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Abstract
Graph unlearning emerges as a crucial step to eliminate the impact of deleted
elements from a trained model. However, unlearning on the knowledge graph
(KG) has not yet been extensively studied. We remark that KG unlearning
is non-trivial because KG is distinctive from general graphs. In this paper,
we first propose a new unlearning method based on schema for KG. Specif-
ically, we update the representation of the deleted element’s neighborhood
with an unlearning object that regulates the affinity between the affected neigh-
borhood and the instances within the same schema. Second, we raise a new
task: schema unlearning. Given a schema graph to be deleted, we remove
all instances matching the pattern and make the trained model forget the re-
moved instances. Last, we evaluate the proposed unlearning method on various
KG embedding models with benchmark datasets. Our codes are available at
https://github.com/NKUShaw/KGUnlearningBySchema.

1 Introduction
To protect users’ concerns about privacy and security, laws such as the European Union’s General
Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and Canada’s
proposed Consumer Privacy Protection Act (CPPA) regulate the usage of personal data in machine
learning (ML) and give users the right to withdraw consent to the usage of their data [1–3]. Machine
unlearning algorithms [4–8] aim to proactively eliminate the memory about deleted data from already
trained machine learning models.

Graph unlearning [9–11] emerges as a crucial method to address data privacy and adversarial attacks
on graph data such as social networks. Given the elements such as nodes and edges to be deleted,
various approaches [12–15] have been proposed to remove the influence of deleted elements on both
model weights and neighboring representations.

However, unlearning on knowledge graph (KG) has not yet been extensively studied. We remark
that KG unlearning is non-trivial. First, KG has been used to describe open knowledge projects
such as Wikidata and YAGO [16, 17]. These KGs allow both humans and machines to acquire
information and derive new knowledge. Factors like scientific opinions (e.g., historical ideas about
race), socio-culture, or political views can lead to an encoding of social bias. Therefore, it is necessary
to provide an interface to remove certain knowledge and eliminate the influence on downstream
modules such as reasoning. Second, a knowledge graph is distinctive from general graphs. A KG
defines abstract classes and relations of entities in a schema. Lastly, the relation between two entities
has semantic meanings where the edge on a general graph is only associated with a weight. Due to
the unique structure, it is a challenge to generalize a graph unlearning algorithm on KGs.

In this paper, we first propose a KG unlearning method based on schema. Given an entity or a relation
to be deleted from the KG, existing graph unlearning methods seek to ensure that the relationship
between two entities connected by the deleted component is similar to the relation between two
random entities as if the relation does not exist [18–20]. However, we argue that such a strategy is too
"aggressive" because the two entities could be indirectly connected through other entities on the KG.

∗Equal contribution.

Y. X et al., Knowledge Graph Unlearning with Schema (Extended Abstract). Presented at the Third Learning on
Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.

https://github.com/NKUShaw/KGUnlearningBySchema


Knowledge Graph Unlearning with Schema

Therefore, we propose to define a new target for KG unlearning. Schema, as a high-order meta pattern
of KG, contains the type constraint between entities and relations, and it can naturally, be used to
capture the structural and semantic information in context [19–21]. Intuitively, two instances within
a schema are similar to each other. Given a component to be removed, we construct a sub-graph
containing affected entities. We extract the schema for the sub-graph and query sub-graphs that have
the same schema. Lastly, we update the affected neighborhood’s representation based on the queried
sub-graphs. Our method is applicable to both entity unlearning and relation unlearning.

Furthermore, we raise a new research problem: schema unlearning on KG. Since the schema can
constrain the entities and relations on the knowledge base, it is intuitive to remove a set of instances
with given constraints on KG upon request. We remark that the schema can be used to extract the
instances that concern privacy and stereotypes. For example, Schema (person, is a friend of, person)
leads to privacy leakage, and Schema (black American, commits, criminality) is related to racial
stereotypes. Existing study shows that social biases are engraved in KG [22]. Given a schema, we
propose to extract and remove all instances matching the schema from KG. Similar to removing
entities or relations, we update the representations of affected neighborhoods.

Contribution. To the best of the authors’ knowledge, this is the first work to study knowledge graph
unlearning. We tackle this problem by making the following contributions:

• We propose a new unlearning method based on schema for KG.

• We raise a new unlearning task: schema unlearning on KG.

• We empirically show that the unlearning results of our method are closer to the gold standard
retraining strategy compared with general graph unlearning baselines.

