
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARAMETERIZED HARDNESS OF ZONOTOPE CON-
TAINMENT AND NEURAL NETWORK VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks with ReLU activations are a widely used model in machine learn-
ing. It is thus important to have a profound understanding of the properties of the
functions computed by such networks. Recently, there has been increasing inter-
est in the (parameterized) computational complexity of determining these prop-
erties. In this work, we close several gaps and resolve an open problem posted
by Froese et al. [COLT ’25] regarding the parameterized complexity of various
problems related to network verification. In particular, we prove that deciding
positivity (and thus surjectivity) of a function f : Rd → R computed by a 2-layer
ReLU network is W[1]-hard when parameterized by d. This result also implies
that zonotope (non-)containment is W[1]-hard with respect to d, a problem that is
of independent interest in computational geometry, control theory, and robotics.
Moreover, we show that (a) approximating the maximum within any multiplica-
tive factor in 2-layer ReLU networks, (b) computing the Lp-Lipschitz constant
for p ∈ (0,∞] in 2-layer networks, and (c) approximating the Lp-Lipschitz con-
stant in 3-layer networks are all NP-hard and W[1]-hard with respect to d. No-
tably, our hardness results are the strongest known so far and imply that the naive
enumeration-based methods for solving these fundamental problems are all essen-
tially optimal under the Exponential Time Hypothesis.

1 INTRODUCTION

Neural networks with rectified linear unit (ReLU) activations are a common model in deep learning.
In practice, such networks are trained on finite datasets and are expected to generalize reliably to
unseen inputs. However, even minor perturbations of the input may lead to unexpected or erroneous
outputs (Szegedy et al., 2014). This highlights the importance of certification of trained models,
which in turn requires a detailed understanding of the functions computed by ReLU networks.

A central problem in this context is network verification: Given a subset of inputs X , the question
is whether the network’s outputs are guaranteed to lie within a prescribed set Y . Commonly, the
sets X and Y take the form of balls or are specified by linear constraints. This question has received
increasing attention in recent years, particularly due to the deployment of neural networks in safety-
critical applications (Bojarski et al., 2016; Weng et al., 2018a; Kouvaros & Lomuscio, 2021; Rössig
& Petkovic, 2021; Katz et al., 2022). Recently, Froese et al. (2025b) established a connection be-
tween the basic verification task to decide whether a 2-layer ReLU network attains a positive output
(which is equivalent to surjectivity) and the classical geometry problem of zonotope containment.
The latter asks whether one zonotope is contained within another, a question that has been exten-
sively studied due to its applications in areas such as robotics and control (Sadraddini & Tedrake,
2019; Gruber & Althoff, 2020; 2021; Kulmburg & Althoff, 2021; Yang et al., 2022; Kulmburg et al.,
2025).

Beyond verification, robustness is often a crucial requirement since trained networks are typically
expected to be insensitive to small input perturbations. This property is commonly quantified in
terms of the network’s Lipschitz constant, which should ideally be small (Virmaux & Scaman, 2018;
Weng et al., 2018b; Fazlyab et al., 2019; Jordan & Dimakis, 2020).

Network verification (Katz et al., 2022; Sälzer & Lange, 2022; Froese et al., 2025b), estimating the
Lipschitz constant (Virmaux & Scaman, 2018; Jordan & Dimakis, 2020) and zonotope containment
(Kulmburg & Althoff, 2021) are all known to be (co)NP-hard. This intractability is closely linked to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the curse of dimensionality: As the input dimension d grows, the search space becomes prohibitively
large. A natural follow-up question is whether these problems become tractable for low-dimensional
input spaces. This perspective is particularly relevant since, in practice, high-dimensional data is
often assumed to lie near a low-dimensional submanifold of the input space. Motivated by this,
recent work has studied the parameterized complexity of neural network problems such as training
(Arora et al., 2018; Froese et al., 2022; Brand et al., 2023; Froese & Hertrich, 2023) and verification
(Froese et al., 2025b). Notably, while checking injectivity of a 2-layer ReLU network with n hidden
neurons can be done in (d+ 1)d · nO(1) time (that is, fixed-parameter tractability with respect to d)
(Froese et al., 2025b), the parameterized complexity status of network verification (in particular
positivity) and the Lipschitz constant have been posed as open problems at COLT ’25 (Froese et al.,
2025a).

1.1 OUR CONTRIBUTIONS

We answer the aforementioned questions by proving W[1]-hardness for the parameter input dimen-
sion (thus excluding fixed-parameter tractability under standard complexity assumptions). More-
over, we show that solving these problems via simple “brute-force” enumeration of the linear regions
of the network’s function is essentially optimal under the Exponential Time Hypothesis (ETH).

In Section 3, we give a reduction from the well-known MULTICOLORED CLIQUE problem to net-
work verification in which the network’s input dimension depends linearly on the clique size. This
reduction forms the basis for our hardness results and yields strong lower bounds based on the ETH.
The key difficulty here is that the input dimension must scale linearly with the clique size (in con-
trast, standard NP-hardness reductions allow the input dimension to grow without restriction).

Network Verification. We study the (co)NP-hard problems of deciding positivity, surjectivity, and
approximating the maximum of a 2-layer ReLU network f : Rd → R (with n hidden neurons), and
also the problem of deciding whether a 3-layer ReLU network computes the constant zero func-
tion. All these problems are special cases of (complements of) verification. For example, positivity
corresponds to checking whether there exists x ∈ Rd with f(x) > 0, that is, f(Rd) ̸⊆ (−∞, 0].
All these problems can be solved in nO(d) · poly(N) time with simple “brute-force” enumeration
algorithms (see Section 2). In Section 4, we prove W[1]-hardness with respect to d for all problems,
thereby resolving the open question by Froese et al. (2025a). Our reductions imply a running time
lower bound of nΩ(d) · poly(N) based on the ETH which shows that the simple enumeration algo-
rithms are essentially optimal. In particular, this implies an nΩ(d) · poly(N)-time lower bound for
the general network verification problem.

Zonotope Containment. In Section 5, we study the coNP-hard problem of deciding whether a
zonotope Z ⊂ Rd (given by its generators) is contained in another zonotope Z ′ ⊂ Rd. Based on a
duality of 2-layer ReLU networks and zonotopes, we obtain W[1]-hardness with respect to d and an
analogous running time lower bound of nΩ(d) · poly(N) assuming the ETH which shows that the
simple vertex enumeration algorithm is essentially optimal.

Lipschitz Constant. Virmaux & Scaman (2018) proved that computing the L2-Lipschitz constant
of a 2-layer ReLU network is NP-hard. In Section 6, we extend this to NP-hardness for every p ∈
(0,∞] and even W[1]-hardness with respect to d. Approximating the Lp-Lipschitz constant within
any multiplicative constant for 3-layer ReLU networks is known to be NP-hard (Jordan & Dimakis,
2020; Froese et al., 2025b). We also extend this result to W[1]-hardness with respect to d. Again,
our reductions imply running time lower bounds matching the running times of simple enumeration
algorithms. On the positive side, we show that for the restricted class of input convex networks,
computing the L1-Lipschitz constant is polynomial-time solvable and the L∞-Lipschitz constant is
fixed-parameter tractable (FPT) with respect to d. In Section 7, we discuss the equivalence between
Lipschitz constant computation and norm maximization on zonotopes and present a randomized
FPT-approximation algorithm, using results from subspace embeddings.

Limitations. Our paper is clearly of purely theoretical nature. We aim for a thorough understand-
ing of the problems from a computational complexity perspective. Hence, our results are naturally
worst-case results. Although the algorithms we give are essentially optimal in terms of running time

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(assuming the ETH), it might be possible to achieve a better running time by reducing the constant
hidden in the exponent. Moreover, additional assumptions on the network structure might render the
problems tractable (as in the case of input convex networks for the L1-Lipschitz constant). A full
literature review (e.g., for the broad field of network verification) is beyond the scope of this paper.

1.2 FURTHER RELATED WORK

Various heuristic methods for network verification have been proposed, including interval bound
propagation (Gowal et al., 2018), DeepZ (Wong et al., 2018), DeepPoly (Singh et al., 2019), multi-
neuron verification Ferrari et al. (2022), ZonoDual (Jordan et al., 2022), and cutting planes (Zhang
et al., 2022). Baader et al. (2024) and Mao et al. (2024) study the expressivity of convex relaxations
that are often used in practical network verification algorithms. Lp-norm maximization on zonotopes
is also known as the Longest Vector Sum problem and has a wide range of applications in pattern
recognition, clustering, signal processing, and analysis of large-scale data (Baburin & Pyatkin, 2007;
Shenmaier, 2018; 2020). Special cases were studied before (Bodlaender et al., 1990; Ferrez et al.,
2005).

2 PRELIMINARIES

Notation. For n ∈ N, we define [n] := {1, . . . , n}. For k, n ∈ N, k ≤ n, we define
(
[n]
k

)
:= {A ⊆

[n] : |A| = k}. A function f : Rd → Rm is positively homogeneous if f(λx) = λf(x) holds for
all x ∈ Rd and λ ≥ 0. Given a generator matrix A = (a1, . . . , an) ∈ Rd×n, the corresponding
zonotope is Z(A) :=

∑n
i=1 conv({0, ai}), where the sum is the Minkowski sum of the generators.

