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Abstract

Many density estimation techniques for 3D human motion prediction require a1

significant amount of inference time, often exceeding the duration of the predicted2

time horizon. To address the need for faster density estimation for 3D human3

motion prediction, we introduce a novel flow-based method for human motion4

prediction called CacheFlow. Unlike previous conditional generative models that5

suffer from time efficiency, CacheFlow takes advantage of an unconditional flow-6

based generative model that transforms a Gaussian mixture into the density of7

future motions. The results of the computation of the flow-based generative model8

can be precomputed and cached. Then, for conditional prediction, we seek a9

mapping from historical trajectories to samples in the Gaussian mixture. This10

mapping can be done by a much more lightweight model, thus saving significant11

computation overhead compared to a typical conditional flow model. In such a12

two-stage fashion and by caching results from the slow flow model computation, we13

build our CacheFlow without loss of prediction accuracy and model expressiveness.14

This inference process is completed in approximately one millisecond, making15

it 4× faster than previous VAE methods and 30× faster than previous diffusion-16

based methods on standard benchmarks such as Human3.6M and AMASS datasets.17

Furthermore, our method demonstrates improved density estimation accuracy and18

comparable prediction accuracy to a SOTA method on Human3.6M. Our code and19

models will be publicly available.20

1 Introduction21

The task of 3D human motion prediction is to forecast the future 3D pose sequence given an observed22

past sequence. Traditional motion prediction methods are often based on deterministic models and23

can struggle to capture the inherent uncertainty in human movement. Recently, stochastic approaches24

have addressed this limitation. Stochastic approaches allow models to sample multiple possible future25

motions. Stochastic human motion prediction methods utilize conditional generative models such as26

generative adversarial networks (GANs) [18], variational autoencoders (VAEs) [27], and denoising27

diffusion probabilistic model [24]. However, many stochastic approaches cannot explicitly model the28

probability density distribution.29

Conversely, density estimate-based approaches explicitly model the probability density distribution. In30

safety-critical applications such as autonomous driving [51] and human-robot interaction [29, 31, 9],31

a density estimate can represent all possible future motions (not just a few samples) by tracking the32

volume of density. It can be used to derive guarantees on safety [43, 58, 64].33

However, previous density estimation suffers from high computational cost. The expensive computa-34

tional cost can prohibit applications to real-time use-cases, especially with high dimensional data such35

as human motions. For instance, kernel density estimation (KDE) [56, 52] requires an exponentially36
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Figure 1: Previous methods vs. Our CacheFlow. Previous methods of stochastic motion prediction generate
multiple future motions by sampling noises from the fixed source in an ad hoc manner. In contrast, CacheFlow
uses the precomputed and cached latent-motion pairs from an unconditional flow-based generative model. Thus,
the computation of the unconditional flow can be skipped at inference. One can achieve fast inference by
selecting predictions from these cached pairs.

growing number of samples for accurate estimation. Concretely, more than one trillion samples are37

required for accurate KDE over a 48-dim pose over 100 frames of human motion prediction [60].38

In contrast to traditional KDE, recent parametric density estimation approaches use conditional39

flow-based generative models, including normalizing flows [55, 62, 63] and continuous normalizing40

flows [13]. These flow-based generative models (“flow-based model” for brevity) directly estimate the41

density to avoid time-consuming sampling required in KDE. However, inferring the exact probability42

of possible future motions remains computationally expensive. This is because capturing the full43

shape of the distribution requires evaluating the probabilities of many potential future motions.44

To address this computational limitation, we propose a fast density estimation method based on a flow-45

based model called "CacheFlow". Our CacheFlow utilizes an unconditional flow-based model for46

prediction, as illustrated in Figure 1. Since the unconditional flow-based model is independent of past47

observed motions, its calculation can be precomputed and skipped at inference. This precomputation48

omits a large portion of computational cost. To achieve further acceleration, our unconditional49

flow-based model represents transformation between a lightweight conditional base density and the50

density of future motions. At inference, the density of future motion is estimated by computing the51

lightweight conditional base density and combining it with the precomputed results of the flow-based52

model. The inference of our method is approximately one millisecond.53

CacheFlow demonstrates comparable accuracy to previous methods on standard stochastic human54

motion prediction benchmarks, Human3.6M [25] and AMASS [42]. Furthermore, our method55

estimates density more accurately than previous stochastic human motion prediction methods with56