2 Proposed Method
Let G = (E,R, S) be a KG, where E and R are the sets of entities and relations in the KG. We use
S to denote the set of triples, each of which is (eh, r, et), including the head entity eh ∈ E, the tail
entity et ∈ E and the relation r between eh and et. Given a model M(G) trained on G to associate
each entity and relation with a vector in an embedding space H , the user can request to delete a
subset of entities Ed or a subset of relations Rd. The straightforward solution is to retrain a new
model M(G/Ed) (or M(G/Rd)) on the remaining data G/Ed (or G/Rd) from scratch. However,
this naive method is time-consuming for frequent deletion requests over large-scale data. Therefore,
the goal of an efficient unlearning algorithm is to directly eliminate the effects of deleted data on M .

2.1 Unlearning with Schema
Given an entity ed ∈ Ed to be deleted, we first extract k-hop enclosing sub-graph Gu around ed.
Intuitively, if ed is deleted, the representations of nodes in the k-hop neighborhood need to be updated.
For example, in Figure 1, the blue nodes represent the nodes in the 2-hop sub-graph around the deleted
entity. For each node on the sub-graph, we use RDF Schema (e.g., rdf: Class) [23] to represent the
high-order meta pattern of the node and edge. Similarly, we can extract high-order meta patterns for
edges on Gu. Then we can use a schema sub-graph Gs to describe the pattern of Gu. For example,
"Da Vinci" on Gu will be represented with "rdf: Person" on Gs.
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Figure 1: Unlearning with Schema.

With the high-order meta pattern Gs, the next
step is to query a sub-graph Gq which also has
a high-order meta pattern Gs. Specifically, Gq

is isomorphic to Gu and Gq share the schema-
graph Gs with Gu. Intuitively, if both Gu and
Gq can be described by a schema pattern Gs at
high-order, these two sub-graph should be simi-
lar to each other. However, sub-graph matching
is an NP-complete problem [24, 25]. In this pa-
per, we leverage Glasgow Subgraph Solver [26]
to find the sub-graph Gq. To reduce the high
computational cost, the solver returns once a
sub-graph matches the query instead of finding
all sub-graphs. Figure 1 shows an example of
the queried Gq (highlighted in green) where all nodes match the pattern on the schema sub-graph.
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Recall that the target is to update the representation of Gu as if ed has never existed. For any two
entities ei and ej on Gu, our target is to maximize the similarity between (ei, ej) and (em, en),
where (em and en) are the corresponding entities on Gq and share the same schema with (ei, ej).
Specifically, the relation (direct or indirect) in the embedding space between ei and ej is supposed to
be similar to that between ei and ej because they share the same schema sub-graph. Therefore, we
maximize the similarity for all pairs on Gu:∑

(ei,ej∈Gu,ei ̸=ej)

(Hi −Hj) · (Hm −Hn)

||(Hi −Hj)||||(Hm −Hn)||
, (1)

where Hi, Hj , Hm, Hn are the embedding of ei, ej , em, en respectively. For any pair (ei, ej), we
can always find corresponding (em, en) on Gq. Denote Eq (1) as the unlearning target ld for the
deleted entity ed. For all deleted entities in Ed, the overall unlearning object is to minimize:

L =
∑

ed∈Ed

In(1− ld + ϵ), (2)

where ϵ is a hyperparameter to avoid 0 in In(·). Similar to deleting an entity, we can construct a
neighborhood sub-graph around a deleted rd ∈ Rd and leverage Eq (2) to update the representations
of the neighborhood around rd.

2.2 Delete Schema

Note that the schema can constrain the entities and relations on the knowledge base. It provides a
way to remove a set of instances with given constraints. For example, we can remove the relations
in all instances that match the schema (foaf: Person, rdf: Is a friend of, foaf: Person) to protect
privacy. Some data patterns (e.g., a person of type X is a terrorist or a protestor) could have an
unwanted impact on downstream modules (e.g., reasoning or classifying if a person is a terrorist),
so it is important to remove such patterns in KG. Given a schema pattern to be deleted, there are
two solutions to break the pattern: (1) delete a component (e.g., entities or relations) on the instance
of a schema sub-graph; (2) remove the whole sub-graph. We remark that the first solution will be
transferred to an entity unlearning or relation unlearning problem once the instances are returned.
Algorithm 1 describes the second solution to remove the matched sub-graphs.

