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ABSTRACT

Scalable oversight studies methods of training and evaluating AI systems in do-
mains where human judgement is unreliable or expensive, such as scientific re-
search and software engineering in complex codebases. Recent work in this area by
Burns et al. (2023) suggests that Language Models (LMs) pretrained on internet-
scale corpora exhibit an inductive bias toward producing correct answers, even
when finetuned on error-prone labels produced by a smaller language model. This
suggests that massive pretraining combined with finetuning on imperfect human
labels may be a solid baseline method for scalable oversight. In the real world,
however, label quality is not fixed: practitioners face a quantity-quality tradeoff
when generating finetuning data. In this paper, we explore the microeconomics of
the quantity-quality tradeoff on binary NLP classification tasks used in Burns et al.
(2023). We find that there are three regimes of eliciting classification knowledge
from pretrained models using supervised finetuning: quantity-dominant, quality-
dominant, and a mixed regime involving the use of low- and high-quality data
together to attain higher accuracy at a lower cost than using either alone. We
explore sample-efficient elicitation methods that make use of two datasets of dif-
fering qualities, and establish a Pareto frontier of scalable elicitation methods that
optimally trade off labeling cost and classifier performance.

1 INTRODUCTION

While supervised learning and reinforcement learning from human feedback (Stiennon et al., 2022)
have been effective techniques for training LMs, recent models and benchmarks have required
increasing investments in subject-matter experts for annotation and red-teaming (OpenAI, 2023; Rein
et al., 2023). Scalable oversight studies methods of training and evaluating AI systems in domains
where accurate feedback is limited because of cost.

The definition of scalable oversight we use in this paper mirrors the original definition from Amodei
et al. (2016)1, which describes scalable oversight as a quantitative problem aimed at reducing the
cost of high quality supervision (Shlegeris, 2024). We find this framing useful for thinking about
supervising AI systems with advanced capabilities, such as automating the core activities of AI
research: How can you reduce the cost of eliciting a capability from a model?

For example, when supervising a system to write complex software, you might like to elicit the
model’s knowledge of whether there are security vulnerabilities in the code. It would be extremely
expensive to attain high-quality labels of secure and subtly-insecure code, especially if the AI-written
software is significantly out-of-distribution relative to prior known vulnerabilities. This means it
would be crucial to know how sample-efficient learning will be, and to strike the right balance
between label quality and quantity.

Amodei et al. (2016) discusses these issues in the context of a reinforcement learning (RL) agent
“given limited access to the true objective function,” proposing many promising and since-proven
directions including reward modeling, active learning (explored here), and unsupervised learning (cf.

1While some, including Burns et al., consider weak-to-strong generalization a complement to scalable
oversight (Radhakrishnan et al., 2023) rather than a scalable oversight approach per se, the pragmatic definition
we adapt from Amodei et al. (2016) encompasses weak-to-strong generalization and the methods introduced in
this paper.
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the role of pretraining in weak-to-strong generalization). We focus on the binary classification setting
because it is simple and informative for many practical cases of evaluating complex AI actions.

Burns et al. (2023) studies finetuning methods that make use of unreliable labels (often less than 90%
accurate on their binary classification datasets). Their finding of “weak-to-strong generalization,”
in which finetuning on low-accuracy “weak” labels can elicit higher accuracy classifications from
strong pretrained models, is a prominent research direction for scalably supervising models. However,
Burns et al. (2023) does not explore strategies that allocate some budget to fewer, higher-quality
labels, which, as we show, are more effective for a variety of realistic economic settings.
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Figure 1: Illustration of the tradeoff between quan-
tity and quality of labels for sequential SFT. We
arbitrarily define the cost of a high-quality label
to be $1. Points lying on the y-axis can be un-
derstood as the accuracy attained when finetun-
ing exclusively on high-quality labels as usual, for
each budget. Along the x-axis, one high-quality
label is given up for every 10 weak labels used
because they cost $0.10. Weak labels are gener-
ated by Qwen1.5 0.5B (Bai et al., 2023), and the
strong model, Llama 3 8B (Dubey et al., 2024),
is sequentially trained on weak then high-quality
labels. When the budget is not large enough to
attain >0.8 accuracy using high-quality labels
alone, accuracy can be improved by spending
some or all budget on a large quantity of weak
labels. Results are averaged over 5 binary classifi-
cation tasks (Hellaswag, SciQ, CosmosQA, Quail,
and SocialIQA). Missing points from the top few
lines are due to some datasets not having enough
available examples. Note that the weak label ac-
curacy is measured on the train set, which is not
necessarily distributed identically to test.

