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Abstract

Large Vision-Language Models (LVLMs) have001
demonstrated impressive multimodal abilities002
but remain prone to multilingual object hallu-003
cination, with a higher likelihood of generat-004
ing responses inconsistent with the visual in-005
put when utilizing queries in non-English lan-006
guages compared to English. Most existing007
approaches to address these rely on pretraining008
or fine-tuning, which are resource-intensive. In009
this paper, inspired by observing the disparities010
in cross-modal attention patterns across lan-011
guages, we propose Cross-Lingual Attention012
Intervention for Mitigating Multilingual Ob-013
ject Hallucination (CLAIM) in LVLMs, a014
novel training-free method by aligning atten-015
tion patterns. CLAIM first identifies language-016
specific cross-modal attention heads, then es-017
timates language shift vectors from English to018
the target language, and finally intervenes in019
the attention outputs during inference to facili-020
tate cross-lingual visual perception capability021
alignment. Extensive experiments demonstrate022
that CLAIM achieves an average improvement023
of 13.56% (up to 30% in Spanish) on the POPE024
and 21.75% on the hallucination subsets of025
the MME benchmark across various languages.026
Further analysis reveals that multilingual atten-027
tion divergence is most prominent in interme-028
diate layers, highlighting their critical role in029
multilingual scenarios.030

1 Introduction031

Large Vision-Language Models (LVLMs) have032

made significant strides in bridging visual and tex-033

tual content (Bai et al., 2023b; Liu et al., 2024b; Ye034

et al., 2023), leading to notable developments in nu-035

merous downstream tasks (Shah et al., 2023; Zhu036

et al., 2023; Zhang et al., 2024). However, LVLMs037

still suffer from serious object hallucination, i.e.,038

generating responses that are inconsistent with the039

visual input (S. et al., 2023; Z. et al., 2024; Huang040

et al., 2023), such as misidentifying the presence041

Q: Is there a bird in the image?
A: Yes

Q: 图像中有鸟吗？
A: 不 English queryChinese query

Figure 1: A comparison of attention weights map be-
tween Chinese and English query. In English query,
LVLM correctly focuses on the key object "bird" in the
image, leading to an accurate response. However, in
Chinese query, the model exhibits hallucination.

of objects in an image or providing inaccurate de- 042

scriptions of their attributes. This issue becomes 043

even more severe when processing non-English 044

queries (Schneider and Sitaram, 2024; Qu et al., 045

2024; Romero et al., 2024), a challenge referred to 046

as multilingual object hallucination in LVLMs. 047

Rencent research (Qu et al., 2024) focus on miti- 048

gating multilingual object hallucination in LVLMs 049

via adopting Supervised Fine-Tuning (SFT) (Liu 050

et al., 2023) and Direct Optimization Preference 051

(DPO) (Zhao et al., 2023). However, these tech- 052

nologies rely on large-scale annotated image-text 053

datasets, which are extremely expensive, time- 054

consuming, and computation-consuming for non- 055

English especially low-resource languages. There- 056

fore, it is urgent to develop a training-free method 057

for mitigating multilingual object hallucination, 058

with further understanding of the behavior discrep- 059

ancy of LVLMs in multilingual scenarios. 060

Inspired by prior research (Liu et al., 2025; Bi 061

et al., 2024) highlighting the crucial role of at- 062

tention in bridging textual and visual information, 063

we discover the significant behavioral difference 064

in attention patterns of LVLMs across languages. 065

Specifically, as illustrated in Figure 1, the model 066

pays attention to distinct areas of the image when 067

processing queries in different languages. This find- 068

ing motivates us to guide the inference process of 069
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LVLMs for non-English queries by leveraging the070

