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Abstract
We study deep neural networks for the multi-label
classification (M-lab) task through the lens of neu-
ral collapse (NC). Previous works have been re-
stricted to the multi-class classification setting and
discovered a prevalent NC phenomenon compris-
ing of the following properties for the last-layer
features: (i) the variability of features within ev-
ery class collapses to zero, (ii) the set of feature
means form an equi-angular tight frame (ETF),
and (iii) the last layer classifiers collapse to the
feature mean upon some scaling. We generalize
the study to multi-label learning, and prove for
the first time that a generalized NC phenomenon
holds with the “pick-all-label” formulation, which
we term as M-lab NC. While the ETF geome-
try remains consistent for features with a single
label, multi-label scenarios introduce a unique
combinatorial aspect we term the ”tag-wise aver-
age” property, where the means of features with
multiple labels are the scaled averages of means
for single-label instances. Theoretically, under
proper assumptions on the features, we establish
that the only global optimizer of the pick-all-label
cross-entropy loss satisfy the multi-label NC. In
practice, we demonstrate that our findings can
lead to better test performance with more efficient
training techniques for M-lab learning.

1. Introduction
In recent years, deep learning showed tremendous success
in classifying problems (LeCun et al., 2015), thanks in part
to its ability to extract salient features from data (Bengio
et al., 2013). While the success extends to multi-label (M-
lab) classification, the structures of the learned features in
the M-lab regime is less well-understood. This work aims
to fill this gap by understanding the geometric structures
of features for M-lab learned via deep neural networks and
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utilize the structure for better training and prediction.

Recently, an intriguing phenomenon has been observed in
the terminal phase of training overparameterized deep net-
works for the task of multi-class (M-clf) classification in
which the last-layer features and classifiers collapse to sim-
ple but elegant mathematical structures: all training inputs
are mapped to class-specific points in feature space, and
the last-layer classifier converges to the dual of class means
of the features while attaining the maximum possible mar-
gin with a simplex equiangular tight frame (Simplex ETF)
structure (Papyan et al., 2020). See the top row of Figure 1
for an illustration. This phenomenon, termed Neural Col-
lapse (NC), persists across a variety of different network
architectures, datasets, and even the choices of losses (Han
et al., 2022; Zhou et al., 2022b;a; Yaras et al., 2022). The
NC phenomenon has been widely observed and analyzed
theoretically (Papyan et al., 2020; Fang et al., 2021; Zhu
et al., 2021; Wang et al., 2023a) in the context of M-clf learn-
ing problems. It is applied to understand transfer learning
(Galanti et al., 2022b; Li et al., 2022), and robustness (Pa-
pyan et al., 2020; Ji et al., 2022), where the line of study has
significantly advanced our understanding of representation
structures for M-clf using deep networks.
Our contributions. We demonstrate a general version of
the NC phenomenon in M-lab, and our study provides new
insights into prediction and training for the M-lab problem.
Specifically, our contributions can be highlighted as follows.

• Multi-label neural collapse phenomenon. We show that
the last-layer features and classifier learned via overpa-
rameterized deep networks exhibit a more general version
of NC which we term it as multi-label neural collapse (M-
lab NC). Specifically, while features linked to single-label
instances retain a Simplex ETF configuration and undergo
collapse, the more complex features with higher label
counts intriguingly represent a scaled ”tag-wise average”
of their single-label counterparts; see the bottom row of
Figure 1 for an illustration. This new pattern, referred to
as multi-label ETF, is consistently observed in the training
of practical neural networks for M-lab tasks.

• Global optimality of M-lab NC. Theoretically, we study
the global optimality of M-lab NC based upon a com-
monly used pick-all-label loss for M-lab learning. By
treating the last-layer feature as free optimization vari-
ables (Fang et al., 2021; Zhu et al., 2021), we show that
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Figure 1. An illustration of neural collapse for M-clf (top row) vs. M-lab (bottom row) learning. For illustrative purposes, we consider
a simple setting with the number of classes K = 3. The individual panels are scatterplots showing the top two singular vectors of the
last-layer features H at the beginning (left) and end (right) stages of training. The solid (resp. dashed) line segments represent the mean
of the multiplicity = 1 (resp. = 2) features with the same labels. Panel i-iii. As the training progresses, the last-layer features of samples
corresponding a single label, e.g., bird, collapse tightly around its mean. Panel iv-vi. The analogous phenomenon holds in the multi-label
setting. Panel iv. A training sample has multiplicity = 1 (resp. = 2) if it has one tag (resp. two tags). Panel vi. At the end stage of training,
the feature mean of Multiplicity-2 {bird, cat} is a scaled tag-wise average of feature means of its associated multiplicity-1 samples, i.e.,
{bird} and {cat}.

all global solutions exhibit the properties of M-lab NC
with benign global landscape. Moreover, we show that
multi-label ETF only requires balanced training samples
in each class within the same multiplicity, and allows
class imbalanced-ness across different multiplicities.1

• M-lab NC guided prediction and training. In practice,
we show that our findings lead to improved prediction
and training for M-lab learning. For prediction, we pro-
pose a new one-nearest-neighbor (ONN) approach: for
the given test sample, we assign its label to the tag of the
nearest neighboring multi-label ETF in the feature space.
Compared to the classical one-vs-all (OvA) approach for
M-lab learning, ONN is much more efficient with higher
test accuracy. For training, by fixing the last later to be
ETF and reducing the feature dimension, our experimen-
tal results demonstrate that we can sufficiently reduce
parameters without compromising overall performance.

Related works on multi-label learning. For M-lab learn-
ing, a commonly employed strategy is to decompose a given
multi-label problem into several binary classification tasks
(Menon et al., 2019). The “one-versus-all” (OvA) method,
also known as binary relevance (BR), involves splitting the
task into several binary classification “subtasks”. Each of
these subtasks requires training an separate binary classi-
fier, one for each label (Moyano et al., 2018; Brinker et al.,
2006). During testing, thresholding is used to convert the

1We also empirically demonstrate that M-lab NC occurs even
when only multiplicity-1 data are balanced (see Figure 2 for an
illustration).

(real-valued) outputs of the model (i.e., the logits) into tags.

Although BR is simple to implement and performs well,
a notable limitation is the lack of handling of dependency
between labels (Cheng et al., 2010). The Pick-All-Label
(PAL) approach (Reddi et al., 2019; Menon et al., 2019) can
formulates the multi-label classification task in an “all-in-
one” manner. Compared to OvA, the PAL approach has
the advantage of not needing to train separate classifiers.
However, its disadvantage is that during prediction, there
is no natural thresholding rule for converting the logits to
tags. In this work, we deal with this challenge by proposing
the ONN technique as a principled approach, guided by our
geometric analysis of M-lab, for performing prediction.

To the best of our knowledge, no work has previously ana-
lyzed the geometric structure in multi-label deep learning.
Our work closes this gap by providing a generalization of
the NC phenomenon to M-lab learning, and furthermore de-
velops efficient prediction and training technique via our the-
oretical understandings. More discussion on related works
for M-lab learning and NC could be found in Appendix A.
Basic notations. Throughout the paper, we use bold low-
ercase and upper letters, such as a and A, to denote vec-
tors and matrices, respectively. Non-bold letters are re-
served for scalars. For any matrix A ∈ Rn1×n2 , we write
A =

[
a1 . . . an2

]
, so that ai (i ∈ {1, . . . , n2}) de-

notes the i-th column of A. Analogously, we use the super-
script notation to denote rows, i.e., (aj)⊤ is the j-th row of
A for each j ∈ {1, . . . , n1} with A⊤ =

[
a1 . . . an1

]
.

For an integer K > 0, we use IK to denote an identity
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matrix of size K ×K, and we use 1K to denote an all-ones
vector of length K.

2. Problem Formulation
We start by reviewing the basic setup for training deep neural
networks and later specialize to the problem of M-lab with
K number of classes. Given a labelled training instance
(x,y), the goal is to learn the network parameter Θ to fit
the input x to the corresponding training label y such that

y ≈ ψΘ(x) = WL
linear classifier W

·

σ (WL−1 · · ·σ (W1x+ b1) + bL−1)
feature h = ϕθ(x)

+ bL, (1)

where W = WL represents the last-layer linear classifier
and h(x) = ϕθ(xk,i) is a deep hierarchical representation
(or feature) of the input x. For a L-layer deep network
ψΘ(x), each layer is composed of an affine transformation,
followed by a nonlinear activation σ(·) (e.g., ReLU) and
normalization (e.g., BatchNorm (Ioffe & Szegedy, 2015)).

Notations for multi-label dataset. Let [K] :=
{1, 2, . . . ,K} denote the set of labels. For each m ∈ [K],
let
(
[K]
m

)
:= {S ⊆ [K] : |S| = m} denote the set of all sub-

sets of [K] with size m. Throughout this work, we consider
a fixed multi-label training dataset of the form {xi,ySi

}Ni=1,
where N is the size of the training set and Si is a nonempty
proper subset of the labels. For instance, Si = {cat} and
Si′ = {dog, bird}. Each label ySi ∈ RK is a multi-hot-
encoding vector:

j-th entry of ySi
=

{
1 : j ∈ Si

0 : otherwise.
(2)

The Multiplicity of a training sample (xi,ySi
) is defined as

the cardinality of Si, i.e., the number of labels or tags that
is related to xi. We refer to a feature learned for the sample
(xi,ySi

) as the Multiplicity-m feature if |Si| = m. As such,
with the abuse of notation, we also refer to such xi as a
Multiplicity-m sample and such ySi as a Multiplicity-m la-
bel, respectively. Note that a multiplicity-m label is a multi-
hot label that can be decomposed as a summation of one-hot
multiplicity-1 labels. For example Si′ = {dog, bird} has
two tags Sj′ = {dog} and Sk′ = {bird}, and then the
corresponding 2-hot label can be decomposed into the asso-
ciated 1-hot labels of Sj′ = {dog} and Sk′ = {bird}. In
this work, we show the relationship of labels can be gen-
eralized to study the relationship of the associated features
trained via deep networks through M-lab NC.

The Multiplicity-m feature matrix Hm is column-wise com-
prised of a collection of Multiplicity-m feature vectors.
Moreover, we use M := maxi∈[N ] |Si| to denote the largest
multiplicity in the training set. To distinguish imbalanced
class samples between Multiplicities, for each m ∈ [M ],
we use nm := |{i ∈ [N ] : |Si| = m}| to denote the number
of samples in each class of a multiplicity order m (or Multi-
plicity m). Note that M ∈ {1, . . . ,K − 1} in general, and
a M-lab problem reduces to M-clf when M = 1.

The “pick-all-labels” loss. Since M-lab is a generaliza-
tion of M-clf, recent work (Menon et al., 2019) studied vari-
ous ways of converting a M-clf loss into a M-lab loss, a pro-
cess referred to as reduction.2 In this work, we analyze the
pick-all-labels (PAL) method of reducing the cross-entropy
(CE) loss to a M-lab loss, which is the default option imple-
mented by torch.nn.CrossEntropyLoss from the
deep learning library PyTorch (Paszke et al., 2019). The
benefit of PAL approach is that the difficult M-lab problem
can be approached using insights from M-clf learning using
well-understood losses such as the CE loss, which is one of
the most commonly used loss functions in classification:

LCE(z,yk) := − log
(
exp(zk)/

∑K
ℓ=1 exp(zℓ)

)
.

where z = Wh is called the logits, and yk is the one-hot
encoding for the k-th class. To convert the CE loss into a
M-clf loss via the PAL method, for any given label set S,
consider decomposing a multi-hot label yS as a summation
of one-hot labels: yS =

∑
k∈S yk. Thus, we can define the

pick-all-labels cross-entropy (PAL-CE) loss as

LPAL−CE(z,yS) :=
∑

k∈S LCE(z,yk).

In this work, we focus exclusively on the CE loss under the
PAL framework, we simply write LPAL to denote LPAL−CE.
However, by drawing inspiration from recent research (Zhou
et al., 2022b), it should be noted that under the PAL frame-
work, the phenomenon of M-lab NC can be generalized
beyond cross-entropy to encompass a variety of other loss
functions used for M-clf learning, such as mean squared
error (MSE), label smoothing (LS),3 focal loss (FL),4 and
potentially a class of Fenchel-Young Losses that unifies
many well-known losses (Blondel et al., 2020).

Putting it all together, training deep neural networks for
M-lab learning can be stated as follows:

min
Θ

1
N

∑N
i=1 LPAL(Wϕθ(xi) + b,ySi

) + λ ∥Θ∥2F , (3)

where Θ = {W , b,θ} denote all parameters and λ > 0
controls the strength of weight decay. Here, weight decay
prevents the norm of the linear classifier and the feature
matrix goes to infinity or 0.

Optimization under the unconstrained feature model
(UFM). Analyzing the nonconvex loss (3) can be noto-
riously difficult due to the highly non-linear characteristic
of the deep network ϕθ(xi). In this work, we simplify the
study by treating the feature hi = ϕθ(xi) of each input xi

as a free optimization variable. Analysis of NC under UFM

2“Reduction” refers to reformulating M-lab problems in the
simpler framework of M-clf problems.

3The loss replaces hard targets in CE with smoothed ones to
achieve better calibration and generalization (Szegedy et al., 2016).

4The loss adjusts its focus to less on the well-classified sam-
ples, enhances calibration, and establishes a curriculum learning
framework (Lin et al., 2017; Mukhoti et al., 2020; Smith, 2022).
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has been extensively studied in recent works (Zhu et al.,
2021; Fang et al., 2021; Ji et al., 2022; Yaras et al., 2022;
Mixon et al., 2022; Zhou et al., 2022a; Tirer & Bruna, 2022),
the motivation behind the UFM is the fact that modern net-
works are highly overparameterized and they are universal
approximators (Cybenko, 1989; Zhang et al., 2021). More
specifically, we study the following problem.

Definition 2.1 (Nonconvex Training Loss under UFM). Let
Y = [yS1

· · ·ySN
] ∈ RK×N be the multi-hot encoding

matrix whose i-th column is given by the multi-hot vector
ySi

∈ RK . We consider

min
W ,H,b

f(W ,H, b) := g(WH + b,Y )

+λW ∥W ∥2F + λH ∥H∥2F + λb ∥b∥22 (4)

with the penalty λW , λH , λb > 0.

Here, the linear classifier W ∈ RK×d, the features H =
[h1, · · · ,hN ] ∈ Rd×N , and the bias b ∈ RK are all uncon-
strained optimization variables, and we refer to the columns
of H , denoted hi, as the unconstrained last layer features
of the input samples xi. Additionally, the function g(·) is
the PAL loss, denoted by

g(WH + b,Y ) := 1
NLPAL(WH + b,Y )

:= 1
N

∑N
i=1 LPAL(Whi + b,ySi).