Our contributions are as follows:

1. We demonstrate that there exists an im-
portant elicitation regime that substan-
tially benefits from using a combina-
tion of low-quality and high-quality la-
bels, rather than either alone.

2. We empirically and quantitatively char-
acterize the quantity-quality tradeoff
for a range of datasets, microeconomic
assumptions, and model scales.

3. We propose the research framing of re-
ducing the cost of eliciting knowledge
from capable models, and establish a
Pareto frontier of scalable elicitation
methods that maximize classification
accuracy and minimize labeling cost.

Our work aims to be agnostic to the details of the
scalable oversight problem, so we experiment
with a variety of datasets and assumptions about
labeling costs.

2 THREE REGIMES OF ELICITATION

We find that there are three regimes of eliciting
classification knowledge using supervised fine-
tuning (SFT), depending on how many labels
are affordable.

Quality-dominant. You can afford many
high-quality examples—enough to train to near
convergence—and your best strategy is to invest
only in these. This is the bread-and-butter of
present-day ML practitioners.

Quantity-dominant. You cannot afford almost
any high-quality examples, but neither can you
afford enough weak examples to train to near
convergence, so every marginal dollar2 is best
spent on weak labels.

Mixed. You cannot afford a large enough quan-
tity of high-quality examples to train to near convergence, but you can afford enough weak examples.
We find that at first, because the weak labels have non-trivial accuracy (and to some extent because of
weak-to-strong generalization), weak labels update the model in the desired direction. Then, after

2Our convention in this paper will be to use a fictitious currency, denoted $, that is tied to the cost of labeling
one high-quality example. In reality we are targeting problems where each label costs orders of magnitude more
than 1 USD.
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training on enough weak examples to approach convergence, the marginal benefit of a dollar spent on
weak labels decreases below the marginal benefit of spending on high-quality labels. In this regime,
it is optimal to spend some budget on a large volume of low-quality labels and some budget on
high-quality labels.
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Figure 2: Comparison between weak labels gener-
ated by Qwen1.5 0.5B vs Qwen1.5 4B at a weak
marginal cost of $0.10.

This paper focuses on the mixed regime, in
which the optimal allocation of labeling re-
sources is not a priori evident. We begin by
empirically demonstrating the three regimes
in a simple training strategy we call sequen-
tial SFT (Sec. 3.2). Then we consider a wide
range of sample-efficient elicitation methods to
make prescriptions about the optimal method
and quantity-quality tradeoff in various circum-
stances.

3 METHODS

3.1 DATA

We experiment on a variety of binarized NLP
classification tasks, largely mirroring a subset of
the tasks used in Burns et al. (2023). We look
at BoolQ, HellaSwag, SciQ, Cola, CosmosQA,
QuAIL, and SocialIQA.

Like Burns et al. (2023), we generate weak la-
bels using small LMs that have been finetuned
on the task. Specifically, we train the weak
model on 8,000 ground-truth-labeled examples
for 3 epochs, and gather the weak model’s prob-
abilities on those 8,000 examples along with
50,500 new examples to form the train/val pool
(or however many are available after making the
test split). This pool is balanced, but the train-
ing and validation sets sampled from it are not
necessarily balanced.

Models are tested on a balanced, held-out test
set. Note that not all datasets we use have i.i.d.
train and test splits. The covariate shift between
train and test is relatively minor (we are using
standard NLP tasks), but means that weak label
accuracy cannot be perfectly interpreted as the
accuracy on the target task.

3.2 ELICITATION METHODS

We only consider methods that make use of one
or two data sources for simplicity.

Sequential SFT first trains the strong model on
weak labels using supervised finetuning (SFT)
with LoRA, then finetunes on a disjoint set of
high-quality examples. Both finetuning stages
early-stop based on validation AUROC. The
train and validation sets for each stage are i.i.d.,
and both are counted toward the labeling budget.
When zero weak examples or zero high-quality
examples are used, the corresponding stage is
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skipped. We randomly initialize a new head for training. For additional training details, see Ap-
pendix A.

