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Abstract

Many density estimation techniques for 3D human motion prediction require a
significant amount of inference time, often exceeding the duration of the predicted
time horizon. To address the need for faster density estimation for 3D human
motion prediction, we introduce a novel flow-based method for human motion
prediction called CacheFlow. Unlike previous conditional generative models that
suffer from time efficiency, CacheFlow takes advantage of an unconditional flow-
based generative model that transforms a Gaussian mixture into the density of
future motions. The results of the computation of the flow-based generative model
can be precomputed and cached. Then, for conditional prediction, we seek a
mapping from historical trajectories to samples in the Gaussian mixture. This
mapping can be done by a much more lightweight model, thus saving significant
computation overhead compared to a typical conditional flow model. In such a
two-stage fashion and by caching results from the slow flow model computation, we
build our CacheFlow without loss of prediction accuracy and model expressiveness.
This inference process is completed in approximately one millisecond, making
it 4x faster than previous VAE methods and 30x faster than previous diffusion-
based methods on standard benchmarks such as Human3.6M and AMASS datasets.
Furthermore, our method demonstrates improved density estimation accuracy and
comparable prediction accuracy to a SOTA method on Human3.6M. Our code and
models will be publicly available.

1 Introduction

The task of 3D human motion prediction is to forecast the future 3D pose sequence given an observed
past sequence. Traditional motion prediction methods are often based on deterministic models and
can struggle to capture the inherent uncertainty in human movement. Recently, stochastic approaches
have addressed this limitation. Stochastic approaches allow models to sample multiple possible future
motions. Stochastic human motion prediction methods utilize conditional generative models such as
generative adversarial networks (GANS) [[18], variational autoencoders (VAEs) [27], and denoising
diffusion probabilistic model [24]. However, many stochastic approaches cannot explicitly model the
probability density distribution.

Conversely, density estimate-based approaches explicitly model the probability density distribution. In
safety-critical applications such as autonomous driving [S1] and human-robot interaction [29} 31} 9],
a density estimate can represent all possible future motions (not just a few samples) by tracking the
volume of density. It can be used to derive guarantees on safety [43} 58] 64].

However, previous density estimation suffers from high computational cost. The expensive computa-
tional cost can prohibit applications to real-time use-cases, especially with high dimensional data such
as human motions. For instance, kernel density estimation (KDE) [56} 52] requires an exponentially

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38

39
40
41
42
43
44

45
46
47
48
49
50
51
52
53

54
55
56
57
58

59

60
61

62
63

64

65

66
67
68
69
70

) Previous Methods (~100 ms inference)

CacheFlow (1.3 ms inference)
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Figure 1: Previous methods vs. Our CacheFlow. Previous methods of stochastic motion prediction generate
multiple future motions by sampling noises from the fixed source in an ad hoc manner. In contrast, CacheFlow
uses the precomputed and cached latent-motion pairs from an unconditional flow-based generative model. Thus,
the computation of the unconditional flow can be skipped at inference. One can achieve fast inference by
selecting predictions from these cached pairs.

growing number of samples for accurate estimation. Concretely, more than one trillion samples are
required for accurate KDE over a 48-dim pose over 100 frames of human motion prediction [60].

In contrast to traditional KDE, recent parametric density estimation approaches use conditional
flow-based generative models, including normalizing flows [55) 162} 63]] and continuous normalizing
flows [13]. These flow-based generative models (“flow-based model” for brevity) directly estimate the
density to avoid time-consuming sampling required in KDE. However, inferring the exact probability
of possible future motions remains computationally expensive. This is because capturing the full
shape of the distribution requires evaluating the probabilities of many potential future motions.

To address this computational limitation, we propose a fast density estimation method based on a flow-
based model called "CacheFlow". Our CacheFlow utilizes an unconditional flow-based model for
prediction, as illustrated in Figure[]} Since the unconditional flow-based model is independent of past
observed motions, its calculation can be precomputed and skipped at inference. This precomputation
omits a large portion of computational cost. To achieve further acceleration, our unconditional
flow-based model represents transformation between a lightweight conditional base density and the
density of future motions. At inference, the density of future motion is estimated by computing the
lightweight conditional base density and combining it with the precomputed results of the flow-based
model. The inference of our method is approximately one millisecond.

CacheFlow demonstrates comparable accuracy to previous methods on standard stochastic human
motion prediction benchmarks, Human3.6M [25] and AMASS [42]. Furthermore, our method
estimates density more accurately than previous stochastic human motion prediction methods with
KDE. CacheFlow shows improved computational efficiency, making it well-suited for real-time
applications. The contributions of this paper are four-fold as follows:

1. We introduce a novel fast density estimation called CacheFlow on human motion prediction.

2. We can sample diverse future motion trajectories with explicit density estimation, and we
experimentally confirm that our method can estimate accurate density.