KDE. CacheFlow shows improved computational efficiency, making it well-suited for real-time57

applications. The contributions of this paper are four-fold as follows:58

1. We introduce a novel fast density estimation called CacheFlow on human motion prediction.59

2. We can sample diverse future motion trajectories with explicit density estimation, and we60

experimentally confirm that our method can estimate accurate density.61

3. Our method achieves comparable prediction accuracy to other computationally intense62

methods on several benchmarks.63

2 Related Work64

2.1 Human Motion Prediction65

Deterministic approaches. Early approaches on human motion prediction [1, 7, 17, 8, 21, 26, 33]66

focused on deterministic settings. They predict the most likely motion sequence based on the past67

motion. A wide range of architectures were proposed including multi-layer perceptron [21], recurrent68

neural networks [17, 26, 46, 20, 53, 37], convolutional neural networks [33, 50], transformers [1,69

10, 48], and graph neural networks (GNNs) [44, 34, 14, 35]. GNN can account for the explicit tree70
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expression of the human skeleton, while other architectures implicitly learn the dependencies between71

joints.72

Stochastic approaches. To capture the inherent uncertainty in human movements, recent works have73

focused on stochastic human motion prediction to predict multiple likely future motions. The main74

stream of stochastic methods use generative models for the purpose, such as generative adversarial75

networks (GANs) [5, 30], variational autoencoder (VAE) [65, 70, 45, 11], and denoising diffusion76

probabilistic model (DDPM) [4, 12, 66, 61]. To improve the diversity of predictions, diversity-77

promoting loss [45, 4] or explicit sampling techniques [66] were proposed. In contrast to generative78

models, anchor-based methods [69, 68] learn a fixed number of anchors corresponding to each79

prediction to ensure diversity. However, most stochastic methods cannot describe the density of80

future motions explicitly. This prevents exhaustive or maximum likelihood sampling for practical81

applications. On the contrary, our method allows for explicit density estimation using normalizing82

flows [28].83

2.2 Density Estimation84

Density estimation asks for explicit calculation of the probability for samples from a distribution.85

Density estimation is derived by non-parametric or parametric methods.86

Non-parametric Approach. The representative non-parametric density estimation is kernel density87

estimation (KDE) [56, 52]. KDE can estimate density by using samples from generative models.88

However, KDE requires a large number of samples for accurate estimation. Therefore, it often cannot89

run in real-time.90

Parametric Approach. As a representative parametric model, Gaussian mixture models (GMMs)91

parametrize density with several Gaussian distributions and their mixture weights. Its nature of mixing92

Gaussian priors limits its ability to generalize to complex data distribution. Another parametric93

approach with more expressivity is flow-based generative models [28]. By a learned bijective94

process, normalizing flows (NFs) [55, 62, 63] transform a simple density like the standard normal95

distribution into a complex data density. Recently, continuous normalizing flows (CNFs) [13, 19]96

achieve more expressive density than standard normalizing flows via an ODE-based bijective process.97

While training of CNFs is inefficient due to the optimization of ODE solutions, an efficient training98

strategy named flow matching [36] was proposed. FlowChain [40] was proposed for fast and efficient99

density estimation in human trajectory forecasting. FlowChain improves the inference time efficiency100

by reusing results from the conditional flow-based method while the past sequences are similar.101

However, with significantly different past sequences, FlowChain’s efficiency can’t hold anymore.102

Unlike FlowChain, our method can perform fast and efficient inference regardless of past sequences.103

3 Preliminary104

3.1 Problem Formulation105

The task of human motion prediction aims to use a short sequence of observed human motion to predict106

the future unobserved motion sequence of that person. Human motion is represented by a sequence of107

human poses in a pre-defined skeleton format of 3D locations of J joints, X ∈ RJ×3. As input to our108

model, we have the past (history of) human motion as a sequence c = [X1, X2, ..., XH ] ∈ RH×J×3109

over H timesteps. To predict the future human motion sequence of F timesteps, we can formulate the110

problem as one of conditional generation using the conditional probability function, p(X|c), where111

X = [XH+1, XH+2, ..., XH+F ] ∈ RF×J×3. Similar to the stochastic human motion prediction112

paradigm, the method should also allow for sampling n multiple future sequences {X1, ...,Xn}113

from p(X|c). The focus of our work is to accelerate the inference time of estimate and sampling of114

the conditional density function p(X|c).115

3.2 Normalizing Flow116

Normalizing flow [55, 62, 63] is a generative model with explicit density estimation. It follows a117

bijective mapping fθ with learnable parameters θ. It transforms a simple base density q(z) such as118

a Gaussian distribution into the complex data density p(x). We can analytically estimate the exact119