cross-modal attention patterns in English scenarios,071

as LVLMs are typically well-trained on large En-072

glish image-text data and perform best in English.073

To this end, we propose Cross-Lingual074

Attention Intervention for Mitigating Multilin-075

gual Object Hallucination (CLAIM) in LVLMs,076

a training-free, plug-and-play method that is appli-077

cable during the inference stage. We first identify078

language-specific cross-modal attention heads, i.e.,079

the attention heads behaving quite differently for080

visual tokens in the same meaning queries across081

various languages. Next, we estimate language082

shift vectors for the caption queries of images from083

English to the target language. During the infer-084

ence stage, we apply shift vectors to intervene in085

attention outputs of these heads to align with En-086

glish visual perception capabilities, reducing the087

likelihood of multilingual object hallucination.088

Experiments conducted on LLaVA-1.5 (Liu089

et al., 2024b) and Qwen-VL-Chat (Bai et al.,090

2023b) demonstrate that CLAIM results in an aver-091

age improvement of 13.56% on the POPE (Li et al.,092

2023) benchmark and 21.75% on the hallucination093

subsets of the MME (Fu et al., 2023). Remarkably,094

POPE in Spanish achieves a significant improve-095

ment of up to 30% on LLaVA-1.5.096

Our contributions are summarized as follows:097

• We reveal significant cross-modal attention098

divergence across languages in LVLMs.099

• We propose CLAIM, a novel inference-time100

method that aligns non-English attention pat-101

terns with English, mitigating multilingual ob-102

ject hallucination without additional training.103

• We analyze LVLMs’ attention patterns in mul-104

tilingual scenarios, highlighting the role of105

intermediate layers in cross-modal inference,106

which provides insights into the understand-107

ing of multilingual LVLMs.108

2 Related Work109

Multilingual Large Vision-Language Models110

Leveraging the advanced capabilities of Large Lan-111

guage Models (LLMs) (Touvron et al., 2023a; Ope-112

nAI, 2023; Chiang et al., 2023), Large Vision-113

Language Models (LVLMs) (Yin et al., 2023; Wu114

et al., 2023) integrate visual encoders (Dosovitskiy,115

2020; Radford et al., 2021) and feature projectors,116

allowing them to process and generate content from117

both visual and textual inputs. Built on the strong118

multilingual language model LLaMA-2 (Touvron119

et al., 2023b), which is trained on a diverse mul- 120

tilingual corpus, LLaVA-1.5 (Liu et al., 2024b) is 121

inherently a multilingual LVLM. Qwen-VL-Chat 122

(Bai et al., 2023b) is another multilingual LVLM 123

with an English-centric design, trained on a larger 124

corpus of Chinese-language data and built upon 125

Qwen (Bai et al., 2023a). Existing research (Geigle 126

et al., 2023; Andersland, 2024; Maaz et al., 2024) 127

employ training-based approaches to enhance the 128

multilingual capabilities of LVLMs. Despite sig- 129

nificant progress, LVLMs still struggle with mul- 130

tilingual object hallucination, limiting their global 131

applicability in diverse countries and languages. 132

Hallucination in LVLMs LVLMs often generate 133

text outputs that are inconsistent with the visual in- 134

put, a issue commonly referred to as the hallucina- 135

tion phenomenon. To mitigate hallucination, some 136

methods focusing on the training phase utilize in- 137

struction (Liu et al., 2023), reinforcement learning 138

with human/AI feedback (Yu et al., 2024), or model 139

structure enhancement (Chen et al., 2024a). An- 140

other line of methods (Leng et al., 2024; Chen et al., 141

2024b; Zhong et al., 2024; Huang et al., 2024) re- 142

duce the likelihood of hallucination by performing 143

conservative decoding on the original inputs and 144

the inputs with disturbed contents. However, the 145

above approaches proposed for mitigating halluci- 146

nation only focus on their effectiveness in English. 147

MHR (Qu et al., 2024) first attempts to mitigate 148

multilingual object hallucination by SFT and DPO. 149

In this paper, we propose a novel method for mit- 150

igating multilingual object hallucination without 151

datasets construction and training. 152

3 Methodology 153

In this section, we first introduce the overall process 154

of CLAIM in Figure 2, followed by the preliminary 155

for the attention mechanism of LVLMs. Then, we 156

describe the three parts of CLAIM in detail. 157

3.1 Preliminary 158

Modern LVLMs (Bai et al., 2023b; Liu et al., 159

2024b) typically comprise three key components: a 160

visual encoder, a feature projector, and a language 161

decoder. Specifically, the visual encoder first trans- 162

forms the input visual image into visual features. 163

The feature projector then maps these features to 164

the input space of the language decoder, producing 165

the visual embeddings P = {pi}ni=0, where pi rep- 166

resents the visual embedding corresponding to the 167

i-th image patch, and n denotes the total number of 168
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What is it in the image? 

English Caption Query

图像中是什么？

Non-English Caption Query

MHA
MLP

Transformer Layer × L

Outputs of 
Language-Specific 

Cross-Modal 
Attention Heads

EnN-En

图像中有摩托车吗？

MHA MLP

Transformer Layer × L

不

Non-English Query

是

Identification

MHA

MLP

LVLM

Estimation

Shift

Intervention

LVLM

LVLM
Image Dataset

Transformer Layer × L

LVLM

Figure 2: Overview of our proposed CLAIM method. A block of MHA in the figure represents a attention head.
CLAIM intervene in identified language-specific cross-modal attention heads using estimated language shift vectors.
(1) Identification of Language-Specific Cross-Modal Attention Heads §3.2: We train probes to identify the
language-specific cross-modal attention heads, which exhibit significantly different behavior across languages
associated with visual perception. (2) Estimation of Language Shift Vectors §3.3: We estimate the language
shift vectors in attention outputs from English to the target non-English language for identical images queried with
captions. (3) Intervention during Inference §3.4: During inference, we apply language shift vectors to intervene
in the language-specific cross-modal attention heads for mitigating multilingual object hallucination.

patches. Similarly, the textual input is mapped to169

textual embeddings T = {ti}mi=0, where ti corre-170

sponds to the i-th textual token, and m represents171

the number of text tokens. The visual and textual172

embeddings are then concatenated to form the input173

embeddings X = [P ,T ] for the language decoder.174

During the forward pass of the language decoder,175

the input embeddings X serve as the hidden states176

for the first self-attention layer (Vaswani, 2017).177

The h-th attention head in the l-th self-attention178

layer applies linear transformations to project the179

hidden states into queries Ql
h ∈ Re×d, keys K l

h ∈180

Re×d, and values V l
h ∈ Re×d. Here, e = n+m and181

d denotes the head-specific hidden dimension. The182

attention scores Al
h ∈ Re×e are then calculated183

based on Ql
h and K l

h as follows:184

Ãl
h = softmax(Al

h +M),Al
h =

Ql
hK

l
h
T

√
d

, (1)185

M [i, j] =

{
0 if j ≤ i

−∞ if j > i
(2)186

where M is the causal mask matrix. The attention187

weights Ãl
h estimate the relevance of each token,188

which are used to reweight the values V l
h from each189

token, producing the attention outputs Ol
h ∈ Re×d,190

Ol
h = Ãl

hV
l
h . (3)191

At each layer, the hidden states pass through multi-192

head attention (MHA), which comprises H inde-193

pendent attention heads, each performing sepa- 194

rate linear transformations. Specifically, the MHA 195

mechanism can be formulated as: 196

X l+1 = X l +

H∑
h=1

Ol
hW

l
h, (4) 197

where W l
h ∈ Rd×Hd maps d-dimensional attention 198

outputs of heads into hidden state representations, 199

which are then fed into a standard multilayer per- 200

ceptron (MLP) for further processing. Finally, the 201

hidden state of the last token is decoded into a 202

next-token prediction distribution. 203

3.2 Identification of Language-Specific 204

Cross-Modal Attention Heads 205

Since LVLMs generate tokens in an auto-regressive 206

manner, our method focuses on the attention ma- 207

trices of the last input token, Al
h[e], which aggre- 208

gates the most comprehensive visual and textual 209

information. We mask Al
h[e] to exclude attention 210

toward all textual tokens, allowing us to identify 211

the language-specific cross-modal attention heads, 212

which are crucial for visual perception and under- 213

standing capabilities in non-English queries. 214

M̂ [i, j] =

{
0 if j ≤ i

−∞ if j > i or (i = e and j > n)

(5)

215

Ôl
h = softmax(Al

h + M̂)V l
h . (6) 216
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For each image Pi, we construct caption queries217

in both English and the target non-English lan-218

guage. A caption query refers to a request where219

the goal is to generate a textual description (a cap-220

tion) for a given image which designed to stim-221

ulate LVLMs’ visual perception capabilities and222

contributes to mitigating multilingual object hallu-223

cination. The English query, Ten, is “What is it in224

the image?”, while Ttgt is its translation into the225

target language. Then, both queries are fed into the226

model along with the image for the standard infer-227

ence process, deriving xi ∈
{
Ôen,l

i,h [e], Ôtgt,l
i,h [e]

