
CacheFlow: Fast Human Motion Prediction by Cached Normalizing Flow

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Many density estimation techniques for 3D human motion prediction require a
2 significant amount of inference time, often exceeding the duration of the predicted
3 time horizon. To address the need for faster density estimation for 3D human
4 motion prediction, we introduce a novel flow-based method for human motion
5 prediction called CacheFlow. Unlike previous conditional generative models that
6 suffer from time efficiency, CacheFlow takes advantage of an unconditional flow-
7 based generative model that transforms a Gaussian mixture into the density of
8 future motions. The results of the computation of the flow-based generative model
9 can be precomputed and cached. Then, for conditional prediction, we seek a
10 mapping from historical trajectories to samples in the Gaussian mixture. This
11 mapping can be done by a much more lightweight model, thus saving significant
12 computation overhead compared to a typical conditional flow model. In such a
13 two-stage fashion and by caching results from the slow flow model computation, we
14 build our CacheFlow without loss of prediction accuracy and model expressiveness.
15 This inference process is completed in approximately one millisecond, making
16 it $4\times$ faster than previous VAE methods and $30\times$ faster than previous diffusion-
17 based methods on standard benchmarks such as Human3.6M and AMASS datasets.
18 Furthermore, our method demonstrates improved density estimation accuracy and
19 comparable prediction accuracy to a SOTA method on Human3.6M. Our code and
20 models will be publicly available.

21

1 Introduction

22 The task of 3D human motion prediction is to forecast the future 3D pose sequence given an observed
23 past sequence. Traditional motion prediction methods are often based on deterministic models and
24 can struggle to capture the inherent uncertainty in human movement. Recently, stochastic approaches
25 have addressed this limitation. Stochastic approaches allow models to sample multiple possible future
26 motions. Stochastic human motion prediction methods utilize conditional generative models such as
27 generative adversarial networks (GANs) [18], variational autoencoders (VAEs) [27], and denoising
28 diffusion probabilistic model [24]. However, many stochastic approaches cannot explicitly model the
29 probability density distribution.

30 Conversely, density estimate-based approaches explicitly model the probability density distribution. In
31 safety-critical applications such as autonomous driving [51] and human-robot interaction [29, 31, 9],
32 a density estimate can represent all possible future motions (not just a few samples) by tracking the
33 volume of density. It can be used to derive guarantees on safety [43, 58, 64].

34 However, previous density estimation suffers from high computational cost. The expensive computa-
35 tional cost can prohibit applications to real-time use-cases, especially with high dimensional data such
36 as human motions. For instance, kernel density estimation (KDE) [56, 52] requires an exponentially

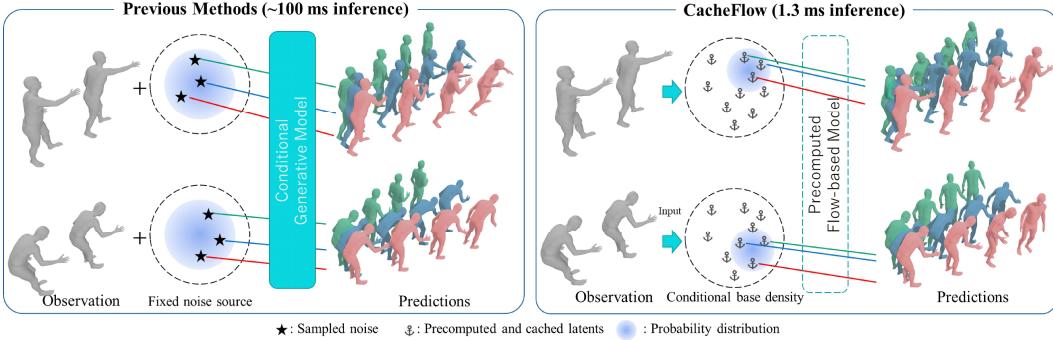


Figure 1: **Previous methods vs. Our CacheFlow.** Previous methods of stochastic motion prediction generate multiple future motions by sampling noises from the fixed source in an ad hoc manner. In contrast, CacheFlow uses the precomputed and cached latent-motion pairs from an unconditional flow-based generative model. Thus, the computation of the unconditional flow can be skipped at inference. One can achieve fast inference by selecting predictions from these cached pairs.

37 growing number of samples for accurate estimation. Concretely, more than one trillion samples are
 38 required for accurate KDE over a 48-dim pose over 100 frames of human motion prediction [60].

39 In contrast to traditional KDE, recent parametric density estimation approaches use conditional
 40 flow-based generative models, including normalizing flows [55, 62, 63] and continuous normalizing
 41 flows [13]. These flow-based generative models (“flow-based model” for brevity) directly estimate the
 42 density to avoid time-consuming sampling required in KDE. However, inferring the exact probability
 43 of possible future motions remains computationally expensive. This is because capturing the full
 44 shape of the distribution requires evaluating the probabilities of many potential future motions.

45 To address this computational limitation, we propose a fast density estimation method based on a flow-
 46 based model called “CacheFlow”. Our CacheFlow utilizes an unconditional flow-based model for
 47 prediction, as illustrated in Figure 1. Since the unconditional flow-based model is independent of past
 48 observed motions, its calculation can be precomputed and skipped at inference. This precomputation
 49 omits a large portion of computational cost. To achieve further acceleration, our unconditional
 50 flow-based model represents transformation between a lightweight conditional base density and the
 51 density of future motions. At inference, the density of future motion is estimated by computing the
 52 lightweight conditional base density and combining it with the precomputed results of the flow-based
 53 model. The inference of our method is approximately one millisecond.

54 CacheFlow demonstrates comparable accuracy to previous methods on standard stochastic human
 55 motion prediction benchmarks, Human3.6M [25] and AMASS [42]. Furthermore, our method
 56 estimates density more accurately than previous stochastic human motion prediction methods with
 57 KDE. CacheFlow shows improved computational efficiency, making it well-suited for real-time
 58 applications. The contributions of this paper are four-fold as follows:

- 59 1. We introduce a novel fast density estimation called CacheFlow on human motion prediction.
- 60 2. We can sample diverse future motion trajectories with explicit density estimation, and we
 61 experimentally confirm that our method can estimate accurate density.
- 62 3. Our method achieves comparable prediction accuracy to other computationally intense
 63 methods on several benchmarks.

64 2 Related Work

65 2.1 Human Motion Prediction

66 **Deterministic approaches.** Early approaches on human motion prediction [1, 7, 17, 8, 21, 26, 33]
 67 focused on deterministic settings. They predict the most likely motion sequence based on the past
 68 motion. A wide range of architectures were proposed including multi-layer perceptron [21], recurrent
 69 neural networks [17, 26, 46, 20, 53, 37], convolutional neural networks [33, 50], transformers [1,
 70 10, 48], and graph neural networks (GNNs) [44, 34, 14, 35]. GNN can account for the explicit tree

71 expression of the human skeleton, while other architectures implicitly learn the dependencies between
72 joints.

73 **Stochastic approaches.** To capture the inherent uncertainty in human movements, recent works have
74 focused on stochastic human motion prediction to predict multiple likely future motions. The main
75 stream of stochastic methods use generative models for the purpose, such as generative adversarial
76 networks (GANs) [5, 30], variational autoencoder (VAE) [65, 70, 45, 11], and denoising diffusion
77 probabilistic model (DDPM) [4, 12, 66, 61]. To improve the diversity of predictions, diversity-
78 promoting loss [45, 4] or explicit sampling techniques [66] were proposed. In contrast to generative
79 models, anchor-based methods [69, 68] learn a fixed number of anchors corresponding to each
80 prediction to ensure diversity. However, most stochastic methods cannot describe the density of
81 future motions explicitly. This prevents exhaustive or maximum likelihood sampling for practical
82 applications. On the contrary, our method allows for explicit density estimation using normalizing
83 flows [28].

84 **2.2 Density Estimation**

85 Density estimation asks for explicit calculation of the probability for samples from a distribution.
86 Density estimation is derived by non-parametric or parametric methods.

87 **Non-parametric Approach.** The representative non-parametric density estimation is kernel density
88 estimation (KDE) [56, 52]. KDE can estimate density by using samples from generative models.
89 However, KDE requires a large number of samples for accurate estimation. Therefore, it often cannot
90 run in real-time.

91 **Parametric Approach.** As a representative parametric model, Gaussian mixture models (GMMs)
92 parametrize density with several Gaussian distributions and their mixture weights. Its nature of mixing
93 Gaussian priors limits its ability to generalize to complex data distribution. Another parametric
94 approach with more expressivity is flow-based generative models [28]. By a learned bijective
95 process, normalizing flows (NFs) [55, 62, 63] transform a simple density like the standard normal
96 distribution into a complex data density. Recently, continuous normalizing flows (CNFs) [13, 19]
97 achieve more expressive density than standard normalizing flows via an ODE-based bijective process.
98 While training of CNFs is inefficient due to the optimization of ODE solutions, an efficient training
99 strategy named flow matching [36] was proposed. FlowChain [40] was proposed for fast and efficient
100 density estimation in human trajectory forecasting. FlowChain improves the inference time efficiency
101 by reusing results from the conditional flow-based method while the past sequences are similar.
102 However, with significantly different past sequences, FlowChain’s efficiency can’t hold anymore.
103 Unlike FlowChain, our method can perform fast and efficient inference regardless of past sequences.