3. Our method achieves comparable prediction accuracy to other computationally intense
methods on several benchmarks.

2 Related Work

2.1 Human Motion Prediction

Deterministic approaches. Early approaches on human motion prediction [[1} 7} [17} 8] 211 26} [33]]
focused on deterministic settings. They predict the most likely motion sequence based on the past
motion. A wide range of architectures were proposed including multi-layer perceptron [21]], recurrent
neural networks [17, 26, |46l |20, [53 [37], convolutional neural networks [33,[50], transformers [1}
10, 48], and graph neural networks (GNNSs) [44} 134} [14,|35]. GNN can account for the explicit tree
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expression of the human skeleton, while other architectures implicitly learn the dependencies between
joints.

Stochastic approaches. To capture the inherent uncertainty in human movements, recent works have
focused on stochastic human motion prediction to predict multiple likely future motions. The main
stream of stochastic methods use generative models for the purpose, such as generative adversarial
networks (GANS) [5,130], variational autoencoder (VAE) [65} 70,45, [11]], and denoising diffusion
probabilistic model (DDPM) [4, [12} 66l 161]]. To improve the diversity of predictions, diversity-
promoting loss [45] 4] or explicit sampling techniques [66] were proposed. In contrast to generative
models, anchor-based methods [[69, |68] learn a fixed number of anchors corresponding to each
prediction to ensure diversity. However, most stochastic methods cannot describe the density of
future motions explicitly. This prevents exhaustive or maximum likelihood sampling for practical
applications. On the contrary, our method allows for explicit density estimation using normalizing
flows [28]].

2.2 Density Estimation

Density estimation asks for explicit calculation of the probability for samples from a distribution.
Density estimation is derived by non-parametric or parametric methods.

Non-parametric Approach. The representative non-parametric density estimation is kernel density
estimation (KDE) [56, 52]. KDE can estimate density by using samples from generative models.
However, KDE requires a large number of samples for accurate estimation. Therefore, it often cannot
run in real-time.

Parametric Approach. As a representative parametric model, Gaussian mixture models (GMMs)
parametrize density with several Gaussian distributions and their mixture weights. Its nature of mixing
Gaussian priors limits its ability to generalize to complex data distribution. Another parametric
approach with more expressivity is flow-based generative models [28]. By a learned bijective
process, normalizing flows (NFs) [55)162] 63]] transform a simple density like the standard normal
distribution into a complex data density. Recently, continuous normalizing flows (CNFs) [13}[19]
achieve more expressive density than standard normalizing flows via an ODE-based bijective process.
While training of CNFs is inefficient due to the optimization of ODE solutions, an efficient training
strategy named flow matching [36] was proposed. FlowChain [40]] was proposed for fast and efficient
density estimation in human trajectory forecasting. FlowChain improves the inference time efficiency
by reusing results from the conditional flow-based method while the past sequences are similar.
However, with significantly different past sequences, FlowChain’s efficiency can’t hold anymore.
Unlike FlowChain, our method can perform fast and efficient inference regardless of past sequences.

3 Preliminary

3.1 Problem Formulation

The task of human motion prediction aims to use a short sequence of observed human motion to predict
the future unobserved motion sequence of that person. Human motion is represented by a sequence of
human poses in a pre-defined skeleton format of 3D locations of .J joints, X € R7*3. As input to our
model, we have the past (history of) human motion as a sequence ¢ = [X1, X, ..., X ] € RIX/*3
over H timesteps. To predict the future human motion sequence of F' timesteps, we can formulate the
problem as one of conditional generation using the conditional probability function, p(X|c), where
X = [Xgi1, X412, Xgor] € REX/X3] Similar to the stochastic human motion prediction
paradigm, the method should also allow for sampling n multiple future sequences { X1, ..., X,, }
from p(X |¢). The focus of our work is to accelerate the inference time of estimate and sampling of
the conditional density function p(X|c).

