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Abstract: Data collection in imitation learning often requires significant, labori-
ous human supervision, such as numerous demonstrations, and/or frequent envi-
ronment resets for methods that incorporate reinforcement learning. In this work,
we propose an alternative approach, MILES: a fully autonomous, self-supervised
data collection paradigm, and we show that this enables efficient policy learn-
ing from just a single demonstration and a single environment reset. MILES au-
tonomously learns a policy for returning to and then following the single demon-
stration, whilst being self-guided during data collection, eliminating the need
for additional human interventions. We evaluated MILES across several real-
world tasks, including tasks that require precise contact-rich manipulation such
as locking a lock with a key. We found that, under the constraints of a single
demonstration and no repeated environment resetting, MILES significantly out-
performs state-of-the-art alternatives like imitation learning methods that leverage
reinforcement learning. Videos of our experiments and code can be found on our
webpage: www.robot-learning.uk/miles.

Figure 1: (a) Behavioural cloning from a single demonstration fails to generalize to states outside the demonstration, due
to covariate shift. (b) Providing multiple demonstrations addresses this, but requires significant human effort. (c) While
incorporating reinforcement learning addresses the issue of covariate shift and the need for multiple demonstrations, it re-
quires frequent environment resetting and is highly inefficient due to random exploration. (d) In MILES, we propose a new
self-supervised paradigm that overcomes these issues and can learn a range of complex tasks from a single demonstration
and no additional human effort, by collecting augmentation trajectories that guide the robot back to the demonstration.

1 Introduction
Imitation learning is frequently described as a convenient way to teach robots new skills. But is
this true in practice? Behavioral cloning (BC) methods leverage supervised learning to train robust
policies, but doing so typically requires hundreds or thousands of demonstrations per task [1, 2] to
collect a sufficiently diverse training dataset. Imitation learning methods that leverage Reinforce-
ment learning (RL) offer a solution to this as policies can be learned autonomously through random
exploration and reward functions can be inferred from a few demonstrations [3, 4]. However, unlike
supervised learning methods, policy learning with RL can be unstable [5], and random exploration
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makes data collection inefficient. Besides, RL typically requires repeated environment resetting, and
so in practice, it is often equally or even more laborious than simply providing numerous demonstra-
tions [6]. Instead, learning from a single demonstration appears to be the most convenient form of
imitation learning due to its effortlessness, but policies learned this way suffer from covariate shift
[7]. As such, imitation learning today is not as easy as we would like it to be: significant human
supervision is still required for data collection either via demonstrations, environment resetting, or
both.

Motivated by this, we propose MILES, a framework that makes imitation learning easy by enabling
humans to teach robots tasks effortlessly with just a single demonstration while requiring no prior
task knowledge, and only a single environment reset. MILES learns robot skills by collecting aug-
mentation trajectories in a self-supervised manner, which demonstrate to the robot how to return
to, and then follow the single human demonstration, as shown in Figure 1. MILES leverages these
trajectories to train a policy using BC, consequently inheriting the power and ease of supervised
learning. However, unlike common BC methods, the self-supervised data collection replaces the
need to collect multiple demonstrations, and compared to BC from a single demonstration, MILES
does not suffer from covariate shift as its data densely covers the space around the demonstration.
Similarly to RL-based imitation learning methods, MILES collects data autonomously, but instead
of being guided by random exploration, MILES’ data collection is highly efficient as it benefits
from self-labeled data that directly guides the robot back to the demonstration. Additionally, explo-
ration can cause disturbances to the environment and thus requires repeated environment resetting.
However, as we later explain, MILES’ self-supervised data collection procedure strategically shapes
policy learning to be independent of such laborious environment resets. Consequently, MILES aims
to incorporate the benefits of training BC policies with supervised learning on large demonstration
datasets with the benefits of autonomous data collection similar to RL methods in the setting where
only a single demonstration is available.

Through our real-world experiments, we find that when only a single human demonstration is avail-
able, without additional human effort such as repeated environment resetting, self-supervised data
collection outperforms recent alternatives in imitation learning that leverage RL and replay-based
imitation learning. MILES can learn a suite of versatile skills, shown in Figure 1, ranging from
those involving interactions with movable, articulated objects such as opening the lid of a box, to
those involving precise, contact-rich interactions with objects rigidly mounted to a surface, such as
inserting and twisting a key in a lock. Each of these is learned from a single demonstration, no
further human input, and around 30 minutes of self-supervised data collection.

2 Related Work
As follows, we ground our work relative to methods that can learn manipulation skills from a single
demonstration, unlike most approaches that require large demonstration datasets [1, 8, 9].

Imitation learning from prior knowledge. An effective way to compensate for the lack of large
demonstration datasets is to leverage prior task knowledge such as access to ground truth object
poses [10, 11] or by meta-learning policies by first pretraining on large demonstration datasets [12,
13]. However, precise knowledge of the objects’ poses is hard to obtain in practice and meta-learning
methods are often limited to tasks similar to the ones seen in the demonstrations. Instead, MILES
can learn a new task from just a single demonstration without any prior object or task knowledge.

Imitation learning via Reinforcement learning (RL). RL-based imitation learning methods from
a single demonstration learn to follow that demonstration by minimizing a similarity metric between
the trajectories of the learned policy and the demonstration [3, 4, 14, 15]. Other RL methods that
learn from demonstrations infer rewards through alternative means, like goal images [16]. Though
effective, these methods are often inefficient as they rely on random exploration and repeated envi-
ronment resets which require significant human effort. Instead, our self-supervised data collection
makes MILES highly efficient and eliminates the need for repeated environment resetting.

Imitation learning via pose estimation and demonstration replay. Replay-based imitation learn-
ing methods first estimate and move the robot to a similar pose relative to the objects of interest as in
the demonstration and then replay the demonstrated robot actions [17, 18, 19, 20, 21]. While these
methods are the most efficient in terms of human time, small errors in pose estimation cause errors to
compound during demonstration replay, leading to task failures [2]. And even under the assumption
of perfect pose estimation, potential environment collisions may prevent the robot from reaching
the desired pose or may perturb the objects such that replaying the demonstration fails to complete
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the task. Instead, MILES’ self-supervised data collection procedure retains the human-time effi-
ciency of pose estimation methods, while learning to avoid unnecessary collisions, and minimizing
or completely eliminating open-loop replay errors depending on the task.

Imitation learning by demonstration augmentation. Demonstration augmentation approaches
like DAgger [7] and DART [22] mitigate covariate shift by relying on laborious interactive expert
queries to expand the known state distribution of a policy. And methods that do not require an
interactive expert still rely on multiple demonstrations or task-specific optimizations [23, 24, 25, 26,
27] which limit their practical application. Instead, MILES is a fully autonomous method that uses
self-supervision to augment a single demonstration and can learn a wide range of diverse tasks.

3 MILES: Making Imitation Learning Easy with Self-Supervision

As follows we describe MILES, a framework that makes imitation learning easy by leveraging a
single human demonstration as guidance to collect self-supervised data demonstrating to the robot
how to return to, and then follow the demonstration. By training a policy with behavioral cloning
on that data, MILES learns to perform a task from a range of initial states and object poses.