104 **3 Preliminary**

105 **3.1 Problem Formulation**

106 The task of human motion prediction aims to use a short sequence of observed human motion to predict
107 the future unobserved motion sequence of that person. Human motion is represented by a sequence of
108 human poses in a pre-defined skeleton format of 3D locations of J joints, $\mathbf{X} \in \mathbb{R}^{J \times 3}$. As input to our
109 model, we have the past (history of) human motion as a sequence $\mathbf{c} = [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_H] \in \mathbb{R}^{H \times J \times 3}$
110 over H timesteps. To predict the future human motion sequence of F timesteps, we can formulate the
111 problem as one of conditional generation using the conditional probability function, $p(\mathbf{X}|\mathbf{c})$, where
112 $\mathbf{X} = [\mathbf{X}_{H+1}, \mathbf{X}_{H+2}, \dots, \mathbf{X}_{H+F}] \in \mathbb{R}^{F \times J \times 3}$. Similar to the stochastic human motion prediction
113 paradigm, the method should also allow for sampling n multiple future sequences $\{\mathbf{X}_1, \dots, \mathbf{X}_n\}$
114 from $p(\mathbf{X}|\mathbf{c})$. The focus of our work is to accelerate the inference time of estimate and sampling of
115 the conditional density function $p(\mathbf{X}|\mathbf{c})$.

116 **3.2 Normalizing Flow**

117 Normalizing flow [55, 62, 63] is a generative model with explicit density estimation. It follows a
118 bijective mapping f_θ with learnable parameters θ . It transforms a simple base density $q(\mathbf{z})$ such as
119 a Gaussian distribution into the complex data density $p(\mathbf{x})$. We can analytically estimate the exact

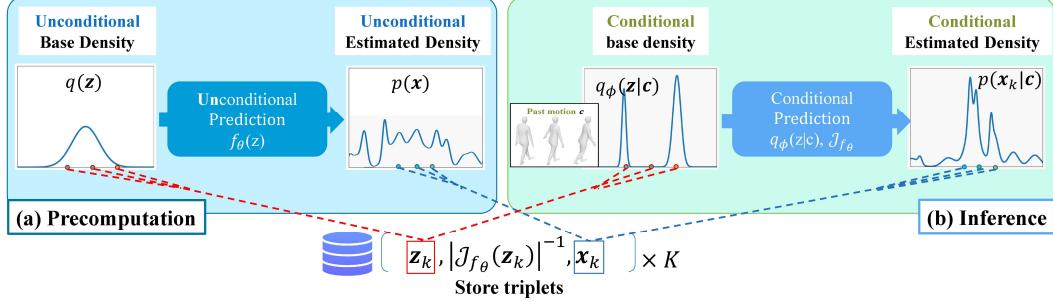


Figure 2: **Overview of our CacheFlow.** Our method utilizes the unconditional flow-based model f_θ . This f_θ maps the lightweight conditional base density $q_\phi(z|c)$ into future motion density $p(x|c)$. In this formulation, the flow-based model is independent of past motions. Thus, we can precompute the unconditional flow-based model. These results are cached as K triplets as shown in (a). Due to the precomputation, we can skip the inference of f_θ and omit a large portion of the entire computation. At inference, density estimation is achieved by only evaluating the lightweight conditional base density $q_\phi(z_k|c)$ and combining it with the stored K triplets as shown in (b).

120 probability via the change-of-variables formula as follows:

$$\mathbf{x} = f_\theta(\mathbf{z}), \quad \mathbf{z} = f_\theta^{-1}(\mathbf{x}). \quad (1)$$

$$p(\mathbf{x}) = q(\mathbf{z}) |\det \mathcal{J}_{f_\theta}(\mathbf{z})|^{-1}, \quad (2)$$

121 where $\mathcal{J}_{f_\theta}(\mathbf{z}) = \frac{\partial f_\theta}{\partial \mathbf{z}}$ is the Jacobian of f_θ at \mathbf{z} . The parameters θ of f_θ can be learned by maximizing
122 the likelihood (or conditional likelihood) of samples $\hat{\mathbf{x}}$ from datasets or minimizing the negative log-
123 likelihood as $\mathcal{L}_{\text{NLL}} = -\log p(\hat{\mathbf{x}})$. When \mathbf{x} and \mathbf{z} are latent codes, normalizing flow is transformed
124 into latent normalizing flow. We follow this pattern in our method. We encode the past human motion
125 into \mathbf{x} by an encoder network \mathcal{E} and decode it by a decoder network \mathcal{D} :

$$\mathbf{x} = \mathcal{E}(\mathbf{X}), \quad \mathbf{X} = \mathcal{D}(\mathbf{x}). \quad \mathbf{x} \sim \mathbb{R}^d, \quad \mathbf{X} \sim \mathbb{R}^{F \times J \times 3} \quad (3)$$

126 The encoder and decoder are trained by reconstruction. In the later part of this paper, for simplicity,
127 we discuss the method at the latent representation level and model the conditional generation task as
128 $p(\mathbf{x}|c)$.

129 3.3 Continuous Normalizing Flow (CNF)

130 Continuous normalizing flow (CNF) [13, 19] is a normalizing flow variant based on an ordinary
131 differential equation (ODE). CNF defines t -continuous path \mathbf{z}_t between the base density space
132 $\mathbf{z}_0 \sim q(\mathbf{z})$ and the data space $\mathbf{z}_1 = \mathbf{x} \sim p(\mathbf{x})$. This \mathbf{z}_t is defined by the parameterized vector field
133 $\frac{d\mathbf{z}_t}{dt} = v_\theta(\mathbf{z}_t)$. The data $\mathbf{x} = \mathbf{z}_1$ is generated via numerical integration of vector field $v_\theta(\mathbf{z}_t)$ as
134 follows:

$$\mathbf{x} = \mathbf{z}_1 = \mathbf{z}_0 + \int_0^1 v_\theta(\mathbf{z}_t) dt. \quad (4)$$

135 The CNF transformation Equation (4) is denoted as $\mathbf{x} = f_\theta(\mathbf{z})$ for brevity. Although CNF can be
136 trained by minimizing negative log-likelihood, it is time-consuming due to the numerical integration
137 of ODE.

138 3.4 Flow Matching

139 In order to train the parameterized vector field efficiently, one can leverage the flow matching [36]
140 strategy. As a new training strategy, Flow Matching avoids the numerical integration of ODE
141 by directly optimizing the vector field $v_\theta(\mathbf{z}_t)$. The objective of flow matching is to match the
142 parameterized vector field $v_\theta(\mathbf{z}_t)$ to the ground truth vector field $u(\mathbf{z}_t)$ via mean squared error as
143 follows:

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{t \sim \mathcal{T}(0,1), \mathbf{z}_t} \|v_\theta(\mathbf{z}_t) - u(\mathbf{z}_t)\|^2, \quad (5)$$

144 where $\mathcal{T}(0, 1)$ is a distribution ranging from 0 to 1.

145 However, we cannot obtain the ground truth vector field $u(\mathbf{z}_t)$ directly. Ripman *et al.* [36] suggest
 146 defining the conditional ground truth $u(\mathbf{z}_t|\hat{\mathbf{z}}_1)$ instead. Specifically, it is modeled as a straight vector
 147 field $\hat{\mathbf{z}}_1 - \mathbf{z}_0$ in Rectified Flow [13, 19]. This is called conditional flow matching [36] trained by the
 148 following objective:

$$\mathcal{L}_{\text{CFM}} = \mathbb{E}_{t \sim \mathcal{T}(0,1), \hat{\mathbf{z}}_1, \mathbf{z}_t} \|\mathbf{v}_\theta(\mathbf{z}_t) - u(\mathbf{z}_t|\hat{\mathbf{z}}_1)\|^2. \quad (6)$$

149 The gradients of \mathcal{L}_{FM} of Equation (5) and \mathcal{L}_{CFM} of Equation (6) are identical *w.r.t* θ . We exploit
 150 expressive CNFs with efficient Flow Matching training to estimate the future motion density $p(\mathbf{x}|\mathbf{c})$.

151 4 Proposed Method

152 4.1 Overview of CacheFlow

153 We estimate the future motion density $p(\mathbf{x}|\mathbf{c})$ by transforming a conditional base distribution $q_\phi(\mathbf{z}|\mathbf{c})$.
 154 This q_ϕ is conditioned on the past motion \mathbf{c} . Then we can sample predictions $\mathbf{x} \sim p(\mathbf{x}|\mathbf{c})$ for
 155 stochastic human motion prediction. Most traditional approaches based on conditional generative
 156 models use a trivial source distribution, often a simple Gaussian. However, we redefine the source
 157 distribution to be more informative and directly regressed from past motions. This allows us to
 158 develop a much lighter and faster model for predicting future movements.

159 To build this informative conditional base distribution q_ϕ , we would incorporate an unconditional
 160 flow-based model $f_\theta : \mathbf{x} = f_\theta(\mathbf{z})$ that maps latent variable \mathbf{z} into motion representation \mathbf{x} . To
 161 understand how q_ϕ and f_θ are connected, we first reparametrize the future motion density $p(\mathbf{x}|\mathbf{c})$ by
 162 a change of variables of probability equation as follows:

$$p(\mathbf{x}|\mathbf{c}) = q(\mathbf{z}|\mathbf{c}) \left| \det \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right|, \quad (7)$$

$$= q(\mathbf{z}|\mathbf{c}) \left| \det \left(\frac{\partial f_\theta(\mathbf{z})}{\partial \mathbf{z}} \right)^{-1} \right|, \quad (8)$$

$$= q(\mathbf{z}|\mathbf{c}) |\det \mathcal{J}_{f_\theta}(\mathbf{z})|^{-1}. \quad (9)$$

163 This parametrization trick differs from the widely-used conditional density formulation [67] where \mathbf{c} is
 164 conditioned to the flow-based model f_θ . In this formulation, only the conditional base density $q(\mathbf{z}|\mathbf{c})$
 165 varies depending on \mathbf{c} during inference, whereas the unconditional flow-based model $\mathbf{x} = f_\theta(\mathbf{z})$
 166 and the Jacobian $|\det \mathcal{J}_{f_\theta}(\mathbf{z})|^{-1}$ are kept same during inference and thus can be reused as-is once
 167 calculated.