Lp-Lipschitz Constant. For p ∈ (0,∞) and a vector x ∈ Rd, we define ∥x∥p :=
(∑d

i=1 |xi|p
) 1

p

,
and for p = ∞ we set ∥x∥∞ := maxi∈[d] |xi|. For p ∈ [1,∞], the function ∥·∥p is the Lp-norm, and
for p ∈ (0, 1), it is the Lp-quasinorm. The L0-function is defined by ∥x∥0 := |{i ∈ [d] : xi ̸= 0}|.
The Lp-Lipschitz constant of a function f is Lp(f) := supx ̸=y

∥f(x)−f(y)∥p

∥x−y∥p
.

ReLU Networks. A ReLU layer with d inputs, m outputs, weights W ∈ Rm×d, and biases b ∈
Rm computes the map ϕW,b : Rd → Rm, x 7→ max(0,Wx + b), where the maximum is applied
in each component. A ReLU network with ℓ ≥ 1 layers and one-dimensional output is defined by ℓ
weight matrices Wi ∈ Rni×ni−1 and biases bi ∈ Rni for i ∈ [ℓ], where n0 := d, . . . , nℓ := 1 ∈ N+,
and computes the continuous piecewise linear (CPWL) function f : Rd → R with

f(x) := Wℓ · (ϕWℓ−1,bℓ−1
◦ · · · ◦ ϕW1,b1)(x) + bℓ.

Observe that no activation function is applied in the output layer. The ℓ − 1 ReLU layers are also
called hidden layers. The width and size of the network are max{n1, . . . , nℓ−1} and

∑ℓ−1
i=1 ni,

respectively. Additional details can be found in Appendix A.

Polytopes and Duality. There is a duality between positively homogeneous convex CPWL func-
tions from Rd to R (the set of which is denoted Fd) and polytopes in Rd (denoted Pd), which we
will briefly sketch. Any function f ∈ Fd can be written as f(x) = max{a⊤1 x, . . . , a⊤k x} for some
ai ∈ Rd, and its Newton polytope is Newt(f) := conv({a1, . . . , ak}). Equivalently, f is the support
function of Newt(f), that is, f(x) = maxy∈Newt(f) y

⊤x. The map φ : Fd → Pd, defined by f 7→
Newt(f), is a bijection satisfying φ(f+g) = φ(f)+φ(g) and φ(max{f, g}) = conv(φ(f)∪φ(g)),
where + denotes pointwise addition or Minkowski sum, respectively.

Parameterized Complexity. We assume basic knowledge on computational complexity theory.
Parameterized complexity is a multivariate approach to study the time complexity of computational
problems (Cygan et al., 2015; Downey & Fellows, 2013). A parameterized problem L ⊆ Σ∗ × N
consists of instances (x, k) where x encodes a classical problem instance and k is a parameter.
A parameterized problem L is fixed-parameter tractable (contained in the class FPT) if it can be
solved in f(k) · |x|O(1) time, where f is an arbitrary function that only depends on k. The class XP
contains all parameterized problems which can be solved in polynomial time for constant parameter

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

values, that is, in f(k) · |x|g(k) time, where g is an arbitrary function that only depends on k. It
is known that FPT⊊XP. The class W[1] can be defined as the set of all parameterized problems
which can be reduced to CLIQUE (with parameter solution size) via a parameterized reduction. It is
known that FPT⊆W[1]⊆XP and it is widely believed that W[1] contains problems which are not
in FPT (namely the W[1]-hard problems such as CLIQUE). A parameterized reduction from L to L′

is an algorithm that maps an instance (x, k) in f(k) · |x|O(1) time to an instance (x′, k′) such that
k′ ≤ g(k) for an arbitrary function g and (x, k) ∈ L if and only if (x′, k′) ∈ L′.

The Exponential Time Hypothesis (Impagliazzo & Paturi, 2001) states that 3-SAT on n variables
cannot be solved in 2o(n) time. The ETH implies FPT ̸=W[1] (which implies P ̸=NP), as well as
running time lower bounds: For example, CLIQUE cannot be solved in ρ(k) · no(k) time, where k is
the size of the requested clique and n is the number of nodes in the graph (Cygan et al., 2015).

2.1 PROBLEM DEFINITIONS AND WARM-UP

For given generator matrices A ∈ Rd×n and B ∈ Rd×m, and a scalar L ∈ R, we consider the
following problems:

• ZONOTOPE CONTAINMENT: Is Z(A) ⊆ Z(B)?

• Lp-MAX ON ZONOTOPES: Is maxx∈Z(A) ∥x∥p ≥ L?

For an ℓ-layer ReLU network defined by weight matrices Wi ∈ Rni×ni−1 and biases bi ∈ Rni for
i ∈ [ℓ], where d := n0, . . . , nℓ := 1 ∈ N+ that computes the function f : Rd → R, f(x) :=
Wℓ · (ϕWℓ−1,bℓ−1

◦ · · · ◦ ϕW1,b1)(x) + bℓ, we consider the following problems:

• ℓ-LAYER RELU POSITIVITY: Is there an x ∈ Rd such that f(x) > 0?

• ℓ-LAYER RELU SURJECTIVITY: Is f surjective (that is, ∀y ∈ R ∃x ∈ Rd : f(x) = y)?

• ℓ-LAYER RELU Lp-LIPSCHITZ CONSTANT: Is Lp(f) ≥ L?

In fact, all these problems are known to be in XP for the parameter d (simply enumerate vertices of
zonotopes and linear regions of ReLU networks; see Appendix B for more details).

Theorem 2.1. ZONOTOPE CONTAINMENT and Lp-MAX ON ZONOTOPES can be solved in
O(nd−1 · poly(N)) time (where n is the number of generators and N is the input bit-length).

Theorem 2.2. ℓ-LAYER RELU POSITIVITY, ℓ-LAYER RELU SURJECTIVITY, ℓ-LAYER RELU
Lp-LIPSCHITZ CONSTANT, computing the maximum of an ℓ-layer ReLU network over a polyhe-
dron and deciding whether an ℓ-layer ReLU network computes the zero function can be solved in
O(n(ℓ−1)d · poly(N)) time (where n is the network width and N is the input bit-length).

In particular, we prove in Appendix B that network verification for ℓ-layer ReLU networks f : Rd →
Rm is solvable in O(n(ℓ−1)d · poly(N)) time, assuming that X and Y are polyhedra in halfspace
representation. Later, we will prove that, assuming the ETH, the 2-layer or the 3-layer versions
of all of these problems cannot be solved in ρ(d) · No(d) time for any function ρ, which means
that the O(nd · poly(N))- and O(n2d · poly(N))-time algorithms (for 2- and 3-layer networks) are
essentially optimal with respect to the runtime dependency on d. Note that hardness results for 2-
or 3-layer networks also imply hardness for deeper networks with ℓ ≥ 3 layers: simply concatenate
the 2- or 3-layer network with trivial additional layers that compute the identity map.

3 REDUCTION FROM MULTICOLORED CLIQUE

In this section, we present a parameterized reduction which forms the basis for the hardness results
for all our considered problems. (All proofs that are omitted from the main text as well as some
auxiliary statements can be found in Appendix B.) We reduce from the following problem.

MULTICOLORED CLIQUE

Input: A graph G = (V = V1∪̇ · · · ∪̇Vk, E), where each node in Vi has color i.
Question: Does G have a k-colored clique (a clique with exactly one node of each color)?

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1

r

2

4

l

8

5

6

9

10
0 x

sr,l(x, 0)

1

5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 0
2

4
6

8
100

1

x y

Figure 1: Spike function sr,l for a colored graph (top left).
Node labels: ωr,1 = 1, ωr,2 = 2, ωl,1 = 4, ωl,2 = 8. Edge
labels: ωr,1,l,1 = 5, ωr,2,l,1 = 6, ωr,1,l,2 = 9, ωr,2,l,2 = 10.

0 x

pc(x)

1

ωc,1 − 1
8

ωc,1 ωc,1 +
1
8

· · ·

ωc,nc − 1
8
ωc,nc ωc,nc +

1
8

Figure 2: Penalty function pc.

MULTICOLORED CLIQUE is NP-hard, W[1]-hard with respect to k and not solvable in ρ(k) · |V |o(k)
time for any computable function ρ assuming the ETH (Cygan et al., 2015).
Proposition 3.1. For every instance (G = (V = V1∪̇ · · · ∪̇Vk, E), k) of MULTICOLORED CLIQUE,
it is possible to construct in polynomial time a 2-layer ReLU network computing a function
f : Rk → R such that maxx∈Rk f(x) = k +

(
k
2

)
if and only if G contains a k-colored clique

and maxx∈Rk f(x) ≤ k +
(
k
2

)
− 1 otherwise.

Proof Sketch. Let (G = (V = V1∪̇ · · · ∪̇Vk, E), k) be an instance of MULTICOLORED CLIQUE,
where Vc = {vc,1, . . . , vc,nc

} and E =
⋃

(r,l)∈([k]
2)

Er,l, where Er,l denotes the set of edges whose
nodes have color r and l. We assign each node vc,i a unique label ωc,i ∈ N such that every edge
{vr,i, vl,j} gets a unique label ωr,i,l,j := ωr,i + ωl,i (using Sidon sets, see Appendix B for details).

