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ABSTRACT

Neural networks with ReLU activations are a widely used model in machine learn-
ing. It is thus important to have a profound understanding of the properties of the
functions computed by such networks. Recently, there has been increasing inter-
est in the (parameterized) computational complexity of determining these prop-
erties. In this work, we close several gaps and resolve an open problem posted
by Froese et al. [COLT ’25] regarding the parameterized complexity of various
problems related to network verification. In particular, we prove that deciding
positivity (and thus surjectivity) of a function f : Rd → R computed by a 2-layer
ReLU network is W[1]-hard when parameterized by d. This result also implies
that zonotope (non-)containment is W[1]-hard with respect to d, a problem that is
of independent interest in computational geometry, control theory, and robotics.
Moreover, we show that (a) approximating the maximum within any multiplica-
tive factor in 2-layer ReLU networks, (b) computing the Lp-Lipschitz constant
for p ∈ (0,∞] in 2-layer networks, and (c) approximating the Lp-Lipschitz con-
stant in 3-layer networks are all NP-hard and W[1]-hard with respect to d. No-
tably, our hardness results are the strongest known so far and imply that the naive
enumeration-based methods for solving these fundamental problems are all essen-
tially optimal under the Exponential Time Hypothesis.

1 INTRODUCTION

Neural networks with rectified linear unit (ReLU) activations are a common model in deep learning.
In practice, such networks are trained on finite datasets and are expected to generalize reliably to
unseen inputs. However, even minor perturbations of the input may lead to unexpected or erroneous
outputs (Szegedy et al., 2014). This highlights the importance of certification of trained models,
which in turn requires a detailed understanding of the functions computed by ReLU networks.

A central problem in this context is network verification: Given a subset of inputs X , the question
is whether the network’s outputs are guaranteed to lie within a prescribed set Y . Commonly, the
sets X and Y take the form of balls or are specified by linear constraints. This question has received
increasing attention in recent years, particularly due to the deployment of neural networks in safety-
critical applications (Bojarski et al., 2016; Weng et al., 2018a; Kouvaros & Lomuscio, 2021; Rössig
& Petkovic, 2021; Katz et al., 2022). Recently, Froese et al. (2025b) established a connection be-
tween the basic verification task to decide whether a 2-layer ReLU network attains a positive output
(which is equivalent to surjectivity) and the classical geometry problem of zonotope containment.
The latter asks whether one zonotope is contained within another, a question that has been exten-
sively studied due to its applications in areas such as robotics and control (Sadraddini & Tedrake,
2019; Gruber & Althoff, 2020; 2021; Kulmburg & Althoff, 2021; Yang et al., 2022; Kulmburg et al.,
2025).

Beyond verification, robustness is often a crucial requirement since trained networks are typically
expected to be insensitive to small input perturbations. This property is commonly quantified in
terms of the network’s Lipschitz constant, which should ideally be small (Virmaux & Scaman, 2018;
Weng et al., 2018b; Fazlyab et al., 2019; Jordan & Dimakis, 2020).

Network verification (Katz et al., 2022; Sälzer & Lange, 2022; Froese et al., 2025b), estimating the
Lipschitz constant (Virmaux & Scaman, 2018; Jordan & Dimakis, 2020) and zonotope containment
(Kulmburg & Althoff, 2021) are all known to be (co)NP-hard. This intractability is closely linked to
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the curse of dimensionality: As the input dimension d grows, the search space becomes prohibitively
large. A natural follow-up question is whether these problems become tractable for low-dimensional
input spaces. This perspective is particularly relevant since, in practice, high-dimensional data is
often assumed to lie near a low-dimensional submanifold of the input space. Motivated by this,
recent work has studied the parameterized complexity of neural network problems such as training
(Arora et al., 2018; Froese et al., 2022; Brand et al., 2023; Froese & Hertrich, 2023) and verification
(Froese et al., 2025b). Notably, while checking injectivity of a 2-layer ReLU network with n hidden
neurons can be done in (d+ 1)d · nO(1) time (that is, fixed-parameter tractability with respect to d)
(Froese et al., 2025b), the parameterized complexity status of network verification (in particular
positivity) and the Lipschitz constant have been posed as open problems at COLT ’25 (Froese et al.,
2025a).

1.1 OUR CONTRIBUTIONS

We answer the aforementioned questions by proving W[1]-hardness for the parameter input dimen-
sion (thus excluding fixed-parameter tractability under standard complexity assumptions). More-
over, we show that solving these problems via simple “brute-force” enumeration of the linear regions
of the network’s function is essentially optimal under the Exponential Time Hypothesis (ETH).

In Section 3, we give a reduction from the well-known MULTICOLORED CLIQUE problem to net-
work verification in which the network’s input dimension depends linearly on the clique size. This
reduction forms the basis for our hardness results and yields strong lower bounds based on the ETH.
The key difficulty here is that the input dimension must scale linearly with the clique size (in con-
trast, standard NP-hardness reductions allow the input dimension to grow without restriction).

Network Verification. We study the (co)NP-hard problems of deciding positivity, surjectivity, and
approximating the maximum of a 2-layer ReLU network f : Rd → R (with n hidden neurons), and
also the problem of deciding whether a 3-layer ReLU network computes the constant zero func-
tion. All these problems are special cases of (complements of) verification. For example, positivity
corresponds to checking whether there exists x ∈ Rd with f(x) > 0, that is, f(Rd) ̸⊆ (−∞, 0].
All these problems can be solved in nO(d) · poly(N) time with simple “brute-force” enumeration
algorithms (see Section 2). In Section 4, we prove W[1]-hardness with respect to d for all problems,
thereby resolving the open question by Froese et al. (2025a). Our reductions imply a running time
lower bound of nΩ(d) · poly(N) based on the ETH which shows that the simple enumeration algo-
rithms are essentially optimal. In particular, this implies an nΩ(d) · poly(N)-time lower bound for
the general network verification problem.

Zonotope Containment. In Section 5, we study the coNP-hard problem of deciding whether a
zonotope Z ⊂ Rd (given by its generators) is contained in another zonotope Z ′ ⊂ Rd. Based on a
duality of 2-layer ReLU networks and zonotopes, we obtain W[1]-hardness with respect to d and an
analogous running time lower bound of nΩ(d) · poly(N) assuming the ETH which shows that the
simple vertex enumeration algorithm is essentially optimal.

Lipschitz Constant. Virmaux & Scaman (2018) proved that computing the L2-Lipschitz constant
of a 2-layer ReLU network is NP-hard. In Section 6, we extend this to NP-hardness for every p ∈
(0,∞] and even W[1]-hardness with respect to d. Approximating the Lp-Lipschitz constant within
any multiplicative constant for 3-layer ReLU networks is known to be NP-hard (Jordan & Dimakis,
2020; Froese et al., 2025b). We also extend this result to W[1]-hardness with respect to d. Again,
our reductions imply running time lower bounds matching the running times of simple enumeration
algorithms. On the positive side, we show that for the restricted class of input convex networks,
computing the L1-Lipschitz constant is polynomial-time solvable and the L∞-Lipschitz constant is
fixed-parameter tractable (FPT) with respect to d. In Section 7, we discuss the equivalence between
Lipschitz constant computation and norm maximization on zonotopes and present a randomized
FPT-approximation algorithm, using results from subspace embeddings.

Limitations. Our paper is clearly of purely theoretical nature. We aim for a thorough understand-
ing of the problems from a computational complexity perspective. Hence, our results are naturally
worst-case results. Although the algorithms we give are essentially optimal in terms of running time
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(assuming the ETH), it might be possible to achieve a better running time by reducing the constant
hidden in the exponent. Moreover, additional assumptions on the network structure might render the
problems tractable (as in the case of input convex networks for the L1-Lipschitz constant). A full
literature review (e.g., for the broad field of network verification) is beyond the scope of this paper.