3



(b) Inference(a) Precomputation

Unconditional
Prediction

(z)

Store triplets

Unconditional
Estimated Density

Conditional
base density

Conditional
Estimated Density

Conditional
Prediction

(z|c),

Unconditional
Base Density

Past motion 

Figure 2: Overview of our CacheFlow. Our method utilizes the unconditional flow-based model fθ . This fθ
maps the lightweight conditional base density qϕ(z|c) into future motion density p(x|c). In this formulation,
the flow-based model is independent of past motions. Thus, we can precompute the unconditional flow-based
model. These results are cached as K triplets as shown in (a). Due to the precomputation, we can skip the
inference of fθ and omit a large portion of the entire computation. At inference, density estimation is achieved
by only evaluating the lightweight conditional base density qϕ(zk|c) and combining it with the stored K triplets
as shown in (b).

probability via the change-of-variables formula as follows:120

x = fθ(z), z = f−1
θ (x). (1)

p(x) = q(z)|detJfθ (z)|−1, (2)

where Jfθ (z) =
∂fθ
∂z is the Jacobian of fθ at z. The parameters θ of fθ can be learned by maximizing121

the likelihood (or conditional likelihood) of samples x̂ from datasets or minimizing the negative log-122

likelihood as LNLL = − log p(x̂). When x and z are latent codes, normalizing flow is transformed123

into latent normalizing flow. We follow this pattern in our method. We encode the past human motion124

into x by an ecoder network E and decode it by a decoder network D:125

x = E(X),X = D(x). x ∼ Rd,X ∼ RF×J×3 (3)
The encoder and decoder are trained by reconstruction. In the later part of this paper, for simplicity,126

we discuss the method at the latent representation level and model the conditional generation task as127

p(x|c).128

3.3 Continuous Normalizing Flow (CNF)129

Continuous normalizing flow (CNF) [13, 19] is a normalizing flow variant based on an ordinary130

differential equation (ODE). CNF defines t-continuous path zt between the base density space131

z0 ∼ q(z) and the data space z1 = x ∼ p(x). This zt is defined by the parameterized vector field132
dzt

dt = vθ(zt). The data x = z1 is generated via numerical integration of vector field vθ(zt) as133

follows:134

x = z1 = z0 +

∫ 1

0

vθ(zt)dt. (4)

The CNF transformation Equation (4) is denoted as x = fθ(z) for brevity. Although CNF can be135

trained by minimizing negative log-likelihood, it is time-consuming due to the numerical integration136

of ODE.137

3.4 Flow Matching138

In order to train the parameterized vector field efficiently, one can leverage the flow matching [36]139

strategy. As a new training strategy, Flow Matching avoids the numerical integration of ODE140

by directly optimizing the vector field vθ(zt). The objective of flow matching is to match the141

parameterized vector field vθ(zt) to the ground truth vector field u(zt) via mean squared error as142

follows:143

LFM = Et∼T (0,1),zt
||vθ(zt)− u(zt)||2, (5)
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where T (0, 1) is a distribution ranging from 0 to 1.144

However, we cannot obtain the ground truth vector field u(zt) directly. Ripman et al. [36] suggest145

defining the conditional ground truth u(zt|ẑ1) instead. Specifically, it is modeled as a straight vector146

field ẑ1 − z0 in Rectified Flow [13, 19]. This is called conditional flow matching [36] trained by the147

following objective:148

LCFM = Et∼T (0,1),ẑ1,zt
||vθ(zt)− u(zt|ẑ1)||2. (6)

The gradients of LFM of Equation (5) and LCFM of Equation (6) are identical w.r.t θ. We exploit149

expressive CNFs with efficient Flow Matching training to estimate the future motion density p(x|c).150

4 Proposed Method151

4.1 Overview of CacheFlow152

We estimate the future motion density p(x|c) by transforming a conditional base distribution qϕ(z|c).153

This qϕ is conditioned on the past motion c. Then we can sample predictions x ∼ p(x|c) for154

stochastic human motion prediction. Most traditional approaches based on conditional generative155

models use a trivial source distribution, often a simple Gaussian. However, we redefine the source156

distribution to be more informative and directly regressed from past motions. This allows us to157

develop a much lighter and faster model for predicting future movements.158

To build this informative conditional base distribution qϕ, we would incorporate an unconditional159

flow-based model fθ : x = fθ(z) that maps latent variable z into motion representation x. To160

understand how qϕ and fθ are connected, we first reparametrize the future motion density p(x|c) by161

a change of variables of probability equation as follows:162

p(x|c) = q(z|c)
∣∣∣∣det∂z∂x

∣∣∣∣, (7)