}
.228

Probe (Li et al., 2024) f l
h
∗ is a binary classifier,229

trained to predict language labels based on xi. The230

language labels yi ∈ {1,−1} corresponds to En-231

glish and the target language respectively. We train232

probes using B samples for each attention head233

H l
h. Finally, we evaluate probes using test samples,234

identifying language-specific cross-modal attention235

heads for Top-K classification accuracy. The for-236

mulas are summarized as:237

f l
h
∗
= argmin

f l
h

B∑
i=1

L
(
f l
h (xi) , yi

)
, (7)238

Hs = {H l
h | H l

h ∈ TopK(Acc(f l
h
∗
))}, (8)239

where L is the loss function of probes and Hs is240

the set of language-specific cross-modal attention241

heads, K denoted as the number of selected heads.242

3.3 Estimation of Language Shift Vectors243

Given the sets {(Ten, Pi)}Bi=1 and {(Ttgt, Pi)}Bi=1,244

we derive {Oen,l
i,h }Bi=1 and {Otgt,l

i,h }Bi=1 respectively245

through the standard inference process of the246

model, estimating the language shift vectors Sl
h:247

Sl
h =

1

B

B∑
i=1

(
Oen,l

i,h [ei]−Otgt,l
i,h [ei]

)
. (9)248

The shifts estimate the attention disparities be-249

tween English and the target language for visual250

perception alignment. Notably, we do not use251

Ôen,l
i,h , Ôtgt,l

i,h to estimate language shift vectors as252

these matrices are not directly derived from the253

standard inference process. Instead, in order to254

preserve the original representation space of the255

model, we opt to utilize Oen,l
i,h and Otgt,l

i,h provid-256

ing more reliable shifts. As the visual and textual257

representations in Ol
h are not orthogonal, the lan-258

guage shift vectors inherently capture multimodal259

information understanding which aids in mitigating260

multilingual object hallucination.261

3.4 Intervention during Inference 262

Finally, we apply language shift vectors to inter- 263

vene in language-specific cross-modal attention 264

heads during inference in non-English queries: 265

X l+1 = X l +

H∑
h=1

(Ol
h + IlhαSl

h)W
l
h. (10) 266

Ilh is an indicator function, which is 1 if H l
h ∈ Hs 267

and 0 otherwise, and α denotes the intensity of 268

the intervention. After intervention, LVLMs lever- 269

age their strongest English visual perception profi- 270

ciency even when processing non-English queries. 271

Since the intervention are pre-computed, CLAIM 272

hardly incurs additional latency during the infer- 273

ence stage. We estimate the inference speed and 274

discuss the results in Appendix D. 275

4 Experiment 276

4.1 Datasets 277

POPE POPE (Li et al., 2023) is designed to eval- 278

uate object hallucination in the VQA paradigm. It 279

queries LVLMs about the presence of specific ob- 280

jects in a given image while maintaining a balanced 281

1:1 ratio between existent and non-existent objects. 282

The benchmark employs three distinct sampling 283

strategies for negative samples - random, popular, 284

adversarial - with their difficulty levels increasing 285

in that order. POPE integrates data from three ma- 286

jor repositories: MSCOCO (Lin et al., 2014), A- 287

OKVQA (Schwenk et al., 2022), and GQA (Hud- 288

son and Manning, 2019). Evaluation is conducted 289

using accuracy as the primary metric. As the origi- 290

nal POPE benchmark is available only in English, 291

we translating all queries into multiple languages 292

using Google Translate and meticulously refine the 293

translation results to maintain superior benchmark 294

quality. Since the text is fairly simple, we directly 295

use Google Translate and find it feasible to verify 296

the translation quality, as detailed in Appendix B. 297

MME The MME dataset (Fu et al., 2023) serves 298

as a comprehensive benchmark for evaluating 299

LVLMs, including 14 subtasks designed to as- 300

sess both the perceptual and cognitive abilities 301

of LVLMs. Performance is measured based on 302

the sum of accuracy scores across individual ques- 303

tions and images. Following Leng et al. (2024), 304

in addition to adapting the full dataset, we focus 305

specifically on the existence and count subsets for 306

object-level hallucination evaluation, as well as the 307
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Dataset Setup Method LLaVA-1.5 Qwen-VL-Chat

En Zh Es Ru Pt Bg Avg. En Zh Es Ru Hi De Avg.

COCO

Random
Baseline 88.50 81.00 63.03 72.33 78.97 72.23 73.51 86.63 84.57 68.13 76.83 56.97 77.53 72.81
VCD - 81.47 67.40 73.33 78.07 72.47 74.55 - 84.70 72.17 75.37 48.37 78.27 71.78
Ours - 86.50 87.33 87.50 85.40 80.50 85.45 - 88.03 86.93 82.60 67.57 88.07 82.64

Popular
Baseline 87.43 83.07 62.93 69.20 82.03 71.17 73.68 85.67 83.40 68.03 75.73 62.20 77.20 73.31
VCD - 83.20 67.20 70.17 80.10 69.47 74.03 - 82.70 72.70 74.20 57.40 76.70 72.74
Ours - 88.00 87.53 84.03 86.13 80.07 85.15 - 85.47 85.90 80.63 69.23 86.43 81.53

Adversarial
Baseline 85.20 73.40 62.87 66.07 73.70 65.93 68.39 83.90 80.87 67.53 72.80 63.10 75.90 72.04
VCD - 74.27 67.30 66.47 73.63 66.33 69.60 - 79.40 71.97 70.83 54.73 75.03 70.39
Ours - 77.67 83.27 79.43 79.67 74.57 78.92 - 82.33 80.70 77.53 69.70 81.50 78.35

OKVQA

Random
Baseline 91.00 76.13 63.40 70.30 75.03 69.23 70.82 88.47 85.10 67.70 74.63 59.53 75.17 72.43
VCD - 77.93 68.17 72.17 75.67 70.33 72.85 - 84.30 72.23 73.67 49.07 75.33 70.92
Ours - 86.80 85.97 85.63 83.87 80.63 84.58 - 88.13 86.03 83.47 68.83 86.13 82.52

Popular
Baseline 86.97 74.50 63.27 69.40 77.03 67.73 70.39 88.70 85.60 67.90 75.43 58.87 75.27 72.61
VCD - 77.57 67.10 68.40 77.03 68.20 71.66 - 84.17 71.57 73.30 52.40 75.63 71.41
Ours - 85.00 83.40 81.87 84.27 77.97 82.50 - 88.10 85.70 83.90 68.50 86.03 82.45