Algorithm 1 Schema Unlearning
Input: Schema Gs to be deleted, G, H
Output: New G, new embeddings H

1: Query all instances of the query schema Gs

2: Find all sub-graphs Q = {Gq1 , Gq2 , · · · } matches Gs with Glasgow Solver
3: for Gq ∈ Q do
4: remove Gq from G
5: Construct k-hop connected sub-graphs around Gq .
6: for each connected Gc around Gq do

Maximize Eq (1) for any two entities (ei, ei) on Gc

7: end for
8: end for

3 Experiments
We evaluated the effectiveness of our unlearning method on three embedding models and compared
our method with graph unlearning baselines. We experiment with two datasets: YAGO3-10 [17] and
FB15k237 [27]. From each dataset, we sample entities and relations to be deleted, and re-train the em-
bedding model with the remaining data from scratch for comparison. Ideally, the result of unlearning
should be similar to re-training on the remaining data. We report Hit@1, Hit@3, Hit@10, and MRR
of link prediction task for three embedding models: TransE [28], TransH [29], TransD [30]. Besides
the intuitive retraining strategy [], we compare our unlearning method with Gredeint Ascent [31],
GIF [14], and the-state-of-the-art baseline GNNDelete [10]. Note that GNNDelete outperforms
other baselines including GraphEraser [32] and GraphEditor [18] in terms of both accuracy and
efficiency [10]. In the experiment, We follow [19] to randomly choose schemas to be deleted. For
entity unlearning and relation unlearning, we randomly delete components (i.e., entities, relations) to
observe the results after unlearning.
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Model Method YAGO FB15k
Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR

TransE

Original 0.5443 0.3887 0.2189 0.3315 0.4764 0.3253 0.1939 0.2892
Retrain 0.5080 0.3661 0.2058 0.3111 0.4416 0.3016 0.1774 0.2672
Gradient Ascent 0.3623 0.1248 0.0515 0.1353 0.3394 0.2198 0.1236 0.1814
GNNDelete 0.3713 0.2321 0.1163 0.2012 0.4147 0.2785 0.1669 0.2498
GIF 0.4479 0.2649 0.0896 0.2109 0.3394 0.1941 0.1034 0.1806
Our Method 0.5107 0.3443 0.1814 0.2933 0.4744 0.3230 0.1854 0.2831

TransH

Train 0.6148 0.4773 0.3015 0.4124 0.4844 0.3337 0.2018 0.2967
Retrain 0.5615 0.4305 0.2716 0.3725 0.4497 0.3026 0.1704 0.2647
Gradient Ascent 0.3706 0.1174 0.0509 0.1327 0.3416 0.1949 0.1073 0.1833
GNNDelete 0.3459 0.2223 0.1155 0.1944 0.3444 0.2262 0.1338 0.2045
GIF 0.4283 0.2467 0.0335 0.1706 0.4080 0.2652 0.1422 0.2319
Our Method 0.5519 0.4003 0.2274 0.3384 0.4527 0.2901 0.1554 0.2529

TransD

Train 0.6011 0.4543 0.2791 0.3915 0.4840 0.3302 0.1976 0.2931
Retrain 0.5512 0.4168 0.2617 0.3626 0.4502 0.3016 0.1643 0.2614
Gradient Ascent 0.3690 0.1192 0.0509 0.1331 0.3403 0.1916 0.1050 0.1813
GNNDelete 0.3613 0.2286 0.1116 0.1971 0.3108 0.1946 0.1123 0.1783
GIF 0.4753 0.2973 0.0451 0.1997 0.3665 0.2279 0.1139 0.1984
Our Method 0.5751 0.4197 0.2390 0.3546 0.4572 0.2850 0.1399 0.2443

Table 1: Delete entities (about 10% entities) on YAGO and FB15K-237

Model Method Hit@10 Hit@3 Hit@1 MRR

TransE

Original 0.5443 0.3887 0.2189 0.3315
Retrain 0.4983 0.3429 0.1724 0.2850
Gradient Ascent 0.3628 0.1204 0.0429 0.1285
GNNDelete 0.3725 0.2300 0.105 0.1969
GIF 0.4432 0.2546 0.0874 0.2055
Our Method 0.5038 0.3407 0.1779 0.2887