= q(z|c)
∣∣∣∣det(∂fθ(z)

∂z

)−1∣∣∣∣, (8)

= q(z|c)|detJfθ (z)|−1. (9)

This parametrization trick differs from the widely-used conditional density formulation [67] where c is163

conditioned to the flow-based model fθ. In this formulation, only the conditional base density q(z|c)164

varies depending on c during inference, whereas the unconditional flow-based model x = fθ(z)165

and the Jacobian |detJfθ (z)|−1 are kept same during inference and thus can be reused as-is once166

calculated.167

Therefore, we could precompute the mapping results and Jacobians of an unconditional flow-based168

model fθ. We cache the triplets t = {z, |detJfθ (z)|−1,x} for later reuse in the inference stage, as169

shown in Figure 2(a).170

Then, during inference, we design a new trick to reuse the cached triplets by associating them with the171

specific conditions of the past motion sequences, as shown in Figure 2(b). Now, instead of a typical172

conditional generative model, e.g., conditional normalizing flow, we only need a lightweight model173

to model the conditional base density qϕ(z|c) and achieve similar expressivity. We could finally174

estimate the future motion density by p(x|c) = qϕ(z|c)|detJfθ (z)|−1. The method is summarized175

as pseudocode in Algorithm 1. In the following paragraphs, we elaborate on the details of our method.176

4.2 Precompute Unconditional Flow-based Model177

As the first step of our method, we use the human motion dataset to learn an unconditional flow-based178

model fθ. From this unconditional human motion prediction model, we will collect the triplets179

t = {z, |detJfθ (z)|−1,x} for later use. This part is illustrated in Figure 2(a).180

In our implementation, we built the unconditional flow model by CNFs due to its proven expressivity181

for predicting human motion. The unconditional model is trained to predict a fixed-length future182

motion x given a noise sample z from a source distribution qϕ(z|c):183

fθ : Rd −→ Rd (10)
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Because z is sampled from a known distribution and normalizing-flow models are deterministic with184

reversible bijective transformation, we could know the density of each {z,x} pair. We train the185

unconditional continuous normalizing flow with the flow matching objective described in Equation (6).186

Then we collect K samples denoted by the triplet tk = {zk, |detJfθ (zk)|−1,xk}. Triplets are187

collected by applying the inverse transform of fθ to ground truth future motions in the training split.188

These triplets are cached for fast inference as described in Section 4.3. This caching operation is189

different from anchor-based methods [69, 68] since CacheFlow caches all motions of the training190

split.191

4.3 Conditional Inference by CacheFlow192

In previous methods, conditional human motion prediction typically requires a conditional generative193

model. For instance, it is a conditional flow-based or diffusion model. These models usually have194

poor time efficiency due to delicate but heavy architecture. Instead, inspired by Equation (9), we can195

reuse the results of unconditional inverse transformation as triplets tk = {zk, |detJfθ (zk)|−1,xk}.196

Thus, we can perform conditional inference by only evaluating a conditional base distribution q(z|c).197

We model this conditional base distribution by a learnable model, thus we denote it as qϕ(z|c). This198

model can be very lightweight since the unconditional transformation fθ gives enough expressivity.199

qϕ(z|c) runs much faster than a typical conditional generative model for human motion prediction.200

This part is illustrated in Figure 2(b).201

In our implementation, qϕ(z|c) is constructed as a parametrized Gaussian mixture202

{N (µm(c), σ2
m(c))}, with M mixture weights wm(c), such that

∑M
m=1 wm = 1. Each µm and σm203

are regressed based on the feature of past motion c. We use a lightweight single-layer RNN for204

regression to determine the GMM composition. Although the unconditional flow-based model fθ205

and the conditional base density qϕ can be trained separately, we found that jointly training fθ and qϕ206

improves model performance. We train the joint model by summation of log-likelihood for qϕ and207

flow matching for fθ as explained in Equation (6) as follows:208

L = − log qϕ(f
−1
θ (x̂)|c) + LCFM. (11)

With joint learning, fθ learns an easy mapping for the conditional Gaussian mixture qϕ.209

With qϕ constructed, during inference, we can estimate the conditional density p(x|c) by connecting210

with precomputed triplets tk = {zk, |detJfθ (zk)|−1,xk} as211

p(xk|c) = qϕ(zk|c)|detJfθ (zk)|−1. (12)