1.2 FURTHER RELATED WORK

Various heuristic methods for network verification have been proposed, including interval bound
propagation (Gowal et al., 2018), DeepZ (Wong et al., 2018), DeepPoly (Singh et al., 2019), multi-
neuron verification Ferrari et al. (2022), ZonoDual (Jordan et al., 2022), and cutting planes (Zhang
et al., 2022). Baader et al. (2024) and Mao et al. (2024) study the expressivity of convex relaxations
that are often used in practical network verification algorithms. Lp-norm maximization on zonotopes
is also known as the Longest Vector Sum problem and has a wide range of applications in pattern
recognition, clustering, signal processing, and analysis of large-scale data (Baburin & Pyatkin, 2007;
Shenmaier, 2018; 2020). Special cases were studied before (Bodlaender et al., 1990; Ferrez et al.,
2005).

2 PRELIMINARIES

Notation. For n ∈ N, we define [n] := {1, . . . , n}. For k, n ∈ N, k ≤ n, we define
(
[n]
k

)
:= {A ⊆

[n] : |A| = k}. A function f : Rd → Rm is positively homogeneous if f(λx) = λf(x) holds for
all x ∈ Rd and λ ≥ 0. Given a generator matrix A = (a1, . . . , an) ∈ Rd×n, the corresponding
zonotope is Z(A) :=

∑n
i=1 conv({0, ai}), where the sum is the Minkowski sum of the generators.

Lp-Lipschitz Constant. For p ∈ (0,∞) and a vector x ∈ Rd, we define ∥x∥p :=
(∑d

i=1 |xi|p
) 1

p

,
and for p = ∞ we set ∥x∥∞ := maxi∈[d] |xi|. For p ∈ [1,∞], the function ∥·∥p is the Lp-norm, and
for p ∈ (0, 1), it is the Lp-quasinorm. The L0-function is defined by ∥x∥0 := |{i ∈ [d] : xi ̸= 0}|.
The Lp-Lipschitz constant of a function f is Lp(f) := supx ̸=y

∥f(x)−f(y)∥p

∥x−y∥p
.

ReLU Networks. A ReLU layer with d inputs, m outputs, weights W ∈ Rm×d, and biases b ∈
Rm computes the map ϕW,b : Rd → Rm, x 7→ max(0,Wx + b), where the maximum is applied
in each component. A ReLU network with ℓ ≥ 1 layers and one-dimensional output is defined by ℓ
weight matrices Wi ∈ Rni×ni−1 and biases bi ∈ Rni for i ∈ [ℓ], where n0 := d, . . . , nℓ := 1 ∈ N+,
and computes the continuous piecewise linear (CPWL) function f : Rd → R with

f(x) := Wℓ · (ϕWℓ−1,bℓ−1
◦ · · · ◦ ϕW1,b1)(x) + bℓ.

Observe that no activation function is applied in the output layer. The ℓ − 1 ReLU layers are also
called hidden layers. The width and size of the network are max{n1, . . . , nℓ−1} and

∑ℓ−1
i=1 ni,

respectively. Additional details can be found in Appendix A.

Polytopes and Duality. There is a duality between positively homogeneous convex CPWL func-
tions from Rd to R (the set of which is denoted Fd) and polytopes in Rd (denoted Pd), which we
will briefly sketch. Any function f ∈ Fd can be written as f(x) = max{a⊤1 x, . . . , a⊤k x} for some
ai ∈ Rd, and its Newton polytope is Newt(f) := conv({a1, . . . , ak}). Equivalently, f is the support
function of Newt(f), that is, f(x) = maxy∈Newt(f) y

⊤x. The map φ : Fd → Pd, defined by f 7→
Newt(f), is a bijection satisfying φ(f+g) = φ(f)+φ(g) and φ(max{f, g}) = conv(φ(f)∪φ(g)),
where + denotes pointwise addition or Minkowski sum, respectively.

Parameterized Complexity. We assume basic knowledge on computational complexity theory.
Parameterized complexity is a multivariate approach to study the time complexity of computational
problems (Cygan et al., 2015; Downey & Fellows, 2013). A parameterized problem L ⊆ Σ∗ × N
consists of instances (x, k) where x encodes a classical problem instance and k is a parameter.
A parameterized problem L is fixed-parameter tractable (contained in the class FPT) if it can be
solved in f(k) · |x|O(1) time, where f is an arbitrary function that only depends on k. The class XP
contains all parameterized problems which can be solved in polynomial time for constant parameter
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values, that is, in f(k) · |x|g(k) time, where g is an arbitrary function that only depends on k. It
is known that FPT⊊XP. The class W[1] can be defined as the set of all parameterized problems
which can be reduced to CLIQUE (with parameter solution size) via a parameterized reduction. It is
known that FPT⊆W[1]⊆XP and it is widely believed that W[1] contains problems which are not
in FPT (namely the W[1]-hard problems such as CLIQUE). A parameterized reduction from L to L′

is an algorithm that maps an instance (x, k) in f(k) · |x|O(1) time to an instance (x′, k′) such that
k′ ≤ g(k) for an arbitrary function g and (x, k) ∈ L if and only if (x′, k′) ∈ L′.

The Exponential Time Hypothesis (Impagliazzo & Paturi, 2001) states that 3-SAT on n variables
cannot be solved in 2o(n) time. The ETH implies FPT ̸=W[1] (which implies P ̸=NP), as well as
running time lower bounds: For example, CLIQUE cannot be solved in ρ(k) · no(k) time, where k is
the size of the requested clique and n is the number of nodes in the graph (Cygan et al., 2015).

2.1 PROBLEM DEFINITIONS AND WARM-UP

For given generator matrices A ∈ Rd×n and B ∈ Rd×m, and a scalar L ∈ R, we consider the
following problems:

• ZONOTOPE CONTAINMENT: Is Z(A) ⊆ Z(B)?

• Lp-MAX ON ZONOTOPES: Is maxx∈Z(A) ∥x∥p ≥ L?

For an ℓ-layer ReLU network defined by weight matrices Wi ∈ Rni×ni−1 and biases bi ∈ Rni for
i ∈ [ℓ], where d := n0, . . . , nℓ := 1 ∈ N+ that computes the function f : Rd → R, f(x) :=
Wℓ · (ϕWℓ−1,bℓ−1

◦ · · · ◦ ϕW1,b1)(x) + bℓ, we consider the following problems:

• ℓ-LAYER RELU POSITIVITY: Is there an x ∈ Rd such that f(x) > 0?

• ℓ-LAYER RELU SURJECTIVITY: Is f surjective (that is, ∀y ∈ R ∃x ∈ Rd : f(x) = y)?

• ℓ-LAYER RELU Lp-LIPSCHITZ CONSTANT: Is Lp(f) ≥ L?

In fact, all these problems are known to be in XP for the parameter d (simply enumerate vertices of
zonotopes and linear regions of ReLU networks; see Appendix B for more details).

Theorem 2.1. ZONOTOPE CONTAINMENT and Lp-MAX ON ZONOTOPES can be solved in
O(nd−1 · poly(N)) time (where n is the number of generators and N is the input bit-length).

Theorem 2.2. ℓ-LAYER RELU POSITIVITY, ℓ-LAYER RELU SURJECTIVITY, ℓ-LAYER RELU
Lp-LIPSCHITZ CONSTANT, computing the maximum of an ℓ-layer ReLU network over a polyhe-
dron and deciding whether an ℓ-layer ReLU network computes the zero function can be solved in
O(n(ℓ−1)d · poly(N)) time (where n is the network width and N is the input bit-length).

In particular, we prove in Appendix B that network verification for ℓ-layer ReLU networks f : Rd →
Rm is solvable in O(n(ℓ−1)d · poly(N)) time, assuming that X and Y are polyhedra in halfspace
representation. Later, we will prove that, assuming the ETH, the 2-layer or the 3-layer versions
of all of these problems cannot be solved in ρ(d) · No(d) time for any function ρ, which means
that the O(nd · poly(N))- and O(n2d · poly(N))-time algorithms (for 2- and 3-layer networks) are
essentially optimal with respect to the runtime dependency on d. Note that hardness results for 2-
or 3-layer networks also imply hardness for deeper networks with ℓ ≥ 3 layers: simply concatenate
the 2- or 3-layer network with trivial additional layers that compute the identity map.

3 REDUCTION FROM MULTICOLORED CLIQUE

In this section, we present a parameterized reduction which forms the basis for the hardness results
for all our considered problems. (All proofs that are omitted from the main text as well as some
auxiliary statements can be found in Appendix B.) We reduce from the following problem.