Although the objective function is seemingly a simple exten-
sion of M-clf case, our work shows that the global optimiz-
ers of Problem (4) for M-lab learning substantially differs
from that of the M-clf that we present in the following.

3. Main Results
In this section, we show that the global minimizers of Prob-
lem (4) exhibit a more generic structure than the vanilla
NC in M-clf (see Figure 1), where higher multiplicity fea-
tures are formed by a scaled tag-wise average of associated
Multiplicity-1 features that we introduce in detail below.
Theoretically, we rigorously analyze the global geometry of
the optimizer of Problem (4) and its nonconvex optimization
landscape, and present our main results in Theorem 3.1.

3.1. Multi-label Neural Collapse (M-lab NC)
We assume that the training data is balanced with respect to
Multiplicity-1 while high-order multiplicity is imbalanced
or even has missing classes. Through empirical investiga-
tion, we discover that when a deep network is trained up
to the terminal phase using the objective function (3), it
exhibits the following characteristics, which we collectively
term as ”multi-label neural collapse” (M-lab NC):

1. Variability collapse: The within-class variability of last-
layer features across different multiplicities and different
classes all collapses to zero. In other words, the individ-
ual features of each class of each multiplicity concentrate
to their respective class means.

2. (∗) Convergence to self-duality of multiplicity-1 fea-
tures H1 : The rows of the last-layer linear classifier
W and the class means of Multiplicity-1 feature H are
collinear, i.e., h⋆

i ∝ w⋆k when the label set Si = {k} is
a singleton set.

3. (∗) Convergence to the M-lab ETF: Multiplicity-1 fea-
tures H1 :=

{
h⋆
i |i : |Si| = 1

}
form a Simplex Equian-

gular Tight Frame, similar to the M-clf setting (Papyan
et al., 2020; Fang et al., 2021; Zhu et al., 2021). More-
over, for any higher multiplicity m > 1, the average fea-
ture means for classes with label count m are a scaled,
tag-wise aggregation of the corresponding single-label
(Multiplicity − 1) feature means across the relevant
label set. In other words, h⋆

i ∝
∑

k∈Si
w⋆k (see the

bottom line of Figure 1). This is true regardless of class
imbalance between multiplicities.

Remarks. The M-lab NC can be viewed as a more gen-
eral version of the vanilla NC in M-clf (Papyan et al., 2020),
where we mark the difference from the vanilla NC above
by a “(∗)”. The M-lab ETF implies that, in the pick-all-
labels approach to multi-label classification, deep networks
learn discriminant and informative features for Multiplicity-
1 subset of the training data, and use them to construct
higher multiplicity features as the tag-wise average of asso-
ciated Multiplicity-1 features. To quantify the collapse of
high multiplicity NC, we introduce a new measure NCm

in Section 4 and demonstrate that it collapses for practical
neural networks during the terminal phase of training. This
result is intuitive: since the multi-hot label vector can be
decomposed into the sum of its tag-wise one-hot vectors,
the corresponding learned features may exhibit a similar
scaled tag-average phenomenon.

Moreover, in the case of data imbalancend-ness, we find
that the M-lab NC holds as long as the training samples
within the same multiplicity are required to be class bal-
anced, and the number of samples between multiplicities
does not need to be balanced. This can be later con-
firmed by our theory in Section 3.2. For example, the
M-lab NC still holds if there are more or less training sam-
ples for the category (ant, bee)(Multiplicity-2) than that of
(cat, dog, elk) (Multiplicity-3).

3.2. Global Optimality of M-lab NC
For M-lab, we show that the M-lab NC is the only global
solution to the nonconvex problem in Definition 2.1. We
consider the setting that the training data may exhibit
imbalanced-ness between different multiplicities while
maintaining class-balancedness within each multiplicity.

Theorem 3.1 (Global Optimality of M-lab NC). In the
setting of Definition 2.1, assume the feature dimension is
no smaller than the number of classes minues one, i.e.,
d ≥ K − 1, and assume the training are balanced within
each multiplicity as we discussed above. Then any global
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Figure 2. M-lab NC holds with imbalanced data in higher multiplicities. (a) and (b) plot metrics that measures M-lab NC on M-lab
Cifar10; (c) and (d) visualize learned features on M-lab MNIST, where one multiplicity-2 class is missing in the set up which results in
the reduced M-lab NC geometry. As we observe, the ETF structure for Multiplicity-1 still holds. More experimental details are deferred
to Section 4.

optimizer W ⋆,H⋆, b⋆ of the optimization Problem (4) sat-
isfies:

w⋆ := ∥w⋆1∥2 = · · · = ∥w⋆K∥2, and b⋆ = b⋆1, (5)

where either b⋆ = 0 or λb = 0. Moreover, the global
minimizer W ⋆,H⋆, b⋆ satisfies the M-lab NC properties
introduced in Section 3.1, in the sense that

• The linear classifier matrix W ⋆⊤ ∈ Rd×K forms a K-
simplex ETF up to scaling and rotation, i.e., for any U ∈
Rd×d s.t. U⊤U = Id, the rotated and normalized matrix
M := 1

w⋆UW ⋆⊤ satisfies

M⊤M = K
K−1

(
IK − 1

K1K1⊤
K

)
. (6)

• Tag-wise average property. For each feature h⋆
i (i.e., the

i-th column h⋆
i of H⋆) with i ∈ [N ], there exist unique

positive real numbers C1, C2, . . . , CM > 0 such that the
following holds:

Multiplicity = 1 Case:

h⋆
i = C1w

⋆k when Si = {k}, k ∈ [K], (7)
Multiplicity > 1 Case:

h⋆
i = Cm

∑
k∈Si

w⋆k when |Si| = m, 1 < m ≤M. (8)

Moreover, the function f(W ,H, b) in Problem (4) is a
strict saddle function (Ge et al., 2015; Sun et al., 2015;
Zhang et al., 2020b) with no spurious local minimum.

We discuss the high-level ideas of the proof in Section 3.3.
The detailed proof of our results is deferred to Appendix C
and Appendix D. Next, we delve into the implications of
our findings from various perspectives.

The global solutions of Problem (4) satisfy M-lab NC.
Under the assumption of UFM, our findings imply that every
global solution of the loss function of Problem (4) exhibits
the M-lab NC that we presented in Section 3.1. First, feature
variability within each class and multiplicity can be deduced
from Equations (7) and (8). This occurs because all fea-
tures of the designated class and multiplicity align with the

(tag-wise average of) linear classifiers, meaning they are
equal to their feature means with no variability. Second,
the convergence of feature means to the M-lab ETF can be
observed from Equations (6), (7), and (8). For Multiplicity-
1 features H⋆

1 , Equation (7) implies that the feature mean
H

⋆

1 converges to W ⋆; this, coupled with Equation (6), im-
plies that the feature means H

⋆

1 of Multiplicity-1 form a
simplex ETF. Moreover, the structure of tag-wise average
in Equation (8) implies the M-lab ETF for feature means
of high multiplicity samples. Finally, the convergence of
Multiplicity-1 features towards self-duality can be deduced
from Equation (7).
Data imbalanced-ness in M-lab learning. Due to the
scarcity of higher multiplicity labels in the training set, in
practice the imbalance of training data samples could be a
more serious issue in M-lab than M-clf. It should be noted
that there are two types of data imbalanced-ness: (i) the
imbalanced-ness between classes within each multiplicity,
and (ii) the imbalanced-ness of classes among different mul-
tiplicities. Interestingly, as long as Multiplicity-1 training
samples remain balanced between classes, our results in
Figure 2 and Figure 4 suggest that the M-lab NC holds re-
gardless of both within and among multiplicity imbalanced-
ness in higher multiplicity. Given that achieving balance in
Multiplicity-1 sample data is relatively easy, this implies that
our result captures a common phenomenon in M-lab learn-
ing. However, if classes of Multiplicity-1 are imbalanced,
we suspect a more general minority collapse phenomenon
would happen (Fang et al., 2021; Thrampoulidis et al., 2022),
which is worth of further investigation.

Improving M-lab prediction & training via M-lab NC.
Guided by the feature collapse phenomenon of M-lab NC,
we show that we can improve the prediction accuracy and
training efficiency in Section 4.2. For prediction, encod-
ing could use an one-nearest-neighbor (ONN) approach to
classify new data based on the nearest feature mean in the
feature space. Empirical verification confirms that ONN en-
coding is more efficient and yields superior testing accuracy

5



Neural Collapse in Multi-label Learning with Pick-all-label Loss

compared to OvA, as illustrated in Table 1. For training, as
shown in Table 2, we can achieve parameter efficient train-
ing for M-lab by fixing the last layer classifier as simplex
ETF and reducing the feature dimension d to K.
Tag-wise average coefficients for M-lab ETF with high
multiplicity. The features of high multiplicity are scaled
tag-wise average of Multiplicity-1 features, and these coeffi-
cients are simple and structured as shown in Equation (8).
As illustrated in Figure 1 (i.e., K = 3, M = 2), the feature
h⋆
i of Multiplicity-m associated with class-index Si can be

viewed as a tag-wise average of Multiplicity-1 features in
the index set Si. Specifically, the high multiplicity coeffi-
cients {Cm}Mm=1 in Equation (8), which are shared across
all features of the same multiplicity, could be expressed as

Cm =
K − 1

∥W ∥2F
log(

K −m

m
c1,m), ∀m

where {c1,m}Mm=1 exist.5

3.3. Proof Ideas of Theorem 3.1 and Comparison
Finally, we briefly outline our proofs for the global optimal-
ity in Theorem 3.1 as follows: essentially, our proof method
first breaks down the g(WH + b,Y ) component of the ob-
jective function of Problem (4) into numerous subproblems
gm(WHm + b,Ym), categorized by different multiplic-
ity. We determine lower bounds for each gm and establish
the conditions for equality attainment for each multiplicity
level. Subsequently, we confirm that equality for these sets
of lower bounds of different m values can be attained simul-
taneously, thus constructing a global optimizer where the
overall global objective of (4) is reached. We demonstrate
that all optimizers can be recovered using this approach. As
a result, our generalized proof implies M-clf NC with only
single-multiplicity data.

Although our work is inspired by the recent work (Zhu et al.,
2021), it should be noted that our main results as well as the
proving techniques used to establish them significantly differ
from that of (Zhu et al., 2021). For M-lab, the derivation
of optimality conditions is particularly challenging due to
the combinatorial complexity of imbalanced features with
higher label counts and how they interact with a single linear
classifier. We elaborate on this in the following.
• We incorporate all multiplicity samples by calculating the

gradient of the PAL-CE loss function to obtain the initial
lower bound. The tightness condition of such bound un-
covers M-lab learning’s unique “in-group and out-group”
property hidden behind the combinatorial structure of high
multiplicity features. Comparatively, (Zhu et al., 2021)
relied on Jensen’s inequality and concavity of log function
which falls short under the present of high-multiplicity
samples. More details can be found in Lemma C.8.

• We decoupled the interplay between linear classifier
across various multiplicity features by decomposing the

5They satisfy a set of nonlinear equations (Appendix C).

loss into different components based on feature multiplici-
ties. Through the decomposition, we then showed that the
equality condition for each components can be achieved
simultaneously. More details are provided in Lemma C.2.

• We further unveil that the higher multiplicity features con-
verge to the ”scaled tag-wise average” of its associate tag
feature means (Lemma C.3). This requires three new sup-
porting lemmas derived from probabilistic (Lemma C.6)
and matrix theory perspective (Lemma C.5, C.7), which
is unique in M-lab learning.

4. Experiments
In this section, we first conduct a series of experiments to
demonstrate and analyze the M-lab NC on different practical
deep networks with various multi-label datasets. Second,
we show that the geometric structure of M-lab NC could
efficiently guide M-lab learning in both testing and training
stage for better performance.

The datasets used in our experiment are real-world M-
lab SVHN (Netzer et al., 2011), along with synthetically
generated M-lab MNIST (LeCun et al., 2010) and M-lab Ci-
far10 (Krizhevsky et al., 2009). The detail dataset descrip-
tion, generation, and visualization along with experimental
setups could be found in Appendix B.

4.1. Verification of M-lab NC

Experimental demonstration of M-lab NC on practical
deep networks. When the training data (Appendix B.1)
are balanced within multiplicities, Figure 3 shows that all
practical deep networks exhibit M-lab NC during the ter-
minal phase of training as implied by our theory. To show
this, we introduce new metrics to measure M-lab NC on the
last-layer features and classifiers of deep networks.

Based on theoretical results in Section 3.1, we use the origi-
nal metrics NC1 (measuring the within-class variability col-
lapse), NC2 (measuring convergence of learned classifier
and feature class means to simplex ETF), and NC3 (measur-
ing the convergence to self-duality) introduced in (Papyan
et al., 2020) to measure M-lab NC on Multiplicity-1 features
H1 and classifier W . Additionally, we also use the NC1

metric to measure variability collapse on high multiplicity
features Hm (m > 1). Finally, to measure M-lab ETF (the
tag-wise average property) on Multiplicity-2 features,6 we
propose a new angle metric NCm, which is defined as:

NCm =
Avg.({geo∠(hi, hj + hℓ) : (i, j, ℓ) ∈ F1})

Avg.({geo∠(hi′ , hj′ + hℓ′) : (i′, j′, ℓ′) ∈ F2}
,

6This is because our dataset only contains labels up to
Multiplicity-2. The NCm could be easily extended to capture
scaled average for other higher multiplities.
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Figure 3. Prevalence of M-lab NC across different network architectures on M-lab MNIST (top) and M-lab Cifar10 (bottom). From
the left to the right, the plots show the four metrics, NC1,NC2,NC3, and NCm, for measuring M-lab NC. More details about dataset
and training setups could be found in Appendix B.1.

with the sets

F1 = {i, j, ℓ | |Si| = 2, |Sj | = |Sℓ| = 1, Si = Sj ∪ Sℓ} ,
F2 = {i, j, ℓ | |Si| = 2, |Sj | = |Sℓ| = 1} .
Here, geo∠ represents the geometric angle between two
vectors, and hi is the mean of all features in the label set Si.
Intuitively, our NCm measures the angle between features
means of different label sets or classes. The numerator cal-
culates the average angle difference between multiplicity-2
features means and the sum of their multiplicity-1 com-
ponent features means. While the denominator serves as
a normalization factor that is the average of all existing
pairs regardless of the relationship.7 As training progresses,
the numerator will converge to 0, while the denominator
becomes larger demonstrating the angle collapsing.

As shown in Figure 3 and Figure 4, practical networks do
exhibit M-lab NC, and such a phenomenon is prevalent
across network architectures and datasets. Specifically, the
four metrics, evaluated on four different network architec-
tures and two different datasets, all converge to zero as the
training progresses toward the terminal phase.