168 Therefore, we could precompute the mapping results and Jacobians of an unconditional flow-based
 169 model f_θ . We cache the triplets $t = \{\mathbf{z}, |\det \mathcal{J}_{f_\theta}(\mathbf{z})|^{-1}, \mathbf{x}\}$ for later reuse in the inference stage, as
 170 shown in Figure 2(a).

171 Then, during inference, we design a new trick to reuse the cached triplets by associating them with the
 172 specific conditions of the past motion sequences, as shown in Figure 2(b). Now, instead of a typical
 173 conditional generative model, e.g., conditional normalizing flow, we only need a lightweight model
 174 to model the conditional base density $q_\phi(\mathbf{z}|\mathbf{c})$ and achieve similar expressivity. We could finally
 175 estimate the future motion density by $p(\mathbf{x}|\mathbf{c}) = q_\phi(\mathbf{z}|\mathbf{c}) |\det \mathcal{J}_{f_\theta}(\mathbf{z})|^{-1}$. The method is summarized
 176 as pseudocode in Algorithm 1. In the following paragraphs, we elaborate on the details of our method.

177 4.2 Precompute Unconditional Flow-based Model

178 As the first step of our method, we use the human motion dataset to learn an unconditional flow-based
 179 model f_θ . From this unconditional human motion prediction model, we will collect the triplets
 180 $t = \{\mathbf{z}, |\det \mathcal{J}_{f_\theta}(\mathbf{z})|^{-1}, \mathbf{x}\}$ for later use. This part is illustrated in Figure 2(a).

181 In our implementation, we built the unconditional flow model by CNFs due to its proven expressivity
 182 for predicting human motion. The unconditional model is trained to predict a fixed-length future
 183 motion \mathbf{x} given a noise sample \mathbf{z} from a source distribution $q_\phi(\mathbf{z}|\mathbf{c})$:

$$f_\theta : \mathbb{R}^d \longrightarrow \mathbb{R}^d \quad (10)$$

184 Because \mathbf{z} is sampled from a known distribution and normalizing-flow models are deterministic with
 185 reversible bijective transformation, we could know the density of each $\{\mathbf{z}, \mathbf{x}\}$ pair. We train the
 186 unconditional continuous normalizing flow with the flow matching objective described in Equation (6).
 187 Then we collect K samples denoted by the triplet $t_k = \{\mathbf{z}_k, |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}, \mathbf{x}_k\}$. Triplets are
 188 collected by applying the inverse transform of f_θ to ground truth future motions in the training split.
 189 These triplets are cached for fast inference as described in Section 4.3. This caching operation is
 190 different from anchor-based methods [69, 68] since CacheFlow caches all motions of the training
 191 split.

192 **4.3 Conditional Inference by CacheFlow**

193 In previous methods, conditional human motion prediction typically requires a conditional generative
 194 model. For instance, it is a conditional flow-based or diffusion model. These models usually have
 195 poor time efficiency due to delicate but heavy architecture. Instead, inspired by Equation (9), we can
 196 reuse the results of unconditional inverse transformation as triplets $t_k = \{\mathbf{z}_k, |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}, \mathbf{x}_k\}$.
 197 Thus, we can perform conditional inference by only evaluating a conditional base distribution $q(\mathbf{z}|\mathbf{c})$.
 198 We model this conditional base distribution by a learnable model, thus we denote it as $q_\phi(\mathbf{z}|\mathbf{c})$. This
 199 model can be very lightweight since the unconditional transformation f_θ gives enough expressivity.
 200 $q_\phi(\mathbf{z}|\mathbf{c})$ runs much faster than a typical conditional generative model for human motion prediction.
 201 This part is illustrated in Figure 2(b).

202 In our implementation, $q_\phi(\mathbf{z}|\mathbf{c})$ is constructed as a parametrized Gaussian mixture
 203 $\{\mathcal{N}(\mu_m(\mathbf{c}), \sigma_m^2(\mathbf{c}))\}$, with M mixture weights $w_m(\mathbf{c})$, such that $\sum_{m=1}^M w_m = 1$. Each μ_m and σ_m
 204 are regressed based on the feature of past motion \mathbf{c} . We use a lightweight single-layer RNN for
 205 regression to determine the GMM composition. Although the unconditional flow-based model f_θ
 206 and the conditional base density q_ϕ can be trained separately, we found that jointly training f_θ and q_ϕ
 207 improves model performance. We train the joint model by summation of log-likelihood for q_ϕ and
 208 flow matching for f_θ as explained in Equation (6) as follows:

$$\mathcal{L} = -\log q_\phi(f_\theta^{-1}(\hat{\mathbf{x}})|\mathbf{c}) + \mathcal{L}_{\text{CFM}}. \quad (11)$$

209 With joint learning, f_θ learns an easy mapping for the conditional Gaussian mixture q_ϕ .
 210 With q_ϕ constructed, during inference, we can estimate the conditional density $p(\mathbf{x}|\mathbf{c})$ by connecting
 211 with precomputed triplets $t_k = \{\mathbf{z}_k, |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}, \mathbf{x}_k\}$ as

$$p(\mathbf{x}_k|\mathbf{c}) = q_\phi(\mathbf{z}_k|\mathbf{c}) |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}. \quad (12)$$

212 By this inference process, we could optionally generate a future human motion sequence \mathbf{x} by
 213 retrieving a high-probability sample \mathbf{z} from q_ϕ with the past motion sequence as the condition.
 214 However, q_ϕ describes a continuous distribution and the stored triplets cannot cover all samples.
 215 Therefore, in practice, predicted motion \mathbf{x}_{k^*} is selected by the nearest neighbor of the sampling
 216 outcome of q_ϕ to the stored triplets:

$$\begin{aligned} k^* &= \operatorname{argmin}_k \|\mathbf{z}_k - \mathbf{z}\|, \\ \text{s.t. } \{t_k &= \{\mathbf{z}_k, |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}, \mathbf{x}_k\}, \mathbf{z} \sim q_\phi(\mathbf{z}|\mathbf{c})\}, \end{aligned} \quad (13)$$

217 where k^* is the selected index of the triplets for prediction. By this design, we can sample an arbitrary
 218 number of likely future motion sequences by selecting the neighbors of samples $\mathbf{z} \sim q_\phi(\mathbf{z}|\mathbf{c})$.

219 **5 Experimental Evaluation**

220 **Datasets.** We evaluate our CacheFlow on Human3.6M [25] and AMASS [42]. Human3.6M contains
 221 3.6 million frames of human motion sequences. Human motions of 11 subjects performing 15 actions
 222 are recorded at 50 Hz. We follow the setting including the dataset split, the 16-joints pose skeleton
 223 definition, and lengths of past and future motions proposed by previous works [47, 38, 71, 54]. The
 224 training and test sets of Human3.6M are subjects [S1, S5, S6, S7, S8] and [S9, S11], respectively. The
 225 past motion and future motions contain 25 frames (0.5 sec) and 100 frames (2.0 sec). AMASS
 226 unifies 24 different human motion datasets including HumanEva-I [59] with the SMPL [41] pose
 227 representation. AMASS contains 9M frames at 60 Hz in total. As a multi-dataset collection of
 228 AMASS, one can perform a cross-dataset evaluation. We follow the evaluation protocol proposed

Algorithm 1: Precomputation and Inference of CacheFlow.

Input: Past motion c
Output: Estimated density $p(\mathbf{x}_k|c)$

// Precomputation. This does not count for inference time.

for each future motion \mathbf{X}_k in the training dataset **do**

$\mathbf{x}_k \leftarrow \mathcal{E}(\mathbf{X}_k)$

$\mathbf{z}_k \leftarrow f_\theta^{-1}(\mathbf{x}_k)$

Calculate $|\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}$

Store triplet $\{\mathbf{z}_k, |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}, \mathbf{x}_k\}$

end

// Fast Inference

for each triplet $\{\mathbf{z}_k, |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}, \mathbf{x}_k\}$ **do**

$q_\phi(\mathbf{z}_k|c) \leftarrow \sum_{m=1}^M w_m \mathcal{N}(\mathbf{z}_k; \mu_m(c), \sigma_m^2(c))$

$p(\mathbf{x}_k|c) \leftarrow q_\phi(\mathbf{z}_k|c) |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}$

end

	Human3.6M [25]					AMASS [42]					Inference Time[ms]↓
	APD↑	ADE↓	FDE↓	MMADE↓	MMFDE↓	APD↑	ADE↓	FDE↓	MMADE↓	MMFDE↓	
HP-GAN [5]	7.214	0.858	0.867	0.847	0.858	-	-	-	-	-	-
DSF [72]	9.330	0.493	0.592	0.550	0.599	-	-	-	-	-	-
DeLiGAN [23]	6.509	0.483	0.534	0.520	0.545	-	-	-	-	-	-
GMVAE [16]	6.769	0.461	0.555	0.524	0.566	-	-	-	-	-	-
TPK [65]	6.723	0.461	0.560	0.522	0.569	9.283	0.656	0.675	0.658	0.674	30.3
MT-VAE [70]	0.403	0.457	0.595	0.716	0.883	-	-	-	-	-	-
BoM [6]	6.265	0.448	0.533	0.514	0.544	-	-	-	-	-	-
DLow [73]	11.741	0.425	0.518	0.495	0.531	13.170	0.590	0.612	0.618	0.617	30.8
MultiObj [39]	14.240	0.414	0.516	-	-	-	-	-	-	-	-
GSPS [45]	14.757	0.389	0.496	0.476	0.525	12.465	0.563	0.613	0.609	0.633	5.1
Motron [57]	7.168	0.375	0.488	0.509	0.539	-	-	-	-	-	-
DivSamp [15]	15.310	0.370	0.485	0.475	0.516	24.724	0.564	0.647	0.623	0.667	5.2
BeLFusion [4]	7.602	0.372	0.474	0.473	0.507	9.376	0.513	0.560	0.569	0.585	449.3
BeLFusion-D	5.777	0.367	0.472	0.469	0.506	7.458	0.508	0.567	0.564	0.591	39.3
HumanMAC [12]	6.301	0.369	0.480	0.509	0.545	9.321	0.511	0.554	0.593	0.591	1172.9
CoMusion [61]	7.632	0.350	0.458	0.494	0.506	10.848	0.494	0.547	0.469	0.466	352.6
SLD [68]	8.741	0.348	0.436	0.435	0.463	-	-	-	-	-	375.0
FlowPrecomp.	6.101	0.369	0.473	0.481	0.511	7.099	0.511	0.566	0.567	0.586	1.3
w/o Precomp.	5.385	0.374	0.489	0.490	0.531	6.291	0.516	0.586	0.573	0.608	415.9