MULTICOLORED CLIQUE

Input: A graph G = (V = V1∪̇ · · · ∪̇Vk, E), where each node in Vi has color i.
Question: Does G have a k-colored clique (a clique with exactly one node of each color)?
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Figure 1: Spike function sr,l for a colored graph (top left).
Node labels: ωr,1 = 1, ωr,2 = 2, ωl,1 = 4, ωl,2 = 8. Edge
labels: ωr,1,l,1 = 5, ωr,2,l,1 = 6, ωr,1,l,2 = 9, ωr,2,l,2 = 10.
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Figure 2: Penalty function pc.

MULTICOLORED CLIQUE is NP-hard, W[1]-hard with respect to k and not solvable in ρ(k) · |V |o(k)
time for any computable function ρ assuming the ETH (Cygan et al., 2015).
Proposition 3.1. For every instance (G = (V = V1∪̇ · · · ∪̇Vk, E), k) of MULTICOLORED CLIQUE,
it is possible to construct in polynomial time a 2-layer ReLU network computing a function
f : Rk → R such that maxx∈Rk f(x) = k +

(
k
2

)
if and only if G contains a k-colored clique

and maxx∈Rk f(x) ≤ k +
(
k
2

)
− 1 otherwise.

Proof Sketch. Let (G = (V = V1∪̇ · · · ∪̇Vk, E), k) be an instance of MULTICOLORED CLIQUE,
where Vc = {vc,1, . . . , vc,nc

} and E =
⋃

(r,l)∈([k]
2 )

Er,l, where Er,l denotes the set of edges whose
nodes have color r and l. We assign each node vc,i a unique label ωc,i ∈ N such that every edge
{vr,i, vl,j} gets a unique label ωr,i,l,j := ωr,i + ωl,i (using Sidon sets, see Appendix B for details).

For every color pair (r, l) ∈
(
[k]
2

)
, we introduce a spike function sr,l : R2 → [0, 1] (see Figure 1)

that is zero everywhere except for a set of |Er,l| parallel stripes in which sr,l forms a spike, that is,
goes up from 0 to 1 and goes down from 1 to 0 again. The spike function attains value 1 if and
only if the sum of its inputs is equal to ωr,i,l,j for some edge {vr,i, vl,j} ∈ Er,l. The spike function
can be implemented with 3|Er,l| neurons. For every color c ∈ [k], we create a penalty function
pc : R → [0, 1] (see Figure 2) that has a narrow spike around the value ωc,i for each node vc,i and is
zero everywhere else. The penalty function pc can be implemented with 3nc neurons.

By computing all spike and penalty functions in parallel and summing them up, we obtain a 2-layer
ReLU network with 3(|V |+ |E|) ReLU neurons that computes f : Rk → [0, k +

(
k
2

)
] with

f(x1, . . . , xk) =
∑

(r,l)∈([k]
2 )

sr,l(xr, xl) +
∑
c∈[k]

pc(xc).

Next, we show that if there exists a k-colored clique {v1,a1
, . . . , vk,ak

} in G, then
f((ω1,a1

, . . . , ωk,ak
)) = k +

(
k
2

)
. On the other hand, we show that if there is a point x∗ ∈ Rk

with f(x∗) > k +
(
k
2

)
− 1, then G has a k-colored clique. The idea is that in this case, all spike

and penalty functions must have positive output. For the penalty functions, this means that ev-
ery input value x∗

c must be close to a value ωc,ac
which corresponds to the node vc,ac

. Since the
spike functions only give a positive output if the two node inputs correspond to adjacent nodes, the
nodes v1,a1

, . . . , vk,ak
then form a k-colored clique in G.

In the following, we will use modifications of this construction to prove our hardness results. All our
(parameterized) reductions are in fact polynomial-time reductions and thus also prove NP-hardness.
We will only state this explicitly if the NP-hardness of the problem was not previously known.

4 HARDNESS OF NETWORK VERIFICATION PROBLEMS

We first prove W[1]-hardness (w.r.t. d) of 2-LAYER RELU POSITIVITY. The NP-hardness of 2-
LAYER RELU POSITIVITY was established by Froese et al. (2025b). We prove W[1]-hardness via

5
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Figure 3: Homogenization: the function max(0, 2x− 1)−max(0, 4x− 4) + max(0, 2x− 3) + 4
(left) is turned into max(0, 2x− y)−max(0, 4x− 4y) + max(0, 2x− 3y) + 4|y| (right).

the reduction from Proposition 3.1, which relies on the use of biases. To extend the hardness result
to other problems, we need to show a stronger statement: that 2-LAYER RELU POSITIVITY remains
W[1]-hard even when all biases are equal to zero. For this, we use homogenized ReLU networks.

Definition 4.1. Given a 2-layer ReLU network with a single output neuron, its homogenization is
the ReLU network (with all biases equal to zero) that is obtained by adding an extra input variable y
to the network, replacing all biases b of neurons in the first hidden layer by y · b and replacing the
bias b of the output neuron by |y| · b using two extra neurons in the hidden layer.

Figure 3 illustrates the effect of homogenization on the function of a 2-layer ReLU network.

Theorem 4.2. 2-LAYER RELU POSITIVITY is W[1]-hard with respect to d and not solvable in
ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH, even if all
biases are zero.

Proof Sketch. Setting the output node bias of the ReLU network constructed in the proof of Proposi-
tion 3.1 to 1−k−

(
k
2

)
yields a network that has a positive output if and only if the graph G from the

MULTICOLORED CLIQUE instance contains a k-colored clique. We then show that homogenizing
this network preserves this equivalence, which yields a parameterized reduction from MULTICOL-
ORED CLIQUE to 2-LAYER RELU POSITIVITY without biases (and thus proves W[1]-hardness).
Note that the input dimension d of the constructed network is k + 1. Hence, any algorithm solving
2-LAYER RELU POSITIVITY in ρ(d) ·No(d) time would imply an algorithm for MULTICOLORED

CLIQUE running in ρ(k) · |V |o(k) time (since N ≤ |V |O(1)) contradicting the ETH.

Theorem 4.2 also implies W[1]-hardness w.r.t. the input dimension d for approximating the maxi-
mum of a 2-layer ReLU network over a polyhedron within any multiplicative factor. Froese et al.
(2025b, Corollary 13) showed that approximating this value is NP-hard.

Corollary 4.3. Approximating the maximum of a 2-layer ReLU network over a polyhedron within
any multiplicative factor is W[1]-hard with respect to its input dimension d and cannot be done in
ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH.

By adding another hidden layer with a single ReLU neuron to the network constructed in the proof
of Theorem 4.2, we obtain a 3-layer ReLU network that has a non-zero output if and only if the
original 2-layer network has a positive output. This yields the following corollary.

Corollary 4.4. The problem of deciding whether a 3-layer ReLU network computes a non-zero
function is W[1]-hard with respect to its input dimension d and not solvable in ρ(d) · No(d) time
(where N is the input bit-length) for any function ρ assuming the ETH.

The NP-hardness of the above problem was established by Froese et al. (2025b). For 2-layer net-
works, it is solvable in polynomial time (Froese et al., 2025b), which holds also in the presence
of biases (Stargalla et al., 2025). Thus, Corollary 4.4 draws an even clearer boundary between the
computational complexity of this problem in the 2-layer and 3-layer cases.

Froese et al. (2025b) proved NP-hardness of 2-LAYER RELU SURJECTIVITY and asked whether the
problem is fixed-parameter tractable with respect to d. We give a negative answer to this question.
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Z−

Z+

x

y∗

H

Figure 4: An illustration of the equivalence between 2-LAYER RELU POSITIVITY and ZONOTOPE
NON-CONTAINMENT. Let H = {y ∈ Rd | y⊤x = b} be a hyperplane that separates y∗ from Z−.
Then g(x) = maxy∈Z+ y⊤x−maxy∈Z− y⊤x > y⊤∗ x− b > 0.

Theorem 4.5. 2-LAYER RELU SURJECTIVITY is W [1]-hard with respect to d and not solvable in
ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH.