M-lab NC holds despite of class imbalanced-ness in high
order multiplicity labels. Moreover, our experiments im-
ply that maintaining balance in single-label training samples
ensures the persistence of M-lab NC, even amidst imbalance
in higher-order label multiplicities, across both synthetic

7For example, if we have 4 total classes for multiplicity-1
samples, they corresponds to 4 features means and hence 6 dif-
ferent sums if we randomly pick 2 features means to sum up.
Multiplicity-2 then has

(
4
2

)
= 6 features means, there are then 36

possible angles to calculate, we averaged these 36 angles as the
denominator.

and real-world data sets. To verify this, we create imbal-
anced M-lab cifar10 and MNIST datasets, and real-world
M-lab SVHN dataset, with more details in Appendix B.

• Experimental results on imbalanced M-lab Cifar10
dataset. We run a ResNet18 model with these datasets
(Appendix B.2) and report the metrics of measuring M-
lab NC in Figure 2 (a) (b). We can observe that not only
NC1 to NC3 collapse to zero, but the NCm metric is also
converging zero for all 3 groups of different sizes.

• Experimental results on imbalanced M-lab MNIST
dataset. For Figure 2 (c) (d) on M-lab MNIST (Ap-
pendix B.2), we can see from the visualization of the fea-
tures vectors that the scaled average property still holds
despite a missing class in higher multiplicity. Here, we
train a simple convolution plus multi-layer perceptron
model. This implies that M-lab NC holds even under data
imbalanced-ness in high order multiplicity.

• Experimental results on imbalanced M-lab SVHN
dataset. In addition, we demonstrate that M-lab NC
happens independently of higher multiplicity data
imbalanced-ness on real-world M-lab SVHN dataset (Ap-
pendix B.3). We evaluated the behavior of NC metrics
on this dataset as illustrated in Figure 4, affirming the
continued validity of our analysis in real-world settings.

4.2. Practical Implications for M-lab Learning

Finally, we show that our findings lead to improved predic-
tion and training for M-lab learning. For prediction, Our
ONN encoding approach attains greater accuracy than the
OvA method with improved efficiency, eliminating the need
for extra classifier training, as shown in Table 1. For train-
ing, our theory supports reducing feature dimension and
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(a) NC1 (b) NC2 (c) NC3 (d) NCm

Figure 4. Prevalence of M-lab NC on the M-lab SVHN dataset. We train ResNets models on the M-lab SVHN dataset (Netzer et al.,
2011) for 400 epochs and report NC1,NC2,NC3, and NCm, for measuring M-lab NC, respectively. See Appendix B.3 for more details.

Dataset c10-L c10-M c10-S SVHN
Encoding

Mechanism OvA ONN OvA ONN OvA ONN OvA ONN

Test Metrics (F1-score / SubsetZero-one Accuracy)
Overall 0.896/0.787 0.899/0.805 0.885/0.778 0.888/0.794 0.857/0.740 0.863/0.760 0.937/0.831 0.942/0.837
Mul-1 0.893/0.828 0.894/0.829 0.890/0.832 0.890/0.833 0.865/0.812 0.867/0.815 0.905/0.761 0.928/0.836
Mul-2 0.898/0.775 0.901/0.797 0.883/0.754 0.887/0.777 0.851/0.691 0.861/0.723 0.953/0.871 0.949/0.842
Mul-3 * 0.926/0.771 0.935/0.814

Computational Complexity
FLOPs(B) 2.46 0.0307 2.00 0.0249 1.54 0.0192 1.068 0.0135

Table 1. Test accuracy and computational complexity comparison between ONN (ours) and OvA approaches across different
multiplicity imbalance-ness for both real and synthetic datasets. Both approaches are trained with fixed ETF classifier. Models are
trained using ResNet18 structure and reported accuracy are the average over 3 models with random initialization. We report both F1-score
and subset zero-one accuracy that only count for perfect predictions (Dembczyński et al., 2010).

maintaining a fixed classifier structure without sacrificing
training accuracy as shown in Table 2. Additionally, the
detail descriptions of training datasets with experimental
setups can be found in Appendix B.4

Implication I: M-lab NC guided methods for improved
test performance. As discussed in Section 1, the classical
OvA and PAL methods have several fundamental limita-
tions, specially, when it comes to how to convert outputs of
the model into tags (i.e., binary vectors). In this part, we
show that we can improve the PAL based method by our
findings. Specifically, our proposed method and comparison
baseline are the following.

• Proposed “one-nearest-neighbor” (ONN) encoding
method: supported by the M-lab NC, features within
each class collapse to their means across all multiplici-
ties. Utilizing this, encoding new testing data into binary
vectors is simplified: a one-nearest-neighbor calculation
is performed between the testing data’s features and all
class means.

• Classical “one-versus-all” (OvA) encoding method: di-
vides the task into multiple binary classification subtasks,
where each needs to train an individual binary classifier
for every label based on pre-trained features. During test-
ing, thresholding is used to convert the outputs of the
model (i.e., the logits) into tags.

We compared our ONN method with OvA across three syn-
thetic M-lab Cifar-10 datasets and one real-world dataset

with different data imbalanced-ness. Two types of test accu-
racies, F1-score and subset zero-one, are reported in Table 1.
The F1-score provides a more balanced performance mea-
sure, whereas subset zero-one accuracy only considers per-
fect matches to the ground truth, disregarding partially cor-
rect predictions. The detailed setup of training and dataset
could be find in Appendix B.4. As we observe from Table 1,
our ONN method uniformly outperforms OvA in overall
accuracy, with higher accuracy especially in higher multi-
plicities. Simultaneously, our ONN eliminates the necessity
of training multiple binary classifiers unlike OvA, leading
to substantially lower computational complexity for predic-
tions, quantified in billions of FLOPs. Remarkably, even
when dealing with the class-imbalanced real M-lab SVHN
dataset, our ONN method consistently achieves an overall
higher accuracy than OvA.

Implication II: M-lab NC guided parameter-efficient
training. With the knowledge of M-lab NC in hand, we
can make direct modifications to the model architecture
to achieve parameter savings without compromising per-
formance for M-lab classification. Specifically, parameter
saving could come from two folds: (i) given the existence
of NC in the multi-label case with d ≥ K, we can reduce
the dimensionality of the penultimate features to match the
number of labels (i.e., we set d = K); (ii) recognizing that
the final linear classifier will converge to a simplex ETF as
the training converges, we can initialize the weight matrix
of the classifier as a simplex ETF from the start and refrain
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Dataset / Arch. ResNet18 ResNet50 VGG16 VGG19
Learned ETF Learned ETF Learned ETF Learned ETF

Test IoU (%)
MLab-MNIST 99.5 99.4 99.4 99.4 99.5 99.5 99.5 99.5
MLab-Cifar10 87.7 87.7 88.9 88.6 86.9 87.4 88.7 87.0

Percentage of parameter saved (%)
MLab-MNIST 0 20.7 0 4.5 0 15.8 0 11.6MLab-Cifar10

Table 2. Comparison of the performances and parameter efficiency between learned and fixed ETF classifier. When counting
parameters, we consider all parameters that require gradient calculation during back-propagation.

from updating it during training. By doing so, our experi-
mental results in Table 2 demonstrate that we can achieve
parameter reductions of up to 20% without sacrificing the
performance of the model.8

5. Conclusion
In this study, we extensively analyzed the NC phenomenon
in M-lab learning. In theory, our results establish that M-
lab ETFs are the only global minimizers of the PAL loss
function, incorporating weight decay and bias. In practice,
these findings hold significant implications for improving
the performance and efficiency of M-lab tasks in both testing
and training stages. Our work also fosters future directions
in multi-label learning such as dealing with data imbalanced-
ness, investigating other losses (Han et al., 2022; Zhou et al.,
2022a) or designing a better training loss are all worthy
directions of pursuit.

• Dealing with data imbalanced-ness. As many multi-
label datasets are imbalanced, another important direction
is to investigate the more challenging cases where the
Multiplicity-1 training data are imbalanced. We suspect a
more general minority collapse phenomenon would hap-
pen (Fang et al., 2021; Thrampoulidis et al., 2022; Zhai
et al., 2023). A promising approach might be employing
the Simplex-Encoded-Labels Interpolation (SELI) frame-
work, which is related to the singular value decomposition
of the simplex-encoded label matrix (Thrampoulidis et al.,
2022). Nonetheless, we conjecture that the scaled aver-
age property will still hold between higher multiplicity
features and their multiplicity-1 features. On the other
hand, when Multiplicity-1 training data are imbalanced, it
is also worth studying creating a balanced dataset through
data augmentation by leveraging recent advances in diffu-
sion models (Ho et al., 2020; Trabucco et al., 2023; Zhang
et al., 2023).

• Designing better training loss. Prior research has un-
derscored the significance of mitigating within-class vari-
ability collapse to improve the transferability of learned

8We use intersection over union (IoU) to measure model perfor-
mances, in M-lab, we define IoU(ŷ,y) = ||y||0 · (ŷ⊤y) ∈ [0, 1].
Here, the ground truth y represents a probability vector.

models (Li et al., 2022). In the context of M-lab prob-
lems, the principle of Maximal Coding Rate Reduction
(MCR2) has been designed and effectively employed to
foster feature diversity and discrimination, thereby pre-
venting collapse (Yu et al., 2020; Chan et al., 2022). We
believe that our M-lab NC could offer insights into the de-
velopment of analogous loss functions for M-lab learning,
with the goal of promoting diversity in features.

More discussions on other future directions with preliminary
experimental results can be found in Appendix A.

Code Availability
Our code is publicly available at https://github.
com/Heimine/NC_MLab/.
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Hüllermeier, E. On label dependence and loss minimiza-
tion in multi-label classification. Machine Learning, 88:
5–45, 2012.

Fang, C., He, H., Long, Q., and Su, W. J. Exploring deep
neural networks via layer-peeled model: Minority col-
lapse in imbalanced training. Proceedings of the National
Academy of Sciences, 118(43):e2103091118, 2021.

Galanti, T. A note on the implicit bias towards mini-
mal depth of deep neural networks. arXiv preprint
arXiv:2202.09028, 2022.

Galanti, T., György, A., and Hutter, M. Generalization
bounds for transfer learning with pretrained classifiers.
arXiv preprint arXiv:2212.12532, 2022a.

Galanti, T., György, A., and Hutter, M. On the role of neural
collapse in transfer learning. In International Conference
on Learning Representations, 2022b.

Gao, P., Xu, Q., Wen, P., Shao, H., Yang, Z., and Huang,
Q. A study of neural collapse phenomenon: Grassman-
nian frame, symmetry, generalization. arXiv preprint
arXiv:2304.08914, 2023.

Gao, W. and Zhou, Z.-H. On the consistency of multi-label
learning. In Proceedings of the 24th annual conference
on learning theory, pp. 341–358. JMLR Workshop and
Conference Proceedings, 2011.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from
saddle points—online stochastic gradient for tensor de-
composition. In Proceedings of The 28th Conference on
Learning Theory, pp. 797–842, 2015.

Graf, F., Hofer, C., Niethammer, M., and Kwitt, R. Dissect-
ing supervised contrastive learning. In International Con-
ference on Machine Learning, pp. 3821–3830. PMLR,
2021.

Han, X., Papyan, V., and Donoho, D. L. Neural collapse
under mse loss: Proximity to and dynamics on the central
path. In International Conference on Learning Represen-
tations, 2022.

He, H. and Su, W. J. A law of data separation in deep
learning. Proceedings of the National Academy of Sci-
ences, 120(36):e2221704120, 2023. doi: 10.1073/pnas.
2221704120. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2221704120.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

10

https://www.pnas.org/doi/abs/10.1073/pnas.2221704120
https://www.pnas.org/doi/abs/10.1073/pnas.2221704120


Neural Collapse in Multi-label Learning with Pick-all-label Loss

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Hui, L., Belkin, M., and Nakkiran, P. Limitations of neural
collapse for understanding generalization in deep learn-
ing. arXiv preprint arXiv:2202.08384, 2022.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning, pp.
448–456. PMLR, 2015.

Ji, W., Lu, Y., Zhang, Y., Deng, Z., and Su, W. J. An
unconstrained layer-peeled perspective on neural collapse.
In International Conference on Learning Representations,
2022.

Jiang, J., Zhou, J., Wang, P., Qu, Q., Mixon, D., You, C., and
Zhu, Z. Generalized neural collapse for a large number
of classes. arXiv preprint arXiv:2310.05351, 2023.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In Interna-
tional conference on machine learning, pp. 1724–1732.
PMLR, 2017.

Kothapalli, V. Neural collapse: A review on mod-
elling principles and generalization. Transactions
on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?
id=QTXocpAP9p.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

Lanchantin, J., Wang, T., Ordonez, V., and Qi, Y. General
multi-label image classification with transformers. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16478–16488, 2021.

LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten
digit database. at&t labs, 2010.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M., Jor-
dan, M. I., and Recht, B. First-order methods almost
always avoid strict saddle points. Mathematical Program-
ming, 176:311–337, 2019.

Li, X., Liu, S., Zhou, J., Lu, X., Fernandez-Granda, C., Zhu,
Z., and Qu, Q. Principled and efficient transfer learn-
ing of deep models via neural collapse. arXiv preprint
arXiv:2212.12206, 2022.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In Proceedings of
the IEEE international conference on computer vision,
pp. 2980–2988, 2017.

Liu, W., Wang, H., Shen, X., and Tsang, I. W. The emerging
trends of multi-label learning. IEEE transactions on
pattern analysis and machine intelligence, 44(11):7955–
7974, 2021.

Liu, W., Yu, L., Weller, A., and Schölkopf, B. General-
izing and decoupling neural collapse via hyperspherical
uniformity gap. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=inU2quhGdNU.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient
descent with warm restarts. In International Conference
on Learning Representations, 2017. URL https://
openreview.net/forum?id=Skq89Scxx.

Lu, J. and Steinerberger, S. Neural collapse under
cross-entropy loss. Applied and Computational
Harmonic Analysis, 59:224–241, 2022. ISSN 1063-
5203. doi: https://doi.org/10.1016/j.acha.2021.12.011.
URL https://www.sciencedirect.com/
science/article/pii/S1063520321001123.
Special Issue on Harmonic Analysis and Machine
Learning.

Lu, Y., Ji, W., Izzo, Z., and Ying, L. Importance tempering:
Group robustness for overparameterized models. arXiv
preprint arXiv:2209.08745, 2022.

Menon, A. K., Rawat, A. S., Reddi, S., and Kumar, S. Mul-
tilabel reductions: what is my loss optimising? Advances
in Neural Information Processing Systems, 32, 2019.