Adversarial
Baseline 79.57 64.40 62.37 63.93 67.97 63.03 64.34 82.40 79.97 66.80 72.50 60.17 72.30 70.35
VCD - 68.97 65.17 63.90 68.67 64.07 66.16 - 78.77 69.00 69.63 50.80 71.90 68.02
Ours - 77.70 75.40 76.17 75.67 71.97 75.38 - 81.10 77.20 78.73 67.73 78.87 76.73

GQA

Random
Baseline 89.47 77.03 63.83 70.23 74.87 68.07 70.81 87.23 82.53 73.03 74.00 65.10 74.30 73.95
VCD - 78.00 68.33 71.47 73.63 70.20 72.33 - 83.63 76.10 73.43 55.50 80.20 73.77
Ours - 84.27 85.13 83.57 82.53 82.67 83.63 - 85.17 79.93 81.90 62.03 80.40 77.89

Popular
Baseline 83.90 69.60 64.03 64.53 71.53 63.40 66.62 85.80 81.90 72.17 75.07 59.20 70.40 71.93
VCD - 73.60 67.50 65.23 71.87 66.20 68.88 - 82.20 73.73 74.17 54.70 76.87 72.33
Ours - 81.57 78.50 77.93 79.60 80.57 79.63 - 84.43 80.60 82.60 61.30 78.07 77.40

Adversarial
Baseline 81.17 63.17 63.30 64.10 67.90 62.10 64.11 82.63 78.97 69.73 73.07 61.73 71.63 71.52
VCD - 67.33 66.97 63.87 67.83 63.37 65.87 - 79.57 73.47 71.83 54.97 76.17 71.20
Ours - 77.57 75.93 76.27 75.23 76.47 76.29 - 79.97 76.77 79.53 62.47 77.63 75.27

MME

Existence
Baseline 190.0 175.0 130.0 145.0 155.0 125.0 146.0 185.0 190.0 135.0 140.0 106.7 195.0 153.3
VCD - 180.0 130.0 145.0 150.0 128.3 146.7 - 185.0 155.0 155.0 78.30 195.0 153.7
Ours - 195.0 175.0 185.0 175.0 180.0 182.0 - 190.0 155.0 185.0 128.3 195.0 170.7

Count
Baseline 155.0 70.00 55.00 58.30 80.00 85.00 69.67 150.0 130.0 143.3 113.3 60.00 136.7 116.7
VCD - 73.30 73.30 53.30 61.70 105.0 73.33 - 140.0 131.7 100.0 80.00 128.3 116.0
Ours - 125.0 130.0 110.0 130.0 135.0 126.0 - 148.3 153.3 120.0 111.7 137.0 134.0

Color
Baseline 165.0 80.00 135.0 75.00 110.0 80.00 96.00 180.0 170.0 150.0 153.3 103.3 165.0 148.3
VCD - 95.00 145.0 85.00 130.0 88.30 108.7 - 150.0 165.0 146.7 93.30 160.0 143.7
Ours - 120.0 155.0 125.0 150.0 108.3 131.7 - 170.0 165.0 158.3 90.00 165.0 149.7

Position
Baseline 118.3 53.30 63.30 55.00 50.00 46.70 53.67 131.7 63.30 120.0 93.30 45.00 105.0 85.33
VCD - 48.30 93.00 60.00 51.70 56.70 61.93 - 78.30 101.7 101.7 43.30 93.30 83.67
Ours - 66.70 78.30 85.00 86.70 58.30 75.00 - 63.30 116.7 103.3 55.00 106.0 88.86

Total Scores
Baseline 628.3 378.3 383.3 333.3 395.0 336.7 365.3 646.7 553.3 548.3 500.0 315.0 601.7 503.7
VCD - 396.7 441.3 343.3 393.3 378.3 390.6 - 553.3 556.7 503.3 295.0 576.7 497.0
Ours - 506.7 538.3 505.0 541.7 481.7 514.7 - 571.7 590.0 566.6 385.0 603.0 543.3

Table 1: Main results on POPE from COCO, OKVQA, GQA and the hallucination subsets of MME.

Artwork Celebrity Count Color Position OCR Landmark Scene Existence Posters Code Numerical Text Common 
Reasoning Calculation Translation  Sense

Reasoning

Total 
Average

175
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75
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25
0

S
co
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s
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Ours

Perception Recognition

Figure 3: Average scores for LLaVA-1.5 across five languages on the MME full dataset.

5



 

 

 

9 

198 199 200 201 202 190 191 192 193 214 215 216 217 238 239 240 241 335 336 337 338 339 620 621 622
Tokens Index

La
ye

rs

13

17

21

25

Vison Text

图片里有一辆车吗？

Figure 4: Logit lens observation for interpreting LLaVA-1.5 in multilingual scenarios. The depth of block color for
the i-th token at layer l indicates the magnitude of its contribution to the logits of the final predicted token. The
color represents the corresponding tokens in image or text. The query means "Is there a car in the image?".