Proof. Recall that a positively homogeneous function g : Rd → R is surjective if and only if there
exist two points v+, v− ∈ Rd such that g(v+) > 0 and g(v−) < 0. The positively homogeneous
function f : Rk+1 → R of the 2-layer ReLU network from the proof of Theorem 4.2 is in fact
surjective if and only if it has a positive point, as f(0, 1) < 0.

5 HARDNESS OF ZONOTOPE NON-CONTAINMENT

In this section, we prove W[1]-hardness for ZONOTOPE NON-CONTAINMENT, the complement of
ZONOTOPE CONTAINMENT. ZONOTOPE CONTAINMENT is coNP-complete, and can be solved in
O(nd−1 · poly(N)) time (where N is the input bit-length) by enumerating the vertices of one zono-
tope, but fixed-parameter tractability with respect to the dimension d remained open so far (Froese
et al., 2025a). Moreover, Kulmburg & Althoff (2021) showed that containment is equivalent to
maximizing a certain zonotope norm, making it a special case of norm maximization on zonotopes.

Froese et al. (2025b) showed that 2-LAYER RELU POSITIVITY is equivalent to ZONOTOPE NON-
CONTAINMENT following from the duality of positively homogeneous convex CPWL functions
from Rd to R and polytopes in Rd. We will briefly sketch this equivalence. Let a 2-layer ReLU
network without biases be given by g(x) =

∑m
i=1 λi max{0, w⊤

i x}. We can assume without loss
of generality that λi ∈ {−1, 1} due to the positive homogeneity of max{0, w⊤

i x}. Hence g(x) =∑
i∈I+ max{0, w⊤

i x} −∑i∈I− max{0, w⊤
i x} for vectors wi ∈ Rd, i ∈ I+ ∪ I−. Defining the

zonotopes
Z+ := φ(

∑
i∈I+

max{0, w⊤
i x}) =

∑
i∈I+

conv({0, wi}),

Z− := φ(
∑
i∈I−

max{0, w⊤
i x}) =

∑
i∈I−

conv({0, wi}),

it holds that g = φ−1(Z+) − φ−1(Z−). By definition of the support function, Z+ ⊆ Z− implies
φ−1(Z+) ≤ φ−1(Z−). Conversely, if y∗ ∈ Z+ \ Z−, then there is a separating hyperplane H =
{y ∈ Rd : y⊤x = b} such that y⊤∗ x > b and y⊤x < b for all y ∈ Z−. Hence, g(x) > 0 (see Figure 4
for an illustration). Since also any pair of zonotopes is of this form, 2-LAYER RELU POSITIVITY is
equivalent to ZONOTOPE NON-CONTAINMENT. Thus, Theorem 4.2 implies the following theorem.
Theorem 5.1. ZONOTOPE NON-CONTAINMENT is W [1]-hard with respect to d and not solvable
in ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH.

6 HARDNESS OF COMPUTING THE LIPSCHITZ CONSTANT

Jordan & Dimakis (2020) established the NP-hardness for approximating the Lp-Lipschitz constant
for p = 1 and p = ∞ for 3-layer ReLU networks within a multiplicative factor of Ω(N1−ε) for
every constant ε > 0, where N is the encoding size of the ReLU network. The NP-hardness result
of Froese et al. (2025b) for 2-LAYER RELU POSITIVITY implies NP-hardness for approximating
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the Lp-Lipschitz constant for p ∈ [0,∞] within any multiplicative factor for 3-layer ReLU networks.
We extend this by showing W[1]-hardness of the problem.
Corollary 6.1. For all p ∈ [0,∞], approximating the Lp-Lipschitz constant of a 3-layer ReLU
network by any multiplicative factor is W[1]-hard with respect to its input dimension d and cannot
be done in ρ(d) ·No(d) time (where N is the input bit-length) for any function ρ assuming the ETH.

Proof. Adding a hidden layer with a single ReLU neuron to the construction in the proof of Theo-
rem 4.2 yields a 3-layer network which computes a function with a non-zero Lp-Lipschitz constant
if and only if the original 2-layer network has a positive output. Hence, any multiplicative approxi-
mation could be used to decide 2-LAYER RELU POSITIVITY.

Virmaux & Scaman (2018) established the NP-hardness of 2-LAYER RELU L2-LIPSCHITZ CON-
STANT. We extend the NP-hardness to p ∈ (0,∞] and show W[1]-hardness w.r.t. d.
Theorem 6.2. For all p ∈ (0,∞], 2-LAYER RELU Lp-LIPSCHITZ CONSTANT is NP-hard, W [1]-
hard with respect to d and not solvable in ρ(d) ·No(d) time (where N is the input bit-length) for any
function ρ assuming the ETH.

Proof Sketch. First, we show that for any positively homogeneous CPWL function f : Rd → R,
we have Lp(f) = max∥x∥p≤1 |f(x)|. The idea is now to scale all y coefficients of the function
g : Rk+1 → R computed by the homogenized network constructed in the proof of Proposition 3.1 by
a sufficiently small amount ε to obtain the positively homogeneous CPWL function h : Rk+1 → R.
Then, every x∗ ∈ argmaxx∈Rk h(x, 1) has (sufficiently) small entries, as scaling the y coefficients
is equivalent to scaling the spike and penalty functions. We then show that Lp(h) is almost equal
to L := maxx∈Rk h(x, 1), as we can scale down a maximizer x∗ ∈ argmaxx∈Rk h(x, 1) with a y∗

that is only slightly smaller than 1 to obtain a feasible point y∗(x, 1) for max∥(x,y)∥p≤1 |h(x, y)|
with value |h(y∗ · x, y∗)| = y∗|h(x∗, 1)|, which proves L ≥ Lp(h) ≥ L · y∗ (so Lp(h) ≈ L). We
conclude the proof by showing that the hardness of computing L transfers to computing Lp(h).

On the positive side, we show that for a special subclass of ReLU networks, computing the L1- and
L∞-Lipschitz constant is tractable.

Input Convex Neural Networks. A ReLU network is input-convex (ICNN) if the weight matri-
ces of all but the first layer have only nonnegative entries, resulting in a convex function f(x) =
max{a⊤1 x+b1, . . . , a

⊤
k x+bk}. The Lp-Lipschitz constant of f is given by the maximum, taken over

all linear regions C of f , of the Lp-Lipschitz constant of f restricted to C, where f(x) = a⊤Cx+ bC
for all x ∈ C. Using the well-known equality Lp(g) = maxx∈Rd ∥∇g(x)∥q for smooth functions
g : Rd → R (Jordan & Dimakis, 2020), we derive that the Lp-Lipschitz constant of f restricted to
the region C is equal to ∥aC∥q and thus Lp(f) = max

C linear region of f
∥aC∥q = maxi ∥ai∥q , where ∥ · ∥q

is the dual norm of the Lp-norm. Note that the function f of the ICNN has the same Lp-Lipschitz
constant as the function g(x) = max{a⊤1 x, . . . , a⊤k x} computed by the same network where all
biases are set to 0, which implies that we might assume without loss of generality that the network
does not have biases and hence computes a function f that is convex and positively homogeneous.

Hertrich & Loho (2024) showed that there is a small extended formulation of Newt(f) for a func-
tion f computed by an ICNN without biases. More precisely, their proofs reveal that for a function
f : Rd → R computed by an ICNN, there is a polytope Q ⊆ Rd+m and a projection π : Rd+m → Rd

such that π(Q) = Newt(f) and the encoding size of (Q, π) is polynomial in the encoding size of f ,
where Q is given in half-space representation. Using this, we prove the following proposition.
Proposition 6.3. Let f : Rd → R be an ICNN with encoding size N . Then L1(f) can be computed
in poly(N) time and L∞(f) can be computed in O(2d poly(N)) time.

Proof. By the discussion above, we can assume without loss of generality that there are no bi-
ases and f is positively homogeneous. In this case, the definition of the support function im-
plies that Lp(f) = maxy∈Newt(f) ∥y∥q . By Hertrich & Loho (2024), there exists a poly-
tope Q and a projection π with poly(N) encoding size such that Lp(f) = maxy∈Q ∥π(y)∥q .
For p = ∞ and p = 1, this maximization can be reduced to finitely many LPs: Indeed,
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maxy∈Q ∥π(y)∥∞ = maxc∈{±e1,...,±ed} maxy∈Q c⊤π(y), which requires solving only 2d LPs,
while maxy∈Q ∥π(y)∥1 = maxc∈{±1}d maxy∈Q c⊤π(y), which requires solving 2d LPs. Since
LPs can be solved in polynomial time, the statements follow.