3.1 Preliminaries
Assumptions. Our setup assumes access to a wrist camera that is rigidly mounted to the robot’s end-
effector (EE) and (optionally) a sensor that measures external forces and torques. We follow prior
work [19, 2, 17] and assume that each task is object-centric, such that only the task-relevant object
is in camera view during data collection and the demonstration can be expressed relative to a single
object, where combining several such tasks results in a multi-stage task. Additionally, as we are
interested in dealing with all types of tasks, including those that require contact-rich manipulation,
we control our robot using an impedance controller.

Single Demonstration. For each task, a human provides a single demonstration ζ :=
{(wζn, oζn, aζn)}Nn=1 comprising a sequence of N waypoints wζn, observations oζn, and actions aζn,
as shown in Figure 2 (1). A waypoint wζn corresponds to the EE’s 6-DoF pose at timestep n cap-
tured via proprioception. An observation oζn consists of an RGB image captured from the wrist
camera and a force-torque measurement. We refer to (wζn, oζn) as the state of the environment at
timestep n. An action aζn contains the gripper’s state and the 6-DoF pose tracked by the impedance
controller at timestep n, expressed relative to the EE’s pose at timestep n− 1. After providing ζ the
human resets the environment only once, such that if the actions in ζ are executed, the robot would
successfully perform the task; a trivial process that requires a few seconds of human time.

3.2 Self-Supervised Data Collection
Augmentation Trajectories. Given a single demonstration, MILES collects a dataset of aug-
mentation trajectories D := {τk}, where 1 ≤ k ≤ N and each τk := {(wτkm , oτkm , aτkm )}Mm=1
is a robot trajectory whose final, Mth state corresponds to a kth state in the demonstration, i.e.,
(wτkM , o

τk
M ) = (wζk, o

ζ
k). That is, each augmentation trajectory guides the robot to some kth state in

the demonstration from any state (wτkm , oτkm ) ∈ τk. We can fuse each augmentation trajectory with
the demonstration segment following each kth state, {(wζn, oζn, aζn)}Nn=k ⊆ ζ, to create a new demon-
stration that demonstrates to the robot how to return to and then follow the human demonstration
as shown in Figure 3. By collecting augmentation trajectories that densely cover the state space near
the demonstration we can create a dataset of new demonstrations which we can leverage to train a
policy using standard BC methods. But how do we create such a dataset of augmentation trajectories
automatically?

Data Collection. We achieve this by collecting data in the simplest possible way. An overview
of our data collection procedure is shown in Figure 2. To generate a τk, from a demonstra-
tion waypoint wζk, we first move the robot to some random pose near the demonstration. The
robot then attempts to return back to wζk in a straight line, while recording RGB and force-
feedback observations {oτkm}Mm=1, and actions {aτkm}Mm=1 automatically generated by computing
the EE’s relative movement between consecutive timesteps, as shown in Figure 2 (3) (gripper
actions are copied directly from the demonstrated action). In practice, the actual trajectory τk
may not be a straight line, as collisions with external objects can yield a more complex, curved
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Figure 2: MILES Overview: (1) First, the user provides a single demonstration and (2) resets the environment only once.
(3) Then, the robot (autonomously) collects self-supervised data. Several augmentation trajectories are collected for each
demonstration waypoint until an environment disturbance is detected or sufficient data is collected for all waypoints. Each
augmentation trajectory is either a straight line, if the motion occurs in free space, or a more complex, curved path as the
augmentation trajectory can be reshaped by collisions with the environment (e.g., with the lock as shown above). (3) (a-b)
To collect an augmentation trajectory, the robot first moves from a demonstration waypoint to a random pose. (c) Then, it
attempts to return back to the waypoint while recording RGB images and force-torque feedback . (d) After completing the
trajectory, we check whether the achieved state meets the conditions of reachability and environment disturbance.

path due to the robot’s compliance; an example of this happening for a locking a lock task
is shown in Figure 2 (3). This is particularly useful for contact-rich tasks, as these trajecto-
ries contain information on overcoming potential collisions or large friction areas by regulat-
ing force when in contact with an object. After executing the potential augmentation trajec-
tory we check that it is valid and that it can be fused with the demonstration by evaluating two
key conditions, that of reachability and environment disturbance which we describe in sec-
tion 3.3. If both conditions are met we store that augmentation trajectory, otherwise, it is discarded.
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Figure 3: After finishing the data collection,
each augmentation trajectory is fused with the
demonstration segment following the demonstra-
tion waypoint it returns to, to create a dataset of
new demonstration trajectories.

We repeat this process several times for each demonstra-
tion state, starting from the first waypoint in the demon-
stration wζ1 and gradually progress through the demon-
stration, as shown in Figure 2 (3), until: (1) an envi-
ronment disturbance is detected, in which case we stop
the data collection and store the demonstration timestep
where the disturbance occurred, denoted R, and the ac-
tions ζremaining := {aζn}Nn=R for the remaining demon-
stration states for which no data is collected; or (2) we
have collected a prespecified number of Z augmentation
trajectories for each of the N demonstration states, in
which case R = N .

At the end of the data collection process, every augmen-
tation trajectory is fused with ζ to form a new demonstra-
tion ζk = {(oτkm , aτkm )}Mm=1 ∪ {(oζn, aζn)}Rn=k as shown
in Figure 3. And as a result, we obtain a dataset Dnew =
{ζ, ζ1

1 , ζ
2
1 , .., ζ

Z
1 , ..., ζ

Z−1
R , ζZR}. Every trajectory inDnew

corresponds to a new demonstration, automatically created, that solves the task up to the Rth state
in the demonstration. Further details concerning a practical implementation of our data collection
procedure and pseudocode can be found in our supplementary material section A.1.

3.3 Validity Conditions for Augmentation Trajectories

As follows, we introduce two conditions that determine whether an augmentation trajectory can be
fused with the human demonstration. Consider an augmentation trajectory τk aimed at returning the
robot to the kth demonstration state, (wζk, o

ζ
k):

(1) Condition 1, Reachability: After executing the augmentation trajectory, the EE’s pose must
equal the pose of the demonstration waypoint wζk. This equality can be verified trivially using
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Figure 4: The tasks used in our experiments. The ”Markers in Bin” is used to evaluate MILES’ ability to generalize (the bins
marked green denote the training set, while the red denote the test set).

proprioception. In many scenarios, the environment’s dynamics (e.g. collisions) or inevitable sys-
tematic inaccuracies in a robot’s controller may prevent it from reaching its target waypoint wζk.
Thus, if wτkM 6= wζk, the augmentation trajectory cannot return to demonstration state k, rendering
the augmentation trajectory invalid.

(2) Condition 2, Environment Disturbance: While collecting τk, the robot may disturb the envi-
ronment, resulting in a final observation oτkM that no longer matches that of the demonstration (even
if wζk is reached). For instance, during data collection if the robot’s gripper pushes an object to a
different pose than it had at timestep k of the demonstration, the final observation in the augmen-
tation trajectory will differ from the demonstration’s kth observation. Therefore, if oτkM 6= oζk, the
augmentation trajectory cannot be combined with the human demonstration to create a new, valid
demonstration. To detect such disturbances, we compare the cosine similarity of the DINO fea-
tures [28, 29] of the RGB image Iζk from the demonstration’s observation oζk and the image IτkM
after executing the augmentation trajectory. If the similarity falls below a threshold θ, we assume
the environment has been disturbed and stop data collection. In the supplementary material sec-
tions A.2, A.3, we provide visual explanations of our validity conditions and figures demonstrating
the robustness of the DINO features in detecting varying environment disturbances for an object.