For every color pair (r, l) ∈
(
[k]
2

)
, we introduce a spike function sr,l : R2 → [0, 1] (see Figure 1)

that is zero everywhere except for a set of |Er,l| parallel stripes in which sr,l forms a spike, that is,
goes up from 0 to 1 and goes down from 1 to 0 again. The spike function attains value 1 if and
only if the sum of its inputs is equal to ωr,i,l,j for some edge {vr,i, vl,j} ∈ Er,l. The spike function
can be implemented with 3|Er,l| neurons. For every color c ∈ [k], we create a penalty function
pc : R → [0, 1] (see Figure 2) that has a narrow spike around the value ωc,i for each node vc,i and is
zero everywhere else. The penalty function pc can be implemented with 3nc neurons.

By computing all spike and penalty functions in parallel and summing them up, we obtain a 2-layer
ReLU network with 3(|V |+ |E|) ReLU neurons that computes f : Rk → [0, k +

(
k
2

)
] with

f(x1, . . . , xk) =
∑

(r,l)∈([k]
2)

sr,l(xr, xl) +
∑
c∈[k]

pc(xc).

Next, we show that if there exists a k-colored clique {v1,a1
, . . . , vk,ak

} in G, then
f((ω1,a1

, . . . , ωk,ak
)) = k +

(
k
2

)
. On the other hand, we show that if there is a point x∗ ∈ Rk

with f(x∗) > k +
(
k
2

)
− 1, then G has a k-colored clique. The idea is that in this case, all spike

and penalty functions must have positive output. For the penalty functions, this means that ev-
ery input value x∗

c must be close to a value ωc,ac
which corresponds to the node vc,ac

. Since the
spike functions only give a positive output if the two node inputs correspond to adjacent nodes, the
nodes v1,a1

, . . . , vk,ak
then form a k-colored clique in G.

In the following, we will use modifications of this construction to prove our hardness results. All our
(parameterized) reductions are in fact polynomial-time reductions and thus also prove NP-hardness.
We will only state this explicitly if the NP-hardness of the problem was not previously known.

4 HARDNESS OF NETWORK VERIFICATION PROBLEMS

We first prove W[1]-hardness (w.r.t. d) of 2-LAYER RELU POSITIVITY. The NP-hardness of 2-
LAYER RELU POSITIVITY was established by Froese et al. (2025b). We prove W[1]-hardness via

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.5 1 1.5

4

5

x
-1.5

-0.5

0.5

1.5

-1.5-1-0.500.511.5
0

2

4

6

8
10

x

y
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

x

y

Figure 3: Homogenization: the function max(0, 2x− 1)−max(0, 4x− 4) + max(0, 2x− 3) + 4
(left) is turned into max(0, 2x− y)−max(0, 4x− 4y) + max(0, 2x− 3y) + 4|y| (right).

the reduction from Proposition 3.1, which relies on the use of biases. To extend the hardness result
to other problems, we need to show a stronger statement: that 2-LAYER RELU POSITIVITY remains
W[1]-hard even when all biases are equal to zero. For this, we use homogenized ReLU networks.

Definition 4.1. Given a 2-layer ReLU network with a single output neuron, its homogenization is
the ReLU network (with all biases equal to zero) that is obtained by adding an extra input variable y
to the network, replacing all biases b of neurons in the first hidden layer by y · b and replacing the
bias b of the output neuron by |y| · b using two extra neurons in the hidden layer.

Figure 3 illustrates the effect of homogenization on the function of a 2-layer ReLU network.

Theorem 4.2. 2-LAYER RELU POSITIVITY is W[1]-hard with respect to d and not solvable in
ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH, even if all
biases are zero.

Proof Sketch. Setting the output node bias of the ReLU network constructed in the proof of Proposi-
tion 3.1 to 1−k−

(
k
2

)
yields a network that has a positive output if and only if the graph G from the

MULTICOLORED CLIQUE instance contains a k-colored clique. We then show that homogenizing
this network preserves this equivalence, which yields a parameterized reduction from MULTICOL-
ORED CLIQUE to 2-LAYER RELU POSITIVITY without biases (and thus proves W[1]-hardness).
Note that the input dimension d of the constructed network is k + 1. Hence, any algorithm solving
2-LAYER RELU POSITIVITY in ρ(d) ·No(d) time would imply an algorithm for MULTICOLORED

CLIQUE running in ρ(k) · |V |o(k) time (since N ≤ |V |O(1)) contradicting the ETH.

Theorem 4.2 also implies W[1]-hardness w.r.t. the input dimension d for approximating the maxi-
mum of a 2-layer ReLU network over a polyhedron within any multiplicative factor. Froese et al.
(2025b, Corollary 13) showed that approximating this value is NP-hard.

Corollary 4.3. Approximating the maximum of a 2-layer ReLU network over a polyhedron within
any multiplicative factor is W[1]-hard with respect to its input dimension d and cannot be done in
ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH.

By adding another hidden layer with a single ReLU neuron to the network constructed in the proof
of Theorem 4.2, we obtain a 3-layer ReLU network that has a non-zero output if and only if the
original 2-layer network has a positive output. This yields the following corollary.

Corollary 4.4. The problem of deciding whether a 3-layer ReLU network computes a non-zero
function is W[1]-hard with respect to its input dimension d and not solvable in ρ(d) · No(d) time
(where N is the input bit-length) for any function ρ assuming the ETH.

The NP-hardness of the above problem was established by Froese et al. (2025b). For 2-layer net-
works, it is solvable in polynomial time (Froese et al., 2025b), which holds also in the presence
of biases (Stargalla et al., 2025). Thus, Corollary 4.4 draws an even clearer boundary between the
computational complexity of this problem in the 2-layer and 3-layer cases.

Froese et al. (2025b) proved NP-hardness of 2-LAYER RELU SURJECTIVITY and asked whether the
problem is fixed-parameter tractable with respect to d. We give a negative answer to this question.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Z−

Z+

x

y∗

H

Figure 4: An illustration of the equivalence between 2-LAYER RELU POSITIVITY and ZONOTOPE
NON-CONTAINMENT. Let H = {y ∈ Rd | y⊤x = b} be a hyperplane that separates y∗ from Z−.
Then g(x) = maxy∈Z+ y⊤x−maxy∈Z− y⊤x > y⊤∗ x− b > 0.

Theorem 4.5. 2-LAYER RELU SURJECTIVITY is W [1]-hard with respect to d and not solvable in
ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH.

Proof. Recall that a positively homogeneous function g : Rd → R is surjective if and only if there
exist two points v+, v− ∈ Rd such that g(v+) > 0 and g(v−) < 0. The positively homogeneous
function f : Rk+1 → R of the 2-layer ReLU network from the proof of Theorem 4.2 is in fact
surjective if and only if it has a positive point, as f(0, 1) < 0.

5 HARDNESS OF ZONOTOPE NON-CONTAINMENT

In this section, we prove W[1]-hardness for ZONOTOPE NON-CONTAINMENT, the complement of
ZONOTOPE CONTAINMENT. ZONOTOPE CONTAINMENT is coNP-complete, and can be solved in
O(nd−1 · poly(N)) time (where N is the input bit-length) by enumerating the vertices of one zono-
tope, but fixed-parameter tractability with respect to the dimension d remained open so far (Froese
et al., 2025a). Moreover, Kulmburg & Althoff (2021) showed that containment is equivalent to
maximizing a certain zonotope norm, making it a special case of norm maximization on zonotopes.

Froese et al. (2025b) showed that 2-LAYER RELU POSITIVITY is equivalent to ZONOTOPE NON-
CONTAINMENT following from the duality of positively homogeneous convex CPWL functions
from Rd to R and polytopes in Rd. We will briefly sketch this equivalence. Let a 2-layer ReLU
network without biases be given by g(x) =

∑m
i=1 λi max{0, w⊤

i x}. We can assume without loss
of generality that λi ∈ {−1, 1} due to the positive homogeneity of max{0, w⊤

i x}. Hence g(x) =∑
i∈I+ max{0, w⊤

i x} −∑i∈I− max{0, w⊤
i x} for vectors wi ∈ Rd, i ∈ I+ ∪ I−. Defining the

zonotopes
Z+ := φ(

∑
i∈I+

max{0, w⊤
i x}) =

∑
i∈I+

conv({0, wi}),

Z− := φ(
∑
i∈I−

max{0, w⊤
i x}) =

∑
i∈I−

conv({0, wi}),

it holds that g = φ−1(Z+) − φ−1(Z−). By definition of the support function, Z+ ⊆ Z− implies
φ−1(Z+) ≤ φ−1(Z−). Conversely, if y∗ ∈ Z+ \ Z−, then there is a separating hyperplane H =
{y ∈ Rd : y⊤x = b} such that y⊤∗ x > b and y⊤x < b for all y ∈ Z−. Hence, g(x) > 0 (see Figure 4
for an illustration). Since also any pair of zonotopes is of this form, 2-LAYER RELU POSITIVITY is
equivalent to ZONOTOPE NON-CONTAINMENT. Thus, Theorem 4.2 implies the following theorem.
Theorem 5.1. ZONOTOPE NON-CONTAINMENT is W [1]-hard with respect to d and not solvable
in ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH.