position and color subsets for attribute-level assess-308

ment. Similar to POPE, we translate MME into309

seven languages using Google Translate and cor-310

rect the mistakes by human check.311

4.2 Models and Implementation Details312

Following prior research, we adopt the widely used313

LLaVA-1.5-7b (Liu et al., 2024b) and Qwen-VL-314

Chat (Bai et al., 2023b) as our baseline LVLMs.315

More LVLM results can be found in Appendix C.316

Since no existing training-free methods tailored317

to mitigating multilingual object hallucination, we318

employ the widely used method, VCD (Leng et al.,319

2024), as a strong baseline for comparison. We320

sample 1,000 images from the COCO-2017 train-321

ing dataset to complete identification and estima-322

tion, discussing the impact of training set size in323

Appendix F. To determine optimal hyperparameter324

values for α (intervention intensity) and K (the325

number of heads involved in the intervention), we326

employ a sequential optimization approach. Addi-327

tional details are provided in Appendix A.328

4.3 Main Results329

Results on POPE. (1) CLAIM effectively mit-330

igates object-level hallucination by aligning the331

strong visual perception capability used for process-332

ing English queries with that used for processing333

non-English queries. As shown in Table 1, the334

intervention achieves an average improvement of335

17.5% over the baseline on LLaVA-1.5 and 9.8% on336

Qwen-VL-Chat across various languages and set-337

tings. (2) CLAIM enhances performance across338

both low- and high-resource non-English lan-339

guages. This improvement can be attributed to its340

robust ability to facilitate cross-lingual visual per-341

ception capability alignment almost regardless of342

the language’s resource availability. (3) The in-343

tervention yields improvements across datasets344

with different distributions, suggesting that the 345

intervention represents a generalizable direction to 346

mitigating multilingual object hallucination rather 347

than merely tailored to a specific dataset. 348

Results on MME. This subset extends beyond 349

POPE’s scope, encompassing both object-level and 350

attribute-level hallucinations (1) CLAIM effec- 351

tively reduces both object-level and attribute- 352

level hallucination. As shown in Table 1, CLAIM 353

achieves an average improvement of 40.9% on 354

LLaVA-1.5 and 7.9% on Qwen-VL-Chat over the 355

baseline across various languages, outperforming 356

VCD. Specifically, CLAIM not only mitigates 357

object-level hallucination, as evidenced by the re- 358

sults on the existence and count subsets, but also 359

mitigates attribute-level hallucination, as demon- 360

strated by the color and position subsets. Detailed 361

results can be found in Appendix E. (2) CLAIM 362

could generally facilitate cross-lingual visual 363

perception capability alignment by intervening 364

the attention patterns, enabing LVLMs to transfer 365

their English proficiency across various tasks in 366

multilingual queries. Illustrated in Figure 3, the in- 367

tervention significantly enhances perception-based 368

tasks and generalizes well to cognitive reasoning 369

tasks, as strong image perception serves as the foun- 370

dation for cognitive processing. Meanwhile, our 371

method primarily activates attention heads associ- 372

ated with perception, which could unintentionally 373

affect the reasoning pathways of LVLMs. 374

5 Analysis and Discussion 375

5.1 Multilingual Inference in LVLMs 376

In order to better illustrate the mechanism be- 377

hind CLAIM and improve the interpretability of 378

LVLMs in multilingual scenarios, by leveraging 379

the logit lens (Nostalgebraist, 2020) method, which 380
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Setup Method LLaVA-1.5 Qwen-VL-Chat

Zh Es Ru Pt Bg Avg. Zh Es Ru Hi De Avg.

Random

Baseline 81.00 63.03 72.33 78.97 72.23 73.51 84.57 68.13 76.83 56.97 77.53 72.81
Mono-Shift 86.50 86.70 87.40 84.50 76.77 84.37 88.03 74.87 80.67 67.27 83.03 78.77
Multi-Shift 85.80 87.00 87.87 83.60 79.80 84.81 86.70 86.40 81.37 63.30 87.97 81.15
Specific-Shift 86.50 87.33 87.50 85.40 80.50 85.45 88.03 86.93 82.60 67.57 88.07 82.64

Popular

Baseline 83.07 62.93 69.20 82.03 71.17 73.68 83.40 68.03 75.73 62.20 77.20 73.31
Mono-Shift 88.00 86.90 83.00 85.30 79.10 84.46 85.47 74.77 78.80 68.07 81.73 77.77
Multi-Shift 87.67 87.23 83.33 86.17 79.13 84.71 84.30 85.03 80.37 68.93 85.43 80.81
Specific-Shift 88.00 87.53 84.03 86.13 80.07 85.15 85.47 85.90 80.63 69.23 86.43 81.53

Adversarial

Baseline 73.40 62.87 66.07 73.70 65.93 68.39 80.87 67.53 72.80 63.10 75.90 72.01
Mono-Shift 77.67 82.63 78.13 78.33 72.60 77.87 82.33 73.83 76.00 69.30 79.57 76.21
Multi-Shift 76.70 82.13 79.53 78.10 74.83 78.66 81.70 80.50 76.57 69.97 81.17 77.98
Specific-Shift 77.67 83.27 79.43 79.67 74.57 78.92 82.33 80.70 77.53 69.70 81.50 78.35

Table 2: Evaluation results of different intervention estimation approaches on POPE-COCO. Green means the best
perfomance while gray means the second-best results.

aims to decode the hidden states of the language de-381

coder at various layers, we investigate the internal382

inference mechanism of LVLMs and uncover how383

they process and integrate multimodal information,384

particularly in non-English queries. The internal385

inference process of LLaVA-1.5 is illustrated in386

Figure 4 as a case study.387

For multilingual VQA tasks, English-centric388

LVLMs face the dual challenge of not only bridging389

the modality gap between visual and textual infor-390

mation but also mapping non-English queries into391

the English semantic space to ensure accurate re-392

sponses. In middle layers, visual tokens are often393

decoded into their corresponding English con-394

cepts. Similarly, when processing Chinese queries,395

the model maps them to the English semantic space396

at these intermediate layers such as the layer 17,397

consistent with the findings (Wendler et al., 2024)398

in multilingual LLMs. During pretraining, the399

alignment of vision-text modality relies heavily on400

English corpora, which guides LVLMs toward in-401

terpreting images through an English-centric path-402

way. LVLMs interpret the important entities403

in the query based on the critical information404

from the image at intermediate stage. The origi-405

nal semantic meaning of "car" in the query (such406

as the 620th token) is enriched to "bus" under the407

influence of the image information at the layer 21.408

5.2 Analysis of Intervention409

In order to elucidate the underlying reasons for410

the efficacy of CLAIM and to substantiate the ro-411

bustness of our methodology, we conduct a further412

investigation with two questions.413

Does the intervention truly facilitate the cross-414

lingual alignment of cross-modal attention distri- 415

bution? Illustrated in Figure 5, under standard 416

inference, the projection values of English and non- 417

English vectors are distinctly separated at the zero 418

point, indicating that the cross-modal attention pat- 419

terns of LVLMs exhibit significant misalignment 420

for identical images depending on the language 421

used in the same meaning query. After intervention, 422

the distributions of non-English languages shift 423

closer to that of English, with more pronounced 424

density peaks. This alignment supports the hypoth- 425

esis that CLAIM effectively mitigates multilingual 426

object hallucination by reinforcing cross-lingual 427

consistency in visual perception attention.

(a) Standard Inference (b) Intervened Inference

Figure 5: Kernel density estimate plot of cross-modal
attention outputs across languages of LLaVA-1.5 before
and after multilingual intervention. The x-axis repre-
sents the inner product between attention outputs and
the normal vector of the hyperplane, while the y-axis
indicates the density of samples occurring at x value.