By this inference process, we could optionally generate a future human motion sequence x by212

retrieving a high-probability sample z from qϕ with the past motion sequence as the condition.213

However, qϕ describes a continuous distribution and the stored triplets cannot cover all samples.214

Therefore, in practice, predicted motion xk∗ is selected by the nearest neighbor of the sampling215

outcome of qϕ to the stored triplets:216

k∗ = argmink||zk − z||,
s.t. {tk = {zk, |detJfθ (zk)|−1,xk}, z ∼ qϕ(z|c)},

(13)

where k∗ is the selected index of the triplets for prediction. By this design, we can sample an arbitrary217

number of likely future motion sequences by selecting the neighbors of samples z ∼ qϕ(z|c).218

5 Experimental Evaluation219

Datasets. We evaluate our CacheFlow on Human3.6M [25] and AMASS [42]. Human3.6M contains220

3.6 million frames of human motion sequences. Human motions of 11 subjects performing 15 actions221

are recorded at 50 Hz. We follow the setting including the dataset split, the 16-joints pose skeleton222

definition, and lengths of past and future motions proposed by previous works [47, 38, 71, 54]. The223

training and test sets of Human3.6M are subjects [S1,S5,S6,S7,S8] and [S9,S11], respectively. The224

past motion and future motions contain 25 frames (0.5 sec) and 100 frames (2.0 sec). AMASS225

unifies 24 different human motion datasets including HumanEva-I [59] with the SMPL [41] pose226

representation. AMASS contains 9M frames at 60 Hz in total. As a multi-dataset collection of227

AMASS, one can perform a cross-dataset evaluation. We follow the evaluation protocol proposed228
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Algorithm 1: Precomputation and Inference of CacheFlow.
Input: Past motion c
Output: Estimated density p(xk|c)
// Precomputation. This does not count for inference time.
for each future motion Xk in the training dataset do

xk ← E(Xk)
zk ← f−1

θ (xk)
Calculate |detJfθ (zk)|−1

Store triplet {zk, |detJfθ (zk)|−1,xk}
end
// Fast Inference
for each triplet {zk, |detJfθ (zk)|−1,xk} do

qϕ(zk|c)←
∑M

m=1 wmN (zk;µm(c), σ2
m(c))

p(xk|c)← qϕ(zk|c)|detJfθ (zk)|−1

end

Human3.6M [25] AMASS [42] Inference
Time[ms]↓APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓

HP-GAN [5] 7.214 0.858 0.867 0.847 0.858 - - - - - -
DSF [72] 9.330 0.493 0.592 0.550 0.599 - - - - - -
DeLiGAN [23] 6.509 0.483 0.534 0.520 0.545 - - - - - -
GMVAE [16] 6.769 0.461 0.555 0.524 0.566 - - - - - -
TPK [65] 6.723 0.461 0.560 0.522 0.569 9.283 0.656 0.675 0.658 0.674 30.3
MT-VAE [70] 0.403 0.457 0.595 0.716 0.883 - - - - - -
BoM [6] 6.265 0.448 0.533 0.514 0.544 - - - - - -
DLow [73] 11.741 0.425 0.518 0.495 0.531 13.170 0.590 0.612 0.618 0.617 30.8
MultiObj [39] 14.240 0.414 0.516 - - - - - - - -
GSPS [45] 14.757 0.389 0.496 0.476 0.525 12.465 0.563 0.613 0.609 0.633 5.1
Motron [57] 7.168 0.375 0.488 0.509 0.539 - - - - - -
DivSamp [15] 15.310 0.370 0.485 0.475 0.516 24.724 0.564 0.647 0.623 0.667 5.2
BeLFusion [4] 7.602 0.372 0.474 0.473 0.507 9.376 0.513 0.560 0.569 0.585 449.3
BeLFusion-D 5.777 0.367 0.472 0.469 0.506 7.458 0.508 0.567 0.564 0.591 39.3
HumanMAC [12] 6.301 0.369 0.480 0.509 0.545 9.321 0.511 0.554 0.593 0.591 1172.9
CoMusion [61] 7.632 0.350 0.458 0.494 0.506 10.848 0.494 0.547 0.469 0.466 352.6
SLD [68] 8.741 0.348 0.436 0.435 0.463 - - - - - 375.0
FlowPrecomp. 6.101 0.369 0.473 0.481 0.511 7.099 0.511 0.566 0.567 0.586 1.3

w/o Precomp. 5.385 0.374 0.489 0.490 0.531 6.291 0.516 0.586 0.573 0.608 415.9
Table 1: Quantitative comparisons over the stochastic human motion prediction metrics on Human3.6M
and AMASS datasets. Lower is better for all metrics except APD. The reported inference time is when a
method finishes generating 50 prediction samples from receiving the past motion.