7 NORM MAXIMIZATION ON ZONOTOPES

We close with a short section describing a connection between Lipschitz constants of neural net-
works and norm maximization on zonotopes. For 2-layer ICNNs f : Rd → R, we can restrict
ourselves without loss of generality to the case where all output weights are equal to 1. In this
case, as shown by Froese et al. (2025a), the Newton polytope Newt(f) is a zonotope and computing
Lp(f) is equivalent to maximizing the dual norm of the Lp-norm over this zonotope.

Baburin & Pyatkin (2007) showed that maximizing the L∞-norm on zonotopes is solvable in
polynomial time and maximizing the L1-norm on zonotopes is fixed-parameter tractable for d
(our Proposition 6.3 generalizes these results). Note that Theorem 5.1 implies that maximizing
a zonotope-norm over a zonotope is W[1]-hard with respect to the dimension d (since zonotope
containment is equivalent to this problem (Kulmburg & Althoff, 2021)). For p ∈ (1,∞), how-
ever, it is an open question whether Lp-maximization on zonotopes is fixed-parameter tractable
for d (Froese et al., 2025a). Shenmaier (2018) proved NP-hardness and inapproximability for
p ∈ [1,∞) and showed a randomized (sampling based) (1 − ε)-approximation with probability
1 − 1/ε in time (1 + 2/ε)d poly(d, n) for every ε ∈ (0, 1) and an arbitrary norm. We show that
known results from subspace embedding theory can also be used to obtain randomized approxima-
tions, which is an interesting application of these results. The worst-case running time, however, is
worse, but in practice the actual running time might still be faster. Bozzai et al. (2023) observed that
results for ℓ1 subspace embeddings (Cohen & Peng, 2015) yield zonotope order reductions, that is,
approximations of zonotopes with few generators. More precisely, the following can be derived.
Theorem 7.1. There is a polynomial-time algorithm which, given a matrix A ∈ Rd×n and ε > 0,
outputs a matrix A′ ∈ Rd×r with r ∈ O(d log dε−2) such that with high probability

(1 + ε)−1Z(A′) ⊆ Z(A) ⊆ (1 + ε)Z(A′).

This order reduction yields a simple randomized approximation algorithm.
Theorem 7.2. Let ∥·∥ be any norm on Rd (computable in time T ). There is a randomized algorithm
which, given a matrix A ∈ Rd×n and ε > 0, outputs a value α ∈ R in O((cd log d/ε2)d−1 · T +
poly(n)) time (for some constant c > 0) such that with high probability

(1 + ε)−1α ≤ max
x∈Z(A)

∥x∥ ≤ (1 + ε)α.

Proof. Note that every norm is convex and convex functions attain their maximum on a polytope
at a vertex. On input (A, ε), we run the algorithm from Theorem 7.1 to obtain a matrix A′ with
r ∈ O(d log dε−2) columns in polynomial time. The zonotope Z(A′) has at most O(rd−1) ver-
tices (Zaslavsky, 1975), which can be enumerated in O(rd−1) time (Ferrez et al., 2005). We
simply return the maximum ∥ · ∥-value α of these vertices. Then, with high probability, it holds
(1 + ε)−1Z(A′) ⊆ Z(A) ⊆ (1 + ε)Z(A′), which implies

max
x∈(1+ε)−1Z(A′)

∥x∥ = (1 + ε)−1α ≤ max
x∈Z(A)

∥x∥ ≤ (1 + ε)α = max
x∈(1+ε)Z(A′)

∥x∥,

due to absolute homogeneity of norms.

8 CONCLUSION

We proved the strongest hardness results for various computational problems related to ReLU net-
work verification known so far. Note that nearly all considered problems can be phrased in terms of
maximizing a certain norm over a zonotope; a problem with numerous applications in other areas.
Most importantly, our results imply that simple “brute-force” enumeration algorithms are basically
best possible with respect to the dependency of the running time on the input dimension. Thus, we
settled the parameterized complexity of a wide range of problems almost completely. Moreover, our
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results show that it does not help to assume that the network weights are sparse and small, since
our constructions use only a constant number of (polynomially bounded) non-zero weights for each
ReLU neuron. It is thus not easy to formulate a general guidance to circumvent this hardness in
practice. One would have to make very specific assumptions on the network structure to ensure
that the number of linear regions is small and easy to enumerate. It is not clear which assumptions
would be natural here and whether networks trained on real-world data satisfy them. Alternatively,
one might use techniques (possibly incorporated into the training process) that guarantee efficient
verification or use special architectures (such as ICNNs). We also discussed some tractable cases for
restricted subclasses of problems as well as a randomized FPT-approximation. Overall, our hardness
results prove and justify that such techniques and the use of heuristics are indeed required in practice
to achieve reasonable running times.

The most prominent open question is the fixed-parameter tractability of Lp-maximization on zono-
topes for p ∈ (1,∞) when parameterized by d. Recall that this is equivalent to 2-LAYER RELU
Lp-LIPSCHITZ CONSTANT with only positive output weights. As a first step, one might try to find
a deterministic FPT-approximation for norm maximization on zonotopes (e.g., by derandomizing
the subspace embedding approach). Also, the complexity of computing L0(f) for 2-layer ReLU
networks is open. In general, it is an interesting question whether the constants in the exponents of
the running times can be improved, e.g., is ZONOTOPE CONTAINMENT solvable in O(ncd) time for
any c < 1?
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A ADDITIONAL MATERIAL

A.1 ADDITIONAL PRELIMINARIES

Geometry of ReLU Networks. We repeat basic definitions from polyhedral geometry, see Schri-
jver (1986) for more details. A polyhedron P is the intersection of finitely many closed halfspaces.
A polyhedral cone C ⊆ Rd is a polyhedron such that λu + µv ∈ C for every u, v ∈ C and
λ, µ ∈ R≥0. A cone is pointed if it does not contain a straight line. A ray ρ is a one-dimensional
pointed cone; a vector r is a ray generator of ρ if ρ = {λr : λ ≥ 0}. A polyhedral complex P
is a finite collection of polyhedra such that ∅ ∈ P , if P ∈ P , then all faces of P are in P , and if
P, P ′ ∈ P , then P ∩ P ′ is a face of P and P ′. A cell is a full-dimensional element of a polyhedral
complex. A hyperplane arrangement H is a finite collection of hyperplanes in Rd.

A ReLU network computing the CWPL function f : Rd → R with

f(x) := Wℓ · (ϕWℓ−1,bℓ−1
◦ · · · ◦ ϕW1,b1)(x) + bℓ,

is affine linear on each cell of an associated polyhedral complex Σf (the one induced by the closure
of the full-dimensional activation regions (Hanin & Rolnick, 2019) of the network). In particular,
the encoding size of every polyhedron in this complex is polynomially bounded in the encoding size
of the neural network (Froese et al., 2025b). It is well known that for 2-layer ReLU networks, Σf

corresponds to a hyperplane arrangement (Montúfar et al., 2014).

Hyperplane Arrangements. Any hyperplane arrangement with n hyperplanes in d dimensions
has at most O(nd) many cells (Zaslavsky, 1975), and it is possible to enumerate them in O(nd)
time (Edelsbrunner et al., 1986). All zero- and one-dimensional faces of a hyperplane arrangement
can be enumerated in O(nd · poly(N)) and O(nd−1 · poly(N)) time, respectively, where N is the
encoding size of the hyperplane arrangement, since they arise from an intersection of d and d − 1
hyperplanes. An ℓ-layer ReLU network partitions Rd into at most O(n(ℓ−1)d) cells, where n is the
width of the network. We can enumerate these cells in O(n(ℓ−1)d · poly(N)) time, where N is the
encoding size of the ReLU network (the first hidden layer gives a hyperplane arrangement; with
every subsequent hidden layer, a cell is intersected with at most n hyperplanes, partitioning the cell
into at most nd cells).