TransH

Train 0.6148 0.4773 0.3015 0.4124
Retrain 0.5223 0.3821 0.2055 0.3190
Gradient Ascent 0.3730 0.1069 0.0385 0.1233
GNNDelete 0.3528 0.2213 0.1062 0.1917
GIF 0.4213 0.2353 0.0354 0.1671
Our Method 0.5407 0.3890 0.2207 0.3304

TransD

Train 0.6011 0.4543 0.2791 0.3915
Retrain 0.5214 0.3779 0.1988 0.3128
Gradient Ascent 0.3707 0.1081 0.0379 0.1229
GNNDelete 0.3725 0.2300 0.1051 0.1969
GIF 0.4649 0.2764 0.0446 0.1910
Our Method 0.5719 0.4101 0.2353 0.3505

Table 2: Delete schemas (about 10% triplets ) on YAGO

Results and analysis Table 1 shows
the performance of the link predic-
tion before deleting entities (labeled
as "original") and after unlearning.
Ideally, the result after unlearning
should be close to "retraining". We
have removed about 10% entities ran-
domly from the dataset. Compared
with other unlearning baselines, we
can observe that the performance of
our unlearning is closer to "retrain-
ing" in terms of all performance met-
rics. Interestingly, none of these base-
line methods have comparable perfor-
mance to our method on these perfor-
mance metrics. These baseline un-
learning methods lead to drastic per-
formance degradation and lose almost
the prowess in making meaningful predictions. It further verifies that existing unlearning methods are
too "aggressive". Compared with general graphs, the knowledge graph is more complicated because
there are semantic relations between entities. Only considering the direct connection between entities
on the graph may ignore intrinsic connection after deleting components. We also examine deleting
relations and schemas in Table 3 and 2. The conclusion still holds for deleting relations and schemas.

Time and Space Efficiency. Our unlearning method is both time-efficient and space-efficient as
compared to the unlearning baselines. For example, our unlearning method takes about 24 minutes
to unlearn 10% entities on TransE while GNNDelete takes about 1 hour and 11 minutes. The GPU
memory required for GIF is 50 G and the GPU memory occupied by our method is less than 2 G.

Visualization We project the embeddings of random entities from the dataset "YAGO" in 2-
dimensional space for visualization. Figure 2 in the Appendix shows 200 random entities before
unlearning and after unlearning. We can see that some embedding will change significantly after
unlearning while the overall distribution does not change.

4 Conclusion
In this paper, we propose a new unlearning method based on schema for knowledge graph. Given
components to be deleted, we update the neighborhood representation with sub-graphs within the
same schema. We also raise a new task: schema unlearning. Given a schema graph to be deleted, we
remove all instances matching the pattern and make the trained model forget the removed instances.
The experiment verifies that our method outperforms the baselines.
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A Appendix

(a) Original (b) Unlearning

Figure 2: Visualization of unlearning

Visualization We project the embeddings of random entities from the dataset "YAGO" in 2-
dimensional space for visualization. Figure 2 shows 200 random entities before unlearning and after
unlearning. We can see that some embedding will change significantly after unlearning while the
overall distribution does not change.
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Model Method Hit@10 Hit@3 Hit@1 MRR

TransE

Original 0.5443 0.3887 0.2189 0.3315
Retrain 0.5232 0.3770 0.2199 0.3245
Gradient Ascent 0.3541 0.1199 0.0408 0.1262
GNNDelete 0.4413 0.2904 0.1604 0.2543
GIF 0.4613 0.2806 0.0840 0.2134
Our Method 0.5256 0.3751 0.2126 0.3216

TransH

Train 0.6148 0.4773 0.3015 0.4124
Retrain 0.5901 0.4600 0.3008 0.4018
Gradient Ascent 0.3600 0.1054 0.0362 0.1193
GNNDelete 0.4427 0.2966 0.1639 0.2580
GIF 0.4370 0.2605 0.0343 0.1774
Our Method 0.5965 0.4655 0.2991 0.4042

TransD

Train 0.6011 0.4543 0.2791 0.3915
Retrain 0.5764 0.4408 0.2773 0.3820
Gradient Ascent 0.3587 0.1075 0.0363 0.1198
GNNDelete 0.4694 0.3157 0.1739 0.2732
GIF 0.4961 0.3171 0.0436 0.2010
Our Method 0.5865 0.4454 0.2788 0.3861

Table 3: Delete relations (about 7% triplets) on YAGO
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