3.4 Policy

Training. We train a separate policy π for each task as an LSTM network with behavioral cloning
that receives as input the RGB and force-torque observations in the dataset Dnew and regresses the
corresponding actions. Note that Dnew does not contain proprioception data, allowing our policies
to generalize to different object poses naturally due to the use of our wrist camera.

Inference. We deploy our policy π to solve a task up to the Rth demonstrated state. If no environ-
ment disturbance occurred during data collection for that task, then the Rth state is the final state
in the demonstration and π solves the task completely in a closed-loop manner. Otherwise, after
π completes the task up to the Rth state, the remaining demonstrated action segment ζremaining is
replayed. More details regarding how we deploy our policy, the network architecture, and how we
detect that π has reached the Rth state can be found in the supplementary material section A.4.

4 Experiments

We evaluate MILES through several real-world experiments. Through these experiments, we aim to
answer the following questions: 1) Can MILES solve a range of everyday tasks and how does it per-
form against baselines that learn from a single demonstration? 2) How does MILES perform under
different component ablations? 3) How important are vision and force modalities to the performance
of MILES? and 4) How does MILES perform under different sizes of self-supervised data? Videos
of our experiments can be found on our webpage: www.robot-learning.uk/miles

Implementation Details. For our experiments, we use a FLIR camera mounted to the wrist of a
Franka Emika Robot. We sample Z = 10 augmentation trajectories for each demonstration way-
point (≈ approximately 1 minute of data collection per waypoint). This number is set arbitrarily,
but as we show later in our ablations, some tasks may require less data. We collect augmentation
trajectories with initial poses near the demonstration in the range of 4cm and 4 degrees around
each demonstration waypoint. As commonly done in the literature [3, 16, 17, 20], we provide our
demonstrations starting near each object. At deployment, to reach the object from far away we first
estimate the object’s pose using pose estimation and approach it before switching to MILES. Finally,
we set the environment disturbance threshold θ to 0.94 for all our tasks. Additional details on the
pose estimation method we use and how to set each one of MILES’ parameters can be found in our
supplementary material sections B.1 and B.2.
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Methods Lock
with key

Insert
USB

Plug into
socket

Insert
power cable

Twist
screw

Bread in
toaster

Open
lid Mean

.

Demo Replay 0 0 0 0 0 15 25 6
Reset Free Residual RL 0 15 35 0 0 0 0 7
Reset Free FISH 0 30 25 15 0 0 0 10
Pose Estimation + Demo Replay 50 10 85 80 70 100 100 71
MILES 90 70 85 85 85 95 100 87

Table 1: Task success rates (%) for 20 trials reported for each method.

4.1 Can MILES solve a range of everyday tasks and how does it perform against baselines
that learn from a single demonstration?

In this experiment, we assess the performance of MILES across a diverse set of everyday tasks and
compare it to various baseline methods capable of learning from a single demonstration. We select
seven distinct tasks, shown in Figure 4, spanning a range of complexities, each learned from a single
demonstration. The tasks are: 1) Lock with key; 2) Insert USB; 3) Plug into socket; 4) Insert power
cable; 5) Twist screw; 6) Bread in toaster; 7) Open lid. Tasks 1-4 are contact-rich and and our setup
follows prior work on contact-rich manipulation [16, 30, 31, 32, 33] and the NIST benchmark [34].
Similar to prior work [35, 36], we focus our evaluation on single-task performance, but also report
results on generalization, robustness to distractors, and multi-stage tasks in section 4.5. We provide a
detailed description of each task in the supplementary material section B.3 including data collection
times, information on which tasks involve demonstration replay, which tasks stopped data collection
due to an environment disturbance and information on the length of each human demonstration.

Baseline Methods. We chose 4 baselines that can learn from a single demonstration without prior
task knowledge, similar to MILES. (1) Demo Replay which involves replaying the demonstrated
actions. (2) Pose Estimation + Demo Replay follows [17] and leverages MILES’ data to per-
form pose estimation followed by demonstration replay. (3) Reset Free Residual RL replays the
demonstration’s actions at each timestep and learns corrective actions on top using DDPG [37]. Like
MILES, no human intervenes to reset the environment during training, hence we call it ”Reset Free”.
Finally, (4) Reset Free FISH uses the state-of-the-art RL-based imitation learning method FISH [3]
but no human intervenes to reset the environment during training. Further, implementation details
on the baselines can be found in our supplementary material section B.4.

Evaluation. For a fair evaluation, we carefully tuned each method’s hyperparameters. Additionally,
each learning-based baseline collected the same number of observations as MILES during data col-
lection for each task. We evaluated each method’s success rate across 20 trials. For each trial we
randomized the relative starting pose of the robot and the task-relevant object equivalently across all
methods within a sphere of 20cm around the object as long as the object was visible to the camera.
Finally, we emphasize that for all evaluations both MILES and the baselines predict 6-DoF actions.

Results. Table 1 presents the success rates of MILES and the 4 baselines across 7 tasks. As shown
MILES obtains a high success rate across all tasks. Specifically, MILES obtains an average of 87%
success rate across all tasks with the ”Open lid” task having the highest success rate of 100%. From
the contact-rich tasks, inserting the key and locking the lock achieved the best performance despite
the task’s low tolerance and complex interaction, with an impressive 90% success rate. The lowest
success rate is observed in the USB insertion task, where MILES obtains 70%, a performance dip
we attribute to the task’s low tolerance of less than 1mm. Despite the USB task, for the remaining
tasks that required high precision MILES was able to complete them consistently well.

The next best-performing method, Pose Estimation + Demo Replay, obtained an average success
rate of 71%. Our experiments showed that small errors in object pose estimation led to failures
due to the compounding errors of demonstration replay, as observed in prior work [2, 20]. This is
particularly evident in tasks requiring precise manipulation including ”Lock with key”, ”Insert USB”
and ”Twist screw”. Instead, while MILES also replays part of the demonstration for some tasks, the
fact that it does so for a much shorter horizon allows it to obtain considerably higher success rates.

Reset Free FISH failed to solve the majority of tasks, yielding an average performance of 10%
across all evaluated scenarios. During training, for several tasks, the policy caused significant distur-
bances to the environment that made policy learning very hard without manual resetting. We believe
that this is the central reason behind Reset Free FISH’s low performance Additionally, compared
to the original FISH implementation, as we train policies that predict 6-DoF actions the learning
efficiency of Reset Free FISH is negatively affected. Lastly, Reset Free Residual RL obtained a
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Method Ablations Lock
with key

Insert
USB

Plug into
socket

Insert
power cable

Twist
screw

Bread in
toaster

Open
lid Mean

.