3.2 Normalizing Flow

Normalizing flow [S5] 162} 163] is a generative model with explicit density estimation. It follows a
bijective mapping fp with learnable parameters 6. It transforms a simple base density ¢(z) such as
a Gaussian distribution into the complex data density p(x). We can analytically estimate the exact



120

121
122
123
124
125

126
127
128

129

130
131
132
133
134

135
136
137

138

139
140
141
142
143

Unconditional Unconditional Conditional Conditional
Base Density Estimated Density base density Estimated Density

‘ x P(xilo)
@ Unconditional  |§ p() ) 94 (z|c) (\ "

Prediction
N\ o) Ay
" A
R

= P

(a) Precomputation i RIS -l P (b) Inference

- N
= [&ld,@ ] xk

Store triplets

Figure 2: Overview of our CacheFlow. Our method utilizes the unconditional flow-based model fg. This fo
maps the lightweight conditional base density g4 (z|c) into future motion density p(x|c). In this formulation,
the flow-based model is independent of past motions. Thus, we can precompute the unconditional flow-based
model. These results are cached as K triplets as shown in (a). Due to the precomputation, we can skip the
inference of fy and omit a large portion of the entire computation. At inference, density estimation is achieved
by only evaluating the lightweight conditional base density ¢, (z|c) and combining it with the stored K triplets
as shown in (b).

probability via the change-of-variables formula as follows:

x=folz), z=[;"(z) M
p(iL‘) = q(z)|detjfe(z)|_17 2

where Jy, (2) = % is the Jacobian of fy at z. The parameters 6 of fy can be learned by maximizing
the likelihood (or conditional likelihood) of samples & from datasets or minimizing the negative log-
likelihood as Ln11, = — log p(&). When @ and z are latent codes, normalizing flow is transformed
into latent normalizing flow. We follow this pattern in our method. We encode the past human motion

into by an ecoder network £ and decode it by a decoder network D:

z=E(X),X =D(x). =~R},X ~RI*¥/*3 3)

The encoder and decoder are trained by reconstruction. In the later part of this paper, for simplicity,
we discuss the method at the latent representation level and model the conditional generation task as

p(zlc).
3.3 Continuous Normalizing Flow (CNF)

Continuous normalizing flow (CNF) [13} [19] is a normalizing flow variant based on an ordinary
differential equation (ODE). CNF defines ¢-continuous path z; between the base density space
zo ~ ¢(z) and the data space z; = « ~ p(«x). This z; is defined by the parameterized vector field
% = vp(2z¢). The data ¢ = 2 is generated via numerical integration of vector field vg(z;) as

follows:
1
2= 2, = 29+ / volz1)dt. @)
0

The CNF transformation Equation (4)) is denoted as @ = fy(z) for brevity. Although CNF can be
trained by minimizing negative log-likelihood, it is time-consuming due to the numerical integration
of ODE.

3.4 Flow Matching

In order to train the parameterized vector field efficiently, one can leverage the flow matching [36]
strategy. As a new training strategy, Flow Matching avoids the numerical integration of ODE
by directly optimizing the vector field vy(z;). The objective of flow matching is to match the
parameterized vector field vy (z;) to the ground truth vector field u(z;) via mean squared error as
follows:

Lpm = EmT(o,l),Zt l[ve(z¢) — U(Zt)||2> ®)
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where 7 (0, 1) is a distribution ranging from 0 to 1.

However, we cannot obtain the ground truth vector field u(z;) directly. Ripman ef al. [36]] suggest
defining the conditional ground truth u(z:|21) instead. Specifically, it is modeled as a straight vector
field 2; — zp in Rectified Flow [[13}[19]. This is called conditional flow matching [36]] trained by the
following objective:

Lert = Benr(0,1).21.2 | [v0(20) — ulze] 1) (6)

The gradients of Lgy of Equation (5) and Lcpm of Equation (6)) are identical w.r.t 8. We exploit
expressive CNFs with efficient Flow Matching training to estimate the future motion density p(x|c).

4 Proposed Method

4.1 Overview of CacheFlow

We estimate the future motion density p(x|c) by transforming a conditional base distribution ¢, (z|c).
This g, is conditioned on the past motion c. Then we can sample predictions  ~ p(x|c) for
stochastic human motion prediction. Most traditional approaches based on conditional generative
models use a trivial source distribution, often a simple Gaussian. However, we redefine the source
distribution to be more informative and directly regressed from past motions. This allows us to
develop a much lighter and faster model for predicting future movements.

To build this informative conditional base distribution ¢4, we would incorporate an unconditional
flow-based model fy : & = fy(z) that maps latent variable z into motion representation x. To
understand how g4 and fy are connected, we first reparametrize the future motion density p(x|c) by
a change of variables of probability equation as follows:

0
plele) = a(zlc)|det", ™
9 -1
= q(zle) det( f;’f)) , ®)
= q(zle)ldet Ty, (=)| " ©)

This parametrization trick differs from the widely-used conditional density formulation [67] where c is
conditioned to the flow-based model fy. In this formulation, only the conditional base density ¢(z|c)
varies depending on ¢ during inference, whereas the unconditional flow-based model x = fy(z)
and the Jacobian |detJy, (z)|~! are kept same during inference and thus can be reused as-is once
calculated.