6 HARDNESS OF COMPUTING THE LIPSCHITZ CONSTANT

Jordan & Dimakis (2020) established the NP-hardness for approximating the Lp-Lipschitz constant
for p = 1 and p = ∞ for 3-layer ReLU networks within a multiplicative factor of Ω(N1−ε) for
every constant ε > 0, where N is the encoding size of the ReLU network. The NP-hardness result
of Froese et al. (2025b) for 2-LAYER RELU POSITIVITY implies NP-hardness for approximating

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the Lp-Lipschitz constant for p ∈ [0,∞] within any multiplicative factor for 3-layer ReLU networks.
We extend this by showing W[1]-hardness of the problem.
Corollary 6.1. For all p ∈ [0,∞], approximating the Lp-Lipschitz constant of a 3-layer ReLU
network by any multiplicative factor is W[1]-hard with respect to its input dimension d and cannot
be done in ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH.

Proof. Adding a hidden layer with a single ReLU neuron to the construction in the proof of Theo-
rem 4.2 yields a 3-layer network which computes a function with a non-zero Lp-Lipschitz constant
if and only if the original 2-layer network has a positive output. Hence, any multiplicative approxi-
mation could be used to decide 2-LAYER RELU POSITIVITY.

Virmaux & Scaman (2018) established the NP-hardness of 2-LAYER RELU L2-LIPSCHITZ CON-
STANT. We extend the NP-hardness to p ∈ (0,∞] and show W[1]-hardness w.r.t. d.
Theorem 6.2. For all p ∈ (0,∞], 2-LAYER RELU Lp-LIPSCHITZ CONSTANT is NP-hard, W [1]-
hard with respect to d and not solvable in ρ(d) ·No(d) time (where N is the input bit-length) for any
function ρ assuming the ETH.

Proof Sketch. First, we show that for any positively homogeneous CPWL function f : Rd → R,
we have Lp(f) = max∥x∥p≤1 |f(x)|. The idea is now to scale all y coefficients of the function
g : Rk+1 → R computed by the homogenized network constructed in the proof of Proposition 3.1 by
a sufficiently small amount ε to obtain the positively homogeneous CPWL function h : Rk+1 → R.
Then, every x∗ ∈ argmaxx∈Rk h(x, 1) has (sufficiently) small entries, as scaling the y coefficients
is equivalent to scaling the spike and penalty functions. We then show that Lp(h) is almost equal
to L := maxx∈Rk h(x, 1), as we can scale down a maximizer x∗ ∈ argmaxx∈Rk h(x, 1) with a y∗

that is only slightly smaller than 1 to obtain a feasible point y∗(x, 1) for max∥(x,y)∥p≤1 |h(x, y)|
with value |h(y∗ · x, y∗)| = y∗|h(x∗, 1)|, which proves L ≥ Lp(h) ≥ L · y∗ (so Lp(h) ≈ L). We
conclude the proof by showing that the hardness of computing L transfers to computing Lp(h).

On the positive side, we show that for a special subclass of ReLU networks, computing the L1- and
L∞-Lipschitz constant is tractable.

Input Convex Neural Networks. A ReLU network is input-convex (ICNN) if the weight matri-
ces of all but the first layer have only nonnegative entries, resulting in a convex function f(x) =
max{a⊤1 x+b1, . . . , a

⊤
k x+bk}. The Lp-Lipschitz constant of f is given by the maximum, taken over

all linear regions C of f , of the Lp-Lipschitz constant of f restricted to C, where f(x) = a⊤Cx+ bC
for all x ∈ C. Using the well-known equality Lp(g) = maxx∈Rd ∥∇g(x)∥q for smooth functions
g : Rd → R (Jordan & Dimakis, 2020), we derive that the Lp-Lipschitz constant of f restricted to
the region C is equal to ∥aC∥q and thus Lp(f) = max

C linear region of f
∥aC∥q = maxi ∥ai∥q , where ∥ · ∥q

is the dual norm of the Lp-norm. Note that the function f of the ICNN has the same Lp-Lipschitz
constant as the function g(x) = max{a⊤1 x, . . . , a⊤k x} computed by the same network where all
biases are set to 0, which implies that we might assume without loss of generality that the network
does not have biases and hence computes a function f that is convex and positively homogeneous.

Hertrich & Loho (2024) showed that there is a small extended formulation of Newt(f) for a func-
tion f computed by an ICNN without biases. More precisely, their proofs reveal that for a function
f : Rd → R computed by an ICNN, there is a polytope Q ⊆ Rd+m and a projection π : Rd+m → Rd

such that π(Q) = Newt(f) and the encoding size of (Q, π) is polynomial in the encoding size of f ,
where Q is given in half-space representation. Using this, we prove the following proposition.
Proposition 6.3. Let f : Rd → R be an ICNN with encoding size N . Then L1(f) can be computed
in poly(N) time and L∞(f) can be computed in O(2d poly(N)) time.

Proof. By the discussion above, we can assume without loss of generality that there are no bi-
ases and f is positively homogeneous. In this case, the definition of the support function im-
plies that Lp(f) = maxy∈Newt(f) ∥y∥q . By Hertrich & Loho (2024), there exists a poly-
tope Q and a projection π with poly(N) encoding size such that Lp(f) = maxy∈Q ∥π(y)∥q .
For p = ∞ and p = 1, this maximization can be reduced to finitely many LPs: Indeed,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

maxy∈Q ∥π(y)∥∞ = maxc∈{±e1,...,±ed} maxy∈Q c⊤π(y), which requires solving only 2d LPs,
while maxy∈Q ∥π(y)∥1 = maxc∈{±1}d maxy∈Q c⊤π(y), which requires solving 2d LPs. Since
LPs can be solved in polynomial time, the statements follow.

7 NORM MAXIMIZATION ON ZONOTOPES

We close with a short section describing a connection between Lipschitz constants of neural net-
works and norm maximization on zonotopes. For 2-layer ICNNs f : Rd → R, we can restrict
ourselves without loss of generality to the case where all output weights are equal to 1. In this
case, as shown by Froese et al. (2025a), the Newton polytope Newt(f) is a zonotope and computing
Lp(f) is equivalent to maximizing the dual norm of the Lp-norm over this zonotope.

Baburin & Pyatkin (2007) showed that maximizing the L∞-norm on zonotopes is solvable in
polynomial time and maximizing the L1-norm on zonotopes is fixed-parameter tractable for d
(our Proposition 6.3 generalizes these results). Note that Theorem 5.1 implies that maximizing
a zonotope-norm over a zonotope is W[1]-hard with respect to the dimension d (since zonotope
containment is equivalent to this problem (Kulmburg & Althoff, 2021)). For p ∈ (1,∞), how-
ever, it is an open question whether Lp-maximization on zonotopes is fixed-parameter tractable
for d (Froese et al., 2025a). Shenmaier (2018) proved NP-hardness and inapproximability for
p ∈ [1,∞) and showed a randomized (sampling based) (1 − ε)-approximation with probability
1 − 1/ε in time (1 + 2/ε)d poly(d, n) for every ε ∈ (0, 1) and an arbitrary norm. We show that
known results from subspace embedding theory can also be used to obtain randomized approxima-
tions, which is an interesting application of these results. The worst-case running time, however, is
worse, but in practice the actual running time might still be faster. Bozzai et al. (2023) observed that
results for ℓ1 subspace embeddings (Cohen & Peng, 2015) yield zonotope order reductions, that is,
approximations of zonotopes with few generators. More precisely, the following can be derived.
Theorem 7.1. There is a polynomial-time algorithm which, given a matrix A ∈ Rd×n and ε > 0,
outputs a matrix A′ ∈ Rd×r with r ∈ O(d log dε−2) such that with high probability

(1 + ε)−1Z(A′) ⊆ Z(A) ⊆ (1 + ε)Z(A′).

This order reduction yields a simple randomized approximation algorithm.
Theorem 7.2. Let ∥·∥ be any norm on Rd (computable in time T). There is a randomized algorithm
which, given a matrix A ∈ Rd×n and ε > 0, outputs a value α ∈ R in O((cd log d/ε2)d−1 · T +
poly(n)) time (for some constant c > 0) such that with high probability

(1 + ε)−1α ≤ max
x∈Z(A)

∥x∥ ≤ (1 + ε)α.

Proof. Note that every norm is convex and convex functions attain their maximum on a polytope
at a vertex. On input (A, ε), we run the algorithm from Theorem 7.1 to obtain a matrix A′ with
r ∈ O(d log dε−2) columns in polynomial time. The zonotope Z(A′) has at most O(rd−1) ver-
tices (Zaslavsky, 1975), which can be enumerated in O(rd−1) time (Ferrez et al., 2005). We
simply return the maximum ∥ · ∥-value α of these vertices. Then, with high probability, it holds
(1 + ε)−1Z(A′) ⊆ Z(A) ⊆ (1 + ε)Z(A′), which implies

max
x∈(1+ε)−1Z(A′)

∥x∥ = (1 + ε)−1α ≤ max
x∈Z(A)

∥x∥ ≤ (1 + ε)α = max
x∈(1+ε)Z(A′)

∥x∥,

due to absolute homogeneity of norms.