No Sequence 60 20 20 10 0 85 95 43
No Environment Disturbance 90 70 85 85 0 0 0 47
No Reachability 75 40 95 20 85 95 100 73
No Memory 50 65 100 75 35 90 100 74
MILES 90 70 85 85 85 95 100 87

Table 2: Task success rates (%) for 20 trials reported for each method ablation.

lower success rate, averaging 7% due to similar challenges with Reset Free FISH. As anticipated, the
Demo Replay baseline was the least effective among the baselines. Simply replaying the demon-
stration without pose estimation or online action correction leads to task failures.

While the RL methods would have benefited from manual environment resets during training, our
results demonstrate that in our ”easy” imitation learning setting, where only a single demonstration is
available without additional human interventions, MILES significantly outperformed the baselines.

Simulation Evaluation. Finally, to support the reproduction of our results, we conducted addi-
tional experiments on our method and the baselines in simulation using 5 tasks from the RLBench
benchmark [38] which can be found in the supplementary material section C.1.

4.2 How does MILES perform under different method ablations?

This section studies MILES’ performance by ablating 4 different components of the method: (1)
No Environment Disturbance: we ablate the environment disturbance condition by not checking
for that condition when collecting augmentation trajectories. (2) No reachability: we ablate the
reachability condition by relabeling each observation’s action (of the existing MILES data), to move
the robot to the nearest waypoint in the demonstration based on their Euclidean distance. If the con-
straint for reachability is not important, then simply moving from each pose to the nearest waypoint
in the demonstration in a straight line would be sufficient to solve a task. (3) No sequence: we rec-
ollect MILES’ data but instead of collecting Z augmentation trajectories for the first demonstration
state, then progressing to the second state and so on, we collect data without following the demon-
stration’s waypoint sequence and instead follow a random one. (4) No Memory: For this ablation
we retrain a network on the existing MILES data that does not account for history.

Results. Table 2 shows MILES performance after ablating each component. Collecting augmenta-
tion trajectories for each demonstration state in a random order (No Sequence), with an average suc-
cess rate of 43%. Additionally, not checking for the environment disturbance condition (No Envi-
ronment Disturbance) appears to cause significant performance degradation for the tasks where an
environment disturbance occurred during data collection, corresponding mostly to the non-contact
rich tasks. On the other hand, not checking for the reachability condition (No Reachability) also
lowers performance, particularly for the precise, contact-rich tasks, indicating that the reachability
condition is the most important when learning tasks requiring precise manipulation. Finally, the
lower performance obtained by removing the LSTM (No Memory) demonstrates the performance
benefits of training memory-based networks on datasets collected using MILES.

4.3 How important are vision and force modalities to the performance of MILES?

Lock with key Insert USB Plug into socket Insert power cable
0

20

40

60

80

Su
cc

es
s R

at
e 

(%
)

90

70

85 85

70
80

95

80

0 5 0 0

Task Performance under Different Observation Modalities

Vision + Force Vision Force

Figure 5: MILES’ performance when trained only on either
vision or force feedback or both.

In this section, we ablate the use of vision
and force feedback as policy inputs for the
four contact-rich tasks from our earlier exper-
iments. We retrain and evaluate two policies:
one using only vision and one using only force.
The results, shown in Figure 5, indicate that
the vision-based policy improves MILES’ per-
formance in the ”Insert USB” and ”Plug into
socket” tasks but reduces performance in the
other two tasks. This suggests that force feed-
back might not consistently benefit MILES, possibly due to its noisy signal which makes it hard
to distinguish between different environment states. The force-based policy, however, fails almost
completely. This is expected as force feedback is zero in free space and can be ambiguous due to
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symmetries in object surfaces. Overall, while force feedback aids performance in some tasks, it is
not always necessary. Vision remains the most crucial modality to MILES’ high performance.

4.4 How does MILES perform under different sizes of self-supervised data?
In this section, we ablate the dataset size used to learn four tasks by splitting their origi-
nal datasets into chunks containing 75%, 50%, and 25% of the original data. We evalu-
ated the best and worst performing contact-rich tasks (”Lock with key” and ”Insert USB”)
and non-contact-rich tasks (”Open lid” and ”Twist screw”). Data collection times for each
task can be found in the supplementary material. Figure 6 shows that for high tolerance
tasks like ”Open lid,” MILES achieves a 100% success rate even with 25% of the data,

Lock with key Insert USB Twist screw Open lid
0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

0

25

5

100

10

45

0

100

55 55 60

100
90

70
85

100
Task Performance under Different Dataset Sizes

25% 50% 75% 100%

Figure 6: MILES’ performance when trained on different
dataset sizes. 100% corresponds to the original dataset. 75%,
50%, and 25% correspond to splits of the original dataset.

corresponding to only 8 minutes of data collec-
tion. However, for precise tasks, success rates
decrease as dataset size is reduced. Notably,
for ”Lock with key” and ”Twist screw,” reduc-
ing the dataset to 50% results in a high failure
rate. To summarize, we observe that high tol-
erance tasks are likely to require less data, and
in practice only a few minutes of data collec-
tion time. Instead, for high-precision tasks, like
inserting a USB, the dataset size appears to im-
pact MILES’ performance significantly.

4.5 Further questions about MILES

Can MILES generalize? We conduct additional experiments on generalization for MILES in the
supplementary material section D.1. Can MILES perform multi-stage tasks? We provide ad-
ditional experimental results on how MILES performs on multi-stage tasks in the supplementary
material section D.2. Is MILES robust to distractor objects? We conduct additional experi-
ments studying MILES’ performance in the presence of distractors in the supplementary material
section D.3. What if MILES stops data collection early due to a detected environment dis-
turbance? We provide a discussion and intuition on MILES’ behavior in scenarios where data
collection stops early in our supplementary material section D.4.

5 Discussion
Limitations. We now highlight some important limitations of our method. Firstly, MILES’ reliance
on a wrist camera enables MILES to obtain spatial generalization, however, simultaneously this
limits its field of view and its applicability to larger task spaces. Future work could address this
by incorporating an external camera to initially approach an object before switching to the wrist
camera, similarly to [20]. Secondly, while MILES is robust to distractors at deployment before data
collection begins it requires a human to set up the robot’s workspace such that only the task-relevant
object is in camera view for the policy to achieve spatial generalization. While this requires only
a few seconds of human time, future work could address this by extending MILES to incorporate
segmentation methods, similar to [20, 39], that segment the task-relevant object in the dataset. Simi-
larly, to address any unwanted collisions that MILES could cause in the presence of multiple objects,
future work could study incorporating an external camera during self-supervised data collection to
plan and collect collision-free augmentation trajectories. Thirdly, our current implementation of
MILES trains a separate policy for each task and hence it is unclear how well MILES would gener-
alize to completely new tasks. In future work, we aim to study this by training a single monolithic
policy on MILES’ self-supervised data combined with replay-trajectory retrieval [40] similarly to
our generalization task in section 4.5.