Therefore, we could precompute the mapping results and Jacobians of an unconditional flow-based
model fp. We cache the triplets ¢t = {z, |det 7y, ()| !, x} for later reuse in the inference stage, as
shown in Figure [J(a).

Then, during inference, we design a new trick to reuse the cached triplets by associating them with the
specific conditions of the past motion sequences, as shown in Figure 2Jb). Now, instead of a typical
conditional generative model, e.g., conditional normalizing flow, we only need a lightweight model
to model the conditional base density ¢;(z|c) and achieve similar expressivity. We could finally
estimate the future motion density by p(z|c) = g4 (z|c)|det Ty, (2)|~*. The method is summarized
as pseudocode in Algorithm|I] In the following paragraphs, we elaborate on the details of our method.

4.2 Precompute Unconditional Flow-based Model

As the first step of our method, we use the human motion dataset to learn an unconditional flow-based
model fy. From this unconditional human motion prediction model, we will collect the triplets
t = {z,|detJy,(z)| 7!, &} for later use. This part is illustrated in Figure a).

In our implementation, we built the unconditional flow model by CNFs due to its proven expressivity
for predicting human motion. The unconditional model is trained to predict a fixed-length future
motion x given a noise sample z from a source distribution g4 (z|c):

fo : RT — RY (10)
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Because z is sampled from a known distribution and normalizing-flow models are deterministic with
reversible bijective transformation, we could know the density of each {z,x} pair. We train the
unconditional continuous normalizing flow with the flow matching objective described in Equation (6).
Then we collect K samples denoted by the triplet ¢, = {2, |detJy, (2)| ', @ }. Triplets are
collected by applying the inverse transform of f, to ground truth future motions in the training split.
These triplets are cached for fast inference as described in Section[4.3] This caching operation is
different from anchor-based methods [69} [68]] since CacheFlow caches all motions of the training
split.

4.3 Conditional Inference by CacheFlow

In previous methods, conditional human motion prediction typically requires a conditional generative
model. For instance, it is a conditional flow-based or diffusion model. These models usually have
poor time efficiency due to delicate but heavy architecture. Instead, inspired by Equation (9), we can
reuse the results of unconditional inverse transformation as triplets ¢, = {zy, |detJ, (zx)| ™!, zx }-
Thus, we can perform conditional inference by only evaluating a conditional base distribution ¢(z|c).
We model this conditional base distribution by a learnable model, thus we denote it as g4 (z|c). This
model can be very lightweight since the unconditional transformation fy gives enough expressivity.
¢4 (z|c) runs much faster than a typical conditional generative model for human motion prediction.
This part is illustrated in Figure 2|b).

In our implementation, ¢4(z|c) is constructed as a parametrized Gaussian mixture
{N (pm(c),a2,(c))}, with M mixture weights w,, (c), such that fozl wy, = 1. Bach yu,, and o,
are regressed based on the feature of past motion c. We use a lightweight single-layer RNN for
regression to determine the GMM composition. Although the unconditional flow-based model fy
and the conditional base density g4 can be trained separately, we found that jointly training fg and g¢
improves model performance. We train the joint model by summation of log-likelihood for ¢, and
flow matching for fy as explained in Equation (6) as follows:

L =—logqy(fy " (&)|c) + Lorm. (11)
With joint learning, fg learns an easy mapping for the conditional Gaussian mixture qg.
With ¢, constructed, during inference, we can estimate the conditional density p(z|c) by connecting
with precomputed triplets ¢, = {2y, |[det Ty, (zk)| ', @k } as
plxxle) = qp(zxle)|det Ty, (z1) 7" (12)

By this inference process, we could optionally generate a future human motion sequence x by
retrieving a high-probability sample z from g, with the past motion sequence as the condition.
However, g4 describes a continuous distribution and the stored triplets cannot cover all samples.
Therefore, in practice, predicted motion xy- is selected by the nearest neighbor of the sampling
outcome of g4 to the stored triplets:

k* = argming ||z, — 2||,
st {te = {zn |[detTyp, (z)| " i}, 2~ qo(2]0)}

where k™ is the selected index of the triplets for prediction. By this design, we can sample an arbitrary
number of likely future motion sequences by selecting the neighbors of samples z ~ ¢,(z|c).