Table 1: Quantitative comparisons over the stochastic human motion prediction metrics on Human3.6M and AMASS datasets. Lower is better for all metrics except APD. The reported inference time is when a method finishes generating 50 prediction samples from receiving the past motion.

229 by BeLFusion [4] for fair comparison, as predicting future 120 frames (2.0 sec) with 30 frames
230 observation (0.5 sec) with downsampling to 60 Hz.

231 **Metrics.** We use the evaluation metrics to measure diversity and accuracy. 50 sampled predictions
232 are evaluated with the following metrics: **Average Pairwise Distance (APD)** [3] evaluates sample
233 diversity. It calculates the mean l_2 distance between all predicted motions. **Average and Final**
234 **Displacement Error (ADE, FDE)** [2, 32, 22] evaluate accuracy. They calculate the average and final-
235 frame l_2 distances between the ground truth motion and closest prediction in the 50 set. **Multimodal**
236 **ADE and FDE (MMADE, MMFDE)** [72] also evaluate accuracy in a similar way to ADE and FDE.
237 However, they are calculated over multimodal ground truths selected by grouping similar motions.

238 We also evaluate the accuracy of density estimation with **Multimodal Log Probability** per dimension.
239 It calculates the log probability of the multimodal ground truths to measure how accurately the
240 estimated density covers possible future motions. We evaluate the log probability on the motion space
241 except for methods with latent space such as our CacheFlow and BeLFusion. While higher is better
242 on APD and multimodal log probability, lower is better on ADE, FDE, MMADE, and MMFDE.

Method	#sample for KDE	MM log prob. per dim \uparrow	Inference Time[ms] \downarrow
BeLFusion	50	-2.383	2305.3 (440.3)
	1000	-1.633	2422.4 (449.3)
CoMusion [61]	50	-15.575	2500.5 (167.0)
	1000	-12.746	5071.5 (2741.3)
SLD [68]	50	0.080	2559.1 (375.0)
CacheFlow	-	1.304	0.5 (0.5)

Table 2: **Density Estimation Accuracy on Human3.6M.** Inference time of each method is reported as {total time (time without KDE inference)}. Since our method doesn’t require KDE for density estimation, the number of samples for KDE is left blank for CacheFlow.

243 **Implementation Details.** Our method is based on a latent flow-based model. We utilize a Variational
 244 Autoencoder (VAE) to obtain a latent representation. Specifically, we employ the Behavioral Latent
 245 Space (BLS) [4] as a VAE to achieve a compact latent representation. BLS ensures smoothness
 246 of predicted motions and consistency between the end of the past motion and the start of the
 247 predicted motion. Additionally, we compress this representation using linear factorization [68]. The
 248 dimensionality of the VAE latent space is 128, which we further reduce to 8 dimensions through
 249 linear factorization. We trained the unconditional flow-based model on this 8-dimensional space. The
 250 unconditional flow-based model f_θ is a continuous normalizing flow (CNF) model, with its vector
 251 field regressed by a U-Net architecture. The conditional base density q_ϕ , as well as the VAE encoder
 252 and decoder, are implemented as one-layer Recurrent Neural Networks (RNNs). We used a Gaussian
 253 mixture model with $M = 50$ modes to model the conditional base density q_ϕ . We precomputed
 254 and collected triplets $t_k = \{\mathbf{z}_k, |\det \mathcal{J}_{f_\theta}(\mathbf{z}_k)|^{-1}, \mathbf{x}_k\}$ using all training samples of each dataset. All
 255 experiments, including inference time measuring, were carried out using a single NVIDIA A100
 256 GPU. We used a batch size 64 and the Adam optimizer with a learning rate of 5×10^{-4} .

257 5.1 Quantitative Evaluation

258 **Accuracy Over a Fixed Number of Predictions.** We compare CacheFlow against state-of-the-art
 259 methods of stochastic human motion prediction. While we propose using a precomputed set during
 260 inference, we also evaluate our method without precomputation. In the absence of precomputation,
 261 we sample \mathbf{z} from the conditional base density $q_\phi(\mathbf{z}|c)$ and obtain \mathbf{x} through the flow-based model
 262 inference, where $\mathbf{x} = f_\theta(\mathbf{z})$. The results are summarized in Table 1. Since the primary applications
 263 of human motion prediction are in real-time scenarios, we also measure the inference time of each
 264 method to sample 50 predictions on a GPU.

265 CoMusion and SLD were successful in predicting motions that are closer to the ground truth than
 266 CacheFlow; however, their inference times of 167 and 375 milliseconds are too long for the intended
 267 2000 ms prediction horizon. As a result, over 8% of the first prediction sequence is rendered useless
 268 once the prediction is finalized. Therefore, it is difficult to use these methods with slow inference in
 269 real-time applications. Although our primary goal is to estimate the density, CacheFlow achieves
 270 comparable performances with a 1.3 millisecond inference time. Our method achieves around 4 \times
 271 faster than the fastest VAE method, GSPS, and 30 \times faster than the fastest diffusion-based method,
 272 BeLFusion-D. The inference of our method is fast enough (1.3ms for future 2000ms) and applicable
 273 for real-time applications. This inference speed is because the inference of the unconditional flow-
 274 based model f_θ is precomputed. We only need to evaluate the lightweight conditional base density q_ϕ
 275 at inference. Although our conditional base density q_ϕ is just a Gaussian mixture with low expressive
 276 power, our method achieves high accuracy since the precomputed unconditional flow-based model f_θ
 277 gives q_ϕ much complexity with almost no overhead in inference.

278 **Density Estimation Accuracy.** The density estimation accuracy of each method is compared be-
 279 tween CacheFlow and the state-of-the-art methods. The three state-of-the-art methods BeLFusion [4],
 280 CoMusion [61], and SLD [68] are selected. CoMusion and SLD were selected since they outperform
 281 our method in benchmarks of stochastic human motion prediction. We also include BeLFusion to
 282 compare CacheFlow with the method with latent space. We applied KDE to these previous methods
 283 since they only sample a set of predictions and cannot estimate density. While we evaluated 50 and
 284 1000 samples for KDE on BeLFusion and CoMusion, SLD only allows 50 samples due to the fixed

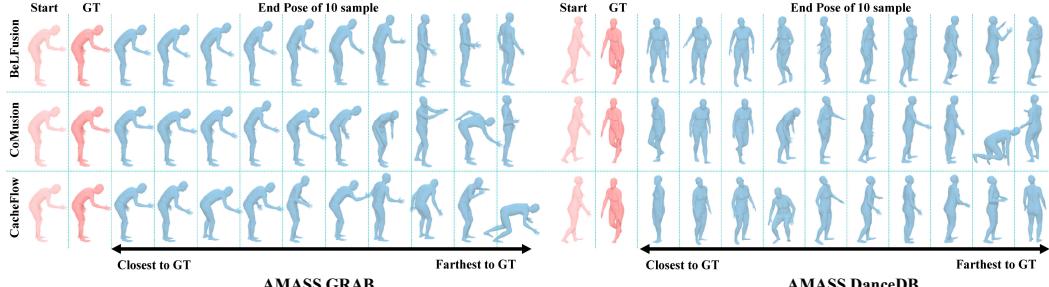


Figure 3: Qualitative Comparison on AMASS dataset.

285 number of anchors corresponding to predictions. We measured the inference time of each method to
 286 estimate the density of ten thousand future motions from the past motion input.

287 The quantitative comparisons over the multimodal ground truth log probability are shown in Table 2.
 288 All previous methods suffer from slow inference of their own and KDE on high-dimensional motion
 289 data. Their inference time exceeded the prediction horizon of 2000ms in the future. Therefore, they
 290 cannot estimate density in real-time. In contrast, our method achieves better estimation accuracy in
 291 less than one millisecond. This indicates that CacheFlow has strong discriminative ability to list up
 292 possible future motions required for safety assurance. Our method is even faster only on the density
 293 estimation (0.5ms) than the inference time reported in Table 1 (1.3ms). This is because we don't need
 294 any extra sampling operation in the density estimation.

295 5.2 Qualitative Comparison of Predicted Motions

296 To visually evaluate CacheFlow, we conducted a qualitative comparison of methods on the AMASS
 297 dataset, as shown in Figure 3. We visualized the end poses of 10 samples from each method alongside
 298 the end poses of past motions and the ground truth future motions. The sitting or lying poses were
 299 translated to the ground plane, as the global translation is not modeled in human motion prediction.
 300 The 10 pose samples are arranged from the closest to the farthest from the ground truth pose based
 301 on joint rotations.