Conclusion. We introduced MILES, a framework that makes imitation learning easy. MILES re-
quires only a single demonstration and collects self-supervised data that demonstrate to the robot
how to return to and then follow that demonstration. Subsequently, this enabled us to obtain ma-
nipulation skills comprising either (1) a single end-to-end policy trained with behavioral cloning, or
(2) a combination of an end-to-end policy and demonstration replay. Our real-world experiments
showed that when only a single demonstration is available, self-supervised data enable the acquisi-
tion of skills that achieve considerably improved performance compared to several state-of-the-art
baselines. MILES can learn everyday tasks, ranging from opening a lid, to using a key to lock a
lock, to inserting a USB stick into a port, requiring complex and precise contact-rich manipulation.
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Supplementary Material
MILES: Making Imitation Learning Easy with Self-Supervision

For videos demonstrating MILES’ performance and code implementation please see our webpage:
www.robot-learning.uk/miles.

A MILES: Additional Details on the Method

A.1 Method Pseudocode

We provide a detailed pseudocode describing MILES, in Algorithms 1- 8.

A.2 Validity Conditions for Augmentation Trajectories

As described in section 3.3, after collecting data for an augmentation trajectory, we check for two
conditions: (i) reachability and (ii) environment disturbance, to determine whether an augmenta-
tion trajectory is valid and eligible to fuse with the demonstration. Figure A.2 shows examples of
these two conditions.

A.2.1 How do we check for the Reachability condition?

Reachability. To check for reachability, after executing an augmentation trajectory τk, we verify
whether the final achieved pose matches the pose of the kth demonstration waypoint using propri-
oception, as described in section 3.3. Pseudocode describing how we check for reachability is also
provided in Algorithm 3. It is crucial to check for reachability because an augmentation trajectory
that does not meet this condition cannot be fused with the demonstration, as it cannot return to
the demonstration state. If the waypoint wζk is unreachable during data collection, we cannot auto-
matically determine how to reach wζk from wτkM , without collecting observations that do so during
self-supervised data collection. Consequently, we cannot automatically determine what actions to
take to return back to the demonstration from wτkM , as we can with valid augmentation trajectories.
Figure A.2 (a, left) shows an example where the reachability condition is not met due to environ-
mental dynamics, such as a key getting ”jammed” and failing to reach the target waypoint due to
collision and friction in the lock. A similar example where the reachability condition is met is shown
in Figure A.2 (a, right).

A.2.2 How do we check for the Environment Disturbance condition?

Environment Disturbance. To determine whether an environment disturbance occurred, we com-
pare the RGB image captured at the kth demonstration timestep with the RGB image captured at
the final timestep of the augmentation trajectory, as described in section 3.3. A detailed pseudocode
describing how we determine whether an environment disturbance occurred can be found in Algo-
rithm 5, and a visual example can be seen in Figure A.2 (b). The comparison between the two RGB
images relies on the similarity of their DINO features [28]. Specifically, we use a pre-trained DINO
ViT [28] to obtain the DINO features for different patches of each image similarly to [29]. By com-
puting the cosine similarity between the DINO features of each corresponding image patch in Iζk and
IτkM , we can calculate the average similarity between the two images [29]. If the similarity is below a
threshold θ (to see how we automatically determine θ please see section B.2.3), we assume the robot
has disturbed the environment, and data collection is stopped. Our experiments showed that DINO
ViT features are necessary because they are robust to lighting changes and noise in the RGB image.
Other methods we tried, such as template matching or computing the per-pixel Euclidean distance,
proved brittle and sensitive to lighting variations or noise in the captured images. Understanding
why checking for an environment disturbance is important is straightforward. Consider the rectan-
gular object shown in Figure A.2 (b), and assume the task is to learn how to pick up that object.
If the robot pushes the rectangular object, causing it to fall over during data collection, the image
observed after returning to the demonstration state will no longer match that state’s observation
from when the demonstration was provided. Consequently, from the point where the disturbance
occurred onward, we have no way of knowing how to reach any of the remaining demonstration
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(a) No Environment Disturbance (b) Small Environment Disturbance (c) Medium Environment Disturbance (d) Large Environment Disturbance

(e) Toy Screwdriver

Examples of DINO Features Cosine Similarities

Figure A.1: The cosine similarity computed using the DINO features for the screwdriver task under varying environment
disturbances.

states and as a result how to solve the task. This is because we only know how to solve a task by
learning how to follow the demonstration after returning to it. But if an environment disturbance has
occurred (e.g., the rectangular object has fallen), following the demonstration’s actions no longer
leads to task completion. Hence, if data collection continued, all future augmentation trajectories
would contain invalid observations and actions, as they would demonstrate behavior that does not
solve the task that the human demonstrated. This is why we stop data collection after detecting an
environment disturbance.

A.3 Additional Results on Environment Disturbances and DINO Features

We demonstrate in this section several examples of possible environment disturbances and how we
can detect them using the DINO features on the toy screwdriver used in our experiments. We use
the screwdriver as an example as during data collection for the ”Twist screw” task, data collection
was stopped due to an environment disturbance caused at the grasped screwdriver. Additionally,
disturbances caused in the grapsed objects are often the most subtle, and as such make for the most
interesting cases.

Figure A.1 (e) shows the screwdriver object (not grasped). All the other figures depict the screw-
driver as it appears in the view of the wrist camera when grasped by the robot. Figure A.1 (a) shows
a “Demonstration Image” and a “New Image” that depicts the DINO Cosine similarity (higher bet-
ter) when no environment disturbance has occurred, i.e., the grasp has not changed. The heatmap
demonstrates the similarity between each corresponding patch between the “Demonstration Image”
and the “New Image” (the cosine similarity reported is the mean of these). As shown, the cosine
similarity (0.961) is greater than our universal threshold θ of 0.94 (for more details please see exper-
iments section 4). The reason it is not a perfect 1.0 is due to noise and light changes as the photos
were captured at different moments in time. Figure A.1 (b), shows a detected environment distur-
bance based on the DINO features. As shown under the ”New Image” the screwdriver has moved
by a small amount in the gripper and the cosine similarity falls slightly below our threshold θ. Then,
Figure A.1 (c) shows a slightly bigger detected environment disturbance, and finally Figure A.1 (d)
shows a rather large environment disturbance. Generally, as shown in Figure A.1, the DINO features
are robust in detecting environment disturbances of different scales and as we move from smaller to
larger disturbances in the grasped screwdriver the cosine similarity also decreases, as expected.

A.4 MILES’ Policy

Training: To train our manipulation policy we leverage the dataset Dnew comprising the fused
augmentation trajectories with the demonstration as described in section 3.4. MILES’ policy π
comprises either (1) an end-to-end network trained with behavioral cloning (BC) or (2) an end-to-
end network trained with BC combined with demo replay, which is utilized when data collection
was interrupted due to a detected environment disturbance.
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Figure A.2: Reachability: Two examples of possible augmentation trajectories for a locking task are shown; an invalid
trajectory (left) that fails to reach the target demonstration waypoint due to collisions, friction, and potentially inevitable
systematic controller errors and a valid one (right) that successfully reaches the target waypoint. Environment Disturbance:
As the robot collects an augmentation trajectory, it perturbs the environment such that after returning to the demonstration’s
waypoint the live observation and the demonstrated one no longer match, indicating that data collection should stop.

A.4.1 How is our policy defined when No Environment Disturbance occurred during data
collection?