Few-shot prompting. This method utilizes LMs’ in-context learning abilities (Brown et al., 2020).
The few-shot examples in the context are shuffled at each inference, and use “0” and “1” as class
label tokens.

Few-shot-prompted sequential SFT. This method uses sequential SFT on a distribution of few-shot
prompts with the aim of increasing the sample-efficiency of SFT by increasing the task’s salience. In
Figure 4, we experiment with varying the quantity of in-context examples, and whether the in-context
examples and SFT examples are weak or high-quality. We observe that the kind and quantity of
in-context examples is relatively inconsequential, so we primarily experiment with 2-shot-prompted
sequential SFT, where the in-context examples are both weak.

Uncertainty sampling. Inspired by the active-learning literature Kolossov et al. (2023); Gal et al.
(2017), we experiment with a variant of sequential SFT that samples high-quality data for labeling
in the second stage based on the confidence of the model after the first stage of (weak) training.
Specifically, we deterministically select the examples where the model’s prediction entropy is highest
(i.e., where the probability it assigns to the positive class is closest to 0.5) at the beginning of the
second stage. This method has the important practical limitation that it requires labeling in between
the two stages of training, which can subsantially slow down the finetuning process, and that it may
pose additional costs to search for examples where the model is uncertain.

Log-confidence auxiliary loss. Burns et al. (2023) found that a certain confidence auxiliary loss
improves weak-to-strong generalization performance. We experiment with a version of sequential
SFT that uses this loss function (with a minibatch size3 of 8) during the weak stage of training.

Note that some methods have inherent limitations in what dataset sizes they can be used with. For
example, sequential SFT is not well-equipped for datasets with less than a dozen examples distributed
across the train and validation sets, while few-shot in-context learning is, but suffers memory and
context-length issues for large datasets.

We aim to test elicitation methods that are general: they can be used for arbitrary classification
tasks of which the subject model has implicit knowledge, regardless of how similar that knowledge
looks to common natural language tasks. Unfortunately, most capabilities tested in current NLP
benchmarks are well-represented in natural language pre-training, marking a limitation of studying
the generalizability of some methods, especially prompting-based methods.

4 RESULTS

Figure 1 is a demonstration of the quantity-quality tradeoff for sequential SFT for the setting where
weak labels (from Qwen1.5 0.5B) are assumed to be 10x cheaper than high-quality labels. We
see the “quantity-dominant” regime for budgets of ≤$64 (not enough labels can be afforded to
approach convergence even when all budget is spent on weak labels), the “mixed” regime for budgets
$256-$512 (there are enough weak examples to converge, but not enough high-quality labels), and
the “quality-dominant” regime for budgets of at least $1024 (it is optimal to use only high-quality
labels). In the “mixed” regime the optimal budget allocation involves a large quantity of weak labels,
as well as some high-quality labels.

Figure 2 breaks down the sequential SFT results by dataset, and varies the quality of weak labels.
Because the qualitative results are not very sensitive to weak label cost (see Figure 5), we focus on
$0.10 weak labels for readability. We find, as expected, that higher-quality weak labels are useful in a
wider range of circumstances (though the effect-size is small) and that weak labels are useful for a
variety of datasets and weak label qualities.

4.1 SCALING

Do the three regimes persist with scaling? We experiment with sequential SFT on MMLU Hendrycks
et al. (2021) using Llama-3 8B base, Llama-3 70B base, and GPT-4o-mini-2024-07-18. The OpenAI

3Because the log-confidence loss is minibatch-dependent, this is an important hyperparameter. We set it to
the largest size within VRAM constraints.
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Figure 3: Scaling trends of sequential SFT on MMLU (without early-stopping as described in
Sec 4.1). Weak labels are 70.2% accurate and generated by davinci-002, which is less capable than
Llama-3-8B. Weak labels are again assumed to cost 10 times less than high-quality labels. Errorbars
are standard deviations over random seeds. We use 3 random seeds, except for training runs where
the smaller stage takes less than or equal to 10 examples, in which case we use 7 random seeds. We
see weak evidence corroborating prior work that suggests larger models require fewer finetuning
examples to elicit their knowledge (Zhang et al., 2024). High accuracy in MMLU can be elicited
from GPT-4o-mini even with 16 finetuning examples.
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Figure 4: Few-shot-prompted SFT with various quantities of weak and high-quality labels in-context
and used for SFT. The quality of in-context examples is inconsequential, while the quality of SFT
examples matters substantially.

finetuning API does not allow for early-stopping, so in an effort to make the experiment as controlled
as is possible with commercial models, we modify the sequential SFT training setup for Llama to
more closely mirror OpenAI’s. This primarily involves training with a batch size and number of
epochs determined based on the number of training examples, as described in Appendix A. We
are also unable to randomly initialize a new head, so for GPT-4o-mini only, we use the difference
between the “Yes” and “No” logits.