Mixon, D. G., Parshall, H., and Pi, J. Neural collapse
with unconstrained features. Sampling Theory, Signal
Processing, and Data Analysis, 2022.

Moyano, J. M., Gibaja, E. L., Cios, K. J., and Ventura, S.
Review of ensembles of multi-label classifiers: models,
experimental study and prospects. Information Fusion,
44:33–45, 2018.

Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P.,
and Dokania, P. Calibrating deep neural networks using
focal loss. Advances in Neural Information Processing
Systems, 33:15288–15299, 2020.

11

https://openreview.net/forum?id=QTXocpAP9p
https://openreview.net/forum?id=QTXocpAP9p
https://openreview.net/forum?id=inU2quhGdNU
https://openreview.net/forum?id=inU2quhGdNU
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://www.sciencedirect.com/science/article/pii/S1063520321001123
https://www.sciencedirect.com/science/article/pii/S1063520321001123


Neural Collapse in Multi-label Learning with Pick-all-label Loss

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu,
B., and Ng, A. Y. Reading digits in natural
images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning 2011, 2011. URL http:
//ufldl.stanford.edu/housenumbers/
nips2011_housenumbers.pdf.

Papyan, V. Traces of class/cross-class structure pervade deep
learning spectra. Journal of Machine Learning Research,
21(252):1–64, 2020.

Papyan, V., Han, X., and Donoho, D. L. Prevalence of
neural collapse during the terminal phase of deep learn-
ing training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information
Processing Systems, 32, 2019.

Rangamani, A. and Banburski-Fahey, A. Neural collapse
in deep homogeneous classifiers and the role of weight
decay. In ICASSP 2022-2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4243–4247. IEEE, 2022.

Rangamani, A., Lindegaard, M., Galanti, T., and Poggio,
T. A. Feature learning in deep classifiers through inter-
mediate neural collapse. In International Conference on
Machine Learning, pp. 28729–28745. PMLR, 2023.

Reddi, S. J., Kale, S., Yu, F., Holtmann-Rice, D., Chen,
J., and Kumar, S. Stochastic negative mining for learn-
ing with large output spaces. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp.
1940–1949. PMLR, 2019.

Reeve, H. and Kaban, A. Optimistic bounds for multi-
output learning. In International Conference on Machine
Learning, pp. 8030–8040. PMLR, 2020.

Ridnik, T., Sharir, G., Ben-Cohen, A., Ben-Baruch, E., and
Noy, A. Ml-decoder: Scalable and versatile classification
head. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 32–41, 2023.

Samei, R., Semukhin, P., Yang, B., and Zilles, S. Sample
compression for multi-label concept classes. In Confer-
ence on Learning Theory, pp. 371–393. PMLR, 2014a.

Samei, R., Yang, B., and Zilles, S. Generalizing labeled
and unlabeled sample compression to multi-label concept
classes. In Algorithmic Learning Theory: 25th Inter-
national Conference, ALT 2014, Bled, Slovenia, Octo-
ber 8-10, 2014. Proceedings 25, pp. 275–290. Springer,
2014b.

Sharma, S., Xian, Y., Yu, N., and Singh, A. Learning
prototype classifiers for long-tailed recognition. arXiv
preprint arXiv:2302.00491, 2023.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

Smith, L. N. Cyclical focal loss. arXiv preprint
arXiv:2202.08978, 2022.

Sun, J., Qu, Q., and Wright, J. When are nonconvex prob-
lems not scary? In NIPS Workshop on Nonconvex Opti-
mization for Machine Learning, 2015.

Sun, J., Qu, Q., and Wright, J. Complete dictionary recovery
over the sphere ii: Recovery by riemannian trust-region
method. IEEE Transactions on Information Theory, 63
(2):885–914, 2016.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, pp. 2818–2826,
2016.

Thrampoulidis, C., Kini, G. R., Vakilian, V., and Behnia, T.
Imbalance trouble: Revisiting neural-collapse geometry.
In Advances in Neural Information Processing Systems,
volume 35, pp. 27225–27238, 2022.

Tirer, T. and Bruna, J. Extended unconstrained features
model for exploring deep neural collapse. In International
Conference on Machine Learning, 2022.

Trabucco, B., Doherty, K., Gurinas, M., and Salakhutdinov,
R. Effective data augmentation with diffusion models.
arXiv preprint arXiv:2302.07944, 2023.

Wang, P., Liu, H., Yaras, C., Balzano, L., and Qu, Q. Lin-
ear convergence analysis of neural collapse with uncon-
strained features. In OPT 2022: Optimization for Ma-
chine Learning (NeurIPS 2022 Workshop), 2022.

Wang, P., Li, X., Yaras, C., Zhu, Z., Balzano, L., Hu, W., and
Qu, Q. Understanding deep representation learning via
layerwise feature compression and discrimination. arXiv
preprint arXiv:2311.02960, 2023a.

Wang, Z., Luo, Y., Zheng, L., Huang, Z., and Baktashmot-
lagh, M. How far pre-trained models are from neural
collapse on the target dataset informs their transferability.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 5549–5558, 2023b.

Xie, L., Yang, Y., Cai, D., and He, X. Neural collapse in-
spired attraction-repulsion-balanced loss for imbalanced
learning. Neurocomputing, 2023.

12

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf


Neural Collapse in Multi-label Learning with Pick-all-label Loss

Xie, S., Qiu, J., Pasad, A., Du, L., Qu, Q., and Mei, H.
Hidden state variability of pretrained language models
can guide computation reduction for transfer learning.
In Empirical Methods in Natural Language Processing,
2022.

Xu, C., Liu, T., Tao, D., and Xu, C. Local rademacher
complexity for multi-label learning. IEEE Transactions
on Image Processing, 25(3):1495–1507, 2016.

Yang, Y., Chen, S., Li, X., Xie, L., Lin, Z., and Tao, D.
Inducing neural collapse in imbalanced learning: Do we
really need a learnable classifier at the end of deep neural
network? In Advances in Neural Information Processing
Systems, 2022.

Yang, Y., Yuan, H., Li, X., Lin, Z., Torr, P., and Tao, D.
Neural collapse inspired feature-classifier alignment for
few-shot class-incremental learning. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=y5W8tpojhtJ.

Yaras, C., Wang, P., Zhu, Z., Balzano, L., and Qu, Q. Neural
collapse with normalized features: A geometric analysis
over the riemannian manifold. In Advances in Neural
Information Processing Systems, 2022.

Yaras, C., Wang, P., Hu, W., Zhu, Z., Balzano, L., and Qu,
Q. The law of parsimony in gradient descent for learning
deep linear networks. arXiv preprint arXiv:2306.01154,
2023.

Yu, L., Hu, T., HONG, L., Liu, Z., Weller, A., and Liu,
W. Continual learning by modeling intra-class varia-
tion. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.
net/forum?id=iDxfGaMYVr.

Yu, Y., Chan, K. H. R., You, C., Song, C., and Ma, Y. Learn-
ing diverse and discriminative representations via the
principle of maximal coding rate reduction. Advances in
Neural Information Processing Systems, 33:9422–9434,
2020.

Zhai, Y., Tong, S., Li, X., Cai, M., Qu, Q., Lee, Y. J., and Ma,
Y. Investigating the catastrophic forgetting in multimodal
large language models. arXiv preprint arXiv:2309.10313,
2023.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zhang, H., Zhou, J., Lu, Y., Guo, M., Shen, L., and Qu,
Q. The emergence of reproducibility and consistency
in diffusion models. arXiv preprint arXiv:2310.05264,
2023.

Zhang, M., Ramaswamy, H. G., and Agarwal, S. Con-
vex calibrated surrogates for the multi-label f-measure.
In International Conference on Machine Learning, pp.
11246–11255. PMLR, 2020a.

Zhang, Y., Qu, Q., and Wright, J. From symmetry to ge-
ometry: Tractable nonconvex problems. arXiv preprint
arXiv:2007.06753, 2020b.

Zhong, Z., Cui, J., Yang, Y., Wu, X., Qi, X., Zhang, X., and
Jia, J. Understanding imbalanced semantic segmentation
through neural collapse. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 19550–19560, 2023.

Zhou, J., Li, X., Ding, T., You, C., Qu, Q., and Zhu, Z.
On the optimization landscape of neural collapse under
mse loss: Global optimality with unconstrained features.
In International Conference on Machine Learning, pp.
27179–27202. PMLR, 2022a.

Zhou, J., You, C., Li, X., Liu, K., Liu, S., Qu, Q., and
Zhu, Z. Are all losses created equal: A neural collapse
perspective. Advances in Neural Information Processing
Systems, 2022b.

Zhu, Z., Ding, T., Zhou, J., Li, X., You, C., Sulam, J., and
Qu, Q. A geometric analysis of neural collapse with
unconstrained features. Advances in Neural Information
Processing Systems, 34:29820–29834, 2021.

13

https://openreview.net/forum?id=y5W8tpojhtJ
https://openreview.net/forum?id=y5W8tpojhtJ
https://openreview.net/forum?id=iDxfGaMYVr
https://openreview.net/forum?id=iDxfGaMYVr


Neural Collapse in Multi-label Learning with Pick-all-label Loss

Appendix

Organization of Appendices

Appendix A Related Works and Futue Directions
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Appendix D Nonconvex Landscape Analysis

Table 3. Table of Contents for Appendices

In Appendix A, we provided more related work on multi-label learning and Neural Collapse with more detailed future
direction of our paper. In Appendix B, We present all the datasets utilized for validating multi-label NC, guiding testing and
training, along with the experimental setups introduced in this study. In Appendix C and Appendix D, we present the proofs
for results from the main paper Theorem 3.1 (global optimality) and Theorem D.1 (benign landscapes), respectively.

A. Related Works and Future Direction
A.1. Discussion on Related Works

Related works on multi-label learning. In contrast to M-clf, where each sample has a single label, in M-lab the samples
are tagged with multiple labels. As such, the final model output must be set-valued. This presents theoretical and practical
challenges unique to the regime of M-lab learning, especially when the class number is large (Liu et al., 2021). Besides BR
and PAL, there are also non-decomposable approaches to M-lab learning (Dembczyński et al., 2012). However, to the best of
our knowledge, the contribution of the work (Dembczyński et al., 2012) is more on the theoretical side, while it has limited
impacts on training practical neural networks for M-lab. Therefore, in this work we only focus on reducible formulations
such as PAL and BR. On the practical side, many modern deep neural network architectures have been successfully adapted
to the multi-label task (Chang et al., 2020; Lanchantin et al., 2021; Ridnik et al., 2023). However, the methods often suffer
from the challenges of imbalanced training data, given that high Multiplicity labels are scarce.

On the theory side, consistency of surrogate methods for M-lab has been initiated by (Gao & Zhou, 2011) and followed up
by several works in (Menon et al., 2019; Dembczynski et al., 2012; Zhang et al., 2020a; Blondel et al., 2020). Many other
concepts from classical learning theory have also been extended successfully to the M-lab regime, e.g., Vapnik-Chervonenkis
theory and sample-compression schemes (Samei et al., 2014a;b), (local) Rademacher complexity (Xu et al., 2016; Reeve &
Kaban, 2020), and Bayes-optimal prediction (Cheng et al., 2010).

Related works on neural collapse. The phenomenon known as NC was initially identified in recent groundbreaking
research (Papyan et al., 2020; Han et al., 2022) conducted on M-clf. These studies provided empirical evidence demonstrating
the prevalence of NC across various network architectures and datasets. The significance of NC lies in its elegant
mathematical characterization of learned representations or features in deep learning models for M-clf. Notably, this
characterization is independent of network architectures, dataset properties, and optimization algorithms, as also highlighted
in a recent review paper (Kothapalli, 2023). Subsequent investigations, building upon the ”unconstrained feature model”
(Mixon et al., 2022) or the ”layer-peeled model” (Fang et al., 2021), have contributed theoretical evidence supporting the
existence of NC. This evidence pertains to the utilization of a range of loss functions, including cross-entropy (CE) loss (Lu
& Steinerberger, 2022; Zhu et al., 2021; Fang et al., 2021; Yaras et al., 2022), mean-square-error (MSE) loss (Mixon et al.,
2022; Zhou et al., 2022a; Tirer & Bruna, 2022; Rangamani & Banburski-Fahey, 2022; Wang et al., 2022; Dang et al., 2023),
and CE variants (Graf et al., 2021; Zhou et al., 2022b). More recent studies have explored other theoretical aspects of NC,
such as its relationship with generalization (Hui et al., 2022; Galanti et al., 2022b;a; Galanti, 2022; Chen et al., 2022), its
applicability to large classes (Liu et al., 2023; Gao et al., 2023; Jiang et al., 2023), and the progressive collapse of feature
variability across intermediate network layers (Hui et al., 2022; Papyan, 2020; He & Su, 2023; Yaras et al., 2023; Rangamani
et al., 2023). Theoretical findings related to NC have also inspired the development of new techniques to improve practical
performance in various scenarios, including the design of loss functions and architectures (Yu et al., 2020; Zhu et al., 2021;
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Chan et al., 2022), transfer learning (Li et al., 2022; Xie et al., 2022; Wang et al., 2023b) where a model trained on one task
or dataset is adapted or fine-tuned to perform a different but related task, imbalanced learning (Fang et al., 2021; Xie et al.,
2023; Lu et al., 2022; Yang et al., 2022; Thrampoulidis et al., 2022; Behnia et al., 2023; Zhong et al., 2023; Sharma et al.,
2023) which is a characteristic of dataset where one or more classes have significantly fewer instances compared to other
classes, and continual learning (Yu et al., 2023; Yang et al., 2023; Zhai et al., 2023) in which a model is designed to learn
and adapt to new data continuously over time, rather than being trained on a fixed dataset.

A.2. Other Future Directions

In this study, we extensively analyzed the NC phenomenon in M-lab (Zhu et al., 2021; Fang et al., 2021; Ji et al., 2022).
Based upon the UFM, our results establish that M-lab ETFs are the only global minimizers of the PAL loss function,
incorporating weight decay and bias. These findings hold significant implications for improve the performance and training
efficiency of M-lab tasks. We believe that our results open several interesting directions that is worth of further exploration
that we discuss below.