302 Our observations indicate that CacheFlow predicts realistic poses. The closest poses to the ground
 303 truths also demonstrate that the accuracy of CacheFlow is comparable to CoMusion, as reflected
 304 in the ADE and FDE metrics listed in Table 1. Notably, our method is computationally efficient,
 305 operating 100 times faster than the fastest CoMusion. In summary, CacheFlow effectively delivers
 306 realistic and accurate predictions.

307 6 Concluding Remarks

308 We presented a new flow-based stochastic human motion prediction method named CacheFlow.
 309 Our method achieves a fast and accurate estimation of the probability density distribution of future
 310 motions. Our unconditional formulation allows precomputation and caching of the flow-based model,
 311 thus omitting a large portion of computational cost at inference. The unconditional flow-based model
 312 enhanced the expressivity of the lightweight conditional Gaussian mixture with almost no overhead.
 313 Experimental results demonstrated CacheFlow achieved comparable prediction accuracy with 1.3
 314 milliseconds inference, much faster than the previous method. Furthermore, CacheFlow estimated a
 315 more accurate density than previous methods in less than 1 millisecond.

316 Our method has one limitation. Prediction and density estimation are performed within precomputed
 317 triplets. We cannot estimate the density or predict unseen future motions during precomputation. Our
 318 future work is searching for a better precomputation strategy for prediction and estimation with more
 319 coverage based on the limited dataset. Furthermore, our method is not limited to prediction tasks but
 320 applies to any regression task requiring density estimation. We will investigate the applicability of
 321 our CacheFlow on other domains.

322 **References**

323 [1] Emre Aksan, Manuel Kaufmann, Peng Cao, and Otmar Hilliges. A spatio-temporal transformer for 3d
324 human motion prediction. In *3DV*, pages 565–574, 2021.

325 [2] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio
326 Savarese. Social lstm: Human trajectory prediction in crowded spaces. In *CVPR*, pages 961–971, 2016.

327 [3] Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salzmann, Lars Petersson, and Stephen Gould. A
328 stochastic conditioning scheme for diverse human motion prediction. In *CVPR*, pages 5223–5232, 2020.

329 [4] German Barquero, Sergio Escalera, and Cristina Palmero. Belfusion: Latent diffusion for behavior-driven
330 human motion prediction. In *ICCV*, pages 2317–2327, 2023.

331 [5] Emad Barsoum, John Kender, and Zicheng Liu. HP-GAN: probabilistic 3d human motion prediction via
332 GAN. In *CVPRW*, pages 1418–1427, 2018.

333 [6] Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Accurate and diverse sampling of sequences based
334 on a “best of many” sample objective. In *CVPR*, pages 8485–8493, 2018.

335 [7] Arij Bouazizi, Adrian Holzbock, Ulrich Kressel, Klaus Dietmayer, and Vasileios Belagiannis. Motionmixer:
336 MLP-based 3d human body pose forecasting. *IJCAI*, 2022.

337 [8] Judith Butepage, Michael J Black, Danica Kragic, and Hedvig Kjellstrom. Deep representation learning
338 for human motion prediction and classification. In *CVPR*, pages 6158–6166, 2017.

339 [9] Judith Butepage, Hedvig Kjellström, and Danica Kragic. Anticipating many futures: Online human motion
340 prediction and generation for human-robot interaction. In *ICRA*, 2018.

341 [10] Yujun Cai, Lin Huang, Yiwei Wang, Tat-Jen Cham, Jianfei Cai, Junsong Yuan, Jun Liu, Xu Yang, Yiheng
342 Zhu, Xiaohui Shen, et al. Learning progressive joint propagation for human motion prediction. In *ECCV*,
343 pages 226–242, 2020.

344 [11] Yujun Cai, Yiwei Wang, Yiheng Zhu, Tat-Jen Cham, Jianfei Cai, Junsong Yuan, Jun Liu, Chuanxia Zheng,
345 Sijie Yan, Henghui Ding, et al. A unified 3d human motion synthesis model via conditional variational
346 auto-encoder. In *ICCV*, pages 11645–11655, 2021.

347 [12] Ling-Hao Chen, Jiawei Zhang, Yewen Li, Yiren Pang, Xiaobo Xia, and Tongliang Liu. Humanmac:
348 Masked motion completion for human motion prediction. In *ICCV*, pages 9544–9555, 2023.

349 [13] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
350 equations. *NeurIPS*, 31, 2018.

351 [14] Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li. Msr-gcn: Multi-scale
352 residual graph convolution networks for human motion prediction. In *ICCV*, pages 11467–11476, 2021.

353 [15] Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li. Diverse human motion
354 prediction via gumbel-softmax sampling from an auxiliary space. In *ACMMM*, pages 5162–5171, 2022.

355 [16] Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Salimbeni, Kai Arulkumaran,
356 and Murray Shanahan. Deep unsupervised clustering with gaussian mixture variational autoencoders.
357 *arXiv preprint arXiv:1611.02648*, 2016.

358 [17] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent network models for
359 human dynamics. In *ICCV*, pages 4346–4354, 2015.

360 [18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
361 Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):
362 139–144, 2020.

363 [19] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
364 free-form continuous dynamics for scalable reversible generative models. In *ICLR*, 2019.

365 [20] Liang-Yan Gui, Yu-Xiong Wang, Xiaodan Liang, and José MF Moura. Adversarial geometry-aware human
366 motion prediction. In *ECCV*, pages 786–803, 2018.

367 [21] Wen Guo, Yuming Du, Xi Shen, Vincent Lepetit, Xavier Alameda-Pineda, and Francesc Moreno-Noguer.
368 Back to mlp: A simple baseline for human motion prediction. In *WACV*, pages 4809–4819, 2023.

369 [22] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan: Socially
370 acceptable trajectories with generative adversarial networks. In *CVPR*, pages 2255–2264, 2018.

371 [23] Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and R Venkatesh Babu. Deligan: Generative
372 adversarial networks for diverse and limited data. In *CVPR*, pages 166–174, 2017.

373 [24] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 33:
374 6840–6851, 2020.

375 [25] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3. 6m: Large scale datasets
376 and predictive methods for 3d human sensing in natural environments. *TPAMI*, 36(7):1325–1339, 2013.

377 [26] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn: Deep learning on
378 spatio-temporal graphs. In *CVPR*, pages 5308–5317, 2016.

379 [27] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *ICLR*, 2014.

380 [28] Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review
381 of current methods. *IEEE transactions on pattern analysis and machine intelligence*, 43(11):3964–3979,
382 2020.

383 [29] Hema S Koppula and Ashutosh Saxena. Anticipating human activities using object affordances for reactive
384 robotic response. *TPAMI*, 38(1):14–29, 2015.

385 [30] Jogendra Nath Kundu, Maharshi Gor, and R Venkatesh Babu. Bihmp-gan: Bidirectional 3d human motion
386 prediction GAN. In *AAAI*, pages 8553–8560, 2019.

387 [31] Przemyslaw A Lasota and Julie A Shah. A multiple-predictor approach to human motion prediction. In
388 *ICRA*, pages 2300–2307, 2017.

389 [32] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and Manmohan Chan-
390 draker. Desire: Distant future prediction in dynamic scenes with interacting agents. In *CVPR*, pages
391 336–345, 2017.

392 [33] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Convolutional sequence to sequence model for
393 human dynamics. In *CVPR*, pages 5226–5234, 2018.

394 [34] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yanfeng Wang, and Qi Tian. Dynamic multiscale
395 graph neural networks for 3d skeleton based human motion prediction. In *CVPR*, pages 214–223, 2020.

396 [35] Maosen Li, Siheng Chen, Zihui Liu, Zijing Zhang, Lingxi Xie, Qi Tian, and Ya Zhang. Skeleton graph
397 scattering networks for 3d skeleton-based human motion prediction. In *ICCV*, pages 854–864, 2021.

398 [36] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
399 for generative modeling. In *ICLR*, 2023.

400 [37] Zhenguang Liu, Shuang Wu, Shuyuan Jin, Qi Liu, Shijian Lu, Roger Zimmermann, and Li Cheng. Towards
401 natural and accurate future motion prediction of humans and animals. In *CVPR*, pages 10004–10012, 2019.

402 [38] Diogo C Luvizon, David Picard, and Hedi Tabia. 2d/3d pose estimation and action recognition using
403 multitask deep learning. In *CVPR*, pages 5137–5146, 2018.

404 [39] Hengbo Ma, Jiachen Li, Ramin Hosseini, Masayoshi Tomizuka, and Chiho Choi. Multi-objective diverse
405 human motion prediction with knowledge distillation. In *CVPR*, pages 8161–8171, 2022.

406 [40] Takahiro Maeda and Norimichi Ukita. Fast inference and update of probabilistic density estimation on
407 trajectory prediction. In *ICCV*, pages 9795–9805, 2023.

408 [41] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. AMASS:
409 Archive of motion capture as surface shapes. In *ICCV*, pages 5442–5451, 2019.

410 [42] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Gerard Pons-Moll, and Michael J Black. Amass:
411 Archive of motion capture as surface shapes. In *ICCV*, pages 5442–5451, 2019.

412 [43] Jim Mainprice and Dmitry Berenson. Human-robot collaborative manipulation planning using early
413 prediction of human motion. In *2013 IEEE/RSJ International Conference on Intelligent Robots and
414 Systems*, pages 299–306. IEEE, 2013.

415 [44] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Learning trajectory dependencies for
416 human motion prediction. In *ICCV*, pages 9489–9497, 2019.

417 [45] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. Generating smooth pose sequences for diverse human
418 motion prediction. In *ICCV*, pages 13309–13318, 2021.