No Environment Disturbance. When no disturbance occurred our dataset Dnew contains augmen-
tation trajectories that can return to and then follow the demonstration from every state. In that
case, we leverage Dnew to train an end-to-end behavioral cloning policy π that comprises a single
neural network fψ , parameterized by ψ, that receives as input an RGB image captured from the
wrist camera and force-torque feedback to predict 6-DoF actions: fψ : RH×W×3 ×R6 → SE(3) as
well as an additional binary value indicating the gripper action (RH×W×3 refers to the RGB images
where H: height, W : width and R6 to measured forces and torques). The force-torque feedback
is captured directly using Franka Emika Panda’s joint force sensors. For our policy to generalize
spatially, no proprioception input is passed to fψ and all actions are predicted relative to the EE’s
frame. fψ consists of a ResNet-18 backbone [41] for processing RGB images, and a small MLP
embeds force feedback into a 100-dimensional space. The output of the force MLP and ResNet-18
are concatenated and fed into an LSTM [42] network for action prediction. The network is trained
using standard behavior cloning to maximize the likelihood of Dnew.

A.4.2 How is our policy defined when an Environment Disturbance occurred during data
collection?

Environment Disturbance. When self-supervised data collection was stopped due to an environ-
ment disturbance, our dataset Dnew contains augmentation trajectories that can return the robot to
any state from the initial demonstration state up to the demonstration state at timestep R, where
R < N (see section 3.2). In this scenario, if our policy consists only of fψ , then during task execu-
tion the robot would be able to solve the task only up to the Rth state, but not complete it. As such,
we define our policy π to consist of two components: (1) the first component is a neural network fψ
identical to the above scenario, but trained up to the Rth state and (2) the second component corre-
sponds simply to the sequence of the remaining demonstration actions from the Rth state onwards,
for which no self-supervised data was collected, i.e., ζremaining = {aζn}Nn=R.

A.4.3 How do we deploy MILES’ policy?

Deployment: Our LSTM-based policy closely follows the implementation of BC-RNN [43]. De-
ploying the policy is straightforward and depends on whether data collection was interrupted due to
an environment disturbance. If uninterrupted, then only the neural network fψ is used to complete
the task equivalently to policies trained using reinforcement learning or behavioral cloning.

If data collection was interrupted, first fψ is deployed to solve the task up to the Rth state in an
identical way as the scenario of ”no environment disturbance”. After the robot reaches the Rth state
then ζremaining is executed. We determine whether the closed-loop policy has completed the task
up to the Rth in a very simple way as described in section A.4.4.

During deployment we reset the hidden state of the LSTM at an interval equal to two times the
number of timesteps (i.e., waypoints) in the demonstration for which augmentation trajectories were
collected. For example, if for a task MILES collected augmentation trajectories for 40 demonstration
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waypoints before stopping due to an environment disturbance, then, during deployment the hidden
state of the LSTM is reset every 80 timesteps. We did not find the frequency of resetting the hidden
memory to have significant effects on the policy’s performance. We would like to note that the only
important observation we made was that the number of timesteps should not be very low (e.g., 5) as
then the robot would end up progressing towards completing a task very slowly.

Pseudocode describing MILES’ policy deployment can be found in Algorithm 8.

A.4.4 How do we determine when to switch from closed-loop control to demonstration
replay?

Switching from closed-loop to demonstration replay is straightforward. As the objects and the robot
can be at different poses during deployment from the ones during data collection, we cannot just use
the robot’s proprioception to know when the Rth state has been reached. Hence, we deploy fψ until
it predicts continuously the identity transformation, indicating no robot movement. Then, we switch
to demonstration replay, where we replay the rest of the demonstration ζremaining.

B More details on the Experimental Setup

B.1 Pose Estimation

In practice, as with most methods [3, 16, 17, 20], we naturally provide the demonstrations starting
near the task-relevant object to focus self-supervised data collection at the part of the task that is
the most important, that is the robot-object interaction part.As such, we need a way to ensure that
MILES can still solve any task regardless of how far the robot is from an object. An apparent solution
to this is to provide the demonstration starting from a pose far away from the object and deploy
MILES’ data collection. While this is possible – as MILES makes no assumptions or restrictions
on the length of the demonstration– it may be inconvenient. As such, inspired by [2, 18, 20] we
use a simple pose estimator at deployment to estimate the relative pose between the robot at the
initial state of the demonstration (for which MILES collected data) and the task-relevant object. As
we do not assume any 3D object models, we use the method deployed in [17] although any other
model-free pose estimator can be used. This allows us to first coarsely estimate the pose and move
near the task-relevant object from any robot starting pose before deploying MILES. Uncut videos
demonstrating this behavior can be found on our webpage: www.robot-learning.uk/miles.

B.2 MILES Data Collection Hyperparameters

B.2.1 How do we set the data collection range around each demonstration waypoint?

As discussed in our experiments section 4, we collect data in a range of 4cm and 4 degrees around
each demonstration waypoint. However, this range is not limiting and can be set to any desirable
range like any other robot learning method. In our case, we set this range to be the average pose
estimation error to reach the initial pose of the demonstration relative to the task-relevant object
using the pose estimation method described in section B.1 which we obtained based on [17].

B.2.2 How do we determine the number of augmentation trajectories to collect for each
demonstration waypoint?

For all of our experiments, we set the number of augmentation trajectories per demonstration way-
point, Z = 10. In our case, we set this arbitrarily, but as we showed in our method’s data collection
ablation in section 4.4 different tasks require different numbers of augmentation trajectories. As
such, we provide two guidelines for setting the value for Z. Firstly, high tolerance tasks, like the
”Open lid” task reported in our experiments usually require a small number of augmentation trajec-
tories. On the other hand, precise tasks, like the ”USB insertion” task reported in our experiments
require more augmentation trajectories. Secondly, as the data collection range around each demon-
stration waypoint increases, the number of augmentation trajectories collected should also increase
with an approximately linear relationship, i.e., if the range is doubled, then the number of augmenta-
tion trajectories should be doubled as well. We recommend as a starting point, for a data collection
range similar to our experimental setting of 4cm and 4 degrees, to collect 10 augmentation trajecto-
ries for precise, low-tolerance tasks, and 4 augmentation trajectories for high-tolerance tasks.
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. Task: Description DCT Task: Description DCT

.
Lock with

key
Insert a key into a lock and rotate 90

degrees to lock it. 24’ Twist
screw

Insert a toy screwdriver into a screw
and twist by 90◦. 22’

.
Insert USB

Insert a USB stick into a USB port
(< 1mm tolerance) 21’. Bread in

toaster
Put a plastic bread inside a toaster. 40’

.
Plug into
socket

Plug a UK plug (3-pin) to a socket. 37’ Open lid Lift the lid of a blue box. 31’

.

Insert
power
cable

Plug the power cable into the power
port of a PC. 28’

Table 3: Task descriptions of the 7 tasks used in our experiments. DCT stands for Data Collection Time and corresponds to
the time spent collecting self-supervised data.

B.2.3 How do we determine the Environment Disturbance threshold θ ?