by BeLFusion [4] for fair comparison, as predicting future 120 frames (2.0 sec) with 30 frames229

observation (0.5 sec) with downsampling to 60 Hz.230

Metrics. We use the evaluation metrics to measure diversity and accuracy. 50 sampled predictions231

are evaluated with the following metrics: Average Pairwise Distance (APD) [3] evaluates sample232

diversity. It calculates the mean l2 distance between all predicted motions. Average and Final233

Displacement Error (ADE, FDE) [2, 32, 22] evaluate accuracy. They calculate the average and final-234

frame l2 distances between the ground truth motion and closest prediction in the 50 set. Multimodal235

ADE and FDE (MMADE, MMFDE) [72] also evaluate accuracy in a similar way to ADE and FDE.236

However, they are calculated over multimodal ground truths selected by grouping similar motions.237

We also evaluate the accuracy of density estimation with Multimodal Log Probability per dimension.238

It calculates the log probability of the multimodal ground truths to measure how accurately the239

estimated density covers possible future motions. We evaluate the log probability on the motion space240

except for methods with latent space such as our CacheFlow and BeLFusion. While higher is better241

on APD and multimodal log probability, lower is better on ADE, FDE, MMADE, and MMFDE.242
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Method #sample
for KDE

MM log prob.
per dim ↑

Inference
Time[ms] ↓

BeLFusion 50 -2.383 2305.3 (440.3)
1000 -1.633 2422.4 (449.3)

CoMusion [61] 50 -15.575 2500.5 (167.0)
1000 -12.746 5071.5 (2741.3)

SLD [68] 50 0.080 2559.1 (375.0)

CacheFlow - 1.304 0.5 (0.5)
Table 2: Density Estimation Accuracy on Human3.6M. Inference time of each method is reported as {total
time (time without KDE inference)}. Since our method doesn’t require KDE for density estimation, the number
of samples for KDE is left blank for CacheFlow.

Implementation Details. Our method is based on a latent flow-based model. We utilize a Variational243

Autoencoder (VAE) to obtain a latent representation. Specifically, we employ the Behavioral Latent244

Space (BLS) [4] as a VAE to achieve a compact latent representation. BLS ensures smoothness245

of predicted motions and consistency between the end of the past motion and the start of the246

predicted motion. Additionally, we compress this representation using linear factorization [68]. The247

dimensionality of the VAE latent space is 128, which we further reduce to 8 dimensions through248

linear factorization. We trained the unconditional flow-based model on this 8-dimensional space. The249

unconditional flow-based model fθ is a continuous normalizing flow (CNF) model, with its vector250

field regressed by a U-Net architecture. The conditional base density qϕ, as well as the VAE encoder251

and decoder, are implemented as one-layer Recurrent Neural Networks (RNNs). We used a Gaussian252

mixture model with M = 50 modes to model the conditional base density qϕ. We precomputed253

and collected triplets tk = {zk, |detJfθ (zk)|−1,xk} using all training samples of each dataset. All254

experiments, including inference time measuring, were carried out using a single NVIDIA A100255

GPU. We used a batch size 64 and the Adam optimizer with a learning rate of 5× 10−4.256

5.1 Quantitative Evaluation257

Accuracy Over a Fixed Number of Predictions. We compare CacheFlow against state-of-the-art258

methods of stochastic human motion prediction. While we propose using a precomputed set during259

inference, we also evaluate our method without precomputation. In the absence of precomputation,260

we sample z from the conditional base density qϕ(z|c) and obtain x through the flow-based model261

inference, where x = fθ(z). The results are summarized in Table 1. Since the primary applications262

of human motion prediction are in real-time scenarios, we also measure the inference time of each263

method to sample 50 predictions on a GPU.264

CoMusion and SLD were successful in predicting motions that are closer to the ground truth than265

CacheFlow; however, their inference times of 167 and 375 milliseconds are too long for the intended266

2000 ms prediction horizon. As a result, over 8% of the first prediction sequence is rendered useless267

once the prediction is finalized. Therefore, it is difficult to use these methods with slow inference in268

real-time applications. Although our primary goal is to estimate the density, CacheFlow achieves269

comparable performances with a 1.3 millisecond inference time. Our method achieves around 4×270

faster than the fastest VAE method, GSPS, and 30× faster than the fastest diffusion-based method,271