Extreme Multi-label classification The goal of extreme multi-label classification is to tag a data point with the most
relevant subset of labels from an extremely large label set. We have explored our M-lab NC phenomenon on the more
challenging Microsoft COCO dataset (Lin et al., 2014) with minimal preprocessing to maintain balance among multiplicity-1
data. The visualization of M-lab NC measures is shown in Figure 5. Specifically, a subset of the COCO dataset comprising
32,083 samples was extracted. We included 50 classes with all higher multiplicity samples possible. Most samples belong
to higher multiplicity (29,583 samples) compared to multiplicity-1 samples (only 2,500). The ResNet18 architecture was
trained for 200 epochs, achieving a training IoU of around 98%. For training efficiency, we fixed the classifier W as an ETF
and downsampled images to 64 by 64 pixels. Under these experimental setups, we observed that NC1, NC3, and NCm all
converged to small values, demonstrating the Mlab-NC phenomenon.
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Figure 5. M-lab NC phenomenon in extreme MS-COCO dataset. As we can see that all M-lab NC measures converges to small values.

While the Microsoft COCO dataset indeed contains a large number of labels, there is still a gap between its setup and
the most extreme multi-label datasets. The work by (Jiang et al., 2023) studied the phenomenon of neural collapse under
extreme multi-class classification where the number of labels exceeds the dimension of learned features. To our knowledge,
no one has studied neural collapse in the context of extreme multi-label classification. Our tentative experiments on the
Microsoft COCO dataset demonstrate the potential to develop a generalized neural collapse for multi-label classification
with a large number of labels.

Features for data with all possible tags While our theoretical analysis of the scaled tag-wise average property assumes
that the multiplicity of a data point is less than the total number of classes (i.e., M < K), experimental results on the toy
Microsoft COCO dataset indicate that the tag-wise average property still holds for data samples with multiplicity M = K.
The visualization of learned data features is shown in Figure 6. Specifically, we selected three classes: Car, Train, and Truck,
where each sample can have 1 to 3 labels. This means that the dataset comprises samples with multiplicities of 1, 2, and 3,
based on the number of labels they carry. We then trained a 5-layer convolutional network using the selected data and we
chose a feature dimension 2 for visualization purposes. As shown in the visualization, both the global feature mean and the
multiplicity-3 features are indeed located at the origin.
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Figure 6. M-lab NC: learned features for data samples with all possible labels is at the origin and follows tag-wise average property.

Class: 0 & 6 Class: 3 & 1

(a) MLab-MNIST

Class: Car & Airplane Class: Cat & Dog

(b) MLab-Cifar10

Figure 7. Illustration of synthetic multi-label MNIST (left) and Cifar10 (right) datasets.

B. Dataset Illustration and Visualization
B.1. M-lab MNIST and M-lab Cifar10 dataset

We created synthetic Multi-label MNIST (LeCun et al., 2010) and Cifar10 (Krizhevsky et al., 2009) datasets by applying
zero-padding to each image, increasing its width and height to twice the original size, and then combining it with another
padded image from a different class. An illustration of generated multi-label samples can be found in Figure 7. To create
the training dataset, for m = 1 scenario, we randomly picked 3100 images in each class, and for m = 2, we generated
200 images for each combination of classes using the pad-stack method described earlier. Therefore, the total number of
images in the training dataset is calculated as 10× 3100 +

(
10
2

)
× 200 = 40000. Those dataset are used to generate results
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(a) The SVHN Dataset (b) Class Distribution

Figure 8. Illustration of M-lab SVHN dataset. As illustrated in (a), the Street View House Numbers (SVHN) Dataset (Netzer et al.,
2011) comprises labeled numerical characters and inherently serves as a M-lab learning dataset. We applied minimal preprocessing to
achieve balance specifically within the Multiplicity-1 scenario, as evidenced by the diagonal entries in (b). Furthermore, we omitted
samples with Multiplicity-4 and above, as these images posed considerable recognition challenges. Notably, the Multiplicity-2 case
remained largely imbalanced, as observed in the off-diagonal entries in (b). Nonetheless, our findings remained robust and consistent in
this scenario, as evidenced in Figure 4.

in Figure 3 and Table 2.

In terms of training deep networks for M-lab, we use standard ResNet (He et al., 2016) and VGG (Simonyan & Zisserman,
2014) network architectures. Throughout all the experiments, we use an SGD optimizer with fixed batch size 128, weight
decay (λW , λH) = (5× 10−4, 5× 10−4) and momentum 0.9. The learning rate is initially set to 1× 10−1 and dynamically
decays to 1× 10−3 following a CosineAnnealing learning rate scheduler as described in (Loshchilov & Hutter, 2017). The
total number of epochs is set to 200 for all experiments.

B.2. Multiplicity 2 imbalanced M-lab MNIST and M-lab Cifar10 dataset

Following the same padding rule described in Appendix B.1, the multiplicity-2 imbalanced data used to generate Figure 2
are created as follows. The cifar10 dataset has balanced Multiplicity-1 samples (5000 for each class). For the classes of
Multiplicity-2, we divide them into 3 groups: the large group (500 samples), the middle group (50 samples), and the small
group (5 samples).

B.3. Multiplicity 2 imbalanced M-lab SVHN dataset

To further explore our findings, we conducted additional experiments on the practical SVHN dataset (Netzer et al., 2011)
alongside the synthetic datasets. In order to preserve the natural characteristics of the SVHN dataset, we applied minimal
pre-processing only to ensure a balanced scenario for multiplicity-1, while leaving other aspects of the dataset untouched.
The dataset are visualized in Figure 8.

B.4. Dataset used to compare test accuracy and efficiency between ONN and OvA

For training dataset, following the same generation method described in Appendix B.1 and simply varying data balanced-
ness, the synthetic multiplicity imbalanced data used in Table 1 are generated from Cifar10 datasets. All 3 datasets has 1500
sample in every class in multiplicity-1, we reduce the sample in every class in multiplicity-2 to 1000, 750, and 500, resulting
in the “c10-Large”, “c10-Medium”, and “c10-Small” datasets. The testing datasets are independently generated, each with a
sample size equivalent to 20% of the training datasets.
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Standard ResNet (He et al., 2016) network architecture are used for training with only fixing the last layer classifier of
as ETF . The SGD optimizer with fixed batch size 128 are used. Specifically, for the three Cifar-10 datasets, models are
trained with weight decay (λW , λH) = (5× 10−5, 10−5) with 200 epochs with learning rate of 0.1. For the SVHN dataset,
models are trained with weight decay (λW , λH) = (5× 10−6, 1.5× 10−6) with 100 epochs with learning rate of 0.09. For
testing with OvA, the additional linear classifiers are trained until the training loss reaches 0, typically after approximately 2
epochs.

C. Optimality Condition
The purpose of this section is to prove Theorem 3.1. As such, throughout this section, we assume that we are in the situation
of the statement of said theorem. Due to the additional complexity of the M-lab setting compared to the M-clf setting,
analysis of the M-lab NC requires substantially more notations. These notations, which are defined in Appendix C.1, while
not necessary for stating Theorem 3.1, are crucial for the proofs in Appendix C.2 .

C.1. Additional notations

For the reader’s convenience, we recall the following:

N := number of samples (9)
Nm := number of samples i ∈ [N ] such that |Si| = m (10)

nm := Nm/

(
K

m

)
(11)(

[K]

m

)
:= {S ⊆ [K] : |S| = m} (12)

M := largest m such that nm ̸= 0 (13)
d := dimension of the last layer features (14)

C.1.1. LEXICOGRAPHICAL ORDERING ON SUBSETS

For each m ≤ K, recall from the above that the set of subsets of [K] of size m is denoted by the commonly used, suggestive
notation

(
[K]
m

)
. Moreover, |

(
[K]
m

)
| =

(
K
m

)
.

▷ Notation convention. Assume the lexicographical ordering on
(
[K]
m

)
. Thus, for each k ∈

(
K
m

)
, the k-th subset of

(
[K]
m

)
is

well-defined.

For example, when K = 5 and m = 2, there are
(
5
2

)
= 10 elements in

(
[5]
2

)
which, when listed in the lexicographic ordering,

are
{1, 2}︸ ︷︷ ︸

1st

, {1, 3}︸ ︷︷ ︸
2nd

, {1, 4}︸ ︷︷ ︸
3rd

, {1, 5}︸ ︷︷ ︸
4th

, {2, 3}︸ ︷︷ ︸
···

, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}︸ ︷︷ ︸
10th

.

In general, we use the notation Sm,k to denote the k-th subset of
(
[K]
m

)
. In other words,(

[K]

m

)
= {Sm,1, Sm,2, . . . , Sm,(Km)

}.

C.1.2. BLOCK SUBMATRICES OF THE LAST LAYER FEATURE MATRIX

Without the loss of generality, we assume that the sample indices i ∈ [N ] are sorted such that |Si| is non-decreasing, i.e.,
|S1| ≤ · · · ≤ |Si| ≤ · · · ≤ |SN |. Clearly, this does not affect the optimization problem itself. Denote the set of indices of
Multiplicity-m samples by Im := {i ∈ [N ] : |Si| = m}. Thus, we have

I1 = {1, . . . , N1}, I2 = {1 +N1, . . . , N2 +N1}, · · · Im = {1 +
m∑
ℓ=1

Nℓ, . . . , Nm +

m∑
ℓ=1

Nℓ}, · · ·

Below, it will be helpful to define the notation

Im,S := {i ∈ [N ] : Si = S}
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for each m = 1, . . . ,M and S ∈
(
[K]
m

)
.

▷ Notation convention. Define the block-submatrices H1, . . . ,HM of H such that

1. Hm ∈ Rd×Nm

2. H =
[
H1 H2 · · · HM

]
Thus, as in the main paper, the columns of Hm correspond to the features of Im.

C.1.3. DECOMPOSITION OF THE PAL-CE LOSS

Define
gm(WHm + b,Y ) :=

1

Nm

∑
i∈Im

LPAL(Whi + b,ySi
). (15)

Intuitively, gm is the contribution to g from the Multiplicity-m samples. More precisely, the function g(WH + b,Y ) from
Equation (4) can be decomposed as

g(WH + b,Y ) =

M∑
m=1

Nm

N
gm(WHm + b,Y ). (16)

C.1.4. TRIPLE INDICES NOTATION

Next, we state precisely the data balanced-ness condition from Theorem 3.1. In order to state the condition, we need some
additional notations. Fix some m ∈ {1, . . . ,M} and let S ∈

(
[K]
m

)
. Define

nm,S := {i ∈ [N ] : Si = S}. (17)

Theorem 3.1 made the following data balanced-ness condition:

nm,S = Nm/
(
K
m

)
=: nm for all S ∈

(
[K]
m

)
. (18)

In other words, for a fixed m ∈ [M ], the set Im,S has the same constant cardinality equal to nm ranging across all S ∈
(
[K]
m

)
.

By the data balanced-ness condition, we have for a fixed m = 1, . . . ,M that Im,S have the same number of elements across
all S ∈

(
[K]
m

)
. Moreover, in our notation, we have |Im,S | = nm. Below, for each m = 1, . . . ,M and for each S ∈

(
[K]
m

)
,

choose an arbitrary ordering on Im,S once and for all. Every sample is uniquely specified by the following three indices:

1. m ∈ [M ] the sample’s multiplicity, i.e., m = |S|

2. k ∈
(
K
m

)
the index such that Sm,k is the label set of the sample,

3. i ∈ [nm] such that the sample is the i-th element of Im,Sm,k
.

More concisely, we now introduce the

▷ Notation convention. Denote each sample by the triplet

(m, k, i) where m ∈ [M ], k ∈
(
K

m

)
, i ∈ [nm]. (19)

Below, (19) will be referred to as the triple indices notation and every sample will be referred to by its triple indices
(m, k, i) instead of the previous single index i ∈ [N ]. Accordingly, throughout the appendix, columns of H are expressed as
hm,k,i instead of the previous hi, and thus the block submatrix Hm of H can be, without the loss of generality, be written
as Hm =

[
hm,k,i

]
m∈[M ], k∈(Km), i∈[nm]

.

Moreover, in the triple indices notation, Equation (15) can be rewritten as

gm(WHm + b) =
1

Nm

nm∑
i=1

(Km)∑
k=1

LPAL(Whm,k,i,ySm,k
) (20)
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C.2. Proofs

We will first state the proof of Theorem 3.1 which depends on several lemmas appearing later in the section. Thus, the proof
of Theorem 3.1 serves as a roadmap for the rest of this section.

Proof of Theorem 3.1. Recall the definition of a coercive function: a function φ : Rn → R is said to be coercive if
lim∥x∥→∞ φ(x) = +∞. It is well-known that a coercive function attains its infimum which is a global minimum.

Now, note that the objective function f(W ,H, b) in Problem (4) is coercive due to the weight decay regularizers (the terms
∥W ∥2F , ∥H∥2F and ∥b∥2F ) and that the pick-all-labels cross-entropy loss is non-negative. Thus, a global minimizer, denoted
below as (W ,H, b), of Problem (4) exists. By Lemma B.2, we know that any critical point (W ,H, b) of Problem (4)
satisfies

W⊤W =
λH
λW

HH⊤.

Let ρ := ∥W ∥2F . Thus, ∥H∥2F = λW

λH
ρ

We first provide a lower bound for the PAL cross-entropy term g(WH + b1⊤) and then show that the lower bound is tight
if and only if the parameters are in the form described in Theorem 3.1. For each m = 1, . . . ,M , let c1,m > 0 be arbitrary,
to be determined below. Now by Lemma C.2 and Lemma C.8, we have

g(WH + b)− Γ2 ≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ

where Γ2 :=
∑M

m=1 c2,m and c2,m is as in Lemma C.8. Therefore, we have

f(W ,H, b) = g(WH + b⊤) + λW ∥W ∥2F + λH∥H∥2F + λb∥b∥22

≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ+ Γ2 + 2λW ρ+
λb
2
∥b∥22

≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ+ Γ2 + 2λW ρ (21)

where the last inequality becomes an equality whenever either λb = 0 or b = 0. Furthermore, by Lemma C.3, we know that
the Inequality (21) becomes an equality if and only if (W ,H, b) satisfy the following:

(I) ∥w1∥2 = ∥w2∥2 = · · · = ∥wK∥2, and b = b1,

(II)
1(
K
m

) (Km)∑
k=1

hm,k,i = 0, and

√(
K−2
m−1

)
nm

wk =
∑

ℓ:k∈Sm,ℓ

hm,ℓ,i,∀m ∈ [M ], k ∈ [K], i ∈ [nm],

(III) W⊤W =
ρ

K − 1

(
IK − 1

K
1K1⊤

K

)
(IV) There exist unique positive real numbers C1, C2, . . . , CM > 0 such that the following holds:

h1,k,i = C1w
ℓ when S1,k = {ℓ}, ℓ ∈ [K], (Multiplicity = 1 Case)

hm,k,i = Cm

∑
ℓ∈Sm,k

wℓ when m > 1. (Multiplicity > 1 Case)

Note that condition (IV) is a restatement of Equation (7) and Equation (8). The choice of the c1,m’s is given by (V) from
Lemma C.3.