Figure 3 shows how the quantity-quality tradeoff changes as model scale increases for a fixed task
using sequential SFT. Larger models are more sample efficient which correspondingly reduces the
cost of elicitation. 256 and 1024 high-quality finetuning examples do not reliably elicit knowledge
from Llama-3-8B, but elicit most of Llama-3-70B’s knowledge. We were not able to find a quantity of
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Table 1: Percent accuracy (optimal weak label fraction). Tabular form of Figure 5 at $0.10 weak
labels. Errorbars are standard deviations over 3 random seeds, macro-averaged over datasets. Each
accuracy is the highest average accuracy (over datasets and seeds) that can be attained with a cost less
than or equal to the budget, with parentheses showing the fraction of labels that should be low-quality
to optimize performance.

Budget $5 $17 $65 $257 $1025 $4097

Seq SFT - 60±3 (1.0) 70±2 (1.0) 77±2 (0.9) 82±2 (0.3) 87±1 (0.0)
+2-shot ICL - 63±7 (1.0) 75±2 (1.0) 77±3 (0.9) 84±1 (0.3) 88±1 (0.0)
+log-conf. - 59±2 (1.0) 69±3 (1.0) 76±3 (0.9) 82±2 (0.9) 86±1 (0.0)
+unc. sampl. - 60±2 (1.0) 70±2 (1.0) 79±1 (0.9) 82±2 (0.9) 87±1 (0.0)
few-shot ICL 58±5 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0)

high-quality finetuning examples that cause GPT-4o-mini to leave the “quality-dominant” elicitation
regime because the OpenAI finetuning API requires at least 10 examples, which is enough for 0.92
accuracy. This may be due GPT-4o-mini’s large scale, or confounders such as optimizations in
OpenAI’s finetuning service, using the existing LM head rather than a new head, or post-training
enhancements that make MMLU especially easy to elicit. The scaling results for sequential SFT
suggest that for a fixed labeling budget and task, the quantity-quality tradeoff weighs more in favor
of quantity the smaller the model. Our results are weak evidence that the “mixed” regime exists
across model scales at decreasing budgets, even though we were not able to test this hypothesis for
GPT-4o-mini.

4.2 COMPARISON OF METHODS

We turn our attention toward finding the optimal elicitation method (listed in Sec. 3.2) for various
budgets and weak label costs.

First, Figure 4 compares ways of making use of the weak and high-quality labels in few-shot-prompted
SFT. The quality (and to some extent quantity) of the few-shot examples turn out to be relatively
inconsequential, in line with Min et al. (2022), while high-quality labels are important for finetuning.
For this reason our main few-shot-prompted SFT experiments in Figure 5 use 2-shot prompts with
weak labels.

The optimal methods can be seen in Figure 5, which shows the Pareto frontier of finetuning strategies
for three different hypothetical weak label costs. Results broken down by each of the three datasets
can be found in Appendix figures 6, 7, and 8, suggesting that the results hold across tasks and weak
label qualities. Results for all methods including ones not on the Pareto frontier (sequential SFT and
log-confidence) can be seen in Table 1. We find that log-confidence loss is not particularly effective,
which is in line with results from the smaller models used in Burns et al. (2023) and a follow-up
by Scherlis et al. (2024). Uncertainty sampling the high-quality labels can be effective when the
budget is just large enough that you should train with more than just weak labels — that is, the
low-budget end of the “mixed” regime.

Overall, methods making use of LMs’ in-context learning abilities are most effective, with standard
few-shot prompting being optimal in extremely data-poor regimes, and 2-shot-prompted sequential
SFT being optimal when a larger quantity of labels are available.

