polynomial in the input size. We estimate

$$\begin{aligned} \varepsilon &= \frac{1}{a_n \cdot k^N} \cdot \left(p \left(1 - \frac{k + \binom{k}{2} - \frac{1}{2}}{k + \binom{k}{2}} \right) \right)^N \leq \frac{1}{a_n \cdot k^N} \cdot \left(1 - \left(\frac{k + \binom{k}{2} - \frac{1}{2}}{k + \binom{k}{2}} \right)^p \right)^N \\ &\leq \frac{1}{a_n \cdot k^{1/p}} \cdot \left(1 - \left(\frac{k + \binom{k}{2} - \frac{1}{2}}{k + \binom{k}{2}} \right)^p \right)^{1/p} =: \varepsilon^*. \end{aligned}$$

972 Next, we can estimate $\mathcal{L} \geq L_p(h) \geq \mathcal{L}(1 - k \cdot (a_n \cdot \varepsilon)^p)^{1/p}$, where the second inequality follows
 973 from the fact that if x^* is a maximizer of $\max_{x \in \mathbb{R}^k} h(x, 1)$, then $|x_i^*| \leq a_n \cdot \varepsilon$ and thus
 974

$$975 \quad \| (1 - k \cdot (a_n \cdot \varepsilon)^p)^{1/p} \cdot (x^*, 1) \|_p = \left(1 - k \cdot (a_n \cdot \varepsilon)^p + (1 - k \cdot (a_n \cdot \varepsilon)^p) \sum_{i=1}^k |x_i^*|^p \right)^{1/p} \\ 976 \quad \leq (1 - k \cdot (a_n \cdot \varepsilon)^p + (1 - k \cdot (a_n \cdot \varepsilon)^p) \cdot k \cdot a_n \cdot \varepsilon)^{1/p} \leq 1 \\ 977$$

978 holds, which makes $(1 - k \cdot (a_n \cdot \varepsilon)^p)^{1/p} \cdot (x^*, 1)$ a feasible point for $\max_{\| (x, y) \|_p \leq 1} h(x, y)$.
 979

980 We then proceed with the estimation for the case where G has a k -colored clique with
 981

$$982 \quad L_p(h) \geq (1 - k \cdot (a_n \cdot \varepsilon)^p)^{1/p} \cdot (k + \binom{k}{2}) \cdot \varepsilon \\ 983 \quad \geq (1 - k \cdot (a_n \cdot \varepsilon^*)^p)^{1/p} \cdot (k + \binom{k}{2}) \cdot \varepsilon \\ 984 \quad = \frac{k + \binom{k}{2} - \frac{1}{2}}{k + \binom{k}{2}} \cdot (k + \binom{k}{2}) \cdot \varepsilon = (k + \binom{k}{2} - \frac{1}{2}) \cdot \varepsilon, \\ 985 \\ 986 \\ 987$$

988 which gives the same estimation as previously for $p \in [1, \infty]$ (note that we cannot directly use ε^* as
 989 scaling factor, since ε^* might not be rational). \square
 990

991 B.8 PROOF OF THEOREM 7.1

992 *Proof.* Let $A = (a_1, \dots, a_n) \in \mathbb{R}^{d \times n}$ be a matrix and let $Z(A) = \sum_{i=1}^n \text{conv}\{0, a_i\} \subset \mathbb{R}^d$ be the
 993 corresponding zonotope. Defining $c := \frac{1}{2} \sum_{i=1}^n a_i$ as the center of the zonotope, we have
 994

$$995 \quad Z - c = \sum_{i=1}^n \text{conv}\left\{-\frac{a_i}{2}, \frac{a_i}{2}\right\} = \sum_{i=1}^n \text{conv}\left\{0, -\frac{a_i}{2}\right\} + \sum_{i=1}^n \text{conv}\left\{0, \frac{a_i}{2}\right\} \subset \mathbb{R}^d. \\ 996 \\ 997$$

998 We now construct the matrix $B = \left(\frac{a_1}{2}, \dots, \frac{a_n}{2}\right)^\top \in \mathbb{R}^{n \times d}$. Then, we have that
 999

$$1000 \quad \|Bx\|_1 = \sum_{i=1}^n \left| \frac{a_i}{2}^\top x \right| = \sum_{i=1}^n \max\left\{0, -\frac{a_i}{2}^\top x\right\} + \sum_{i=1}^n \max\left\{0, \frac{a_i}{2}^\top x\right\} \\ 1001 \\ 1002$$

1003 is the support function of the zonotope $Z - c$.
 1004

1005 Applying the polynomial algorithm of Cohen & Peng (2015), we find a matrix $B' = (b'_1, \dots, b'_r)^\top \in$
 1006 $\mathbb{R}^{r \times d}$ with $r \in \mathcal{O}(d \log d \varepsilon^{-2})$ such that with high probability, $(1 + \varepsilon)^{-1} \|Bx\|_1 \leq \|B'x\|_1 \leq$
 1007 $(1 + \varepsilon) \|Bx\|_1$ holds for all $x \in \mathbb{R}^d$. From the duality between zonotopes and their support function,
 1008 this implies $(1 + \varepsilon)^{-1} Z((B^\top, -B^\top)) \subseteq Z - c \subseteq (1 + \varepsilon) Z((B^\top, -B^\top))$. Defining $A' = (2b'_1 +$
 1009 $c, \dots, 2b'_r + c) \in \mathbb{R}^{d \times r}$, it follows that $(1 + \varepsilon)^{-1} \|Bx\|_1 \leq \|B'x\|_1 \leq (1 + \varepsilon) \|Bx\|_1$ implies
 1010 $(1 + \varepsilon)^{-1} Z(A') \subseteq Z(A) \subseteq (1 + \varepsilon) Z(A')$, which implies the theorem. \square
 1011

1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025