428

Does a unified multilingual intervention (Multi- 429

Shift) work? In our main experiment, we pair 430

English with each non-English language individu- 431

ally, estimating the Specific-Shift for each pair and 432

selecting specialized attention heads to precisely 433

align each non-English languages with English pro- 434

7



ficiency. To examine the impact of multilingual435

interactions, we construct a mixed set that includes436

all non-English languages paired with English, es-437

timating the Multi-Shift between English and the438

entire non-English group. As shown in Table 2, the439

Multi-Shift demonstrates moderate improvements,440

even outperforming CLAIM in some subsets by441

integrating shared linguistic features. Additionally,442

to further validate the generalizability of the in-443

tervention, we apply the Mono-Shift intervention,444

derived from the English-Chinese pair, to other445

languages and observe performance improvements.446

It indicates that the cross-lingual intervention can447

generalize well to unseen non-English languages.448

5.3 Analysis of Attention Heads449

LVLMs extract and interpret cross-modal in-450

formation within language-specific cross-modal451

attention heads. As shown in Figure 6 (b), theses452

attention heads are predominantly located in the453

intermediate layers of the model, particularly at454

layers 10-17, suggesting that cross-modal integra-455

tion occurs primarily at this stage. Beyond this,456

we examine how different layers influence the final457

prediction. In Figure 4, we observe that around458

layer 21, visual and textual tokens—such as the459

339th and 620th tokens, which correspond to the460

semantics of "bus"—have a significant impact on461

the logits of the final prediction. Notably, atten-462

tion heads in these layers exhibit high classification463

accuracy, indicating their crucial role in linguistic464

visual perception and understanding. Conversely,465

Figure 6 (a) shows that in the early layers (0 and466

1), the attention weights of the last input token to467

visual tokens are strongest. However, classification468

accuracy remains very low in these heads, suggest-469

ing that while LVLMs engage in basic image fea-470

ture extraction at the initial layers, they contribute471

minimally to linguistic understanding.
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Figure 6: Heatmap of (a) sum attention weights of the
last input token toward all visual tokens and (b) the
classification accuracy of probes of LLaVA-1.5 across
all 32x32 multi-heads, sorted row-wise by value.

472

5.4 Impact of Hyperparameters 473

CLAIM is primarily governed by two key hyper- 474

parameters: the intervention intensity α and the 475

number of heads K involved in the intervention. 476

Illustrated in Figure 7, the ablation experiments 477

vary one parameter while keeping the other fixed, 478

yielding several key insights. When α is too small, 479

the intervention is insufficient, resulting in subopti- 480

mal improvements. However, an excessively large 481

α imposes an overly strong intervention, disrupting 482

the LVLMs’ capabilities. For the hyperparameter 483

K, we observe that a small K leads to inadequate 484

intervention in language-specific cross-modal at- 485

tention heads, reducing effectiveness. On the other 486

hand, a large K introduces unnecessary interfer- 487

ence by affecting attention heads that encode ir- 488

relevant information, ultimately degrading perfor- 489

mance. Overall, CLAIM achieves performance 490

improvements across a wide range of hyperparam- 491

eter settings, demonstrating strong robustness to 492

hyperparameter selection.

Head Count 𝐾𝐾Intervention Intensity 𝛼𝛼

Figure 7: Impact of hyperparameters α and K on the
Accuracy for LLaVA-1.5 and Qwen-VL-Chat on the
POPE-COCO popular subset. The "x" symbol indicates
a value extraordinarily lower than normal.

493

6 Conclusion 494

In this paper, we propose Cross-Lingual Attention 495

Intervention for Mitigating Multilingual Object 496

Hallucination (CLAIM) in LVLMs, a training- 497

free method that aligns attention patterns across 498

languages. Extensive evaluations on POPE and 499

MME benchmarks demonstrate that CLAIM effec- 500

tively mitigates multilingual object hallucination 501

and generalizes well across languages and datasets. 502

Further analysis reveals that attention discrepan- 503

cies primarily occur in intermediate layers and 504

LVLMs extract and interpret cross-modal informa- 505

tion within language-specific cross-modal attention 506

heads., providing deeper insights into multilingual 507

LVLMs inference pathways. 508
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7 Limitations509

CLAIM requires distinguishing text and vision in-510

formation within the attention mechanism to iden-511

tify language-specific cross-modal attention heads,512

making it applicable only to LVLMs that treat vi-513

sual and textual tokens equally in the language de-514

coder. Additionally, our method requires access to515

the internal layers and representations of LVLMs,516

limiting its applicability to closed-source models.517

How to mitigate multilingual object hallucination518

as a plug-and-play tool for all LLMs, including519

those with restricted access, requires further investi-520

gation. Besides, since CLAIM aligns non-English521

attention patterns with English patterns, it may in-522

advertently reinforce English-centric biases rather523

than fostering truly multicultural comprehension.524
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A Implementation Details771