(13)

S Experimental Evaluation

Datasets. We evaluate our CacheFlow on Human3.6M [25]] and AMASS [42]. Human3.6M contains
3.6 million frames of human motion sequences. Human motions of 11 subjects performing 15 actions
are recorded at 50 Hz. We follow the setting including the dataset split, the 16-joints pose skeleton
definition, and lengths of past and future motions proposed by previous works [47, 38| [71154]. The
training and test sets of Human3.6M are subjects [S1,55,S6,57,S8] and [S9,S11], respectively. The
past motion and future motions contain 25 frames (0.5 sec) and 100 frames (2.0 sec). AMASS
unifies 24 different human motion datasets including HumanEva-I [59] with the SMPL [41] pose
representation. AMASS contains 9M frames at 60 Hz in total. As a multi-dataset collection of
AMASS, one can perform a cross-dataset evaluation. We follow the evaluation protocol proposed



Algorithm 1: Precomputation and Inference of CacheFlow.

Input: Past motion ¢

Output: Estimated density p(xi|c)

// Precomputation. This does not count for inference time.
for each future motion X, in the training dataset do

zi ¢ fy ' (xn)

Calculate |det Ty, (zx)| !

Store triplet { z, |det Ty, (zx)| ™', @k }

end

/I Fast Inference

for each triplet {zy,, |detJy, (z1)| 7!, )} do

0o (2kle) « Som_y N (2i; ftm(€), 02, (c))
p(xrle) < qo(zk|c)|det Ty, (z)|

end
Human3.6M [25]] AMASS [42] Inference
APD?T ADE| FDE| MMADE| MMFDE| | APD1t ADE| FDE| MMADE| MMFDE| | Time[ms]|
HP-GAN [5] 7.214 0.858 0.867 0.847 0.858 - - - - - -
DSF [72] 9.330 0.493 0.592 0.550 0.599 - - - - - -
DeLiGAN [23]] 6.509 0.483 0.534 0.520 0.545 - - - - - -
GMVAE [16] 6.769 0.461 0.555 0.524 0.566 - - - - - -
TPK [65]] 6.723 0.461 0.560 0.522 0.569| 9.283 0.656 0.675 0.658 0.674 30.3
MT-VAE [70] 0.403 0.457 0.595 0.716 0.883 - - - - - -
BoM [6] 6.265 0.448 0.533 0.514 0.544 - - - - - -
DLow [73]] 11.741 0.425 0.518 0.495 0.531|13.170 0.590 0.612 0.618 0.617 30.8
MultiObj [39] 14.240 0.414 0.516 - - - - - - - -
GSPS [45] 14.757 0.389 0.496 0.476 0.525|12.465 0.563 0.613 0.609 0.633 5.1
Motron [57]] 7.168 0.375 0.488 0.509 0.539 - - - - - -
DivSamp [13] 15.310 0.370 0.485 0.475 0.516|24.724 0.564 0.647 0.623 0.667 5.2
BeLFusion [4]] 7.602 0372 0.474 0.473 0.507| 9.376 0.513 0.560 0.569 0.585 449.3
BeLFusion-D 5.777 0.367 0472 0.469 0.506| 7.458 0.508 0.567 0.564 0.591 39.3
HumanMAC [12] 6.301 0.369 0.480 0.509 0.545| 9.321 0.511 0.554 0.593 0.591 1172.9
CoMusion [61]] 7.632 0.350 0.458 0.494 0.506|10.848 0.494 0.547 0.469 0.466 352.6
SLD [68] 8.741 0.348 0.436 0.435 0.463 - - - - - 375.0
FlowPrecomp. 6.101 0.369 0.473 0.481 0.511| 7.099 0.511 0.566 0.567 0.586 1.3
w/o Precomp. 5.385 0.374 0.489 0.490 0.531| 6.291 0.516 0.586 0.573 0.608 415.9

229
230

231
232
233
234
235
236
237

238
239
240
241
242

Table 1: Quantitative comparisons over the stochastic human motion prediction metrics on Human3.6M
and AMASS datasets. Lower is better for all metrics except APD. The reported inference time is when a
method finishes generating 50 prediction samples from receiving the past motion.

by BeLFusion [4]] for fair comparison, as predicting future 120 frames (2.0 sec) with 30 frames
observation (0.5 sec) with downsampling to 60 Hz.

Metrics. We use the evaluation metrics to measure diversity and accuracy. 50 sampled predictions
are evaluated with the following metrics: Average Pairwise Distance (APD) [3] evaluates sample
diversity. It calculates the mean [ distance between all predicted motions. Average and Final
Displacement Error (ADE, FDE) [2,132,22] evaluate accuracy. They calculate the average and final-
frame [, distances between the ground truth motion and closest prediction in the 50 set. Multimodal
ADE and FDE (MMADE, MMFDE) [72] also evaluate accuracy in a similar way to ADE and FDE.
However, they are calculated over multimodal ground truths selected by grouping similar motions.