5 RELATED WORK

Scalable oversight. There exists a variety of work in scalable oversight that aims to amplify human
labelers with AI assistants to improve supervision quality Saunders et al. (2022). Because it is
impractical to evaluate scalable oversight techniques in domains where humans don’t provide reliable
answers, the sandwiching paradigm was proposed in Cotra (2021) and developed in Bowman et al.
(2022), in which non-expert or artificially hindered human annotators are tasked with supervising a
capable model. In AI debate (Irving et al., 2018; Michael et al., 2023), two capable but untrusted
AI systems compete to persuade a human judge. Recent experiments have found that debates
between more persuasive AI debaters result in higher quality judgements by an artificially hindered
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Figure 5: Accuracy vs cost of the top three finetuning methods, at three different weak label costs,
with weak labels generated by Qwen1.5 0.5B. Each point is the average accuracy over Hellaswag,
SocialIQA, and CosmosQA. The color indicates the fraction of labels that are weak, with black
indicating that exactly zero high-quality labels were used. The Pareto frontier is shown in gray.
2-shot-prompted sequential SFT makes sample-efficient use of labels, making it the most effective
method for most budgets. For low budgets, however, few-shot prompting with weak labels is most
effective.

judge (Khan et al., 2024). Our work, on the other hand, focuses on making most effective use of
limited supervision to maximally elicit model capabilities, which is more directly related to empirical
Eliciting Latent Knowledge (Christiano et al., 2021) works such as Burns et al. (2022; 2023); Roger
et al. (2023) and Mallen et al. (2024). These papers distinguish themselves from the aforementioned
scalable oversight directions in their focus on the empirical generalization properties of training with
limited supervision.

Few-shot learning. Few-shot learning aims to make effective use of a small amount of labeled data.
Large LMs are well-known to possess impressive few-shot in-context learning abilities (Brown et al.,
2020; Min et al., 2022). Some existing few-shot learning methods make use of auxiliary, off-task,
data to improve LM few-shot learning performance (Albalak et al., 2024; Aghajanyan et al., 2021;
Esfandiarpoor et al., 2020). These auxiliary data sources can be understood as somewhat analogous
to the weak datasets used in this work. For a thorough overview of the few-shot learning literature,
not limited to LMs, see Parnami & Lee (2022).

Data selection. Several existing works aim to make decisions about how much of various data
sources to use (Albalak et al., 2023; Xie et al., 2023; Siddiqui et al., 2022; Sorscher et al., 2022;
Abbas et al., 2023). These typically focus on pre-training rather than finetuning, and make data
selection decisions under a computing cost constraint rather than a labeling cost constraint.

6 DISCUSSION AND FUTURE WORK

In this paper we empirically characterized the quantity-quality tradeoff for a variety of datasets and
microeconomic assumptions, and then established a Pareto frontier of inexpensive and performant
elicitation methods. As continued research expands and strengthens this Pareto frontier, our ability to
reliably supervise complex actions from advanced AI systems improves.

We focus this paper on “elicitation,” but it can be unclear when SFT is best understood as eliciting a
capability that was “already there,” as opposed to learning a new capability. However, we argue that
the tasks considered in this paper — and many real-world tasks — are best understood as elicitation.
We often observe in this paper that finetuning a model on a few dozen or hundred question-answer
pairs causes the model to answer new, semantically unrelated, questions with nontrivial accuracy. The
weights learned during pretraining already approximately encode the function that maps questions to
correct answers, and finetuning causes the model to transmit this knowledge in its output.
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Our work is limited to binary classification tasks. Although binary classification subsumes a wide va-
riety of practical use-cases, we expect there may be additional challenges with eliciting knowledge in
settings with wide output spaces (e.g. generative or reinforcement learning tasks) such as exploration
and sparse reward. More generally, it is unclear how analogous our settings are to practical settings
that challenge human experts.

One notable limitation is that we do not compare finetuning methods aimed at eliciting highly reliable
knowledge (i.e., >99% accurate) because we do not use reliable enough benchmarks to measure very
high accuracy. High-quality labels might be more important in this regime to clarify edge cases, or
less important because the model has a salient and well-generalizing representation of the task that is
easy to elicit.

Our paper is broadly aimed at expanding the Pareto frontier of elicitation accuracy and cost. To this
end, we explored a variety of finetuning methods that make use of a combination of high-quality
labels and inexpensive weak labels. However, there are many other avenues that can be explored to
expand this Pareto frontier, such as easy-to-hard and domain generalization.
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Table 2: Hyperparameters used in scaling experiments to mimic OpenAI finetuning API
dataset size (n) batch size number of epochs

n < 30 1 ⌈100/n⌉
30 ≤ n < 1, 024 1 3
1, 024 ≤ n < 4, 096 2 3
4, 096 ≤ n < 16, 384 8 2
n ≥ 16, 384 8 1

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language
model pretraining. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 69798–69818. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/dcba6be91359358c2355cd920da3fcbd-Paper-Conference.pdf.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method, 2024. URL https://arxiv.org/abs/2402.
17193.