In our experiments, we use greedy search to ensure772

reproducibility. We employ the experimental set-773

tings as default in the VCD code repository. All774

datasets used in this paper are licensed under a Cre-775

ative Commons Attribution 4.0 License. We con-776

duct extensive experiments on languages exhibiting777

varying performance levels across the two models.778

Probe is implemented as a linear Support Vector779

Machine (SVM) (Cortes, 1995), using the default780

LinearSVC API from Scikit-learn (Pedregosa781

et al., 2011). When calculating metrics for discrim-782

inative tasks, we consider "yes" and "no" as right783

and wrong labels. The outputs of LVLMs are con-784

sidered correct if its label matches the answer. In785

our research, we utilize ChatGPT (OpenAI, 2023)786

to assist us with coding and polishing the paper.787

The hyperparameters under consideration in-788

cluded α and K. The hyperparameter tuning strat-789

egy employed in this study follows a sequential790

optimization approach. We conduct hyperparam-791

eter tuning exclusively on the popular subset of792

POPE-COCO, with the search space for K defined793

as {50, 100, 150, 200, 250, 300} and for α as794

{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5}. Initially,795

K was fixed at a value of 100, while α was sys-796

tematically adjusted to identify its optimal setting.797

Through this process, the optimal value for α was798

determined. Subsequently, α was fixed at this opti-799

mal value, and K was iteratively tuned. This led to800

the identification of the optimal value for K. Con-801

sequently, the optimal hyperparameter combination802

was established as shown in Figure 7. This step-803

wise optimization strategy ensures a focused and804

efficient exploration of the hyperparameter space,805

leading to the identification of the most effective806

parameter configuration for the model.807

B Evaluation of Translation Quality808

We sample 100 translated queries from the POPE-809

COCO random subset for each language and back-810

translate them into English using Google Translate.811

The back-translated English queries are then in-812

put into LVLMs to test whether their predictions813

align with those generated from the original En-814

glish queries. High prediction consistency indi-815

cates that the translated data maintains superior816

benchmark quality. Prediction consistency: Zh-817

100%, Es-100%, Ru-100%, Pt-100%, Bg-100%,818

Hi-100%, De-100%. These results demonstrate the819

reliability of our constructed multilingual dataset.820

C Results of LLaVA-NeXT 821

To comprehensively demonstrate the effectiveness 822

of CLAIM, we also conduct experiments on an 823

advanced LVLM, LLaVA-NeXT (Liu et al., 2024a), 824

with stronger English capability than LLaVA-1.5- 825

7b, as shown in Table 3, also demonstrating strong 826

effectiveness. 827

D Inference Speed 828

We evaluate Tokens Per Second (TPS) of LLaVA- 829

1.5 on the popular subset of POPE-COCO using dif- 830

ferent methods, with the experiments conducted on 831

the H100 GPUs. The results show that VCD leads 832

to a significant decrease in inference speed. We 833

attribute this slowdown to the fact that contrastive- 834

decoding-based methods typically require multi- 835

ple inference runs or involve substantial additional 836

computations during the inference process. In con- 837

trast, CLAIM introduces almost no extra computa- 838

tional overhead during inference, further showing 839

the advantages of our method. 840

Method TPS Acc (%)

LLaVA-1.5-7b 55.46 ×1.0 73.68
+VCD 20.67 ×0.4 74.03

+Ours 54.79 ×1.0 85.15

841

E Detailed Results on MME 842

In Table 4, we present the performance of LVLM 843

baselines on the 14 tasks of the MME bench- 844

mark. The Existence and Count subsets assess 845

object-level hallucination, while the Color and 846

Position subsets focus on attribute-level halluci- 847

nation. These four subsets form the hallucina- 848

tion evaluation set of MME, which, together with 849

the remaining six categories—Artwork, Celebrity, 850

OCR, Landmark, Scene, and Poster—collectively 851

evaluate the LVLMs’ perception capabilities. Be- 852

sides, Code Reasoning, Numerical Calculation, 853

Text Translation and Commonsense Reasoning 854

evaluate the LVLMs’ recognition capabilities. The 855

deployment of CLAIM nearly consistently im- 856

proves their perceptual competencies, indicating 857

the effectiveness of CLAIM for cross-lingual vi- 858

sual perception alignment. Furthermore, The re- 859

sults on recognition-related tasks indicate that the 860

application of CLAIM, while mitigating hallucina- 861

tion issues and augmenting perceptual capabilities, 862

remains effective on some reasoning tests. 863
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Dataset Setup Method En Zh Es Ru Pt Bg Avg.

COCO

Random
Baseline 88.50 88.33 80.30 88.37 86.77 81.70 85.09
VCD - 85.83 69.47 84.53 81.97 75.67 79.49
Ours - 88.73 88.47 88.13 86.73 81.67 86.75

Popular
Baseline 87.37 87.53 80.07 85.60 85.13 79.30 83.53
VCD - 85.43 69.20 82.07 82.93 75.67 79.06
Ours - 88.43 88.13 85.83 85.40 80.33 85.62

Adversarial
Baseline 86.30 80.80 79.20 80.60 80.37 76.10 79.41
VCD - 77.23 68.10 76.93 76.27 70.30 73.77
Ours - 80.63 83.83 80.20 80.30 75.83 80.16

OKVQA

Random
Baseline 91.00 83.03 67.50 85.00 78.97 81.20 79.14
VCD - 82.20 69.27 82.23 79.37 75.70 77.75
Ours - 85.47 87.50 86.50 83.33 80.90 84.74

Popular
Baseline 89.00 81.93 67.40 80.73 80.80 79.90 78.15
VCD - 81.23 69.33 78.33 79.77 74.27 76.59
Ours - 85.33 85.27 82.13 85.07 80.13 83.59

Adversarial
Baseline 81.97 70.80 66.47 74.17 71.27 73.33 71.21
VCD - 71.57 66.97 71.67 70.83 69.63 70.13
Ours - 75.40 76.93 76.73 75.17 73.70 75.59

GQA

Random
Baseline 89.93 82.53 67.73 84.47 80.07 79.87 78.93
VCD - 81.03 68.60 81.57 77.63 74.53 76.67
Ours - 84.23 87.13 85.47 83.30 79.97 84.02

Popular
Baseline 85.97 77.17 67.70 73.93 74.90 79.73 74.69
VCD - 76.80 69.53 73.60 75.23 74.20 73.87
Ours - 80.50 83.77 76.50 81.83 81.03 80.73

Adversarial
Baseline 82.60 70.33 66.93 73.90 71.50 74.03 71.34
VCD - 69.57 67.50 72.90 71.57 69.33 70.17
Ours - 74.07 78.10 76.93 76.53 74.87 76.10

Table 3: Main results of LLaVA-NeXT on POPE from COCO, OKVQA, GQA.

F Impact of Training Size864

In the main experiment, we sample 1,000 images865

from the COCO-2017 training dataset to identify866

the language-specific cross-modal attention heads867

and estimate language shift vectors. Of these, 80%868

are used as the training set for the probe, while the869

remaining 20% serve as the test set for the probe.870

Specifically, CLAIM achieves strong performance871

even with a minimal training set. We validate this872

on the popular subset of POPE-COCO (Chinese),873

as shown in Figure 8. Notably, most improvements874

are achieved with as few as N = 50 training samples.875

As the training set size increases, identification be-876

comes more robust; however, an excessively large877

training set may introduce additional noise when878

estimating the mean of the language shift vectors.879
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Figure 8: Impact of training data size on the Accuracy
for LLaVA-1.5.
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Task Method LLaVA-1.5 Qwen-VL-Chat

En Zh Es Ru Pt Bg Avg. En Zh Es Ru Hi De Avg.