A.2 ADDITIONAL FIGURES

Figure 5 illustrates how the sum of the spike function sr,l and penalty functions pr, pl in the proof
of Proposition 3.1 behaves for a fixed color pair.

B PROOFS

B.1 PROOF OF THEOREM 2.1

Proof. ZONOTOPE (NON-)CONTAINMENT. It is well-known that a zonotope Z ⊂ Rd with n
generators has O(nd−1) vertices which can be enumerated in O(nd−1) time (Ferrez et al., 2005).
Note that Z is contained in another zonotope Z ′ if and only if all vertices of Z are contained in Z ′.
Hence, by enumerating the vertices of Z and checking containment in Z ′ (e.g. by solving a linear
program), we obtain an O(nd−1 · poly(N))-time algorithm.
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Figure 5: Illustration of the area around node values for a fixed color pair for non-adjacent and
adjacent nodes. The values are based on the example given in Figure 1. For non-adjacent nodes,
only the two penalty functions intersect, while for adjacent nodes, the penalty functions intersect
also with the spike function.

Lp-MAX ON ZONOTOPES. We can enumerate in O(nd−1 · poly(N)) time all vertices of the
zonotope and thus obtain an O(nd−1 · poly(N) · T ) time algorithm, where T denotes the time to
evaluate the Lp-norm of a vector in Rd.

B.2 PROOF OF THEOREM 2.2

Before going into the proof of Theorem 2.2, we first prove that network verification for ℓ-layer ReLU
networks over polyhedra is solvable in O(n(ℓ−1)d · poly(N)) time.

Lemma B.1. Let f : Rd → Rm be an ℓ-layer ReLU network and let P ⊆ Rd and Q ⊆ Rm be
polyhedra given in halfspace representation. Then, we can decide whether f(P ) ⊆ Q holds in
O(n(ℓ−1)d · poly(N)) time (where n is the network width and N the combined encoding size of the
network and the polyhedra).

Proof. Let Q = {x ∈ Rm : v⊤i x ≤ ui, i ∈ [k]}. Then, we have f(P ) ⊆ Q if and only if for every
cell C ∈ Σf and every constraint i ∈ [k], we have

ui ≥ max
x∈C∩P

v⊤i fC(x) = max
x∈C∩P

v⊤i (A
⊤
Cx+ bC) = v⊤i bC + max

x∈C∩P
(A⊤

Cvi)
⊤x,

where fC is the affine linear function of f restricted to C, that is, f(x) = fC(x) := A⊤
Cx + bC

for all x ∈ C. Note that the above condition can be verified by solving a linear program whose
encoding size is polynomially bounded in N . Since linear programs can be solved in polynomial
time and cells can be enumerated in O(n(ℓ−1)d ·poly(N)) time, it follows that we can check whether
f(P ) ⊆ Q holds in O(n(ℓ−1)d · poly(N)) time.

Proof of Theorem 2.2. Let f : Rd → R with f(x) = Wℓ · (ϕWℓ−1,bℓ−1
◦ · · · ◦ ϕW1,b1)(x) + bℓ

be the function computed by an ℓ-layer ReLU network and let Σf be the corresponding polyhedral
complex. Further, let n denote the width and N the encoding size of the network and let f ′ : Rd → R
with f ′(x) := Wℓ · (ϕWℓ−1,0 ◦ · · · ◦ ϕW1,0)(x) be the function of the ReLU network without biases.

14
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Computing the Maximum over a Polyhedron P . Here, we assume that the maximum
maxx∈P f(x) exists and N denotes the combined encoding size of the network and the polyhe-
dron P . We can compute this maximum by enumerating cells of Σf and solving the linear program
max

x∈C∩P
fC(x) for each cell C ∈ Σf , where fC is the affine linear function of f restricted to C, that is,

f(x) = fC(x) := a⊤Cx+bC for all x ∈ C. Note that the encoding size of the linear program is poly-
nomially bounded in N . Since linear programs can be solved in polynomial time and cells can be
enumerated in O(n(ℓ−1)d · poly(N)) time, it follows that maxx∈P f(x) = max

C cell of Σf

max
x∈C∩P

fC(x)

can be computed in O(n(ℓ−1)d · poly(N)) time.

ℓ-LAYER RELU POSITIVITY. Follows from applying Lemma B.1 to P = Rd and Q = (−∞, 0],
since there being a point x ∈ Rd with f(x) > 0 is equivalent to f(Rd) ̸⊆ (−∞, 0].

ℓ-LAYER RELU SURJECTIVITY. Froese et al. (2025b, Lemma 14) show that for surjectivity, f is
surjective if and only if f ′ is surjective, which is equivalent to there being two points r+, r− ∈ Rd

with f ′(r−) < 0 < f ′(r+). We can check this in O(n(ℓ−1)d · poly(N)) time by applying the
algorithm for ℓ-LAYER RELU POSITIVITY to f ′ and −f ′.

ℓ-LAYER RELU Lp-LIPSCHITZ CONSTANT. Note that the Lp-Lipschitz constant of f is equal to
the maximum Lq-norm value (where Lq is the dual norm of the Lp-norm, so 1/p+1/q = 1) of any
gradient of the linear function that arises by restricting f to a cell of Σf . Thus, by enumerating all
cells of Σf , we obtain an O(n(ℓ−1)d · poly(N) · T ) time algorithm, where T denotes the time to
evaluate the Lq-norm of a vector in Rd.

ℓ-LAYER RELU ZERO FUNCTION CHECK. Follows from applying Lemma B.1 to P = Rd and
Q = {0}.

B.3 PROOF OF PROPOSITION 3.1

Before going into detail, we first introduce a useful definition and prove a preliminary result.
Definition B.2. A Sidon set is a set of positive integers A = {a1, . . . , am} where the sums ai + aj
with i ≤ j are all different.

For a survey on Sidon sets, we refer to (O’Bryant, 2004). The greedy Sidon set, introduced by Mian
& Chowla (1944), is recursively constructed as follows: take a1 = 1, and for n > 1, let an be
the smallest nonnegative integer such that {a1, . . . , an} is a Sidon set (see A005282). Stöhr (1955)
noted that an ∈ O(n3) holds. We note that the greedy Sidon set of size n can be computed in nO(1)

time. We use the following result.
Lemma B.3. Let A be a Sidon set of size n, and let W1, . . . ,Wk be a partition of A into disjoint
subsets. Then, for every pair i, j ∈

(
[k]
2

)
, the sums a+ b with a ∈ Wi, b ∈ Wj are all different.

Proof. Suppose that there are two pairs (a, b) ̸= (c, d) ∈ Wi ×Wj with a+ b = c+ d. Then, there
exist elements ai, aj , ar, al ∈ A such that ai = a, aj = b, ar = c, al = d with {i, j} ≠ {r, l} and
ai + aj = ar + al, which contradicts the fact that A is a Sidon set.

In other words, given an element w ∈ Wi +Wj , there is exactly one pair (wi, wj) ∈ Wi ×Wj with
w = wi + wj .

Proof of Proposition 3.1. Let (G = (V = V1∪̇ . . . ∪̇Vk, E), k) be an instance of MULTICOLORED
CLIQUE, where Vc = {vc,1, . . . , vc,nc

} for c ∈ [k] and E =
⋃

(r,l)∈([k]
2 )

Er,l, where Er,l denotes

the set of edges whose nodes have color r and l. Further, let A be the greedy Sidon set of size |V |
and let W1, . . . ,Wk be a partition of A into k disjoint subsets such that |Wi| = ni holds. Note that
this allows us to assign each node vc,i to a unique element ωc,i of A, namely the i-th element of Wc.
For every edge {vr,i, vl,j}, we define the constant ωr,i,l,j := ωr,i + ωl,i. Since A is a Sidon set, the
value ωr,i,l,j uniquely determines the edge {vr,i, vl,j}. We construct a ReLU network with k input
variables x1, . . . , xk and 3(|V |+ |E|) hidden neurons as follows.