We also evaluate the accuracy of density estimation with Multimodal Log Probability per dimension.
It calculates the log probability of the multimodal ground truths to measure how accurately the
estimated density covers possible future motions. We evaluate the log probability on the motion space
except for methods with latent space such as our CacheFlow and BeLFusion. While higher is better
on APD and multimodal log probability, lower is better on ADE, FDE, MMADE, and MMFDE.
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#sample MM log prob. Inference

Method for KDE  per dim 1 Time[ms] |
BeLFusion 50 -2.383 2305.3 (440.3)
1000 -1.633 24224 (449.3)
CoMusion [61]] 50 -15.575 2500.5 (167.0)
1000 -12.746 5071.5 (2741.3)
SLD [68] 50 0.080 2559.1 (375.0)
CacheFlow - 1.304 0.5 0.5)

Table 2: Density Estimation Accuracy on Human3.6M. Inference time of each method is reported as {total
time (time without KDE inference)}. Since our method doesn’t require KDE for density estimation, the number
of samples for KDE is left blank for CacheFlow.

Implementation Details. Our method is based on a latent flow-based model. We utilize a Variational
Autoencoder (VAE) to obtain a latent representation. Specifically, we employ the Behavioral Latent
Space (BLS) [4] as a VAE to achieve a compact latent representation. BLS ensures smoothness
of predicted motions and consistency between the end of the past motion and the start of the
predicted motion. Additionally, we compress this representation using linear factorization [68]]. The
dimensionality of the VAE latent space is 128, which we further reduce to 8 dimensions through
linear factorization. We trained the unconditional flow-based model on this 8-dimensional space. The
unconditional flow-based model fy is a continuous normalizing flow (CNF) model, with its vector
field regressed by a U-Net architecture. The conditional base density g4, as well as the VAE encoder
and decoder, are implemented as one-layer Recurrent Neural Networks (RNNs). We used a Gaussian
mixture model with M = 50 modes to model the conditional base density ¢4. We precomputed
and collected triplets ¢, = {2y, |det Ty, (z)| ™!, @k } using all training samples of each dataset. All
experiments, including inference time measuring, were carried out using a single NVIDIA A100
GPU. We used a batch size 64 and the Adam optimizer with a learning rate of 5 x 1074,

5.1 Quantitative Evaluation

Accuracy Over a Fixed Number of Predictions. We compare CacheFlow against state-of-the-art
methods of stochastic human motion prediction. While we propose using a precomputed set during
inference, we also evaluate our method without precomputation. In the absence of precomputation,
we sample z from the conditional base density ¢, (z|c) and obtain & through the flow-based model
inference, where & = fy(z). The results are summarized in Table[l] Since the primary applications
of human motion prediction are in real-time scenarios, we also measure the inference time of each
method to sample 50 predictions on a GPU.

CoMusion and SLD were successful in predicting motions that are closer to the ground truth than
CacheFlow; however, their inference times of 167 and 375 milliseconds are too long for the intended
2000 ms prediction horizon. As a result, over 8% of the first prediction sequence is rendered useless
once the prediction is finalized. Therefore, it is difficult to use these methods with slow inference in
real-time applications. Although our primary goal is to estimate the density, CacheFlow achieves
comparable performances with a 1.3 millisecond inference time. Our method achieves around 4 x
faster than the fastest VAE method, GSPS, and 30 x faster than the fastest diffusion-based method,
BeLFusion-D. The inference of our method is fast enough (1.3ms for future 2000ms) and applicable
for real-time applications. This inference speed is because the inference of the unconditional flow-
based model fy is precomputed. We only need to evaluate the lightweight conditional base density g4
at inference. Although our conditional base density g is just a Gaussian mixture with low expressive
power, our method achieves high accuracy since the precomputed unconditional flow-based model fy
gives g4 much complexity with almost no overhead in inference.

Density Estimation Accuracy. The density estimation accuracy of each method is compared be-
tween CacheFlow and the state-of-the-art methods. The three state-of-the-art methods BeLFusion [4],
CoMusion [61]], and SLD [68]] are selected. CoMusion and SLD were selected since they outperform
our method in benchmarks of stochastic human motion prediction. We also include BeLFusion to
compare CacheFlow with the method with latent space. We applied KDE to these previous methods
since they only sample a set of predictions and cannot estimate density. While we evaluated 50 and
1000 samples for KDE on BeLFusion and CoMusion, SLD only allows 50 samples due to the fixed
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Figure 3: Qualitative Comparison on AMASS dataset.

number of anchors corresponding to predictions. We measured the inference time of each method to
estimate the density of ten thousand future motions from the past motion input.