419 [46] Julieta Martinez, Michael J Black, and Javier Romero. On human motion prediction using recurrent neural
420 networks. In *CVPR*, pages 2891–2900, 2017.

421 [47] Julieta Martinez, Rayat Hossain, Javier Romero, and James J Little. A simple yet effective baseline for 3d
422 human pose estimation. In *ICCV*, pages 2640–2649, 2017.

423 [48] Angel Martínez-González, Michael Villamizar, and Jean-Marc Odobez. Pose transformers (potr): Human
424 motion prediction with non-autoregressive transformers. In *ICCV*, pages 2276–2284, 2021.

425 [49] Leland McInnes and John Healy. UMAP: uniform manifold approximation and projection for dimension
426 reduction. *CoRR*, abs/1802.03426, 2018.

427 [50] Omar Medjaouri and Kevin Desai. Hr-stan: High-resolution spatio-temporal attention network for 3d
428 human motion prediction. In *CVPR*, pages 2540–2549, 2022.

429 [51] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A survey of motion
430 planning and control techniques for self-driving urban vehicles. *IEEE Transactions on intelligent vehicles*,
431 1(1):33–55, 2016.

432 [52] Emanuel Parzen. On estimation of a probability density function and mode. *The annals of mathematical
433 statistics*, 33(3):1065–1076, 1962.

434 [53] Dario Pavllo, David Grangier, and Michael Auli. Quaternet: A quaternion-based recurrent model for
435 human motion. *BMVC*, 2018.

436 [54] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3d human pose estimation in
437 video with temporal convolutions and semi-supervised training. In *CVPR*, pages 7753–7762, 2019.

438 [55] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *ICML*, pages
439 1530–1538, 2015.

440 [56] Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. *The annals of
441 mathematical statistics*, pages 832–837, 1956.

442 [57] Tim Salzmann, Marco Pavone, and Markus Ryll. Motron: Multimodal probabilistic human motion
443 forecasting. In *CVPR*, pages 6457–6466, 2022.

444 [58] Audun Rønning Sanderud, Mihoko Niitsuma, and Trygve Thomessen. A likelihood analysis for a risk
445 analysis for safe human robot collaboration. In *2015 IEEE 20th Conference on Emerging Technologies &
446 Factory Automation (ETFA)*, pages 1–6. IEEE, 2015.

447 [59] Leonid Sigal, Alexandru O Balan, and Michael J Black. Humaneva: Synchronized video and motion
448 capture dataset and baseline algorithm for evaluation of articulated human motion. *International journal of
449 computer vision*, 87(1):4–27, 2010.

450 [60] Bernard W Silverman. *Density estimation for statistics and data analysis*. Routledge, 2018.

451 [61] Jiarui Sun and Girish Chowdhary. Comusion: Towards consistent stochastic human motion prediction via
452 motion diffusion. In *ECCV*, pages 18–36, 2024.

453 [62] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algorithms.
454 *Communications on Pure and Applied Mathematics*, 66(2):145–164, 2013.

455 [63] Esteban G Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood.
456 *Communications in Mathematical Sciences*, 8(1):217–233, 2010.

457 [64] Peter Tisnikar, Gerard Canal, and Matteo Leonetti. Probabilistic inference of human capabilities from
458 passive observations. In *2024 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)*, pages 8779–8785. IEEE, 2024.

460 [65] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial Hebert. The pose knows: Video forecasting
461 by generating pose futures. In *ICCV*, pages 3332–3341, 2017.

462 [66] Dong Wei, Huaijiang Sun, Bin Li, Jianfeng Lu, Weiqing Li, Xiaoning Sun, and Shengxiang Hu. Human
463 joint kinematics diffusion-refinement for stochastic motion prediction. In *AAAI*, pages 6110–6118, 2023.

464 [67] Christina Winkler, Daniel E. Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods with
465 conditional normalizing flows. *CoRR*, abs/1912.00042, 2019.

466 [68] Guowei Xu, Jiale Tao, Wen Li, and Lixin Duan. Learning semantic latent directions for accurate and
467 controllable human motion prediction. In *ECCV*, pages 56–73, 2024.

468 [69] Sirui Xu, Yu-Xiong Wang, and Liang-Yan Gui. Diverse human motion prediction guided by multi-level
469 spatial-temporal anchors. In *ECCV*, 2022.

470 [70] Xincheng Yan, Akash Rastogi, Ruben Villegas, Kalyan Sunkavalli, Eli Shechtman, Sunil Hadap, Ersin
471 Yumer, and Honglak Lee. Mt-vae: Learning motion transformations to generate multimodal human
472 dynamics. In *ECCV*, pages 265–281, 2018.

473 [71] Wei Yang, Wanli Ouyang, Xiaolong Wang, Jimmy Ren, Hongsheng Li, and Xiaogang Wang. 3d human
474 pose estimation in the wild by adversarial learning. In *CVPR*, pages 5255–5264, 2018.

475 [72] Ye Yuan and Kris Kitani. Diverse trajectory forecasting with determinantal point processes. *arXiv preprint*
476 *arXiv:1907.04967*, 2019.

477 [73] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows for diverse human motion prediction. In *ECCV*,
478 pages 346–364, 2020.

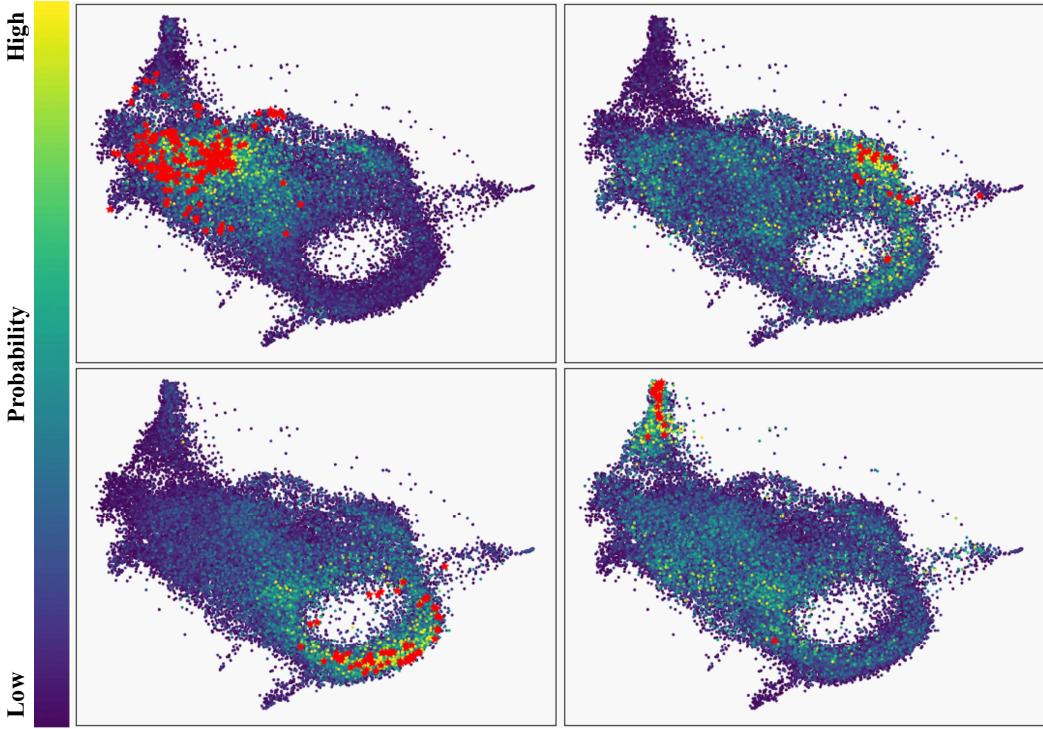


Figure 4: **Visualization of future motion densities by CacheFlow.** The estimated densities for four different motion sequences are visualized. We used UMAP to project these future motions onto a 2D space. Each dot represents an evaluated future motion, and the color of each dot indicates its probability, as shown in the side color bar. The red stars represent the projected ground truth future motions.

	Linear Factorization	Unconditional Flow-based Model	Joint Learning	Precomp. Set	Sampling	ADE \downarrow	FDE \downarrow	MM log prob. per dims \uparrow	Inference time[ms] \downarrow
(1)		✓	✓	Train Set	NN sample	0.502	0.664	0.458	4.8
(2)	✓		✓	Train Set	NN sample	0.616	0.889	0.901	0.4
(3)	✓			Train Set	NN sample	0.370	0.475	1.283	1.3
(4)	✓	✓	✓	Base Density	NN sample	0.376	0.492	-	1.3
(5)	✓	✓	✓	Train Set	Random sample	0.455	0.605	-	1.2
	✓	✓	✓	Train Set	Most likely	0.384	0.506	-	1.4
	✓	✓	✓	Train Set	NN sample	0.369	0.473	1.304	1.3

Table 3: **Ablation Study on Human3.6M.** (4) and (5) do not affect the ground truth log probability, these are left blank.

479 A Implementation Details of Kernel Density Estimation

480 We assessed the accuracy of density estimation using Kernel Density Estimation (KDE) on previous
 481 methods. To ensure a fair comparison of inference time, all KDE computations were conducted on
 482 the GPU. We applied KDE to the standardized predicted future motions (or latents for BeLFusion)
 483 to obtain the estimated density. In this process, the i -th dimension of the predicted future motions
 484 was standardized using its i -th variance, meaning that covariances were not considered during
 485 standardization. We employed Scott’s rule to determine the optimal bandwidth for KDE.