Lemma C.1. we have:

W⊤W =
λH
λW

HH⊤ and ρ = ∥W ∥2F =
λH
λW

∥H∥2F

Proof. The proceeds identically as in given by (Zhu et al., 2021) Lemma B.2 and is thus omitted here.
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The following lemma is the generalization of (Zhu et al., 2021) Lemma B.3 to the multilabel case for each multiplicity.

Lemma C.2. Let (W ,H, b) be a critical point for the objective f from Problem (4). Let c1,m > 0 be arbitrary and let

γ1,m := 1
1+c1,m

m
K−m . Define κm :=

(
K

m(Km)

)2 (
K−2
m−1

)
. Then

g(WH + b)− Γ2 ≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ. (22)

where ρ := ∥W ∥2F , Γ2 :=
∑M

m=1 c2,m and c2,m is as in Lemma C.8.

Note that Γ2 depends on c1,1, c1,2, . . . , c1,M because c2,m depends on c1,m for each m ∈ [M ].

Proof. Throughout this proof, let zm,k,i := Whm,k,i + b and choose the same γ1,m, c2,m for all i and k. The first part of
this proof aim to find the lower bound for each gm(W ,Hm, b) along with conditions when the bound is tight. The rest of
the proof focus on sum up gm to get Equation (22). Thus, using Equation (20) with the zm,k,i’s, we have that gm can be
written as

gm(WHm + b) =
1

Nm

nm∑
i=1

(Km)∑
k=1

LPAL(zm,k,i,ySm,k
) (23)

By directly applying Lemma C.8, the following lower bound holds:

Nmgm(WHm + b) ≥ γ1,m

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , Whm,k,i + b⟩+Nmc2,m

which implies that

γ−1
1,m(gm(WHm + b)− c2,m)

≥ 1

Nm

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , Whm,k,i + b⟩

=
1

Nm

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , Whm,k,i⟩︸ ︷︷ ︸

(⋆)

+
1

Nm

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , b⟩︸ ︷︷ ︸

(⋆⋆)

(24)

To further simplify the inequality above, we break it down into two parts, namely, the feature part (⋆) and the bias part (⋆⋆)
and analyze each of them separately. We first show that the term (⋆⋆) is equal to zero. To see this, note that

(⋆⋆) =

(Km)∑
k=1

 K∑
j=1

bj −
K

m

∑
j′∈Sm,k

bj′


=

(Km)∑
k=1

K∑
j=1

bj −
K

m

(Km)∑
k=1

∑
j′∈Sm,k

bj′

= K

(
K

m

)
b̄− K

m
m

(
K

m

)
b̄

= 0 (25)
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where b̄ = 1
K

∑K
j=1 bj and

∑(Km)
k=1

∑K
j=1 bj = K

(
K
m

)
b̄. Thus

(Km)∑
k=1

∑
j′∈Sm,k

bj′
(♢)
=

K∑
j=1

∑
k:j∈Sm,k

bj=

K∑
j=1

bj#{k : j ∈ Sm,k} =

K∑
j=1

(
K

m

)
m

K
bj = m

(
K

m

)
b.

Note that the equality at (♢) holds by switching the order of the summation. Now, substituting the result of Equation (25)
into the Inequality (24), we have the new lower bound of gm:

γ−1
1,m(gm(WHm + b)− c2,m) ≥ 1

Nm

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , Whm,k,i⟩︸ ︷︷ ︸

(⋆)

(26)

and the bound is tight when conditions are met in Lemma C.8. To simplify the expression (⋆) we first distribute the outer
layer summation and further simplify it as:

(⋆) =

(Km)∑
k=1

K∑
j=1

h⊤
m,k,i ·wj − K

m

(Km)∑
k=1

∑
j′∈Sm,k

h⊤
m,k,i ·wj′

=

(Km)∑
k=1

K∑
j=1

h⊤
m,k,i ·wj − K

m

K∑
j=1

∑
k′:j∈Sk′

h⊤
m,k′,iw

j (27)

=

(Km)∑
k=1

K∑
j=1

h⊤
m,k,i ·wj − K

m

K∑
j=1

h⊤
m,{j},iw

j

=

K∑
j=1

(Km)∑
k=1

h⊤
m,k,i ·wj − K

m

K∑
j=1

h⊤
m,{j},iw

j (28)

=

K∑
j=1

(Km)∑
k=1

hm,k,i −
K

m
hm,{j},i


⊤

wj

=

K∑
j=1

((
K

m

)
hm,•,i −

K

m
hm,{j},i

)⊤

wj (29)

where we let hm,{j},i =
∑

k:j∈Sm,k
hm,k,i and hm,•,i be the “average” of hm,k,i over all k ∈

(
K
m

)
defined as:

hm,•,i :=
1(
K
m

) (Km)∑
k=1

hm,k,i. (30)

Similarly to (♢), the Equations (27) and (28) holds since we only switch the order of summation. Continuing simplification,
we substitute the result in Equations (29) and (25) into Inequality (24) we have:

γ−1
1,m(gm(WHm + b)− c2,m) ≥ 1

Nm

nm∑
i=1

K∑
j=1

((
K

m

)
hm,•,i −

K

m
hm,{j},i

)⊤

wj

=
1

Nm

nm∑
i=1

K∑
k=1

((
K

m

)
hm,•,i −

K

m
hm,{k},i

)⊤

wk

=
1

nm

nm∑
i=1

K∑
k=1

(
hm,•,i −

K

m
(
K
m

)hm,{k},i

)⊤

wk
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Furthermore, from the AM-GM inequality (e.g., see Lemma A.2 of (Zhu et al., 2021)), we know that for any u, v ∈ RK

and any c3,m > 0,

u⊤v ≤ c3,m
2

∥u∥22 +
1

2c3,m
∥v∥22 (31)

where the above AM-GM inequality becomes an equality when c3,mu = v. Thus letting u = wk and v =(
hm,•,i − K

m(Km)
hm,{k},i

)⊤

and applying the AM-GM inequality, we further have:

γ−1
1,m(gm(WHm + b)− c2,m)

≥ 1

nm

nm∑
i=1

K∑
k=1

(
hm,•,i −

K

m
(
K
m

)hm,{k},i

)⊤

wk (32)

≥ 1

nm

nm∑
i=1

K∑
k=1

(
−c3,m

2
∥wk∥22 −

1

2c3,m
∥hm,•,i −

K

m
(
K
m

)hm,{k},i∥22

)

=
1

nm

nm∑
i=1

K∑
k=1

−c3,m
2

∥wk∥22 −
1

nm

nm∑
i=1

K∑
k=1

1

2c3,m
∥hm,•,i −

K

m
(
K
m

)hm,{k},i∥22

= −c3,m
2

∥W ∥2F − 1

2c3,mnm

nm∑
i=1

K∑
k=1

∥hm,•,i −
K

m
(
K
m

)hm,{k},i∥22

= −c3,m
2

∥W ∥2F − 1

2c3,mnm

nm∑
i=1

(
K∥hm,•,i∥22 +

(
K

m
(
K
m

))2( K∑
k=1

∥hm,{k},i∥22

)
− 2K⟨hm,•,i, hm,•,i⟩

)
= −c3,m

2
∥W ∥2F − 1

2c3,mnm

nm∑
i=1

( K

m
(
K
m

))2( K∑
k=1

∥hm,{k},i∥22

)
−K∥hm,•,i∥22



= −c3,m
2

∥W ∥2F −

(
K

m(Km)

)2

2c3,mnm

nm∑
i=1

(
K∑

k=1

∥hm,{k},i∥22 −K∥hm,•,i∥22

)

≥ −c3,m
2

∥W ∥2F −

(
K

m(Km)

)2

2c3,mnm

nm∑
i=1

K∑
k=1

∥hm,{k},i∥22 (33)

= −c3,m
2

∥W ∥2F −

(
K

m(Km)

)2

2c3,mnm

(
∥HmDm∥2F

)
(34)

= −c3,m
2

∥W ∥2F −

(
K

m(Km)

)2 (
K−2
m−1

)
2c3,mnm

(
∥Hm∥2F

)
(by Lemma C.7)

= −c3,m
2

∥W ∥2F − κm
2c3,mnm

(
∥Hm∥2F

)
,

where we let Dm = diag(Y ⊤
m , · · · ,Y ⊤

m ) ∈ R(nm∗(Km))×(nm∗K) and Ym ∈ RK×(Km) is the many-hot label matrix defined
as follows9:

Ym =
[
ySm,k

]
k∈(Km)

.

The first Inequality (32) is tight whenever conditions mentioned in Lemma C.8 are satisfied and the second inequality is

9See Appendix C.1.1 for definition of the Sm,k notation
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tight if and only if

c3,mwk =

(
K

m
(
K
m

)hm,{k},i − hm,•,i

)
∀k ∈ [K], i ∈ [nm]. (35)

Therefore, we have

gm(WHm + b)− c2,m ≥ −γ1,m
c3,m
2

∥W ∥2F − γ1,m
κm

2c3,mnm

(
∥Hm∥2F

)
. (36)

The last Inequality (33) achieves its equality if and only if

hm,•,i = 0, ∀i ∈ [nm]. (37)

Plugging this into (Equation (35)), we have

c3,mwk =
K

m
(
K
m

)hm,{k},i

=⇒ c23,m =

(
K

m(Km)

)2∑n
i=1

∑K
k=1 ∥hm,{k},i∥2F

nm
∑K

k=1 ∥wk∥22

=

(
K

m(Km)

)2 (
K−2
m−1

)
∥Hm∥2F

nm∥W ∥2F

=
κm
nm

∥Hm∥2F
∥W ∥2F

=⇒ c3,m =

√
κm
nm

∥Hm∥F
∥W ∥F

=⇒ c23,m =
κm
nm

∥Hm∥2F
∥W ∥2F

.

Now, note that by our definition of ρ and Lemma C.1, we get

∥H∥2F =
λW
λH

ρ. (38)

Recall from the state of the lemma that we defined κm :=

(
K/m

(Km)

)2 (
K−2
m−1

)
and that γ1,m := 1

1+c1,m
m

K−m . Thus, continuing

from Inequality (36), we have

γ−1
1,m(gm(WHm + b)− c2,m) ≥ −c3,m

2
∥W ∥2F − κm

2c3,mnm
∥Hm∥2F .

Next, let Q > 0 be an arbitrary constant, to be determined later such that

γ1,m =
1

Nm
Qc−1

3,m

∥Hm∥2F
∥W ∥2F

, ∀m ∈ {1, . . . ,M}. (39)

A remark is in order: at this current point in the proof, it is unclear that such a Q exists. However, in Equation (42), we
derive an explicit formula for Q such that Equation (39) holds. Now, given Equation (39), we have

gm(WHm + b)− c2,m ≥ 1

Nm
Q

(
−1

2
∥Hm∥2F − 1

2
∥Hm∥2F

)
= − 1

Nm
Q∥Hm∥2F .

Let Γ2 :=
∑M

m=1
Nm

N c2,m. Summing the above inequality on both side over m = 1, . . . ,M according to Equation (16), we
have

g(WH + b)− Γ2 ≥ − 1

N
Q

M∑
m=1

∥Hm∥2F = − 1

N
Q∥H∥2F = − 1

N
Q
λW
λH

ρ. (40)

where the last equality is due to Equation (38). Now, we derive the expression for Q, which earlier we set to be arbitrary.
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From Equation (39), we have
1

1 + c1,m

m

K −m
= γ1,m =

1

Nm
Q

√
nm√
κm

∥Hm∥F
∥W ∥F

. (41)

Rearranging and using the fact that Nm =
(
K
m

)
nm, we have(

K

m

)
1

1 + c1,m

m

K −m

√
κmnm = Q

∥Hm∥F
∥W ∥F

.

Squaring both side, we have (
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2

= Q2 ∥Hm∥2F
∥W ∥2F

.

Summing over m = 1, . . . ,M , we have
M∑

m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2

= Q2
M∑

m=1

∥Hm∥2F
∥W ∥2F

= Q2 ∥H∥2F
∥W ∥2F

= Q2λW
λH

Thus, we conclude that

Q =

√
λH
λW

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2

. (42)

Substituting Q into Equation (41), we get

1

1 + c1,m

m

K −m
=

1(
K
m

)√
κmnm

∥Hm∥F
∥W ∥F

√
λH
λW

√√√√ M∑
m′=1

(
1

1 + c1,m′

m′

K −m′

)2

κm′nm′

(
K

m′

)2

. (43)

Finally substituting Q into Equation (40),

g(WH + b)− Γ2 ≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ.

which concludes the proof.

As a sanity check of the validity of Lemma C.2, we briefly revisit the M-clf case where M = 1. We show that our
Lemma C.2 recovers (Zhu et al., 2021) Lemma B.3 as a special case. Now, from the definition of κm, we have that κ1 = 1.
Thus, the above expression reduces to simply

Q =

√
λH
λWn1

1

1 + c1,1

1

K − 1
.

The lower bound from Lemma C.2 reduces to simply

g1(WH1 + b)− γ2,1 ≥ −QρλW
λH

= − 1

1 + c1,1

1

K − 1
ρ

√
λW
λHn1

which exactly matches that of (Zhu et al., 2021) Lemma B.3.

Next, we show that the lower bound in Inequality (22) is attained if and only if (W ,H, b) satisfies the following conditions.

Lemma C.3. Under the same assumptions of Lemma C.2, the lower bound in Inequality (22) is attained for a critical point
(W ,H, b) of Problem (4) if and only if all of the following hold:

(I) ∥w1∥2 = ∥w2∥2 = · · · = ∥wK∥2, and b = b1,

(II)
1(
K
m

) (Km)∑
k=1

hm,k,i = 0, and

√(
K−2
m−1

)
nm

∥Hm∥F
∥W ∥F

wk =
∑

ℓ:k∈Sm,ℓ

hm,ℓ,i,∀m ∈ [M ], k ∈ [K], i ∈ [nm],

(III) W⊤W =
ρ

K − 1

(
IK − 1

K
1K1⊤

K

)
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(IV) There exist unique positive real numbers C1, C2, . . . , CM > 0 such that the following holds:

h1,k,i = C1w
ℓ when S1,k = {ℓ}, ℓ ∈ [K], (Multiplicity = 1 Case)

hm,k,i = Cm

∑
ℓ∈Sm,k

wℓ when m > 1. (Multiplicity > 1 Case)

(See Appendix C.1.1 for the notation Sm,k.)