The quantitative comparisons over the multimodal ground truth log probability are shown in Table
All previous methods suffer from slow inference of their own and KDE on high-dimensional motion
data. Their inference time exceeded the prediction horizon of 2000ms in the future. Therefore, they
cannot estimate density in real-time. In contrast, our method achieves better estimation accuracy in
less than one millisecond. This indicates that CacheFlow has strong discriminative ability to list up
possible future motions required for safety assurance. Our method is even faster only on the density
estimation (0.5ms) than the inference time reported in Table E] (1.3ms). This is because we don’t need
any extra sampling operation in the density estimation.

5.2 Qualitative Comparison of Predicted Motions

To visually evaluate CacheFlow, we conducted a qualitative comparison of methods on the AMASS
dataset, as shown in Figure[3] We visualized the end poses of 10 samples from each method alongside
the end poses of past motions and the ground truth future motions. The sitting or lying poses were
translated to the ground plane, as the global translation is not modeled in human motion prediction.
The 10 pose samples are arranged from the closest to the farthest from the ground truth pose based
on joint rotations.

Our observations indicate that CacheFlow predicts realistic poses. The closest poses to the ground
truths also demonstrate that the accuracy of CacheFlow is comparable to CoMusion, as reflected
in the ADE and FDE metrics listed in Table [I| Notably, our method is computationally efficient,
operating 100 times faster than the fastest CoMusion. In summary, CacheFlow effectively delivers
realistic and accurate predictions.

6 Concluding Remarks

We presented a new flow-based stochastic human motion prediction method named CacheFlow.
Our method achieves a fast and accurate estimation of the probability density distribution of future
motions. Our unconditional formulation allows precomputation and caching of the flow-based model,
thus omitting a large portion of computational cost at inference. The unconditional flow-based model
enhanced the expressivity of the lightweight conditional Gaussian mixture with almost no overhead.
Experimental results demonstrated CacheFlow achieved comparable prediction accuracy with 1.3
milliseconds inference, much faster than the previous method. Furthermore, CacheFlow estimated a
more accurate density than previous methods in less than 1 millisecond.

Our method has one limitation. Prediction and density estimation are performed within precomputed
triplets. We cannot estimate the density or predict unseen future motions during precomputation. Our
future work is searching for a better precomputation strategy for prediction and estimation with more
coverage based on the limited dataset. Furthermore, our method is not limited to prediction tasks but
applies to any regression task requiring density estimation. We will investigate the applicability of
our CacheFlow on other domains.
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Figure 4: Visualization of future motion densities by CacheFlow. The estimated densities for four different
motion sequences are visualized. We used UMAP to project these future motions onto a 2D space. Each dot
represents an evaluated future motion, and the color of each dot indicates its probability, as shown in the side
color bar. The red stars represent the projected ground truth future motions.

Linear Unconditional Joint . MM log prob. Inference
Factorization Flow-based Model Learning Precomp. Set Sampling ADE| FDE} per dimsT  time[ms]|
(¢)) v v Train Set NN sample | 0.502 0.664 0.458 4.8
2 v v Train Set NN sample | 0.616 0.889 0.901 0.4
3) v v Train Set NN sample 0.370 0.475 1.283 1.3
4 v v v Base Density ~ NN sample | 0.376 0.492 - 1.3
5) v v v Train Set  Random sample | 0.455 0.605 - 1.2
v v v Train Set Most likely | 0.384 0.506 - 1.4
v v v Train Set NN sample | 0.369 0.473 1.304 1.3
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Table 3: Ablation Study on Human3.6M. (4) and (5) do not affect the ground truth log probability, these are
left blank.

A Implementation Details of Kernel Density Estimation

We assessed the accuracy of density estimation using Kernel Density Estimation (KDE) on previous
methods. To ensure a fair comparison of inference time, all KDE computations were conducted on
the GPU. We applied KDE to the standardized predicted future motions (or latents for BeLFusion)
to obtain the estimated density. In this process, the i-th dimension of the predicted future motions
was standardized using its i-th variance, meaning that covariances were not considered during
standardization. We employed Scott’s rule to determine the optimal bandwidth for KDE.

B Ablation Study

We conducted an ablation study to investigate how each component affects the performance of our
CacheFlow. We ablate five components: (1) dimensionality reduction via linear factorization on
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VAE, (2) the unconditional flow-based model fy, (3) joint learning of the conditional base density
g4 and unconditional flow-based model fy, (4) dataset for precomputation, (5) the sampling method
for metrics over a fixed number of predictions. Ablation results on the Human3.6M dataset are
summarized in Table 3l

Linear Factorization. We first ablate the linear factorization compressing 256-dim VAE latent to be
an 8-dim factor space. Our method is considerably enhanced on the compact space by avoiding the
curse of dimensionality.