We determined θ simply by spawning several random RLBench [38] tasks in CoppeliaSim and
running MILES. By setting up custom heuristics that determine environment resets in the simulation
we found that for the DINO model we use, a similarity of θ < 0.94 appeared to detect environment
disturbances across all tasks successfully. Consequently, we used that in our real-world experiments
too.

B.3 Task Descriptions

A detailed description of each task along with their Data Collection Times (DCT) can be found in
Table 3.

B.3.1 How long is each demonstration?

The demonstration lengths varied across each task. As follows, we list for each task the number of
demonstration waypoints comprising each human demonstration (each demonstration waypoint can
be interpreted as a timestep): Lock with key: 32, USB task: 20, Plug into socket: 40, Insert power
cable: 29, Twist screw: 47, Bread in Toaster: 70, Open lid: 80. All demonstrations were collected
using teleoperation. Note that the number of demonstration waypoints is not necessarily equal to
the number of waypoints for which MILES collected augmentation trajectories. This is because
environment disturbances may have caused the data collection to stop earlier.

B.3.2 For which tasks was an Environment Disturbance detected?

An environment disturbance was detected for the following tasks: Twist screw, Bread in
Toaster and Open lid. As such for these tasks the policies comprise a closed-loop and a
demonstration replay component.

We also note that for the lock with key task, we stopped data-collection ”half-way” through the 90
degrees twisting rotation for hardware safety. This is because the forces exerted on the robot as
it was collecting self-supervised data were too high. In this case, we treated this identically to an
environment disturbance. At deployment, the learned policy completes most of the task closed-loop,
apart from a small twisting motion done with demo replay, after the closed-loop policy converges to
predicting the identity transformation as discussed in section A.4.4. This is similar to adding force
limits to reinforcement learning algorithms and was done to protect our robotic hardware; however,
doing so is not a requirement.

B.4 Baselines

Here, we provide further implementation details on two of the baselines we used in our paper.

Pose Estimation + Demo Replay. For this baseline, we follow the same problem formulation as
in [17], but improve upon that baseline in two key ways: (1) the data on which it is trained on is the
same data collected for MILES, as such it contains only valid trajectories that cover a larger part of
the task space and (2) instead, of replaying recorded velocities, we also replayed the recorded forces
which is particularly important for the contact rich tasks. This baseline estimates and moves the
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Methods Insert Onto
Square Peg

Lightbulb
In

Pick Up
Cup Turn Tap Lamp On Mean

Demo Replay 0 0 5 5 0 2
Reset Free Residual RL 0 0 0 0 0 0
Reset Free FISH 0 0 0 0 20 4
Pose Estimation + Demo Replay 70 65 90 80 95 80
MILES 90 75 100 75 100 88

Table 4: Task success rates (%) of each method on RLBench.

robot to a pose relative to the object of interest as depicted in the first state in the demonstration and
replays the complete demonstration. We chose this baseline compared to alternatives, as it leverages
task-specific data allowing it to achieve very precise pose estimation.

Reset-Free FISH [3]. For Reset-Free FISH we use the implementation provided by the authors as
it can be found in: https://github.com/siddhanthaldar/FISH. We only changed the implementation
such that the policy always predicts 6-DOF actions instead of constraining the output to specific
DOFs, as doing so assumes access to prior task knowledge. To learn residual actions on top of the
demonstration we tested both using demo replay as the base policy, as well as VINN [44] but found
that demo replay led to better performance.

C Additional Experiments

C.1 Simulation Results

To aid other researchers in reproducing our results, we conducted additional simulation experiments
on the RLBench benchmark [38] on 5 tasks, specifically: 1) ’Insert Onto Square Peg’, 2) ’Lightbulb
In’, 3) ’Pick Up Cup’, 4) ’Turn Tap’ and 5) ’Lamp On’. We performed an identical evaluation to
our real-world experiments where we performed 20 evaluation trials for each method. Additionally,
we used the images captured only from the wrist camera in RLBench. During training we allowed
each method to collect the same amount of data and we did not perform any environment resets
during training/data collection for any methods. The results can be seen in Table 4. As shown,
MILES significantly outperforms the baselines, while the relative performance when comparing all
methods remained relatively unchanged compared to our real-world results.

Similarly to our real-world experiments, the reinforcement learning baselines obtained poor perfor-
mance for reasons in line with the ones discussed in our experiments section 4.1. Specifically, during
training we observed that for the tasks ‘Insert Onto Square Peg’ and ‘Lightbulb In’ a random gripper
action drops the grasped object during exploration and the policy never manages to grasp it again
during training without a reset in the given training time. For the ’Pick Up Cup’ task, the reinforce-
ment learning policy knocks the cup off the table during exploration, consequently never learning
something useful. For the ’Turn Tap’ task the RL policies never learned to properly grasp and rotate
the handle and for the ‘Lamp On’ task, only Reset Free FISH managed to learn a policy that obtains
20% success rate in the given training time. As discussed in our real-world experiments, if instead
we had allowed environment resets and more training time that would have resulted in significantly
higher success rates for the RL baselines, compared to their current performance.

D Further questions about MILES

D.1 Generalization Performance

Since MILES uses BC to train policies, existing generalization results for BC [9, 1] also apply to
MILES. For tasks that include demonstration replay following the closed-loop policy, MILES can
generalize to new objects by retrieving the replay trajectory of the most similar object in the existing
demonstrations, similar to prior work [19]. To test this, we tasked MILES with throwing markers
of different colors into differently shaped and colored bins, shown in Figure 4 (8). Trained on five
bins (marked green) and tested on two new bins (marked red), MILES achieved an 80% success
rate on the pink bin and 60% on the gray bin, over 10 trials each starting from poses where simple
demonstration replay would fail. The data collection time for this task was on average 34 minutes for
each bin and an environment disturbance was detected for each bin. To determine which remaining
actions to replay for the previously unseen bins, we selected the remaining actions from the bin in
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the training set whose RGB image in the demonstration has the highest similarity in terms of DINO
features with the bin during deployment, inspired by prior work [19]. Videos exhibiting MILES
generalization on the two test case bins can be found on our webpage: www.robot-learning.uk/miles.

D.2 Multi-stage Tasks

To evaluate MILES’ ability to solve multi-stage tasks, we tasked MILES with picking up the plastic
bread shown in Figure 4 (6) (as part of the ”Bread in Toaster” task) and inserting it into the toaster.
To achieve this we broke the task down into two stages: first, we provided a demonstration showing
how to pick up the bread and trained MILES. Then, we used the policy already trained on the
”Bread in Toaster” task to finish the task. To link the two stages together, first the policy to pick
up the bread is deployed. After, the execution ends, the robot returns to its default position. Then,
the pose estimation method described in section B.1 is deployed to approach the toaster, and then
the policy trained with MILES is deployed to insert the bread into the toaster. Videos exhibiting
MILES’ multi-stage task performance on picking up and inserting the bread into the toaster can be
found on our webpage: www.robot-learning.uk/miles.

D.3 Performance with distractors

We found that performing standard image augmentation techniques, including changing the bright-
ness, contrast, noise, cropping random image parts, etc. allowed MILES to be robust to distractor
objects, as shown in the videos provided on our webpage: robot-learning.uk/miles.

D.4 What if MILES stops data collection early due to a detected environment disturbance?