BeLFusion-D. The inference of our method is fast enough (1.3ms for future 2000ms) and applicable272

for real-time applications. This inference speed is because the inference of the unconditional flow-273

based model fθ is precomputed. We only need to evaluate the lightweight conditional base density qϕ274

at inference. Although our conditional base density qϕ is just a Gaussian mixture with low expressive275

power, our method achieves high accuracy since the precomputed unconditional flow-based model fθ276

gives qϕ much complexity with almost no overhead in inference.277

Density Estimation Accuracy. The density estimation accuracy of each method is compared be-278

tween CacheFlow and the state-of-the-art methods. The three state-of-the-art methods BeLFusion [4],279

CoMusion [61], and SLD [68] are selected. CoMusion and SLD were selected since they outperform280

our method in benchmarks of stochastic human motion prediction. We also include BeLFusion to281

compare CacheFlow with the method with latent space. We applied KDE to these previous methods282

since they only sample a set of predictions and cannot estimate density. While we evaluated 50 and283

1000 samples for KDE on BeLFusion and CoMusion, SLD only allows 50 samples due to the fixed284
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Figure 3: Qualitative Comparison on AMASS dataset.

number of anchors corresponding to predictions. We measured the inference time of each method to285

estimate the density of ten thousand future motions from the past motion input.286

The quantitative comparisons over the multimodal ground truth log probability are shown in Table 2.287

All previous methods suffer from slow inference of their own and KDE on high-dimensional motion288

data. Their inference time exceeded the prediction horizon of 2000ms in the future. Therefore, they289

cannot estimate density in real-time. In contrast, our method achieves better estimation accuracy in290

less than one millisecond. This indicates that CacheFlow has strong discriminative ability to list up291

possible future motions required for safety assurance. Our method is even faster only on the density292

estimation (0.5ms) than the inference time reported in Table 1 (1.3ms). This is because we don’t need293

any extra sampling operation in the density estimation.294

5.2 Qualitative Comparison of Predicted Motions295

To visually evaluate CacheFlow, we conducted a qualitative comparison of methods on the AMASS296

dataset, as shown in Figure 3. We visualized the end poses of 10 samples from each method alongside297

the end poses of past motions and the ground truth future motions. The sitting or lying poses were298

translated to the ground plane, as the global translation is not modeled in human motion prediction.299

The 10 pose samples are arranged from the closest to the farthest from the ground truth pose based300

on joint rotations.301

Our observations indicate that CacheFlow predicts realistic poses. The closest poses to the ground302

truths also demonstrate that the accuracy of CacheFlow is comparable to CoMusion, as reflected303

in the ADE and FDE metrics listed in Table 1. Notably, our method is computationally efficient,304

operating 100 times faster than the fastest CoMusion. In summary, CacheFlow effectively delivers305

realistic and accurate predictions.306

6 Concluding Remarks307

We presented a new flow-based stochastic human motion prediction method named CacheFlow.308

Our method achieves a fast and accurate estimation of the probability density distribution of future309

motions. Our unconditional formulation allows precomputation and caching of the flow-based model,310

thus omitting a large portion of computational cost at inference. The unconditional flow-based model311

enhanced the expressivity of the lightweight conditional Gaussian mixture with almost no overhead.312

Experimental results demonstrated CacheFlow achieved comparable prediction accuracy with 1.3313

milliseconds inference, much faster than the previous method. Furthermore, CacheFlow estimated a314

more accurate density than previous methods in less than 1 millisecond.315

Our method has one limitation. Prediction and density estimation are performed within precomputed316

triplets. We cannot estimate the density or predict unseen future motions during precomputation. Our317

future work is searching for a better precomputation strategy for prediction and estimation with more318

coverage based on the limited dataset. Furthermore, our method is not limited to prediction tasks but319

applies to any regression task requiring density estimation. We will investigate the applicability of320

our CacheFlow on other domains.321
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Figure 4: Visualization of future motion densities by CacheFlow. The estimated densities for four different
motion sequences are visualized. We used UMAP to project these future motions onto a 2D space. Each dot
represents an evaluated future motion, and the color of each dot indicates its probability, as shown in the side
color bar. The red stars represent the projected ground truth future motions.