8 CONCLUSION

We proved the strongest hardness results for various computational problems related to ReLU net-
work verification known so far. Note that nearly all considered problems can be phrased in terms of
maximizing a certain norm over a zonotope; a problem with numerous applications in other areas.
Most importantly, our results imply that simple “brute-force” enumeration algorithms are basically
best possible with respect to the dependency of the running time on the input dimension. Thus, we
settled the parameterized complexity of a wide range of problems almost completely. Moreover, our

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

results show that it does not help to assume that the network weights are sparse and small, since
our constructions use only a constant number of (polynomially bounded) non-zero weights for each
ReLU neuron. It is thus not easy to formulate a general guidance to circumvent this hardness in
practice. One would have to make very specific assumptions on the network structure to ensure
that the number of linear regions is small and easy to enumerate. It is not clear which assumptions
would be natural here and whether networks trained on real-world data satisfy them. Alternatively,
one might use techniques (possibly incorporated into the training process) that guarantee efficient
verification or use special architectures (such as ICNNs). We also discussed some tractable cases for
restricted subclasses of problems as well as a randomized FPT-approximation. Overall, our hardness
results prove and justify that such techniques and the use of heuristics are indeed required in practice
to achieve reasonable running times.

The most prominent open question is the fixed-parameter tractability of Lp-maximization on zono-
topes for p ∈ (1,∞) when parameterized by d. Recall that this is equivalent to 2-LAYER RELU
Lp-LIPSCHITZ CONSTANT with only positive output weights. As a first step, one might try to find
a deterministic FPT-approximation for norm maximization on zonotopes (e.g., by derandomizing
the subspace embedding approach). Also, the complexity of computing L0(f) for 2-layer ReLU
networks is open. In general, it is an interesting question whether the constants in the exponents of
the running times can be improved, e.g., is ZONOTOPE CONTAINMENT solvable in O(ncd) time for
any c < 1?

REFERENCES

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
2018.

Maximilian Baader, Mark Niklas Mueller, Yuhao Mao, and Martin Vechev. Expressivity of reLU-
networks under convex relaxations. In International Conference on Learning Representations,
2024.

A. E. Baburin and A. V. Pyatkin. Polynomial algorithms for solving the vector sum problem. Journal
of Applied and Industrial Mathematics, 1(3):268–272, 2007.

Hans L. Bodlaender, Peter Gritzmann, Victor Klee, and Jan van Leeuwen. Computational complex-
ity of norm-maximization. Combinatorica, 10(2):203–225, 1990.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016.

Rainie Bozzai, Victor Reis, and Thomas Rothvoss. The vector balancing constant for zonotopes.
In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1292–
1300. IEEE, 2023.

Cornelius Brand, Robert Ganian, and Mathis Rocton. New complexity-theoretic frontiers of
tractability for neural network training. Advances in Neural Information Processing Systems,
36, 2023.

Michael B. Cohen and Richard Peng. ℓp row sampling by lewis weights. In Proceedings of the 47th
Annual ACM on Symposium on Theory of Computing (STOC ’15), pp. 183–192. ACM, 2015.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer,
2013.

H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes
with applications. SIAM Journal on Computing, 15(2):341–363, 1986.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

Claudio Ferrari, Mark Niklas Müller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In International Conference on Learning
Representations, 2022.

J.-A. Ferrez, Komei Fukuda, and Thomas M. Liebling. Solving the fixed rank convex quadratic
maximization in binary variables by a parallel zonotope construction algorithm. European Journal
of Operations Research, 166(1):35–50, 2005.

Vincent Froese and Christoph Hertrich. Training neural networks is np-hard in fixed dimension.
Advances in Neural Information Processing Systems, 36, 2023.

Vincent Froese, Christoph Hertrich, and Rolf Niedermeier. The computational complexity of ReLU
network training parameterized by data dimensionality. Journal of Artificial Intelligence Re-
search, 74:1775–1790, 2022.

Vincent Froese, Moritz Grillo, Christoph Hertrich, and Martin Skutella. Open problem: Fixed-
parameter tractability of zonotope problems. In Proceedings of Thirty Eighth Conference on
Learning Theory, volume 291 of Proceedings of Machine Learning Research, pp. 6210–6214.
PMLR, 2025a.

Vincent Froese, Moritz Grillo, and Martin Skutella. Complexity of injectivity and verification of
relu neural networks (extended abstract). In Proceedings of Thirty Eighth Conference on Learn-
ing Theory, volume 291 of Proceedings of Machine Learning Research, pp. 2188–2189. PMLR,
2025b.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelovic, Timothy A. Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. CoRR, abs/1810.12715, 2018.

Felix Gruber and Matthias Althoff. Computing safe sets of linear sampled-data systems. IEEE
Control Systems Letters, 5(2):385–390, 2020.

Felix Gruber and Matthias Althoff. Scalable robust output feedback mpc of linear sampled-data
systems. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 2563–2570. IEEE,
2021.

Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns.
Advances in Neural Information Processing Systems, 32, 2019.

Christoph Hertrich and Georg Loho. Neural networks and (virtual) extended formulations. CoRR,
abs/2411.03006, 2024.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367–375, 2001.

Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant of relu
networks. Advances in Neural Information Processing Systems, 33, 2020.

Matt Jordan, Jonathan Hayase, Alex Dimakis, and Sewoong Oh. Zonotope domains for lagrangian
neural network verification. Advances in Neural Information Processing Systems, 35, 2022.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: a
calculus for reasoning about deep neural networks. Formal Methods in System Design, 60(1):
87–116, 2022.

Panagiotis Kouvaros and Alessio Lomuscio. Towards scalable complete verification of ReLU neural
networks via dependency-based branching. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence (IJCAI ’21), pp. 2643–2650, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adrian Kulmburg and Matthias Althoff. On the co-NP-completeness of the zonotope containment
problem. European Journal of Control, 62:84–91, 2021.

Adrian Kulmburg, Lukas Schafer, and Matthias Althoff. Approximability of the containment prob-
lem for zonotopes and ellipsotopes. IEEE Transactions on Automatic Control, 2025.

Yuhao Mao, Yani Zhang, and Martin Vechev. On the expressiveness of multi-neuron convex relax-
ations. arXiv preprint arXiv:2410.06816, 2024.

Abdul Majid Mian and S Chowla. On the b2 sequences of sidon. Proc. Nat. Acad. Sci. India. Sect.
A, 14:3–4, 1944.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. Advances in Neural Information Processing Systems, 27, 2014.

Kevin O’Bryant. A complete annotated bibliography of work related to sidon sequences. The
Electronic Journal of Combinatorics [electronic only], 11, 2004.

Ansgar Rössig and Milena Petkovic. Advances in verification of ReLU neural networks. Journal of
Global Optimization, 81(1):109–152, 2021.

Sadra Sadraddini and Russ Tedrake. Linear encodings for polytope containment problems. In 2019
IEEE 58th conference on decision and control (CDC), pp. 4367–4372. IEEE, 2019.

Marco Sälzer and Martin Lange. Reachability in simple neural networks. Fundamenta Informaticae,
189(3-4):241–259, 2022.

A. Schrijver. Theory of Linear and Integer programming. Wiley-Interscience, 1986.

Vladimir Shenmaier. Complexity and approximation of finding the longest vector sum. Computa-
tional Mathematics and Mathematical Physics, 58(6):850–857, 2018.

Vladimir Shenmaier. Complexity and algorithms for finding a subset of vectors with the longest
sum. Theoretical Computer Science, 818:60–73, 2020.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certi-
fying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL), 2019.

Moritz Stargalla, Christoph Hertrich, and Daniel Reichman. The computational complexity of
counting linear regions in ReLU neural networks. arXiv preprint arXiv:2505.16716, 2025. Ac-
cepted for publication at NeurIPS 2025.

Alfred Stöhr. Gelöste und ungelöste fragen über basen der natürlichen zahlenreihe. ii. Journal für
die reine und angewandte Mathematik, 194:111–140, 1955.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations, 2014.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In
International Conference on Machine Learning, 2018a.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach.
In International Conference on Learning Representations, 2018b.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. Advances in Neural Information Processing Systems, 31, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liren Yang, Hang Zhang, Jean-Baptiste Jeannin, and Necmiye Ozay. Efficient backward reachability
using the minkowski difference of constrained zonotopes. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 41(11):3969–3980, 2022.

Thomas Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by
hyperplanes. Memoirs of the American Mathematical Society, 1(154), 1975.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. Advances in
Neural Information Processing Systems, 35, 2022.

A ADDITIONAL MATERIAL

A.1 ADDITIONAL PRELIMINARIES

Geometry of ReLU Networks. We repeat basic definitions from polyhedral geometry, see Schri-
jver (1986) for more details. A polyhedron P is the intersection of finitely many closed halfspaces.
A polyhedral cone C ⊆ Rd is a polyhedron such that λu + µv ∈ C for every u, v ∈ C and
λ, µ ∈ R≥0. A cone is pointed if it does not contain a straight line. A ray ρ is a one-dimensional
pointed cone; a vector r is a ray generator of ρ if ρ = {λr : λ ≥ 0}. A polyhedral complex P
is a finite collection of polyhedra such that ∅ ∈ P , if P ∈ P , then all faces of P are in P , and if
P, P ′ ∈ P , then P ∩ P ′ is a face of P and P ′. A cell is a full-dimensional element of a polyhedral
complex. A hyperplane arrangement H is a finite collection of hyperplanes in Rd.