For every color c ∈ [k], we introduce a node selection gadget which ensures that the input value xc

encodes a node in Vc. To this end, we create a “penalty function” pc : R → [0, 1] (see Figure 2) that
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has nc narrow spikes around the value ωc,i (that is, it goes up from 0 to 1 and down to 0 again) for
each vc,i ∈ Vc and is zero everywhere else:

pc(x) :=


8(x− ωc,i +

1
8 ), if x ∈ [ωc,i − 1

8 , ωc,i], i ∈ [nc]

1− 8(x− ωc,i), if x ∈ (ωc,i, ωc,i +
1
8 ], i ∈ [nc]

0, if x /∈ ⋃i∈Vc
[ωc,i − 1

8 , ωc,i +
1
8 ]

.

The penalty function pc can be implemented with 3nc hidden neurons:

pc(x) =
∑
i∈[nc]

(max(0, 8(x− ωc,i +
1

8
))−max(0, 16(x− ωc,i)) + max(0, 8(x− ωc,i −

1

8
)).

Next, we introduce an edge verification gadget which verifies that each pair of nodes selected by the
node selection gadgets is connected by an edge. For every pair of colors (r, l) ∈

(
[k]
2

)
, we define a

“spike function” sr,l : R2 → [0, 1] (see Figure 1) that is zero everywhere except for a set of |Er,l|
parallel stripes in which sr,l forms a spike.

sr,l(x, y) :=


4(x+ y − ωr,i,l,j − 1

4 ), if x+ y ∈ [ωr,i,l,j − 1
4 , ωr,i,l,j ], {vr,i, vl,j} ∈ Er,l

1− 4(x+ y − ωr,i,l,j), if x+ y ∈ (ωr,i,l,j , ωr,i,l,j +
1
4 ], {vr,i, vl,j} ∈ Er,l

0, if x+ y /∈ ⋃{vr,i,vl,j}∈Er,l
[ωr,i,l,j − 1

4 , ωr,i,l,j +
1
4 ]

.

Note that Lemma B.3 implies that sr,l(x, y) ≤ 1 holds for any input (x, y) ∈ R2, as the sums
ωr,i + ωl,i = ωr,i,l,j for {vr,i, vl,j} ∈ Er,l are all integral and different. Thus, the spike functions
attain value 1 if and only if its inputs correspond to two nodes that share an edge. The spike function
can be implemented with 3|Er,l| hidden neurons:

sr,l(x, y) =
∑

{vr,i,vl,j}∈Er,l

(max(0, 4(x+ y − ωr,i,l,j +
1

4
))−max(0, 8(x+ y − ωr,i,l,j))

+max(0, 4(x+ y − ωr,i,l,j −
1

4
))).

By computing all penalty and spike functions in parallel and summing them up at the output neuron,
we obtain a ReLU network that computes the function f : Rk → R with

f(x1, . . . , xk) =
∑

(r,l)∈([k]
2 )

sr,l(xr, xl) +
∑
c∈[k]

pc(xc).

Since every spike and penalty function is lower bounded by 0 and upper bounded by 1, it follows
that f is lower bounded by 0 and upper bounded by k +

(
k
2

)
.

First, we show that the existence of a k-colored clique in G implies maxx∈Rk f(x) = k +
(
k
2

)
.

Suppose that {v1,a1
, . . . , vk,ak

} ⊂ V forms a k-colored clique in G. Then, we claim that the point
x∗ = (ω1,a1 , . . . , ωk,ak

) is a point with f(x∗) = k +
(
k
2

)
. First, note that pc(x∗

c) = 1 holds for all
c ∈ [k]. Further, for each pair of colors (r, l) ∈

(
[k]
2

)
, sr,l(x∗

r , x
∗
l ) = 1 holds, since {vr,ar

, vl,al
} is

an edge in Erl. Thus, we have f(x∗) = k +
(
k
2

)
.

Now, we show that if there is a point x∗ ∈ Rk with f(x∗) > k +
(
k
2

)
− 1, then G has a k-colored

clique. Suppose that x∗ ∈ Rk is such a point. For this to be the case, the output of all spike and
penalty functions must be strictly greater than zero, that is, we have pc(x

∗
c) > 0 for every c ∈ [k]

and sr,l(x
∗
r , x

∗
l ) > 0 for every pair (r, l) ∈

(
[k]
2

)
, since otherwise f(x∗) ≤ k +

(
k
2

)
− 1 holds. For

every c ∈ [k], pc(x∗
c) > 0 implies by definition that there is exactly one element ac ∈ Vc with

x∗
c ∈ (ωc,ac

− 1
8 , ωc,ac

+ 1
8 ). In other words, the input x∗

c corresponds to the node vc,ac
. We now

claim that {v1,a1
, . . . , vk,ak

} forms a k-colored clique in G. To see this, observe that for every pair
(r, l) ∈

(
[k]
2

)
, sr,l(x∗

r , x
∗
l ) > 0 together with x∗

r + x∗
l ∈ (ωr,ar,l,al

− 1
4 , ωr,ar,l,al

+ 1
4 ) implies

by definition of sr,l that {vr,ar
, vl,al

} is an edge, which proves that {v1,a1
, . . . , vk,ak

} is indeed a
k-colored clique.
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B.4 PROOF OF THEOREM 4.2

Before proving Theorem 4.2, we first prove an auxiliary lemma.

Lemma B.4. Let f : Rd → R, f(x) =
∑n

i=1 ci max{0, a⊤i x + bi} + B be the function that is
computed by a 2-layer ReLU network, where ai, bi, ci, B are the weights and biases of this network,
and let h : Rd+1 → R be the function computed by the homogenization of this network. Then, we
have h(x, 1) = h(−x,−1) if and only if

∑n
i=1 ci(a

⊤
i x+ bi) = 0.

Proof. We have h(x, y) =
∑n

i=1 ci max{0, a⊤i x+ biy}+B|y| and thus

h(x, 1)− h(−x,−1) =

n∑
i=1

ci(max{0, a⊤i x+ bi} −max{0,−(a⊤i x+ bi)}) =
n∑

i=1

ci(a
⊤
i x+ bi).

Proof of Theorem 4.2. We give a parameterized reduction from MULTICOLORED CLIQUE. Let
(G = (V = V1∪̇ . . . ∪̇Vk, E), k) be an instance of MULTICOLORED CLIQUE, and let f : Rk → R
be the function of the network constructed in the proof of Proposition 3.1. Next, we modify the
network by setting the bias of the output node to 1−k−

(
k
2

)
. Let g : Rk → R be the function of this

modified network and let h : Rk+1 → R be the function computed by the homogenization of this
modified network. By construction, we have h(x, 1) = g(x) = f(x)+1−k−

(
k
2

)
for every x ∈ Rk.

Note that h(−x,−1) = h(x, 1) holds for every x ∈ Rk, which follows directly from the definition
of f and Lemma B.4. Since the underlying network has no biases, the function g computed by the
network is positively homogeneous and thus h(λx, λy) = λh(x, y) holds for every λ ≥ 0.

By Proposition 3.1, G has a k-colored clique if and only if g has a positive point, since
maxx∈Rk g(x) = 1 holds if G has a k-colored clique and maxx∈Rk g(x) ≤ 0 otherwise. To
finish the proof, observe that h has a positive point if and only if g has a positive point. If g has
a positive point x∗, then h also has a positive point (x∗, 1). On the other hand, if h has a pos-
itive point (x+, y+), then by positive homogeneity sgn(y+) · x+

|y+| is a positive point for g, since

0 < 1
|y+|h(x

+, y+) = h( x+

|y+| , sgn(y+)) = g(sgn(y+) · x+

|y+| ). Note that y+ = 0 is not possible,
since h(x, 0) = 0 for every x ∈ Rk by construction, as deleting biases leads to the cancellation of
all terms in the spike and penalty functions.

B.5 PROOF OF COROLLARY 4.3

Proof. We give a parameterized reduction from MULTICOLORED CLIQUE to approximating the
maximum of a 2-layer ReLU network. Let (G = (V = V1∪̇ . . . ∪̇Vk, E), k) be an instance of
MULTICOLORED CLIQUE, let f : Rk → R be the function of the network constructed in the proof
of Proposition 3.1 and let g : Rk → R be the function of the same network with an additional bias
of 1− k−

(
k
2

)
at the output node, that is, g(x) = f(x) + 1− k−

(
k
2

)
holds for every x ∈ Rk. With

Proposition 3.1, it follows that we have maxx∈Rk g(x) = 1 if and only if G has a k-colored clique
and maxx∈Rk g(x) ≤ 0 otherwise. Thus, approximating the maximum of this network within any
multiplicative factor over the polytope P = [0, n3]d would allow us to distinguish between the two
cases, which implies the theorem.