486 B Ablation Study

487 We conducted an ablation study to investigate how each component affects the performance of our
 488 CacheFlow. We ablate five components: (1) dimensionality reduction via linear factorization on

489 VAE, (2) the unconditional flow-based model f_θ , (3) joint learning of the conditional base density
490 q_ϕ and unconditional flow-based model f_θ , (4) dataset for precomputation, (5) the sampling method
491 for metrics over a fixed number of predictions. Ablation results on the Human3.6M dataset are
492 summarized in Table 3.

493 **Linear Factorization.** We first ablate the linear factorization compressing 256-dim VAE latent to be
494 an 8-dim factor space. Our method is considerably enhanced on the compact space by avoiding the
495 curse of dimensionality.

496 **The Unconditional Flow-based Model.** We ablate this flow-based model f_θ to confirm it improves
497 the conditional base density q_ϕ by adding complexity. As shown in Table 3, we observe a notable
498 performance drop without the flow-based model. Therefore, our unconditional flow-based model
499 f_θ complements conditional base density q_ϕ to estimate complex density distribution over human
500 motions.

501 **Joint Learning.** We ablate the joint learning of the unconditional flow-based model f_θ and the
502 conditional base density q_ϕ . The joint learning certainly improves both prediction errors and density
503 estimation accuracy. The unconditional flow-based model f_θ can learn a more clustered z mapped
504 from the motion feature x . Thus, a conditional base density q_ϕ can easily model the z distribution.

505 **Dataset for Precomputation.** We propose the precomputation over the training split. Specifically,
506 we apply inverse transform $z = f_\theta(x)$ to ground truth future motions in the training split. However,
507 we may precompute infinite precomputation samples. For example, we can sample $z \sim q_\phi(z|c)$ and
508 obtain x by forward transform $x = f_\theta(z)$. As shown in the ablation, precomputation on the training
509 split outperforms one on the base density since we can regularize the prediction to be legitimate
510 human motions using the training split.

511 **Sampling Method.** We propose the nearest neighbor sampling from the precomputation set as
512 described in Section 4.3. Lastly, we ablate this sampling to evaluate its performance gain. We
513 experimented with two sampling method alternatives: random sampling and most likely sampling.
514 Precomputed motion features x_{k^*} are uniformly selected as predictions with random sampling. Most
515 likely sampling selects motion features x_{k^*} with the highest probabilities $k^* = \text{argmax}_k p(x_k|c)$. We
516 found that the large and little performance drops with random and most likely sampling respectively.
517 This random sampling is worse due to the independence from the past motions c . The most likely
518 method underperforms due to less diverse samples. It cannot select a motion feature set with diversity
519 because all selected features are often located in one peak of the estimated density. Since ADE
520 and FDE are best-of-many metrics, this less diversity leads to worse performance. In contrast, our
521 sampling method is superior to others. Our sampling incorporates past motions and achieves good
522 diversity by simulating sampling from the estimated density $p(x|c)$.

523 C Visualization of Estimated Density

524 We visualized the future motion density estimated by CacheFlow. Since future motions are high-
525 dimensional data, we used UMAP [49] to project each future motion into a 2D space. We displayed
526 the multimodal ground truth future motions alongside the visualized density map. As shown in
527 Figure 4, CacheFlow estimated a high probability around the ground truth in all motion sequences.
528 This visually supports the high density estimation accuracy presented in Table 2.

529 D Potential Broader Impact

530 The proposed CacheFlow introduces a fast probability-aware motion prediction framework, which
531 may involve the following broader impacts:

- 532 • **Improved Collaboration in Robotics and Automation.** In collaborative robotics and
533 industrial automation, understanding and anticipating human motion is critical for ensuring
534 safety and efficiency. The proposed system enables robots to predict human actions and
535 movements with probabilistic confidence, allowing them to adjust their trajectories and
536 tasks in real time. This leads to smoother coordination in shared workspaces such as
537 manufacturing floors, warehouses, or hospitals, where humans and robots must work in
538 close proximity.

539

- 540 • **Proactive Support in Assistive Technologies.** In assistive technologies for the elderly
- 541 and individuals with disabilities, anticipating human motion is essential for delivering
- 542 timely and meaningful support. A fast and uncertainty-aware human motion prediction
- 543 system enables robots and smart devices to proactively assist users by foreseeing movements
- 544 such as standing, walking, or reaching, even in the presence of noisy or partial sensor
- 545 data. Furthermore, such a system could help prevent falls or injuries by detecting signs of
- 546 instability and initiating interventions early.
- 547
- 548 • **Immersive Interactions in VR and Gaming.** Virtual reality (VR) and gaming systems
- 549 stand to benefit from predictive models that can estimate future body movements in real

550 **NeurIPS Paper Checklist**

551 **1. Claims**

552 Question: Do the main claims made in the abstract and introduction accurately reflect the
553 paper's contributions and scope?

554 Answer: **[Yes]**

555 Justification: The abstract reflects our main contribution, a novel 3D human motion predic-
556 tion method named CacheFlow for fast inference and density estimation.

557 Guidelines:

- 558 • The answer NA means that the abstract and introduction do not include the claims
559 made in the paper.
- 560 • The abstract and/or introduction should clearly state the claims made, including the
561 contributions made in the paper and important assumptions and limitations. A No or
562 NA answer to this question will not be perceived well by the reviewers.
- 563 • The claims made should match theoretical and experimental results, and reflect how
564 much the results can be expected to generalize to other settings.
- 565 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
566 are not attained by the paper.

567 **2. Limitations**

568 Question: Does the paper discuss the limitations of the work performed by the authors?

569 Answer: **[Yes]**

570 Justification: We included the limitation of our method in the Section 6.

571 Guidelines:

- 572 • The answer NA means that the paper has no limitation while the answer No means that
573 the paper has limitations, but those are not discussed in the paper.
- 574 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 575 • The paper should point out any strong assumptions and how robust the results are to
576 violations of these assumptions (e.g., independence assumptions, noiseless settings,
577 model well-specification, asymptotic approximations only holding locally). The authors
578 should reflect on how these assumptions might be violated in practice and what the
579 implications would be.
- 580 • The authors should reflect on the scope of the claims made, e.g., if the approach was
581 only tested on a few datasets or with a few runs. In general, empirical results often
582 depend on implicit assumptions, which should be articulated.
- 583 • The authors should reflect on the factors that influence the performance of the approach.
584 For example, a facial recognition algorithm may perform poorly when image resolution
585 is low or images are taken in low lighting. Or a speech-to-text system might not be
586 used reliably to provide closed captions for online lectures because it fails to handle
587 technical jargon.
- 588 • The authors should discuss the computational efficiency of the proposed algorithms
589 and how they scale with dataset size.
- 590 • If applicable, the authors should discuss possible limitations of their approach to
591 address problems of privacy and fairness.
- 592 • While the authors might fear that complete honesty about limitations might be used by
593 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
594 limitations that aren't acknowledged in the paper. The authors should use their best
595 judgment and recognize that individual actions in favor of transparency play an impor-
596 tant role in developing norms that preserve the integrity of the community. Reviewers
597 will be specifically instructed to not penalize honesty concerning limitations.

598 **3. Theory assumptions and proofs**

599 Question: For each theoretical result, does the paper provide the full set of assumptions and
600 a complete (and correct) proof?

601 Answer: **[NA]**

602 Justification: Our paper does not include theoretical results.

603 Guidelines:

- 604 • The answer NA means that the paper does not include theoretical results.
- 605 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
606 referenced.
- 607 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 608 • The proofs can either appear in the main paper or the supplemental material, but if
609 they appear in the supplemental material, the authors are encouraged to provide a short
610 proof sketch to provide intuition.
- 611 • Inversely, any informal proof provided in the core of the paper should be complemented
612 by formal proofs provided in appendix or supplemental material.
- 613 • Theorems and Lemmas that the proof relies upon should be properly referenced.

614 4. Experimental result reproducibility

615 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
616 perimental results of the paper to the extent that it affects the main claims and/or conclusions
617 of the paper (regardless of whether the code and data are provided or not)?

618 Answer: [Yes]

619 Justification: The code to reproduce the main experimental results will be publicly available.

620 Guidelines:

- 621 • The answer NA means that the paper does not include experiments.
- 622 • If the paper includes experiments, a No answer to this question will not be perceived
623 well by the reviewers: Making the paper reproducible is important, regardless of
624 whether the code and data are provided or not.
- 625 • If the contribution is a dataset and/or model, the authors should describe the steps taken
626 to make their results reproducible or verifiable.
- 627 • Depending on the contribution, reproducibility can be accomplished in various ways.
628 For example, if the contribution is a novel architecture, describing the architecture fully
629 might suffice, or if the contribution is a specific model and empirical evaluation, it may
630 be necessary to either make it possible for others to replicate the model with the same
631 dataset, or provide access to the model. In general, releasing code and data is often
632 one good way to accomplish this, but reproducibility can also be provided via detailed
633 instructions for how to replicate the results, access to a hosted model (e.g., in the case
634 of a large language model), releasing of a model checkpoint, or other means that are
635 appropriate to the research performed.
- 636 • While NeurIPS does not require releasing code, the conference does require all submis-
637 sions to provide some reasonable avenue for reproducibility, which may depend on the
638 nature of the contribution. For example
 - 639 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
640 to reproduce that algorithm.
 - 641 (b) If the contribution is primarily a new model architecture, the paper should describe
642 the architecture clearly and fully.
 - 643 (c) If the contribution is a new model (e.g., a large language model), then there should
644 either be a way to access this model for reproducing the results or a way to reproduce
645 the model (e.g., with an open-source dataset or instructions for how to construct
646 the dataset).
 - 647 (d) We recognize that reproducibility may be tricky in some cases, in which case
648 authors are welcome to describe the particular way they provide for reproducibility.
649 In the case of closed-source models, it may be that access to the model is limited in
650 some way (e.g., to registered users), but it should be possible for other researchers
651 to have some path to reproducing or verifying the results.