Existence
Baseline 190.0 175.0 130.0 145.0 155.0 125.0 146.0 185.0 190.0 135.0 140.0 106.7 195.0 153.3
VCD - 180.0 130.0 145.0 150.0 128.3 146.7 - 185.0 155.0 155.0 78.30 195.0 153.7
Ours - 195.0 175.0 185.0 175.0 180.0 182.0 - 190.0 155.0 185.0 128.3 195.0 170.7

Count
Baseline 155.0 70.00 55.00 58.30 80.00 85.00 69.67 150.0 130.0 143.3 113.3 60.00 136.7 116.7
VCD - 73.30 73.30 53.30 61.70 105.0 73.33 - 140.0 131.7 100.0 80.00 128.3 116.0
Ours - 125.0 130.0 110.0 130.0 135.0 126.0 - 148.3 153.3 120.0 111.7 137.0 134.0

Color
Baseline 165.0 80.00 135.0 75.00 110.0 80.00 96.00 180.0 170.0 150.0 153.3 103.3 165.0 148.3
VCD - 95.00 145.0 85.00 130.0 88.30 108.7 - 150.0 165.0 146.7 93.30 160.0 143.7
Ours - 120.0 155.0 125.0 150.0 108.3 131.7 - 170.0 165.0 158.3 90.00 165.0 149.7

Position
Baseline 118.3 53.30 63.30 55.00 50.00 46.70 53.67 131.7 63.30 120.0 93.30 45.00 105.0 85.33
VCD - 48.30 93.00 60.00 51.70 56.70 61.93 - 78.30 101.7 101.7 43.30 93.30 83.67
Ours - 66.70 78.30 85.00 86.70 58.30 75.00 - 63.30 116.7 103.3 55.00 106.0 88.86

Artwork
Baseline 121.8 86.25 57.75 73.00 81.25 61.25 71.90 135.3 152.8 105.8 70.00 65.75 130.5 105.0
VCD - 96.75 79.50 81.75 74.50 72.25 80.95 - 137.5 108.5 71.75 55.50 123.3 99.30
Ours - 117.5 118.0 103.5 107.3 98.25 108.9 - 146.0 110.0 115.0 83.00 133.8 117.6

Celebrity
Baseline 138.2 137.4 55.29 26.18 119.7 13.24 70.35 150.0 162.9 159.4 52.65 57.65 126.8 111.9
VCD - 139.7 79.12 23.82 99.41 10.59 70.53 - 160.9 158.5 67.35 52.35 121.2 112.1
Ours - 156.5 158.2 61.47 145.3 27.65 109.8 - 157.9 160.3 110.6 76.47 106.2 122.3

OCR
Baseline 125.0 65.00 50.00 55.00 15.00 55.00 48.00 102.5 80.00 115.0 62.50 32.50 132.5 84.50
VCD - 62.50 57.50 52.50 35.00 57.50 53.00 - 87.50 100.0 52.50 42.50 115.0 79.50
Ours - 80.00 82.50 57.50 32.50 65.00 63.50 - 87.50 100.0 77.50 50.00 135.0 90.00

Landmark
Baseline 165.3 113.3 53.75 81.50 127.3 108.5 96.90 172.8 179.0 123.3 78.25 61.50 163.3 121.1
VCD - 125.5 64.25 97.25 126.3 108.0 102.3 - 167.0 131.3 78.25 57.00 138.0 114.3
Ours - 147.8 155.5 146.5 159.3 148.3 151.5 - 178.3 129.8 160.8 88.25 167.5 144.9

Scene
Baseline 159.5 159.3 79.50 120.0 144.3 122.5 125.1 161.5 178.8 124.8 114.5 72.75 131.5 124.5
VCD - 149.8 87.30 119.5 137.5 118.0 122.4 - 162.3 122.8 108.0 71.50 128.8 118.7
Ours - 149.5 146.8 154.3 144.3 145.0 148.0 - 162.5 123.5 153.0 92.50 143.5 135.0

Poster
Baseline 143.5 106.1 67.35 57.14 110.2 68.71 81.90 173.1 156.8 142.9 116.7 76.19 134.4 125.4
VCD - 116.7 89.80 65.31 90.48 80.95 88.64 - 147.3 137.4 101.0 65.99 126.9 115.7
Ours - 133.7 156.8 97.62 129.9 121.8 128.0 - 161.6 150.3 138.8 109.9 137.8 139.7

Code Reasoning
Baseline 67.50 65.00 50.00 47.50 55.00 22.50 48.00 55.00 57.50 57.50 20.00 12.50 52.50 40.00
VCD - 67.50 57.50 72.50 62.50 27.50 57.50 - 42.50 57.50 37.50 35.00 45.00 43.50
Ours - 55.00 60.00 47.50 65.00 25.00 50.50 - 72.50 50.00 45.00 10.00 52.50 46.00

Numerical Calculation
Baseline 70.00 47.50 50.00 45.00 20.00 20.00 36.50 32.50 65.00 45.00 27.50 45.00 37.50 44.00
VCD - 75.00 50.00 62.50 37.50 20.00 49.00 - 80.00 60.00 37.50 45.00 45.00 53.50
Ours - 67.50 50.00 55.00 20.00 30.00 44.50 - 45.00 45.00 55.00 45.00 27.50 43.50

Text Translation
Baseline 70.00 77.50 50.00 70.00 120.0 52.50 74.00 155.0 60.00 115.0 110.0 17.50 65.00 73.50
VCD - 80.00 50.00 72.50 75.00 72.50 70.00 - 55.00 87.50 85.00 45.00 72.50 69.00
Ours - 95.00 57.50 50.00 90.00 57.50 70.00 - 87.50 122.5 110.0 50.00 72.50 88.50

Commonsense Reasoning
Baseline 124.3 72.14 64.29 61.43 72.86 64.29 67.00 125.0 92.14 100.7 50.71 33.57 74.29 70.28
VCD - 80.71 71.43 70.00 77.14 62.86 72.43 - 84.29 98.57 48.57 29.29 78.57 67.86
Ours - 90.00 87.14 86.43 87.14 68.57 85.86 - 91.43 107.1 80.00 39.29 84.29 80.43

Total Scores
Baseline 1813 1307 961.3 970.1 1261 925.2 1085 1909 1738 1638 1203 790.0 1650 1404
VCD - 1391 1128 1051 1209 1009 1157 - 1683 1619 1191 794.1 1571 1371
Ours - 1599 1611 1375 1522 1269 1475 - 1762 1689 1612 1029 1664 1551

Table 4: Detailed results on full subsets of MME.
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