(V) There exists c1,1, c1,2, . . . , c1,M > 0 such that

1

1 + c1,m

m

K −m
=

1(
K
m

)√
κmnm

√
(Km)nmm(K−m)(K−1)

K ∗ log(K−m
m c1,m)

ρ
·

√
λH
λW

√√√√ M∑
m′=1

(
1

1 + c1,m′

m′

K −m′

)2

κm′nm′

(
K

m′

)2

(44)

The proof of Lemma C.3 utilizes the conditions in Lemma C.8, and the conditions in Equation (35) and Equation (37) during
the proof of Lemma C.2.

Proof. Similar as in the proof of Lemma C.2, define hm,{k},i :=
∑

ℓ:k∈Sm,ℓ
hm,ℓ,i

and hm,•,i :=
1

(Km)

∑(Km)
k=1 hm,k,i. From the proof of Lemma C.2, the lower bound is attained whenever the conditions in

Equation (35) and Equation (37) hold, which respectively is equivalent to the following:

hm,•,i = 0 and√(
K−2
m−1

)
nm

∥Hm∥F
∥W ∥F

wk = hm,{k},i,∀m ∈ [M k ∈ [K], i ∈ [nm], (45)

In particular, the m = 1 case further implies
K∑

k=1

wk = 0.

Next, under the condition described in Equation (45), when m = 1, if we want Inequality (22) to become an equality, we
only need Inequality (32) to become an equality when m = 1, which is true if and only if conditions in Lemma C.8 holds
for z1,k,i = Wh1,k,i∀i ∈ [nm] and ∀k ∈ [K]. First let [z1,k,i]j = h⊤

1,k,iw
j + bj , we would have:

K∑
j=1

[z1,k,i]j = Kb̄ and K[z1,k,i] = c3,1
(
K∥wk∥22

)
+Kbk. (46)

We pick γ1,1 = 1β, where β is defined in (60), to be the same for all k ∈ [K] in multiplicity one, which also means to pick
1
β − (K − 1) to be the same for all k ∈ [K] within one multiplicity. Note under the first (in-group equality) and second
out-group equality condition in Lemma C.8 and utilize the condition (46), we have

1

β
− (K − 1) =

(K − 1)exp(zout) + exp(zin)

exp(zout)
− (K − 1)

= (K − 1) + exp(zin − zout)− (K − 1)

= exp(zin − zout)

= exp

(
Kzin − zin − (K − 1)zout

K − 1

)
= exp

(
Kzin −

∑
j zj

K − 1

)

26



Neural Collapse in Multi-label Learning with Pick-all-label Loss

=

(
exp

(∑
j zj −Kzin

K − 1

))−1

=

(
exp

(∑
j zj −Kzk

K − 1

))−1

= exp

(
K

K − 1

(
b̄− c3,1∥wk∥22

)
− bk

)−1

Since the scalar γ1,1 is picked the same for one m, but the above equality we have

c3,1∥wk∥22 − bk = c3,1∥wℓ∥22 − bℓ ∀ℓ ̸= k. (47)

this directly follows after Equation (29) from the proof in Lemma B.4 of (Zhu et al., 2021) to conclude all the conditions
except the scaled average condition, which we address next. To this end, we use the second condition in (45) which asserts
for m ≥ 2 that: √

nm(
K−2
m−1

) ∥W ∥F
∥Hm∥F

hm,{k},i = wk

=⇒
√

n1(
K−2
1−1

) ∥W ∥F
∥H1∥F

h1,{k},i =
√
n1

∥W ∥F
∥H1∥F

h1,k,i = wk =

√
nm(
K−2
m−1

) ∥W ∥F
∥Hm∥F

hm,{k},i

=⇒ hm,{k},i =

√
n1
(
K−2
m−1

)
nm

∥Hm∥F
∥H1∥F

h1,k,i = ch,mh1,k,i (48)

where ch,m =

√
n1(K−2

m−1)
nm

∥Hm∥F

∥H1∥F
. Let H̃1 (resp. H̃m) be the block-submatrix corresponding to the first K columns of

H1 (resp. first
(
K
m

)
columns of Hm). Define Ỹ1 and Ỹm similarly. Then, Equation (48) can be equivalently stated in the

following matrix form:

ch,mH̃1 = H̃mỸ ⊤
m

Let Pm = Ỹ ⊤
m (Ỹ ⊤

m )† be the projection matrix onto the subspace Ỹm, then we have

H̃mPm = H̃mỸ ⊤
m (Ỹ ⊤

m )† = ch,mH̃1(Ỹ
⊤
m )†,

which simplifies as
H̃mPm = ch,mH̃1(Ỹ

⊤
m )†.

Applying Lemma C.4 to the LHS and Lemma C.6 to the RHS we have

H̃m = ch,mH̃1(τmỸm + ηmΘ)

H̃m = ch,m · τmH̃1Ỹm

and substituting H̃1 using the relationship between H̃1 and W , namely, ch,1 · (W⊤) = H̃1, we now have

H̃m = ch,m · τm · c1,m(W⊤Ỹm)

where

Cm = ch,m · ch,1 · τm

=

√
n1

nm
(
K−2
m−1

) ∥Hm∥F
∥H1∥F

·
√

1

n1

∥H1∥F
∥W ∥F

=

√
1

nm
(
K−2
m−1

) ∥Hm∥F
∥W ∥F

This proves (IV). Finally, to proof (V), following from Equation (43) in the proof of Lemma C.2, we only need to further
simplify ∥Hm∥F .

We first establish a connection the between ∥WHm∥2F and ∥Hm∥2F . By definition of Frobenius norm and the last layer
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classifier W is an ETF with expression W⊤W = ρ
K−1

(
IK − 1

K1K1⊤
K

)
, we have

∥WHm∥2F = tr(WHmH⊤
mW⊤)

=
ρ

K − 1
tr(HmH⊤

m(IK − 1K1⊤
K))

=
ρ

K − 1
∥Hm∥2F

Since variability within feature already collapse at this point, we can express ∥WHm∥2F in terms of zm,in and zm,out:

∥WHm∥2F =
ρ

K − 1
∥Hm∥2F =

(
K

m

)
nm(mz2m,in + (K −m)z2m,out).

From the second equality we could express ∥Hm∥ as:

∥Hm∥F =

√(
K
m

)
nm(K − 1)

ρ
(mz2m,in + (K −m)z2m,out) (49)

Recall from Lemma C.8, we have the following equation to express zm,in and zm,out

zin − zm,out = log(
K −m

m
c1,m).

As column sum of Hm equals to 0, the column sum of WHm also equals to 0 as well. Given the extra constrain of in-group
equality and out-group equality from Lemma C.8, it yields:

mzm,in + (K −m)zm,out = 0

Now we could solve for zm,in and zm,out in terms of c1,m

zm,in =
K −m

K
log

(
K −m

m
c1,m

)
zm,out = −m

K
log

(
K −m

m
c1,m

)
Substituting above expression for zm,in and zm,out into Equation (49), we have

∥Hm∥F =

√(
K
m

)
nmm(K −m)(K − 1)

ρK
log(

K −m

m
c1,m)

Finally, we substituting the above expression of ∥Hm∥F in to Equation (43) and conclude:

1

1 + c1,m

m

K −m
=

1(
K
m

)√
κmnm

√
(Km)nmm(K−m)(K−1)

K ∗ log(K−m
m c1,m)

ρ
·

√
λH
λW

√√√√ M∑
m′=1

(
1

1 + c1,m′

m′

K −m′

)2

κm′nm′

(
K

m′

)2

.

Revisiting and combining results from (IV) and (V), we have the scaled-average constant Cm to be

Cm =

√
1

nm
(
K−2
m−1

)
√

(Km)nmm(K−m)(K−1)

ρK log(K−m
m c1,m)

∥W ∥F

=
K − 1

ρ
log(

K −m

m
c1,m)

where c1,m is a solution to the system of equation Equation (44). Note that Equation (44) hold for all m. Thus, we could
construct a system of equation whose variable are c1,1, · · · , c1,m. Even when missing some multiplicity data, we sill have
same number of variable c1,m as equations. We numerically verifies that under various of UFM model setting (i.e. different
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number of class and different number of multiplicities), c1,m does solves the above system of equation.

Lemma C.4. Let let Pm = Ỹ ⊤
m (Ỹ ⊤

m )† be the projection matrix then we have, H̃mPm = H̃m

Proof. As Pm is a projection matrix, we have that ∥H̃m∥2F = ∥H̃mPm∥2F if and only if H̃m = H̃mPm. So it is suffice to
show that ∥H̃m∥2F = ∥H̃mPm∥2F . We denote WH̃mPm as the projection solution and by Lemma C.5 we have that

WH̃mPm = WH̃m,

which further implies that the projection solution WH̃mPm also solves g

g(WH̃m, Ỹ ) = g(WH̃mPm, Ỹ ).

When it comes to the regularization term, by minimum norm projection property, we have ∥H̃m∥2F ≥ ∥H̃mPm∥2F . Note if
the projection solution results in a strictly smaller frobenious norm i.e. ∥H̃m∥2F > ∥H̃mPm∥2F , then f(W , H̃mPm, b) <

f(W , H̃m, b), this contradict the assumption that Zm = WH̃m is the global solutions of f . Thus, the only possible
outcomes is that ∥H̃m∥2F = ∥H̃mPm∥2F , which complete the proof.

Lemma C.5. We want to show that the optimal global solution of f , WH̃mPm, is the same after projected on to the space
of Ỹm, i.e., WH̃mPm = WH̃m

Proof. Let Zm = WH̃m denote the global minimizer of the loss function f for an arbitrary multiplicity m. Since Zm has
both the in-group and out-group equality property, we could express it as

Zm = d1Ỹm + d2Θ,

for some constant d1, d2, and all-one matrix Θ of proper dimension. Note that it is suffice to show that Zm lives in the
subspace of which the projection matrix Pm projects onto. By Lemma C.6, as (Ỹ ⊤

m )† is the Moore–Penrose pseudo-inverse
of Ỹ ⊤

m by, we could rewrite Pm as

Pm = Ỹ ⊤
m (Ỹ ⊤

m )†

= Ỹ ⊤
m

(
ỸmỸ ⊤

m

)†
Ỹm

= Ỹ ⊤
m

(
ỸmỸ ⊤

m

)−1

Ỹm.

Hence we can see that the subspace which Pm projects onto is spanned by columns/rows of Ỹm. In order to show that
Zm = d1Ỹm+d2Θ is in the subspace spanned by columns of Ỹm, it is suffice to see that the columns sum of Ỹm = m

K

(
K
m

)
1.

Thus, we finished the proof.

Lemma C.6. The Moore-Penrose pseudo-inverse of Ỹ ⊤
m has the form (Ỹ ⊤

m )† = τmỸm + ηmΘ, where Θ is the all-one
matrix with proper dimension and τm = a+c

bc , ηm = − a
bc , for a = m−1

k−1

(
K−1
m−1

)
, b = m

k

(
K
m

)
, c = m

k−1

(
K−1
m

)
.

Proof. First, we have the column sum of Ỹm can be written as a constant times an all-one vector

(Km)∑
j

(Ỹm):,j =
m

K

(
K

m

)
1 (50)

This property could be seen from a probabilistic perspective. We let i ∈ [K] be fixed and deterministic, and let S ⊆ [K] be
a random subset of size m generating by sampling without replacement. Then

Pr{i /∈ S} =
K − 1

K
× K − 2

K − 1
× · · · × K −m

K −m+ 1
=
K −m

K
.

This implies that Pr{i ∈ S} = m
K and each entry of the column sum result is exactly m

K

(
K
m

)
as we sum up all

(
K
m

)
columns

of Ỹm.

29



Neural Collapse in Multi-label Learning with Pick-all-label Loss

Second, the label matrix Ỹm has the property that

ỸmỸ ⊤
m =

b a
. . .

a b

 , Ỹm(Θ− Ỹ ⊤
m ) =

0 c
. . .

c 0

 , (51)

where a = m−1
k−1

(
K−1
m−1

)
, b = m

k

(
K
m

)
, c = m

k−1

(
K−1
m

)
. Again, from a probabilistic perspective, any off-diagonal entry of

the product ỸmỸ ⊤
m is equal to (Ỹm)i,:(Ỹm)⊤i′,:, for i ̸= i′. Note that (Ỹm)i,: is a row vector of length

(
K
m

)
, whose entry

are either 0 or 1 and the results of (Ỹm)i,:(Ỹm)⊤i′,: would only increase by one if both (Ỹm)i,j = 1 and (Ỹm)⊤i′,j = 1 for
j ∈ [

(
K
m

)
]. From the previous property we know that there is m

K probability that (Ỹm)i,j = 1. In addition, conditioned on
(Ỹm)i,j = 1, there are m−1

K−1 probability that (Ỹm)i′,j = 1. Thus, a = m
K

m−1
K−1

(
K
m

)
= m−1

K−1

(
K−1
m−1

)
. For similar reasoning,

we can see that conditioned on (Ỹm)i,j = 1, there are 1 − m−1
K−1 = K−m

K−1 probability that (Θi′,j − (Ỹm)i′,j) = 1. Thus,
c = m

K
K−m
K−1

(
K
m

)
= m

K−1

(
K−1
m

)
. For the similar probabilistic argument, it is easy to see that diagonal of ỸmỸ ⊤

m are all
b = m

K

(
K
m

)
and diagonal of Ỹm(Θ− Ỹ ⊤

m ) are all 0. Then by the second property (Equation (51)), we are about to cook up a
left inverse of Ỹ ⊤:

1

b

(
Ỹ Ỹ ⊤ − a

c
(Ỹ (Θ− Ỹ ⊤))

)
= I

Ỹ

(
1

b
Ỹ ⊤ − a

bc
Θ+

a

bc
Ỹ ⊤

)
= I

Ỹ

(
a+ c

bc
Ỹ ⊤ − a

bc
Θ

)
= I(

a+ c

bc
Ỹ − a

bc
Θ

)
Ỹ ⊤ = I

Let, τm = a+c
bc , ηm = − a

bc , then the pseudo-inverse of Ỹ ⊤, namely (Ỹ ⊤)† could be written as

(Ỹ ⊤)† = τmỸ + ηmΘ

This inverse is also the Moore–Penrose inverse which is unique since it satisfies that:

Ỹ ⊤(Ỹ ⊤)†Ỹ ⊤ = Ỹ ⊤I = Ỹ ⊤ (52)

(Ỹ ⊤)†Ỹ ⊤(Ỹ ⊤)† = I(Ỹ ⊤)† = (Ỹ ⊤)† (53)

(Ỹ ⊤(Ỹ ⊤)†)⊤ = Ỹ ⊤(Ỹ ⊤)† (54)

((Ỹ ⊤)†Ỹ ⊤)⊤ = (Ỹ ⊤)†Ỹ ⊤ (55)

Lemma C.7. We would like to show the following equation holds:

∥HmDm∥2F =

(
K − 2

m− 1

)
∥Hm∥2F

Proof. Note due to how we construct Dm, it is suffice to show that ∥H̃mỸ ⊤
m ∥2F =

(
K−2
m−1

)
∥H̃m∥2F . Recall the definition that

a = m−1
k−1

(
K−1
m−1

)
and b = m

k

(
K
m

)
. By unwinding the definition of binomial coefficient and simplifying factorial expressions,

we can see that b− a =
(
K−2
m−1

)
. Along with the assumption that columns sum of H̃m is 0 i.e. hm,•,i = 0, ∀i ∈ [nm] and
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the property described in Equation (51), we have

∥H̃mỸ ⊤
m ∥2F =

(
K − 2

m− 1

)
∥H̃m∥2F

⇐⇒ ∥τmH̃1ỸmỸ ⊤
m ∥2F =

(
K − 2

m− 1

)
∥τmH̃1Ỹm∥2F

⇐⇒ τ2m(b− a)2∥H̃1∥2F = τ2m(b− a)∥H̃1Ỹm∥2F
⇐⇒ (b− a)∥H̃1∥2F = ∥H̃1Ỹm∥2F
⇐⇒ (b− a)∥H̃1∥2F = Tr(H̃1ỸmỸmH̃⊤

1 )

⇐⇒ (b− a)∥H̃1∥2F = Tr((b− a)H̃1H̃
⊤
1 )

⇐⇒ (b− a)∥H̃1∥2F = (b− a)∥H̃1∥2F
Thus, we complete the proof.