A ReLU network computing the CWPL function f : Rd → R with

f(x) := Wℓ · (ϕWℓ−1,bℓ−1
◦ · · · ◦ ϕW1,b1)(x) + bℓ,

is affine linear on each cell of an associated polyhedral complex Σf (the one induced by the closure
of the full-dimensional activation regions (Hanin & Rolnick, 2019) of the network). In particular,
the encoding size of every polyhedron in this complex is polynomially bounded in the encoding size
of the neural network (Froese et al., 2025b). It is well known that for 2-layer ReLU networks, Σf

corresponds to a hyperplane arrangement (Montúfar et al., 2014).

Hyperplane Arrangements. Any hyperplane arrangement with n hyperplanes in d dimensions
has at most O(nd) many cells (Zaslavsky, 1975), and it is possible to enumerate them in O(nd)
time (Edelsbrunner et al., 1986). All zero- and one-dimensional faces of a hyperplane arrangement
can be enumerated in O(nd · poly(N)) and O(nd−1 · poly(N)) time, respectively, where N is the
encoding size of the hyperplane arrangement, since they arise from an intersection of d and d − 1
hyperplanes. An ℓ-layer ReLU network partitions Rd into at most O(n(ℓ−1)d) cells, where n is the
width of the network. We can enumerate these cells in O(n(ℓ−1)d · poly(N)) time, where N is the
encoding size of the ReLU network (the first hidden layer gives a hyperplane arrangement; with
every subsequent hidden layer, a cell is intersected with at most n hyperplanes, partitioning the cell
into at most nd cells).

A.2 ADDITIONAL FIGURES

Figure 5 illustrates how the sum of the spike function sr,l and penalty functions pr, pl in the proof
of Proposition 3.1 behaves for a fixed color pair.

B PROOFS

B.1 PROOF OF THEOREM 2.1

Proof. ZONOTOPE (NON-)CONTAINMENT. It is well-known that a zonotope Z ⊂ Rd with n
generators has O(nd−1) vertices which can be enumerated in O(nd−1) time (Ferrez et al., 2005).
Note that Z is contained in another zonotope Z ′ if and only if all vertices of Z are contained in Z ′.
Hence, by enumerating the vertices of Z and checking containment in Z ′ (e.g. by solving a linear
program), we obtain an O(nd−1 · poly(N))-time algorithm.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0.625
0.75

0.875
1

1.125
1.25

1.375 3.625
3.75

3.875
4

4.125
4.25

4.375
0

1

2

x y 0.625 0.75 0.875 1 1.125 1.25 1.375

3.625

3.75

3.875

4

4.125

4.25

4.375

x

y

0.625
0.75

0.875
1

1.125
1.25

1.375 3.625
3.75

3.875
4

4.125
4.25

4.375
0

1

2

3

x y 0.625 0.75 0.875 1 1.125 1.25 1.375

3.625

3.75

3.875

4

4.125

4.25

4.375

x

y

Figure 5: Illustration of the area around node values for a fixed color pair for non-adjacent and
adjacent nodes. The values are based on the example given in Figure 1. For non-adjacent nodes,
only the two penalty functions intersect, while for adjacent nodes, the penalty functions intersect
also with the spike function.

Lp-MAX ON ZONOTOPES. We can enumerate in O(nd−1 · poly(N)) time all vertices of the
zonotope and thus obtain an O(nd−1 · poly(N) · T) time algorithm, where T denotes the time to
evaluate the Lp-norm of a vector in Rd.

B.2 PROOF OF THEOREM 2.2

Before going into the proof of Theorem 2.2, we first prove that network verification for ℓ-layer ReLU
networks over polyhedra is solvable in O(n(ℓ−1)d · poly(N)) time.

Lemma B.1. Let f : Rd → Rm be an ℓ-layer ReLU network and let P ⊆ Rd and Q ⊆ Rm be
polyhedra given in halfspace representation. Then, we can decide whether f(P) ⊆ Q holds in
O(n(ℓ−1)d · poly(N)) time (where n is the network width and N the combined encoding size of the
network and the polyhedra).

Proof. Let Q = {x ∈ Rm : v⊤i x ≤ ui, i ∈ [k]}. Then, we have f(P) ⊆ Q if and only if for every
cell C ∈ Σf and every constraint i ∈ [k], we have

ui ≥ max
x∈C∩P

v⊤i fC(x) = max
x∈C∩P

v⊤i (A
⊤
Cx+ bC) = v⊤i bC + max

x∈C∩P
(A⊤

Cvi)
⊤x,

where fC is the affine linear function of f restricted to C, that is, f(x) = fC(x) := A⊤
Cx + bC

for all x ∈ C. Note that the above condition can be verified by solving a linear program whose
encoding size is polynomially bounded in N . Since linear programs can be solved in polynomial
time and cells can be enumerated in O(n(ℓ−1)d ·poly(N)) time, it follows that we can check whether
f(P) ⊆ Q holds in O(n(ℓ−1)d · poly(N)) time.

Proof of Theorem 2.2. Let f : Rd → R with f(x) = Wℓ · (ϕWℓ−1,bℓ−1
◦ · · · ◦ ϕW1,b1)(x) + bℓ

be the function computed by an ℓ-layer ReLU network and let Σf be the corresponding polyhedral
complex. Further, let n denote the width and N the encoding size of the network and let f ′ : Rd → R
with f ′(x) := Wℓ · (ϕWℓ−1,0 ◦ · · · ◦ ϕW1,0)(x) be the function of the ReLU network without biases.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Computing the Maximum over a Polyhedron P . Here, we assume that the maximum
maxx∈P f(x) exists and N denotes the combined encoding size of the network and the polyhe-
dron P . We can compute this maximum by enumerating cells of Σf and solving the linear program
max

x∈C∩P
fC(x) for each cell C ∈ Σf , where fC is the affine linear function of f restricted to C, that is,

f(x) = fC(x) := a⊤Cx+bC for all x ∈ C. Note that the encoding size of the linear program is poly-
nomially bounded in N . Since linear programs can be solved in polynomial time and cells can be
enumerated in O(n(ℓ−1)d · poly(N)) time, it follows that maxx∈P f(x) = max

C cell of Σf

max
x∈C∩P

fC(x)

can be computed in O(n(ℓ−1)d · poly(N)) time.

ℓ-LAYER RELU POSITIVITY. Follows from applying Lemma B.1 to P = Rd and Q = (−∞, 0],
since there being a point x ∈ Rd with f(x) > 0 is equivalent to f(Rd) ̸⊆ (−∞, 0].

ℓ-LAYER RELU SURJECTIVITY. Froese et al. (2025b, Lemma 14) show that for surjectivity, f is
surjective if and only if f ′ is surjective, which is equivalent to there being two points r+, r− ∈ Rd

with f ′(r−) < 0 < f ′(r+). We can check this in O(n(ℓ−1)d · poly(N)) time by applying the
algorithm for ℓ-LAYER RELU POSITIVITY to f ′ and −f ′.

ℓ-LAYER RELU Lp-LIPSCHITZ CONSTANT. Note that the Lp-Lipschitz constant of f is equal to
the maximum Lq-norm value (where Lq is the dual norm of the Lp-norm, so 1/p+1/q = 1) of any
gradient of the linear function that arises by restricting f to a cell of Σf . Thus, by enumerating all
cells of Σf , we obtain an O(n(ℓ−1)d · poly(N) · T) time algorithm, where T denotes the time to
evaluate the Lq-norm of a vector in Rd.

ℓ-LAYER RELU ZERO FUNCTION CHECK. Follows from applying Lemma B.1 to P = Rd and
Q = {0}.

B.3 PROOF OF PROPOSITION 3.1

Before going into detail, we first introduce a useful definition and prove a preliminary result.
Definition B.2. A Sidon set is a set of positive integers A = {a1, . . . , am} where the sums ai + aj
with i ≤ j are all different.

For a survey on Sidon sets, we refer to (O’Bryant, 2004). The greedy Sidon set, introduced by Mian
& Chowla (1944), is recursively constructed as follows: take a1 = 1, and for n > 1, let an be
the smallest nonnegative integer such that {a1, . . . , an} is a Sidon set (see A005282). Stöhr (1955)
noted that an ∈ O(n3) holds. We note that the greedy Sidon set of size n can be computed in nO(1)

time. We use the following result.
Lemma B.3. Let A be a Sidon set of size n, and let W1, . . . ,Wk be a partition of A into disjoint
subsets. Then, for every pair i, j ∈

(
[k]
2

)
, the sums a+ b with a ∈ Wi, b ∈ Wj are all different.

Proof. Suppose that there are two pairs (a, b) ̸= (c, d) ∈ Wi ×Wj with a+ b = c+ d. Then, there
exist elements ai, aj , ar, al ∈ A such that ai = a, aj = b, ar = c, al = d with {i, j} ≠ {r, l} and
ai + aj = ar + al, which contradicts the fact that A is a Sidon set.