B.6 PROOF OF THEOREM 5.1

Proof. Follows from Theorem 4.2 and the equivalence to 2-LAYER RELU POSITIVITY without
biases (Froese et al., 2025b, Proposition 18).

B.7 PROOF OF THEOREM 6.2

Proof. We give a parameterized reduction (which is also a polynomial reduction) from MULTICOL-
ORED CLIQUE to 2-LAYER RELU Lp-LIPSCHITZ CONSTANT. We first discuss the case p ∈ [1,∞]
and later discuss which modifications are necessary to extend the proof to p ∈ (0, 1).
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Let (G = (V = V1∪̇ . . . ∪̇Vk, E), k) be an instance of MULTICOLORED CLIQUE. Further, let
g : Rk+1 → R be the function computed by the homogenized network constructed in the proof of
Proposition 3.1.

Note that for any positively homogeneous CPWL function f : Rd → R, the Lp-Lipschitz constant
can be rewritten to Lp(f) = max∥x∥p≤1 |f(x)|, which follows from the fact that Lp(f) is the
maximum Lp-Lipschitz constant of f restricted to any of the full-dimensional cones C ∈ Σf , where
f(x) = a⊤Cx for all x ∈ C (f is linear on C) and the Lp-Lipschitz constant of the linear function in
this cell is equal to max∥x∥p≤1 |a⊤c x| (Jordan & Dimakis, 2020).

We now scale all y coefficients of g by ε := 1

2k·an·(k+(k2))
, where an ∈ O(n3) is the maximum

element of the greedy Sidon set of size n, and obtain the modified positively homogeneous CPWL
function h : Rk+1 → R. Now, every maximizer x∗ of maxx∈Rk h(x, 1) satisfies |x∗

i | ≤ an · ε,
since every maximizer x′ of maxx∈Rk g(x, 1) previously satisfied |x′

i| ≤ an. This follows from
the fact that scaling the y coefficients is equivalent to scaling the spike and penalty functions in the
reduction. Now, we define

L := max
x∈Rk

h(x, 1)

and claim the following:
L ≥ Lp(h) ≥ L(1− k · an · ε).

The inequality L ≥ Lp(h) follows from the fact that if (x∗, y∗) ∈ argmax∥(x,y)∥p≤1 h(x, y), then
|y∗| ≤ 1 and

Lp(h) = h(x∗, y∗) = |y∗| · h( x∗

|y∗| , sgn(y∗)) ≤ h(
x∗

|y∗| , sgn(y∗)) ≤ max
x∈Rk

h(x, 1) = L

holds. The second inequality follows from the fact that if x∗ is a maximizer of maxx∈Rk h(x, 1),
then |x∗

i | ≤ an · ε and thus

∥(1− k · an · ε) · (x∗, 1)∥p ≤ ∥(1− k · an · ε) · (x∗, 1)∥1 ≤ (1− k · an · ε) +
k∑

i=1

|x∗
i | ≤ 1

holds, which makes (1− k · an · ε) · (x∗, 1) a feasible point for max∥(x,y)∥p≤1 h(x, y).

Given this estimation, we now make a case distinction: if G has a k-colored clique, then L =
(k +

(
k
2

)
) · ε and

Lp(h) ≥ (1− k · an · ε) · (k+
(
k

2

)
) · ε = (1− 1

2(k +
(
k
2

)
)
) · (k+

(
k

2

)
) · ε = (k+

(
k

2

)
− 1

2
) · ε.

On the other hand, if G does not have a k-colored clique, then

Lp(h) ≤ L ≤ (k +

(
k

2

)
− 1) · ε.

Therefore, we have a separation of the Lp-Lipschitz constant Lp(h) depending on whether G has
a k-colored clique or not. With this, the 2-LAYER RELU Lp-LIPSCHITZ CONSTANT instance
consisting of L = (k +

(
k
2

)
− 1

2 ) · ε and the underlying network of h is a yes-instance if and only if
G is a yes-instance of MULTICOLORED CLIQUE, which concludes the proof.

For every p ∈ (0, 1)∩Q, we can scale the network with ε := 1
an·kN ·

(
p

(
1− k+(k2)−

1
2

k+(k2)

))N

, where

N = ⌈1/p⌉. Note that since p is a fixed rational constant, ε is also rational and still polynomial in
the input size. We estimate

ε =
1

an · kN ·
(
p

(
1− k +

(
k
2

)
− 1

2

k +
(
k
2

) ))N

≤ 1

an · kN ·
(
1−

(
k +

(
k
2

)
− 1

2

k +
(
k
2

) )p)N

≤ 1

an · k1/p ·
(
1−

(
k +

(
k
2

)
− 1

2

k +
(
k
2

) )p)1/p

=: ε∗.
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Next, we can estimate L ≥ Lp(h) ≥ L(1 − k · (an · ε)p)1/p, where the second inequality follows
from the fact that if x∗ is a maximizer of maxx∈Rk h(x, 1), then |x∗

i | ≤ an · ε and thus

∥(1− k · (an · ε)p)1/p · (x∗, 1)∥p =

(
1− k · (an · ε)p + (1− k · (an · ε)p)

k∑
i=1

|x∗
i |p
)1/p

≤ (1− k · (an · ε)p + (1− k · (an · ε)p) · k · an · ε)1/p ≤ 1

holds, which makes (1− k · (an · ε)p)1/p · (x∗, 1) a feasible point for max∥(x,y)∥p≤1 h(x, y).

We then proceed with the estimation for the case where G has a k-colored clique with

Lp(h) ≥ (1− k · (an · ε)p)1/p · (k +

(
k

2

)
) · ε

≥ (1− k · (an · ε∗)p)1/p · (k +

(
k

2

)
) · ε

=
k +

(
k
2

)
− 1

2

k +
(
k
2

) · (k +

(
k

2

)
) · ε = (k +

(
k

2

)
− 1

2
) · ε,

which gives the same estimation as previously for p ∈ [1,∞] (note that we cannot directly use ε∗ as
scaling factor, since ε∗ might not be rational).

B.8 PROOF OF THEOREM 7.1

Proof. Let A = (a1, . . . , an) ∈ Rd×n be a matrix and let Z(A) =
∑n

i=1 conv{0, ai} ⊂ Rd be the
corresponding zonotope. Defining c := 1

2

∑n
i=1 ai as the center of the zonotope, we have

Z − c =

n∑
i=1

conv{−ai
2
,
ai
2
} =

n∑
i=1

conv{0,−ai
2
}+

n∑
i=1

conv{0, ai
2
} ⊂ Rd.

We now construct the matrix B = (a1

2 , . . . , an

2 )⊤ ∈ Rn×d. Then, we have that

∥Bx∥1 =

n∑
i=1

|ai
2

⊤
x| =

n∑
i=1

max{0,−ai
2

⊤
x}+

n∑
i=1

max{0, ai
2

⊤
x}

is the support function of the zonotope Z − c.

Applying the polynomial algorithm of Cohen & Peng (2015), we find a matrix B′ = (b′1, . . . , b
′
r)

⊤ ∈
Rr×d with r ∈ O(d log dε−2) such that with high probability, (1 + ε)−1∥Bx∥1 ≤ ∥B′x∥1 ≤
(1+ ε)∥Bx∥1 holds for all x ∈ Rd. From the duality between zonotopes and their support function,
this implies (1 + ε)−1Z((B⊤,−B⊤)) ⊆ Z − c ⊆ (1 + ε)Z((B⊤,−B⊤)). Defining A′ = (2b′1 +
c, . . . , 2b′r + c) ∈ Rd×r, it follows that (1 + ε)−1∥Bx∥1 ≤ ∥B′x∥1 ≤ (1 + ε)∥Bx∥1 implies
(1 + ε)−1Z(A′) ⊆ Z(A) ⊆ (1 + ε)Z(A′), which implies the theorem.
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