There is no requirement as to how early MILES may stop data collection due to an environment dis-
turbance, as long as it has collected sufficient augmentation trajectories for at least the first demon-
stration waypoint. During data collection, MILES can effectively learn a policy even if an environ-
ment disturbance occurs early. Unlike RL, MILES learns to solve the task closed-loop up to the
demonstration waypoint where the disturbance was detected, after which it replays the demonstra-
tion. This is because MILES collects data progressively for each demonstration waypoint, rather
than rolling out a policy all at once like RL. Consequently, during data collection, if a disturbance
occurs as early as (for example) near the 2nd waypoint, MILES will still know how to get to the 1st
waypoint during deployment, where it will replay the demonstration.

Overall, MILES can handle early environment resets during data collection. While as with the
majority of learning-based methods, the more the data the better the performance, as such the later an
environment disturbance occurs in the data collection process the better. However, MILES can still
learn a robust policy as long as sufficient data has been collected at least for the 1st demonstration
waypoint. This is typically trivial as most human demonstrations naturally begin by controlling the
robot in free-space far from the object of interest, before interacting with it.
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E Detailed Pseudocode

Algorithm 1: MILES Overview (Simplified)

Input: Single Task Demonstration: ζ = {(wζn, oζn, aζn)}Nn=1, Number of augmentation trajectories
per demonstration waypoint Z, environment disturbance threshold θ (Default: θ = 0.94)

1: D = {} // init empty dataset of augmentation trajectories
2: Reachable = True // init variable that tracks reachability
3: Disturbance = True // init variable that tracks environment

disturbances
4: R = 1 // init variable that stores the timestep when

self-supervised data collection stops

5: Move robot to the initial demonstration pose wζ1
6: for iteration k = 1 to N do
7: j = 1 // init variable that tracks the number of collected

augmentation trajectories per demo waypoint
8: while j ≤ Z do
9: τk ←SampleTrajectory(wζk) (Alg. 2)

10: Reachable←CheckReachability(wζk) (Alg. 3)
11: if Reachable is False then
12: ReturnToDemoWaypoint(k, ζ) (Alg. 4)
13: Break // exit while loop
14: end if
15: IτkM ← Capture RGB wrist-cam image // M is the Mth (final) timestep

of τk
16: Disturbance← CheckEnvDisturbance(oζk, IτkM , θ) (Alg. 5)
17: if Disturbance is True then
18: R = k // store timestep when data collection stops
19: Break // exit while loop
20: end if
21: D = D ∪ τk // add augmentation trajectory to dataset
22: j = j + 1
23: end while
24: if Disturbance is True then
25: Break // exit for loop
26: end if
27: Proceed to the next demonstration state by performing action aζk // follow the

demonstration’s progression
28: end for
29: Dnew ←FuseAugmentationsWithDemo(D, R, ζ)(Alg. 6)
30: π ←TrainPolicy(Dnew, R, ζ)(Alg. 7)
31: Deploy(π, R, ζ)(Alg. 8)
Output: π
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Algorithm 2: SampleTrajectory

Input: Demonstration waypoint wζk
1: τk = {} // init empty augmentation trajectory
2: Sample initial pose wτk1 randomly and move there in a straight

line. (Optional: record trajectory poses) // Note that
the straight line trajectory may altered due
to the collisions and the robot’s compliance
with its environment.

3: Move back to wζk // either by tracking the
recorded trajectory poses backward or by
re-planning a new, straight-line trajectory
(equal performance).

4: m = 1 // observations, actions index

5: while moving to wζk do
6: τk = τk ∪ (wτkm , oτkm , aτkm ) // add waypoints,

observations and actions to augmentation
trajectory; actions are automatically
inferred as the relative EE poses between
consecutive timesteps.

7: (oτkm comprises wrist cam RGB images + force-torque
readings)

8: end while
Output: Return augmentation trajectory τk

Algorithm 3: CheckReachability

Input: Demonstration waypoint wζk
1: Reachable← True // init reachability variable
2: wτkM ← EE pose // achieved after executing the

augmentation trajectory (comprising M
timesteps); read from proprioception

3: Reachable = (wτkM == wζk) // check whether poses
are equal (within the controller’s feasible
precision)

Output: Reachable

Algorithm 4: ReturnToDemoWaypoint
Input: Demonstration timestep k, single demonstration ζ

1: Move to initial demonstration waypoint wζ1 ∈ ζ
// replay demonstration up to the kth timestep

2: for iteration t = 1 to t = k do
3: Perform action aζt ∈ ζ
4: end for

Algorithm 5: CheckEnvDisturbance

Input: Demonstration observation oζk, captured live image IτkM ,
similarity threshold θ

1: Disturbance← False // init environment
disturbance variable

2: Iζk ∈ o
ζ
k // retrieve RGB image Iζk from the

demonstration’s observations

3: [f1
Iζ
k

, f2
Iζ
k

, ...]←DINO-ViT(Iζk ) // compute DINO-ViT

features [29, 28] for each image patch fx
I
ζ
k

for

the demo waypoint image

4: [f1
I
τk
M

, f2
I
τk
M

, ...]←DINO-ViT(IτkM ) // compute DINO-ViT

features [29, 28] for each image patch fx
I
τk
M

from the current live environment image
(captured after executing the augmentation
trajectory).

5: sim =AvgCosineSimilarity([f1
Iζ
k

, f2
Iζ
k

, ...], [f1
I
τk
M

, f2
I
τk
M

, ...])
6: if sim < θ then
7: Disturbance← True
8: end if

Output: Disturbance

Algorithm 6: FuseAugmentationsWithDemo
Input: Dataset of augmentation trajectories D, final data collection

time step R, single demonstration ζ
1: Dnew = {}// init empty dataset to store fused

trajectories
2: for τk in D do
3: ζsegment = {(wζn, oζn, aζn)}Rn=k}︸ ︷︷ ︸

demonstration segment from kth
demo waypoint toRth

∈ ζ

4: τknew := τk ∪ ζsegment
5: Dnew = Dnew ∪ τknew

6: end for
Output: Dnew

Algorithm 7: TrainPolicy
Input: Dataset of augmentation trajectories + demo Dnew, final data

collection timestep R, single demonstration ζ
1: Train neural network fψ on Dnew using standard behavioral

cloning// Discard proprioception waypoints (w
τk
m and

wζ
n), only observation inputs are used for fψ

2: if R < length(ζ) then
3: π = {fψ, {aζn}Nn=R} // policy consists of an

end-to-end neural net + demo replay (if an
environment disturbance stopped data collection
before the last demo waypoint)

4: else
5: π = {fψ} // policy consists only of an

end-to-end neural net
6: end if

Output: π

Algorithm 8: Deploy
Input: Policy π, final data collection timestep R, single demonstration

ζ
1: Capture observation o // comprising RGB wrist cam

image + force-torque feedback
2: Action a = fψ(o)
3: Perform action a
4: while a is not the identity transformation do
5: Capture observation o
6: Action a = fψ(o)
7: Perform action a
8: end while

// if an environment disturbance stopped data
collection before the last demo waypoint

9: if R < length(ζ) then
10: Replay remaining demo {aζn}Nn=R
11: end if
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