All datasets?

A METHODS

A.1 SEQUENTIAL SFT TRAINING DETAILS

The Adam buffer is re-estimated at each training stage, with a linear warmup of 40 steps (?), or the
number of steps per epoch if that is smaller (because subsequent epochs do not improve the estimate).

When performing early-stopping, we evaluate and save the model every epoch or every 50 steps,
whichever is more frequent. Training is terminated after 4 consecutive evaluations that fail to improve
upon the best-yet validation AUROC by at least 0.01, and then the checkpoint with the highest
validation AUROC is loaded.

We use a cosine learning rate schedule with 625 steps of training per stage (modulo early stopping),
except for in our scaling experiments (see Table 2).

Learning rates were tuned on Amazon polarity and BoolQ (using ground-truth labels) to 5× 10−4 for
Qwen1.5 0.5B, 2× 10−4 for Qwen1.5 4B, 8× 10−5 for Llama-3 8B, and 4× 10−5 for Llama-3 70B.

We use a fixed batch size of 32, except in our scaling experiments where we approximately mimic
the behavior of the OpenAI finetuning API (as of August 2024), which can be seen in Table 2.

While prior work Zhang et al. (2024) suggests that parameter-efficient finetuning does not significantly
affect scaling laws for finetuning in multilingual summarization and translation tasks, it is still possible
that some of our results could change with full finetuning.

B MICROECONOMIC ASSUMPTIONS

We expect that fixed costs will not matter much since they will probably be smaller in magnitude
than accumulated marginal costs of labels.

What about scenarios where the cost you invested into training up your labelers or understanding a
problem has externalities for other training runs etc?

If classes are extremely imbalanced, you still probably want to train on balanced data, so the marginal
cost of an example can just be modeled as the average of the marginal cost of a label from each class,
and our results would still apply.
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Table 3: Table 1 with $0.50 weak labels.
Budget $5 $17 $65 $257 $1025 $4097

Seq SFT - 50±2 (0.0) 56±4 (0.9) 63±4 (0.9) 80±2 (0.0) 87±1 (0.0)
+2-shot ICL - 51±2 (0.1) 59±7 (0.9) 73±10 (0.0) 83±2 (0.0) 88±1 (0.0)
+log-conf. - 50±2 (0.0) 54±4 (0.9) 61±3 (0.9) 81±3 (0.0) 86±1 (0.0)
+unc. sampl. - 50±2 (0.0) 55±4 (0.9) 62±3 (0.9) 80±2 (0.0) 87±1 (0.0)
few-shot ICL 52±4 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0)

Table 4: Table 1 with $0.01 weak labels.
Budget $5 $17 $65 $257 $1025 $4097

+2-shot ICL 63±7 (1.0) 75±2 (1.0) 75±2 (1.0) 77±3 (0.9) 84±1 (0.3) 88±1 (0.0)
+log-conf. 59±2 (1.0) 69±3 (1.0) 75±1 (1.0) 76±3 (0.9) 82±2 (0.9) 86±1 (0.0)
+unc. sampl. 60±2 (1.0) 70±2 (1.0) 74±2 (1.0) 79±1 (0.9) 82±2 (0.9) 87±1 (0.0)
Seq SFT 60±3 (1.0) 70±2 (1.0) 74±1 (1.0) 77±2 (0.9) 82±2 (0.3) 87±1 (0.0)
few-shot ICL 58±5 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0) 58±5 (1.0)

C RESULTS

See Tables 3, 1, and 4 for tabular Pareto frontier data at a weak label cost of $0.50, $0.10, and $0.01,
respectively. These correspond to the data presented visually in Figure 5.

See figures 6, 7, and 8 for a version of the pareto frontier figure (Figure 5) broken down by dataset.
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Figure 6: Pareto frontier for Hellaswag, mirroring 5.
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Figure 7: Pareto frontier for SocialIQA, mirroring 5.
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Figure 8: Pareto frontier for CosmosQA, mirroring 5.
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