Remarks. We conjecture that the feature learned from data with all possible labels (M = K) will collapse to the origin
which align with our tag-wise average property. Theoretically, CEPAL(z

∗,1) reaches its minimum as long as z∗ = ζ · 1 for
arbitrary constant ζ. Since z∗ = WHK where W is ETF, it is easy to conclude that HK has same index value on a given
row. Due to regularization terms on H, we conclude that HK = 0, i.e, the feature learned from data with all labels collapse
to the origin. Extra experiment visualizing this phenomenon on the MSCOCO dataset could be found in Appendix A.

The following result is a M-lab generalization of Lemma B.5 from (Zhu et al., 2021):

Lemma C.8. Let S ⊆ {1, . . . ,K} be a subset of size m where 1 ≤ m < K. Then for all z = (z1, . . . , zK)⊤ ∈ RK and
all c1,m > 0, there exists a constant c2,m such that

LPAL(z,yS) ≥
1

1 + c1,m

m

K −m
· ⟨1− K

m IS , z⟩+ c2,m. (56)

In fact, we have

c2,m :=
c1,mm

c1,m + 1
log(m) +

mc1,m
1 + c1,m

log

(
c1,m + 1

c1,m

)
+

m

c1,m + 1
log ((K −m)(c1,m + 1)) .

The Inequality (56) is tight, i.e., achieves equality, if and only if z satisfies all of the following:

1. For all i, j ∈ S, we have zi = zj (in-group equality). Let zin ∈ R denote this constant.

2. For all for all i, j ∈ Sc, we have zi = zj (out-group equality). Let zout ∈ R denote this constant.

3. zin − zout = log
(

(K−m)
m c1,m

)
= log

(
γ−1
1,m − (K−m)

m

)
.

Proof. Let z and c1,m be fixed. For convenience, let γ1,m := 1
1+c1,m

m
K−m . Below, let zin, zout ∈ R be arbitrary to be

chosen later. Define z∗ = (z∗1 , . . . , z
∗
K) ∈ RK such that

z∗k =

{
zin : k ∈ S

zout : k ∈ Sc.
(57)

For any z ∈ RK , recall from the definition of pick-all-labels cross-entropy loss that

LPAL(z,yS) =
∑
k∈S

LCE(z,yk)

In particular, the function z 7→ LPAL(z,yS) is a sum of strictly convex functions and is itself also strictly convex. Thus, the
first order Taylor approximation of LPAL(z,yS) around z∗ yields the following lower bound:

LPAL(z,yS) ≥ LPAL(z
∗,yS) + ⟨∇LPAL(z

∗,yS), z − z∗⟩
= ⟨∇LPAL(z

∗,yS), z⟩+ LPAL(z
∗,yS)− ⟨∇LPAL(z

∗,yS), z
∗⟩ (58)
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Next, we calculate ∇LPAL(z
∗,yS). First, we observe that

∇LPAL(z
∗,yS) =

∑
k∈S

∇LCE(z
∗,yk).

Recall the well-known fact that the gradient of the cross-entropy is given by

∇LCE(z
∗,yk) = softmax(z∗)− yk. (59)

Below, it is useful to define

α :=
exp(z∗in)∑
j exp(z

∗
j )

and β :=
exp(z∗out)∑
j exp(z

∗
j )

(60)

where
∑

j exp(z
∗
j ) = mexp(z∗in) + (K −m)exp(z∗out). In view of this notation and the definition of z∗ in Equation (57),

we have
softmax(z∗) = αIS + βISc (61)

where we recall that IS and ISc ∈ RK are the indicator vectors for the set S and Sc, respectively. Thus, combining
Equation (59) and Equation (61), we get

∇LPAL(z
∗,yS) =

∑
k∈S

∇LCE(z
∗,yk) =

∑
k∈S

(αIS + βISc − yk) = m(αIS + βISc)− IS .

The above right-hand-side can be rewritten as

m(αIS + βISc)− IS = (mα− 1) · IS +mβ · ISc

= (mα− 1 +mβ −mβ) · IS +mβ · ISc

= mβ · 1− (mβ + 1−mα) · IS

= mβ ·
(
1− mβ + 1−mα

mβ
· IS
)
.

Note that from Equation (61) we have mα+ (K −m)β = 1. Manipulating this expression algebraically, we have

mα+ (K −m)β = 1

⇐⇒ k −m =
1−mα

β

⇐⇒ 1

β

(
1

m
− α

)
=
K

m
− 1

⇐⇒ 1 +
1

mβ
− α

β
=
K

m

⇐⇒ mβ + 1−mα

mβ
=
K

m
.

Putting it all together, we have
∇LPAL(z

∗,yS) = mβ · (1− K
m · IS).

Thus, combining Equation (58) with the above identity, we have

LPAL(z,yS) ≥ mβ · ⟨1− K
m · IS , z⟩+ LPAL(z

∗,yS)−mβ · ⟨1− K
m · IS , z∗⟩. (62)

Let
c2,m := LPAL(z

∗,yS)−mβ · ⟨1− K
m · IS , z∗⟩ (63)

Note that this definition depends on β, which in terms depends in z∗in and z∗out which we have not yet defined. To define
these quantities, note that in order to derive Equation (56) from Equation (62), a sufficient condition is to ensure that

1

1 + c1,m

m

K −m
= mβ =

m exp(z∗out)∑
j exp(z

∗
j )

=
1

exp(z∗in − z∗out) +
(K−m)

m

(64)

Rearranging, the above can be rewritten as

(1 + c1,m)K−m
m = exp(z∗in − z∗out) +

(K−m)
m ⇐⇒ c1,m = m

K−m exp(z∗in − z∗out)
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or, equivalently, as

z∗in − z∗out = log
(

(K−m)
m c1,m

)
. (65)

Thus, if we choose z∗in, z
∗
out such that the above holds, then Equation (56) holds.

Finally, we compute the closed-form expression for c2,m defined in Equation (63), which we restate below for convenience:

c2,m := LPAL(z
∗,yS)−mβ · ⟨1− K

m · IS , z∗⟩
The expression for mβ is given at Equation (64). Moreover, we have

⟨1− K
m · IS , z∗⟩ = mzin + (K −m)zout − K

mmzin = −(K −m)(zin − zout).

Thus, we have

−mβ · ⟨1− K
m · IS , z∗⟩ = (K −m)(zin − zout)

exp(z∗in − z∗out) +
(K−m)

m

=
(K −m) log

(
(K−m)

m c1,m

)
(K−m)

m c1,m + (K−m)
m

=
m

c1,m + 1
log
(

(K−m)
m c1,m

)
.

On the other hand,

LPAL(z
∗,yS) =

∑
k∈S

LCE(z
∗,yk)

Now,

LCE(z
∗,yk) = − log([softmax(z∗)]k)

= − log(exp(z∗in)/(m exp(z∗in) + (K −m) exp(z∗out)))

= log(m+ (K −m) exp(z∗out − z∗in))

= log (m+ (K −m)(1/ exp(z∗in − z∗out)))

= log

(
m+ (K −m)

1
(K−m)

m c1,m

)
by Equation (65)

= log

(
m+m

1

c1,m

)
= log

(
m

(
c1,m + 1

c1,m

))
Thus

LPAL(z
∗,yS) = m log

(
m

(
c1,m + 1

c1,m

))
.

Putting it all together, we have

c2,m = m log

(
m

(
c1,m + 1

c1,m

))
+

m

c1,m + 1
log
(

(K−m)
m c1,m

)
.

m log

(
m

(
c1,m + 1

c1,m

))
= m log(m) +m log

(
c1,m + 1

c1,m

)

m

c1,m + 1
log
(

(K−m)
m c1,m

)
=

m

c1,m + 1
log ((K −m)c1,m)− m

c1,m + 1
log(m)
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Putting it all together, we have

c2,m = m log

(
m

(
c1,m + 1

c1,m

))
+

m

c1,m + 1
log
(

(K−m)
m c1,m

)
(66)

= m log(m) +m log

(
c1,m + 1

c1,m

)
+

m

c1,m + 1
log ((K −m)c1,m)− m

c1,m + 1
log(m) (67)

=
c1,mm

c1,m + 1
log(m) +m log

(
c1,m + 1

c1,m

)
+

m

c1,m + 1
log ((K −m)c1,m) (68)

Next, for simplicity, let us drop the subscript and simply write c := c1,m. Then

m log

(
c+ 1

c

)
+

m

c+ 1
log ((K −m)c)

=
m

1 + c
log

(
c+ 1

c

)
+

mc

1 + c
log

(
c+ 1

c

)
+

m

c+ 1
log ((K −m)c) ∵ 1

1+c +
c

1+c = 1

=
m

1 + c
log

(
c+ 1

c

)
+

mc

1 + c
log

(
c+ 1

c

)
+

m

c+ 1
log ((K −m)c)

+
m

c+ 1
log ((K −m)(c+ 1))− m

c+ 1
log ((K −m)(c+ 1)) ∵ add a “zero”

=
m

1 + c
log

(
c+ 1

c

)
+

mc

1 + c
log

(
c+ 1

c

)
+

m

c+ 1
log

(
c

c+ 1

)
∵ property of log

+
m

c+ 1
log ((K −m)(c+ 1))

=
mc

1 + c
log

(
c+ 1

c

)
+

m

c+ 1
log ((K −m)(c+ 1)) ∵ log( c+1

c ) = − log( c
c+1 )

To conclude, we have

c2,m =
c1,mm

c1,m + 1
log(m) +

mc1,m
1 + c1,m

log

(
c1,m + 1

c1,m

)
+

m

c1,m + 1
log ((K −m)(c1,m + 1))

as desired.

D. Nonconvex Landscape Analysis
Due to the nonconvex nature of Problem (3), the characterization of global optimality alone in Theorem 3.1 is not sufficient
for guaranteeing efficient optimization to those desired global solutions. Thus, we further study the global landscape of
Problem (3) by characterizing all of its critical points, we show the following result.
Theorem D.1 (Benign Optimization Landscape). (Generalization of (Zhu et al., 2021) Theorem 3.2) Suppose the same
setting of Theorem 3.1, and assume the feature dimension is larger than the number of classes, i.e., d > K, and the number
of training samples for each class are balanced within each multiplicity. Then the function f(W ,H, b) in Problem (4) is a
strict saddle function with no spurious local minimum in the sense that:

• Any local minimizer of f is a global solution of the form described in Theorem 3.1.

• Any critical point (W ,H, b) of f that is not a global minimizer is a strict saddle point with negative curvatures, in the sense
that there exists some direction (∆W ,∆H , δb) such that the directional Hessian ∇2f(W ,H, b)[∆W ,∆H , δb] < 0.

The original proof in (Zhu et al., 2021) connects the nonconvex optimization problem to a convex low-rank realization
and then characterizes the global optimality conditions based on the convex problem. The proof concludes by analyzing
all critical points, guided by the identified optimality conditions. Because the PAL loss for M-lab is reduced from the CE
loss in M-clf, the above result can be generalized from the result in (Zhu et al., 2021). Unlike Theorem 3.1, the result of
benign landscape in Theorem D.1 does not hold for d = K − 1. The reason is that we need to construct a negative curvature
direction in the null space of W for showing strict saddle points. Similar to (Zhu et al., 2021), we conjecture the M-lab NC
results also hold for d = K and leave it for future work.

In our paper, we establish the theoretical properties of all critical points, demonstrating that the function is a strict saddle
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function (Ge et al., 2015) in the context of multi-label learning with respect to (W ,H). It’s worth noting that for strict
saddle functions like PAL-CE, there exists a substantial body of prior research in the literature that provides rigorous
algorithmic convergence to global minimizers. In our case, this equates to achieving a global multi-label neural collapse
solution. These established methods include both first-order gradient descent techniques (Ge et al., 2015; Jin et al., 2017; Lee
et al., 2019) and second-order trust-region methods (Sun et al., 2016), all of which ensure efficient algorithmic convergence.

Proof of Theorem D.1. We note that the proof for Theorem 3.2 in (Zhu et al., 2021) could be directly extended in our
analysis. More specifically, the proof in (Zhu et al., 2021) relies on a connection for the original loss function to its convex
counterpart, in particular, letting Z = WH ∈ RK×N with N =

∑
m nm and α = λH

λW
, the original proof first shows the

following fact:

min
HW=Z

λW ||W ||2F + λH ||H||2F =
√
λWλH min

HW=Z

1√
α
(||W ||2F + α||H||2F )

=
√
λWλH ||Z||∗.

With the above result, the original proof relates the original loss function

min
W ,H,b

f(W ,H, b) := g(WH + b1⊤) + λW ||W ||2F + λH ||H||2F + λb||b||22

with

g(WH + b1⊤) :=
1

N

K∑
k=1

n∑
i=1

LCE(Whk,i + b,yk),

to a convex problem:

min
Z∈RK×N , b∈RK

f̃(Z, b) := g(Z + b1⊤) +
√
λWλH ||Z||∗ + λb||b||22.

In our analysis, by letting g̃(WH + b1⊤) := 1
Nm

∑m
m=1

∑nm

i=1

∑(Km)
k=1 LPAL(Whm,k,i + b,ySm,k

), we can directly apply
the original proof for our problem. For more details, we refer readers to the proof of Theorem 3.2 in (Zhu et al., 2021).

35