652 5. Open access to data and code

653 Question: Does the paper provide open access to the data and code, with sufficient instruc-
654 tions to faithfully reproduce the main experimental results, as described in supplemental
655 material?

656 Answer: [Yes]

657 Justification: The code and instructions will be publicly available on GitHub.

658 Guidelines:

- 659 • The answer NA means that paper does not include experiments requiring code.
- 660 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 661 • While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- 662 • The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 663 • The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 664 • The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- 665 • At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- 666 • Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

667 **6. Experimental setting/details**

669 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
670 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
671 results?

672 Answer: [Yes]

673 Justification: We specify all the training details on the Section 5. We followed the evaluation
674 protocol proposed by the previous method [4].

675 Guidelines:

- 676 • The answer NA means that the paper does not include experiments.
- 677 • The experimental setting should be presented in the core of the paper to a level of detail
678 that is necessary to appreciate the results and make sense of them.
- 679 • The full details can be provided either with the code, in appendix, or as supplemental
680 material.

681 **7. Experiment statistical significance**

682 Question: Does the paper report error bars suitably and correctly defined or other appropriate
683 information about the statistical significance of the experiments?

684 Answer: [Yes]

685 Justification: The Section 5 tells the training details, and our source code will be publicly
686 available.

687 Guidelines:

- 688 • The answer NA means that the paper does not include experiments.
- 689 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
690 dence intervals, or statistical significance tests, at least for the experiments that support
691 the main claims of the paper.
- 692 • The factors of variability that the error bars are capturing should be clearly stated (for
693 example, train/test split, initialization, random drawing of some parameter, or overall
694 run with given experimental conditions).
- 695 • The method for calculating the error bars should be explained (closed form formula,
696 call to a library function, bootstrap, etc.)
- 697 • The assumptions made should be given (e.g., Normally distributed errors).

708 • It should be clear whether the error bar is the standard deviation or the standard error
 709 of the mean.
 710 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 711 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 712 of Normality of errors is not verified.
 713 • For asymmetric distributions, the authors should be careful not to show in tables or
 714 figures symmetric error bars that would yield results that are out of range (e.g. negative
 715 error rates).
 716 • If error bars are reported in tables or plots, The authors should explain in the text how
 717 they were calculated and reference the corresponding figures or tables in the text.

718 **8. Experiments compute resources**

719 Question: For each experiment, does the paper provide sufficient information on the com-
 720 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 721 the experiments?

722 Answer: [\[Yes\]](#)

723 Justification: The Section 5 includes the computer resource used for the experiments
 724 (NVIDIA A100 GPU).

725 Guidelines:

726 • The answer NA means that the paper does not include experiments.
 727 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 728 or cloud provider, including relevant memory and storage.
 729 • The paper should provide the amount of compute required for each of the individual
 730 experimental runs as well as estimate the total compute.
 731 • The paper should disclose whether the full research project required more compute
 732 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 733 didn't make it into the paper).

734 **9. Code of ethics**

735 Question: Does the research conducted in the paper conform, in every respect, with the
 736 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

737 Answer: [\[Yes\]](#)

738 Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our research
 739 conforms to it.

740 Guidelines:

741 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 742 • If the authors answer No, they should explain the special circumstances that require a
 743 deviation from the Code of Ethics.
 744 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 745 eration due to laws or regulations in their jurisdiction).

746 **10. Broader impacts**

747 Question: Does the paper discuss both potential positive societal impacts and negative
 748 societal impacts of the work performed?

749 Answer: [\[Yes\]](#)

750 Justification: The proposed CacheFlow may have broader impacts on robotics, assistive
 751 technologies, VR, gaming, etc., as detailed in Appendix D.

752 Guidelines:

753 • The answer NA means that there is no societal impact of the work performed.
 754 • If the authors answer NA or No, they should explain why their work has no societal
 755 impact or why the paper does not address societal impact.
 756 • Examples of negative societal impacts include potential malicious or unintended uses
 757 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
 758 (e.g., deployment of technologies that could make decisions that unfairly impact specific
 759 groups), privacy considerations, and security considerations.

760 • The conference expects that many papers will be foundational research and not tied
 761 to particular applications, let alone deployments. However, if there is a direct path to
 762 any negative applications, the authors should point it out. For example, it is legitimate
 763 to point out that an improvement in the quality of generative models could be used to
 764 generate deepfakes for disinformation. On the other hand, it is not needed to point out
 765 that a generic algorithm for optimizing neural networks could enable people to train
 766 models that generate Deepfakes faster.

767 • The authors should consider possible harms that could arise when the technology is
 768 being used as intended and functioning correctly, harms that could arise when the
 769 technology is being used as intended but gives incorrect results, and harms following
 770 from (intentional or unintentional) misuse of the technology.

771 • If there are negative societal impacts, the authors could also discuss possible mitigation
 772 strategies (e.g., gated release of models, providing defenses in addition to attacks,
 773 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
 774 feedback over time, improving the efficiency and accessibility of ML).

775 **11. Safeguards**

776 Question: Does the paper describe safeguards that have been put in place for responsible
 777 release of data or models that have a high risk for misuse (e.g., pretrained language models,
 778 image generators, or scraped datasets)?

779 Answer: [NA]

780 Justification: There is no high risk for misuse in the models.

781 Guidelines:

- 782 • The answer NA means that the paper poses no such risks.
- 783 • Released models that have a high risk for misuse or dual-use should be released with
 784 necessary safeguards to allow for controlled use of the model, for example by requiring
 785 that users adhere to usage guidelines or restrictions to access the model or implementing
 786 safety filters.
- 787 • Datasets that have been scraped from the Internet could pose safety risks. The authors
 788 should describe how they avoided releasing unsafe images.
- 789 • We recognize that providing effective safeguards is challenging, and many papers do
 790 not require this, but we encourage authors to take this into account and make a best
 791 faith effort.

792 **12. Licenses for existing assets**

793 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
 794 the paper, properly credited and are the license and terms of use explicitly mentioned and
 795 properly respected?

796 Answer: [Yes]

797 Justification: The licenses and terms of use are explicitly mentioned and properly respected.

798 Guidelines:

- 799 • The answer NA means that the paper does not use existing assets.
- 800 • The authors should cite the original paper that produced the code package or dataset.
- 801 • The authors should state which version of the asset is used and, if possible, include a
 802 URL.
- 803 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 804 • For scraped data from a particular source (e.g., website), the copyright and terms of
 805 service of that source should be provided.
- 806 • If assets are released, the license, copyright information, and terms of use in the
 807 package should be provided. For popular datasets, paperswithcode.com/datasets
 808 has curated licenses for some datasets. Their licensing guide can help determine the
 809 license of a dataset.
- 810 • For existing datasets that are re-packaged, both the original license and the license of
 811 the derived asset (if it has changed) should be provided.

812 • If this information is not available online, the authors are encouraged to reach out to
813 the asset's creators.

814 **13. New assets**

815 Question: Are new assets introduced in the paper well documented and is the documentation
816 provided alongside the assets?

817 Answer: [NA]

818 Justification: There are no new assets introduced in the paper.

819 Guidelines:

820 • The answer NA means that the paper does not release new assets.
821 • Researchers should communicate the details of the dataset/code/model as part of their
822 submissions via structured templates. This includes details about training, license,
823 limitations, etc.
824 • The paper should discuss whether and how consent was obtained from people whose
825 asset is used.
826 • At submission time, remember to anonymize your assets (if applicable). You can either
827 create an anonymized URL or include an anonymized zip file.

828 **14. Crowdsourcing and research with human subjects**

829 Question: For crowdsourcing experiments and research with human subjects, does the paper
830 include the full text of instructions given to participants and screenshots, if applicable, as
831 well as details about compensation (if any)?

832 Answer: [NA]

833 Justification: There is no crowdsourcing experiments and research with human subjects.

834 Guidelines:

835 • The answer NA means that the paper does not involve crowdsourcing nor research with
836 human subjects.
837 • Including this information in the supplemental material is fine, but if the main contribu-
838 tion of the paper involves human subjects, then as much detail as possible should be
839 included in the main paper.
840 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
841 or other labor should be paid at least the minimum wage in the country of the data
842 collector.

843 **15. Institutional review board (IRB) approvals or equivalent for research with human
844 subjects**

845 Question: Does the paper describe potential risks incurred by study participants, whether
846 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
847 approvals (or an equivalent approval/review based on the requirements of your country or
848 institution) were obtained?

849 Answer: [NA]

850 Justification: There is no research with human subjects.

851 Guidelines:

852 • The answer NA means that the paper does not involve crowdsourcing nor research with
853 human subjects.
854 • Depending on the country in which research is conducted, IRB approval (or equivalent)
855 may be required for any human subjects research. If you obtained IRB approval, you
856 should clearly state this in the paper.
857 • We recognize that the procedures for this may vary significantly between institutions
858 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
859 guidelines for their institution.
860 • For initial submissions, do not include any information that would break anonymity (if
861 applicable), such as the institution conducting the review.

862 **16. Declaration of LLM usage**

863 Question: Does the paper describe the usage of LLMs if it is an important, original, or
864 non-standard component of the core methods in this research? Note that if the LLM is used
865 only for writing, editing, or formatting purposes and does not impact the core methodology,
866 scientific rigorousness, or originality of the research, declaration is not required.

867 Answer: [NA]

868 Justification: We used LLMs only for writing, editing, and formatting purposes.

869 Guidelines:

870 • The answer NA means that the core method development in this research does not
871 involve LLMs as any important, original, or non-standard components.

872 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
873 for what should or should not be described.