In other words, given an element w ∈ Wi +Wj , there is exactly one pair (wi, wj) ∈ Wi ×Wj with
w = wi + wj .

Proof of Proposition 3.1. Let (G = (V = V1∪̇ . . . ∪̇Vk, E), k) be an instance of MULTICOLORED
CLIQUE, where Vc = {vc,1, . . . , vc,nc

} for c ∈ [k] and E =
⋃

(r,l)∈([k]
2)

Er,l, where Er,l denotes

the set of edges whose nodes have color r and l. Further, let A be the greedy Sidon set of size |V |
and let W1, . . . ,Wk be a partition of A into k disjoint subsets such that |Wi| = ni holds. Note that
this allows us to assign each node vc,i to a unique element ωc,i of A, namely the i-th element of Wc.
For every edge {vr,i, vl,j}, we define the constant ωr,i,l,j := ωr,i + ωl,i. Since A is a Sidon set, the
value ωr,i,l,j uniquely determines the edge {vr,i, vl,j}. We construct a ReLU network with k input
variables x1, . . . , xk and 3(|V |+ |E|) hidden neurons as follows.

For every color c ∈ [k], we introduce a node selection gadget which ensures that the input value xc

encodes a node in Vc. To this end, we create a “penalty function” pc : R → [0, 1] (see Figure 2) that

15

https://oeis.org/A005282

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

has nc narrow spikes around the value ωc,i (that is, it goes up from 0 to 1 and down to 0 again) for
each vc,i ∈ Vc and is zero everywhere else:

pc(x) :=


8(x− ωc,i +

1
8), if x ∈ [ωc,i − 1

8 , ωc,i], i ∈ [nc]

1− 8(x− ωc,i), if x ∈ (ωc,i, ωc,i +
1
8], i ∈ [nc]

0, if x /∈ ⋃i∈Vc
[ωc,i − 1

8 , ωc,i +
1
8]

.

The penalty function pc can be implemented with 3nc hidden neurons:

pc(x) =
∑
i∈[nc]

(max(0, 8(x− ωc,i +
1

8
))−max(0, 16(x− ωc,i)) + max(0, 8(x− ωc,i −

1

8
)).

Next, we introduce an edge verification gadget which verifies that each pair of nodes selected by the
node selection gadgets is connected by an edge. For every pair of colors (r, l) ∈

(
[k]
2

)
, we define a

“spike function” sr,l : R2 → [0, 1] (see Figure 1) that is zero everywhere except for a set of |Er,l|
parallel stripes in which sr,l forms a spike.

sr,l(x, y) :=


4(x+ y − ωr,i,l,j − 1

4), if x+ y ∈ [ωr,i,l,j − 1
4 , ωr,i,l,j], {vr,i, vl,j} ∈ Er,l

1− 4(x+ y − ωr,i,l,j), if x+ y ∈ (ωr,i,l,j , ωr,i,l,j +
1
4], {vr,i, vl,j} ∈ Er,l

0, if x+ y /∈ ⋃{vr,i,vl,j}∈Er,l
[ωr,i,l,j − 1

4 , ωr,i,l,j +
1
4]

.

Note that Lemma B.3 implies that sr,l(x, y) ≤ 1 holds for any input (x, y) ∈ R2, as the sums
ωr,i + ωl,i = ωr,i,l,j for {vr,i, vl,j} ∈ Er,l are all integral and different. Thus, the spike functions
attain value 1 if and only if its inputs correspond to two nodes that share an edge. The spike function
can be implemented with 3|Er,l| hidden neurons:

sr,l(x, y) =
∑

{vr,i,vl,j}∈Er,l

(max(0, 4(x+ y − ωr,i,l,j +
1

4
))−max(0, 8(x+ y − ωr,i,l,j))

+max(0, 4(x+ y − ωr,i,l,j −
1

4
))).

By computing all penalty and spike functions in parallel and summing them up at the output neuron,
we obtain a ReLU network that computes the function f : Rk → R with

f(x1, . . . , xk) =
∑

(r,l)∈([k]
2)

sr,l(xr, xl) +
∑
c∈[k]

pc(xc).

Since every spike and penalty function is lower bounded by 0 and upper bounded by 1, it follows
that f is lower bounded by 0 and upper bounded by k +

(
k
2

)
.

First, we show that the existence of a k-colored clique in G implies maxx∈Rk f(x) = k +
(
k
2

)
.

Suppose that {v1,a1
, . . . , vk,ak

} ⊂ V forms a k-colored clique in G. Then, we claim that the point
x∗ = (ω1,a1 , . . . , ωk,ak

) is a point with f(x∗) = k +
(
k
2

)
. First, note that pc(x∗

c) = 1 holds for all
c ∈ [k]. Further, for each pair of colors (r, l) ∈

(
[k]
2

)
, sr,l(x∗

r , x
∗
l) = 1 holds, since {vr,ar

, vl,al
} is

an edge in Erl. Thus, we have f(x∗) = k +
(
k
2

)
.

Now, we show that if there is a point x∗ ∈ Rk with f(x∗) > k +
(
k
2

)
− 1, then G has a k-colored

clique. Suppose that x∗ ∈ Rk is such a point. For this to be the case, the output of all spike and
penalty functions must be strictly greater than zero, that is, we have pc(x

∗
c) > 0 for every c ∈ [k]

and sr,l(x
∗
r , x

∗
l) > 0 for every pair (r, l) ∈

(
[k]
2

)
, since otherwise f(x∗) ≤ k +

(
k
2

)
− 1 holds. For

every c ∈ [k], pc(x∗
c) > 0 implies by definition that there is exactly one element ac ∈ Vc with

x∗
c ∈ (ωc,ac

− 1
8 , ωc,ac

+ 1
8). In other words, the input x∗

c corresponds to the node vc,ac
. We now

claim that {v1,a1
, . . . , vk,ak

} forms a k-colored clique in G. To see this, observe that for every pair
(r, l) ∈

(
[k]
2

)
, sr,l(x∗

r , x
∗
l) > 0 together with x∗

r + x∗
l ∈ (ωr,ar,l,al

− 1
4 , ωr,ar,l,al

+ 1
4) implies

by definition of sr,l that {vr,ar
, vl,al

} is an edge, which proves that {v1,a1
, . . . , vk,ak

} is indeed a
k-colored clique.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.4 PROOF OF THEOREM 4.2

Before proving Theorem 4.2, we first prove an auxiliary lemma.

Lemma B.4. Let f : Rd → R, f(x) =
∑n

i=1 ci max{0, a⊤i x + bi} + B be the function that is
computed by a 2-layer ReLU network, where ai, bi, ci, B are the weights and biases of this network,
and let h : Rd+1 → R be the function computed by the homogenization of this network. Then, we
have h(x, 1) = h(−x,−1) if and only if

∑n
i=1 ci(a

⊤
i x+ bi) = 0.

Proof. We have h(x, y) =
∑n

i=1 ci max{0, a⊤i x+ biy}+B|y| and thus

h(x, 1)− h(−x,−1) =

n∑
i=1

ci(max{0, a⊤i x+ bi} −max{0,−(a⊤i x+ bi)}) =
n∑

i=1

ci(a
⊤
i x+ bi).

Proof of Theorem 4.2. We give a parameterized reduction from MULTICOLORED CLIQUE. Let
(G = (V = V1∪̇ . . . ∪̇Vk, E), k) be an instance of MULTICOLORED CLIQUE, and let f : Rk → R
be the function of the network constructed in the proof of Proposition 3.1. Next, we modify the
network by setting the bias of the output node to 1−k−

(
k
2

)
. Let g : Rk → R be the function of this

modified network and let h : Rk+1 → R be the function computed by the homogenization of this
modified network. By construction, we have h(x, 1) = g(x) = f(x)+1−k−

(
k
2

)
for every x ∈ Rk.

Note that h(−x,−1) = h(x, 1) holds for every x ∈ Rk, which follows directly from the definition
of f and Lemma B.4. Since the underlying network has no biases, the function g computed by the
network is positively homogeneous and thus h(λx, λy) = λh(x, y) holds for every λ ≥ 0.

By Proposition 3.1, G has a k-colored clique if and only if g has a positive point, since
maxx∈Rk g(x) = 1 holds if G has a k-colored clique and maxx∈Rk g(x) ≤ 0 otherwise. To
finish the proof, observe that h has a positive point if and only if g has a positive point. If g has
a positive point x∗, then h also has a positive point (x∗, 1). On the other hand, if h has a pos-
itive point (x+, y+), then by positive homogeneity sgn(y+) · x+

|y+| is a positive point for g, since

0 < 1
|y+|h(x

+, y+) = h(x+

|y+| , sgn(y+)) = g(sgn(y+) · x+

|y+|). Note that y+ = 0 is not possible,
since h(x, 0) = 0 for every x ∈ Rk by construction, as deleting biases leads to the cancellation of
all terms in the spike and penalty functions.