The Unconditional Flow-based Model. We ablate this flow-based model fy to confirm it improves
the conditional base density ¢4 by adding complexity. As shown in Table 3} we observe a notable
performance drop without the flow-based model. Therefore, our unconditional flow-based model
fo complements conditional base density g4 to estimate complex density distribution over human
motions.

Joint Learning. We ablate the joint learning of the unconditional flow-based model fy and the
conditional base density g,. The joint learning certainly improves both prediction errors and density
estimation accuracy. The unconditional flow-based model fy can learn a more clustered z mapped
from the motion feature x. Thus, a conditional base density g, can easily model the z distribution.

Dataset for Precomputation. We propose the precomputation over the training split. Specifically,
we apply inverse transform z = fy(x) to ground truth future motions in the training split. However,
we may precompute infinite precomputation samples. For example, we can sample z ~ ¢4 (z|c) and
obtain x by forward transform & = fy(z). As shown in the ablation, precomputation on the training
split outperforms one on the base density since we can regularize the prediction to be legitimate
human motions using the training split.

Sampling Method. We propose the nearest neighbor sampling from the precomputation set as
described in Section Lastly, we ablate this sampling to evaluate its performance gain. We
experimented with two sampling method alternatives: random sampling and most likely sampling.
Precomputed motion features &« are uniformly selected as predictions with random sampling. Most
likely sampling selects motion features @~ with the highest probabilities k* = argmax,p(xx|c). We
found that the large and little performance drops with random and most likely sampling respectively.
This random sampling is worse due to the independence from the past motions c. The most likely
method underperforms due to less diverse samples. It cannot select a motion feature set with diversity
because all selected features are often located in one peak of the estimated density. Since ADE
and FDE are best-of-many metrics, this less diversity leads to worse performance. In contrast, our
sampling method is superior to others. Our sampling incorporates past motions and achieves good
diversity by simulating sampling from the estimated density p(x|c).

C Visualization of Estimated Density

We visualized the future motion density estimated by CacheFlow. Since future motions are high-
dimensional data, we used UMAP [49] to project each future motion into a 2D space. We displayed
the multimodal ground truth future motions alongside the visualized density map. As shown in
Figure ] CacheFlow estimated a high probability around the ground truth in all motion sequences.
This visually supports the high density estimation accuracy presented in Table[2]

D Potential Broader Impact

The proposed CacheFlow introduces a fast probaility-aware motion prediction framework, which
may involve the following broader impacts:

* Improved Collaboration in Robotics and Automation. In collaborative robotics and
industrial automation, understanding and anticipating human motion is critical for ensuring
safety and efficiency. The proposed system enables robots to predict human actions and
movements with probabilistic confidence, allowing them to adjust their trajectories and
tasks in real time. This leads to smoother coordination in shared workspaces such as
manufacturing floors, warehouses, or hospitals, where humans and robots must work in
close proximity.
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539 * Proactive Support in Assistive Technologies. In assistive technologies for the elderly

540 and individuals with disabilities, anticipating human motion is essential for delivering
541 timely and meaningful support. A fast and uncertainty-aware human motion prediction
542 system enables robots and smart devices to proactively assist users by foreseeing movements
543 such as standing, walking, or reaching, even in the presence of noisy or partial sensor
544 data. Furthermore, such a system could help prevent falls or injuries by detecting signs of
545 instability and initiating interventions early.

546 * Immersive Interactions in VR and Gaming. Virtual reality (VR) and gaming systems
547 stand to benefit from predictive models that can estimate future body movements in real
548 time with associated uncertainties. This capability allows VR applications to reduce latency
549 and create more responsive environments by anticipating user actions and gestures.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract reflects our main contribution, a novel 3D human motion predic-
tion method named CacheFlow for fast inference and density estimation.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We included the limitation of our method in the Section[6l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The code to reproduce the main experimental results will be publicly available.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code and instructions will be publicly available on GitHub.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training details on the Section[5] We followed the evaluation
protocol proposed by the previous method [4]].

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The Section [3]tells the training details, and our source code will be publicly
available.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Section [5] includes the computer resource used for the experiments
(NVIDIA A100 GPU).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our research
conforms to it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed CacheFlow may have broader impacts on robotics, assistive
technologies, VR, gaming, etc., as detailed in Appendix D]

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no high risk for misuse in the models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The licenses and terms of use are explicitly mentioned and properly respected.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There are no new assets introduced in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There is no crowdsourcing experiments and research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There is no research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLMs only for writing, editing, and formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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