B.5 PROOF OF COROLLARY 4.3

Proof. We give a parameterized reduction from MULTICOLORED CLIQUE to approximating the
maximum of a 2-layer ReLU network. Let (G = (V = V1∪̇ . . . ∪̇Vk, E), k) be an instance of
MULTICOLORED CLIQUE, let f : Rk → R be the function of the network constructed in the proof
of Proposition 3.1 and let g : Rk → R be the function of the same network with an additional bias
of 1− k−

(
k
2

)
at the output node, that is, g(x) = f(x) + 1− k−

(
k
2

)
holds for every x ∈ Rk. With

Proposition 3.1, it follows that we have maxx∈Rk g(x) = 1 if and only if G has a k-colored clique
and maxx∈Rk g(x) ≤ 0 otherwise. Thus, approximating the maximum of this network within any
multiplicative factor over the polytope P = [0, n3]d would allow us to distinguish between the two
cases, which implies the theorem.

B.6 PROOF OF THEOREM 5.1

Proof. Follows from Theorem 4.2 and the equivalence to 2-LAYER RELU POSITIVITY without
biases (Froese et al., 2025b, Proposition 18).

B.7 PROOF OF THEOREM 6.2

Proof. We give a parameterized reduction (which is also a polynomial reduction) from MULTICOL-
ORED CLIQUE to 2-LAYER RELU Lp-LIPSCHITZ CONSTANT. We first discuss the case p ∈ [1,∞]
and later discuss which modifications are necessary to extend the proof to p ∈ (0, 1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Let (G = (V = V1∪̇ . . . ∪̇Vk, E), k) be an instance of MULTICOLORED CLIQUE. Further, let
g : Rk+1 → R be the function computed by the homogenized network constructed in the proof of
Proposition 3.1.

Note that for any positively homogeneous CPWL function f : Rd → R, the Lp-Lipschitz constant
can be rewritten to Lp(f) = max∥x∥p≤1 |f(x)|, which follows from the fact that Lp(f) is the
maximum Lp-Lipschitz constant of f restricted to any of the full-dimensional cones C ∈ Σf , where
f(x) = a⊤Cx for all x ∈ C (f is linear on C) and the Lp-Lipschitz constant of the linear function in
this cell is equal to max∥x∥p≤1 |a⊤c x| (Jordan & Dimakis, 2020).

We now scale all y coefficients of g by ε := 1

2k·an·(k+(k2))
, where an ∈ O(n3) is the maximum

element of the greedy Sidon set of size n, and obtain the modified positively homogeneous CPWL
function h : Rk+1 → R. Now, every maximizer x∗ of maxx∈Rk h(x, 1) satisfies |x∗

i | ≤ an · ε,
since every maximizer x′ of maxx∈Rk g(x, 1) previously satisfied |x′

i| ≤ an. This follows from
the fact that scaling the y coefficients is equivalent to scaling the spike and penalty functions in the
reduction. Now, we define

L := max
x∈Rk

h(x, 1)

and claim the following:
L ≥ Lp(h) ≥ L(1− k · an · ε).

The inequality L ≥ Lp(h) follows from the fact that if (x∗, y∗) ∈ argmax∥(x,y)∥p≤1 h(x, y), then
|y∗| ≤ 1 and

Lp(h) = h(x∗, y∗) = |y∗| · h(x∗

|y∗| , sgn(y∗)) ≤ h(
x∗

|y∗| , sgn(y∗)) ≤ max
x∈Rk

h(x, 1) = L

holds. The second inequality follows from the fact that if x∗ is a maximizer of maxx∈Rk h(x, 1),
then |x∗

i | ≤ an · ε and thus

∥(1− k · an · ε) · (x∗, 1)∥p ≤ ∥(1− k · an · ε) · (x∗, 1)∥1 ≤ (1− k · an · ε) +
k∑

i=1

|x∗
i | ≤ 1

holds, which makes (1− k · an · ε) · (x∗, 1) a feasible point for max∥(x,y)∥p≤1 h(x, y).

Given this estimation, we now make a case distinction: if G has a k-colored clique, then L =
(k +

(
k
2

)
) · ε and

Lp(h) ≥ (1− k · an · ε) · (k+
(
k

2

)
) · ε = (1− 1

2(k +
(
k
2

)
)
) · (k+

(
k

2

)
) · ε = (k+

(
k

2

)
− 1

2
) · ε.

On the other hand, if G does not have a k-colored clique, then

Lp(h) ≤ L ≤ (k +

(
k

2

)
− 1) · ε.

Therefore, we have a separation of the Lp-Lipschitz constant Lp(h) depending on whether G has
a k-colored clique or not. With this, the 2-LAYER RELU Lp-LIPSCHITZ CONSTANT instance
consisting of L = (k +

(
k
2

)
− 1

2) · ε and the underlying network of h is a yes-instance if and only if
G is a yes-instance of MULTICOLORED CLIQUE, which concludes the proof.

For every p ∈ (0, 1)∩Q, we can scale the network with ε := 1
an·kN ·

(
p

(
1− k+(k2)−

1
2

k+(k2)

))N

, where

N = ⌈1/p⌉. Note that since p is a fixed rational constant, ε is also rational and still polynomial in
the input size. We estimate

ε =
1

an · kN ·
(
p

(
1− k +

(
k
2

)
− 1

2

k +
(
k
2

)))N

≤ 1

an · kN ·
(
1−

(
k +

(
k
2

)
− 1

2

k +
(
k
2

))p)N

≤ 1

an · k1/p ·
(
1−

(
k +

(
k
2

)
− 1

2

k +
(
k
2

))p)1/p

=: ε∗.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Next, we can estimate L ≥ Lp(h) ≥ L(1 − k · (an · ε)p)1/p, where the second inequality follows
from the fact that if x∗ is a maximizer of maxx∈Rk h(x, 1), then |x∗

i | ≤ an · ε and thus

∥(1− k · (an · ε)p)1/p · (x∗, 1)∥p =

(
1− k · (an · ε)p + (1− k · (an · ε)p)

k∑
i=1

|x∗
i |p
)1/p

≤ (1− k · (an · ε)p + (1− k · (an · ε)p) · k · an · ε)1/p ≤ 1

holds, which makes (1− k · (an · ε)p)1/p · (x∗, 1) a feasible point for max∥(x,y)∥p≤1 h(x, y).

We then proceed with the estimation for the case where G has a k-colored clique with

Lp(h) ≥ (1− k · (an · ε)p)1/p · (k +

(
k

2

)
) · ε

≥ (1− k · (an · ε∗)p)1/p · (k +

(
k

2

)
) · ε

=
k +

(
k
2

)
− 1

2

k +
(
k
2

) · (k +

(
k

2

)
) · ε = (k +

(
k

2

)
− 1

2
) · ε,

which gives the same estimation as previously for p ∈ [1,∞] (note that we cannot directly use ε∗ as
scaling factor, since ε∗ might not be rational).

B.8 PROOF OF THEOREM 7.1

Proof. Let A = (a1, . . . , an) ∈ Rd×n be a matrix and let Z(A) =
∑n

i=1 conv{0, ai} ⊂ Rd be the
corresponding zonotope. Defining c := 1

2

∑n
i=1 ai as the center of the zonotope, we have

Z − c =

n∑
i=1

conv{−ai
2
,
ai
2
} =

n∑
i=1

conv{0,−ai
2
}+

n∑
i=1

conv{0, ai
2
} ⊂ Rd.

We now construct the matrix B = (a1

2 , . . . , an

2)⊤ ∈ Rn×d. Then, we have that

∥Bx∥1 =

n∑
i=1

|ai
2

⊤
x| =

n∑
i=1

max{0,−ai
2

⊤
x}+

n∑
i=1

max{0, ai
2

⊤
x}

is the support function of the zonotope Z − c.

Applying the polynomial algorithm of Cohen & Peng (2015), we find a matrix B′ = (b′1, . . . , b
′
r)

⊤ ∈
Rr×d with r ∈ O(d log dε−2) such that with high probability, (1 + ε)−1∥Bx∥1 ≤ ∥B′x∥1 ≤
(1+ ε)∥Bx∥1 holds for all x ∈ Rd. From the duality between zonotopes and their support function,
this implies (1 + ε)−1Z((B⊤,−B⊤)) ⊆ Z − c ⊆ (1 + ε)Z((B⊤,−B⊤)). Defining A′ = (2b′1 +
c, . . . , 2b′r + c) ∈ Rd×r, it follows that (1 + ε)−1∥Bx∥1 ≤ ∥B′x∥1 ≤ (1 + ε)∥Bx∥1 implies
(1 + ε)−1Z(A′) ⊆ Z(A) ⊆ (1 + ε)Z(A′), which implies the theorem.

19

	Introduction
	Our Contributions
	Further Related Work

	Preliminaries
	Problem Definitions and Warm-Up

	Reduction from Multicolored Clique
	Hardness of Network Verification Problems
	Hardness of Zonotope Non-Containment
	Hardness of Computing the Lipschitz Constant
	Norm Maximization on Zonotopes
	Conclusion
	Additional Material
	Additional Preliminaries
	Additional Figures

	Proofs
	Proof of 2.1
	Proof of 2.2
	Proof of 3.1
	Proof of 4.2
	Proof of 4.3
	Proof of 5.1
	Proof of 6.2
	Proof of 7.1