Linear
Factorization

Unconditional
Flow-based Model

Joint
Learning Precomp. Set Sampling ADE↓ FDE↓ MM log prob.

per dims↑
Inference
time[ms]↓

(1) ✓ ✓ Train Set NN sample 0.502 0.664 0.458 4.8
(2) ✓ ✓ Train Set NN sample 0.616 0.889 0.901 0.4
(3) ✓ ✓ Train Set NN sample 0.370 0.475 1.283 1.3

(4) ✓ ✓ ✓ Base Density NN sample 0.376 0.492 - 1.3

(5) ✓ ✓ ✓ Train Set Random sample 0.455 0.605 - 1.2
✓ ✓ ✓ Train Set Most likely 0.384 0.506 - 1.4

✓ ✓ ✓ Train Set NN sample 0.369 0.473 1.304 1.3
Table 3: Ablation Study on Human3.6M. (4) and (5) do not affect the ground truth log probability, these are
left blank.

A Implementation Details of Kernel Density Estimation479

We assessed the accuracy of density estimation using Kernel Density Estimation (KDE) on previous480

methods. To ensure a fair comparison of inference time, all KDE computations were conducted on481

the GPU. We applied KDE to the standardized predicted future motions (or latents for BeLFusion)482

to obtain the estimated density. In this process, the i-th dimension of the predicted future motions483

was standardized using its i-th variance, meaning that covariances were not considered during484

standardization. We employed Scott’s rule to determine the optimal bandwidth for KDE.485

B Ablation Study486

We conducted an ablation study to investigate how each component affects the performance of our487

CacheFlow. We ablate five components: (1) dimensionality reduction via linear factorization on488
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VAE, (2) the unconditional flow-based model fθ, (3) joint learning of the conditional base density489

qϕ and unconditional flow-based model fθ, (4) dataset for precomputation, (5) the sampling method490

for metrics over a fixed number of predictions. Ablation results on the Human3.6M dataset are491

summarized in Table 3.492

Linear Factorization. We first ablate the linear factorization compressing 256-dim VAE latent to be493

an 8-dim factor space. Our method is considerably enhanced on the compact space by avoiding the494

curse of dimensionality.495

The Unconditional Flow-based Model. We ablate this flow-based model fθ to confirm it improves496

the conditional base density qϕ by adding complexity. As shown in Table 3, we observe a notable497

performance drop without the flow-based model. Therefore, our unconditional flow-based model498

fθ complements conditional base density qϕ to estimate complex density distribution over human499

motions.500

Joint Learning. We ablate the joint learning of the unconditional flow-based model fθ and the501

conditional base density qϕ. The joint learning certainly improves both prediction errors and density502

estimation accuracy. The unconditional flow-based model fθ can learn a more clustered z mapped503

from the motion feature x. Thus, a conditional base density qϕ can easily model the z distribution.504

Dataset for Precomputation. We propose the precomputation over the training split. Specifically,505

we apply inverse transform z = fθ(x) to ground truth future motions in the training split. However,506

we may precompute infinite precomputation samples. For example, we can sample z ∼ qϕ(z|c) and507

obtain x by forward transform x = fθ(z). As shown in the ablation, precomputation on the training508

split outperforms one on the base density since we can regularize the prediction to be legitimate509

human motions using the training split.510

Sampling Method. We propose the nearest neighbor sampling from the precomputation set as511

described in Section 4.3. Lastly, we ablate this sampling to evaluate its performance gain. We512

experimented with two sampling method alternatives: random sampling and most likely sampling.513

Precomputed motion features xk∗ are uniformly selected as predictions with random sampling. Most514

likely sampling selects motion features xk∗ with the highest probabilities k∗ = argmaxkp(xk|c). We515

found that the large and little performance drops with random and most likely sampling respectively.516

This random sampling is worse due to the independence from the past motions c. The most likely517

method underperforms due to less diverse samples. It cannot select a motion feature set with diversity518

because all selected features are often located in one peak of the estimated density. Since ADE519

and FDE are best-of-many metrics, this less diversity leads to worse performance. In contrast, our520

sampling method is superior to others. Our sampling incorporates past motions and achieves good521

diversity by simulating sampling from the estimated density p(x|c).522

C Visualization of Estimated Density523

We visualized the future motion density estimated by CacheFlow. Since future motions are high-524

dimensional data, we used UMAP [49] to project each future motion into a 2D space. We displayed525

the multimodal ground truth future motions alongside the visualized density map. As shown in526

Figure 4, CacheFlow estimated a high probability around the ground truth in all motion sequences.527

This visually supports the high density estimation accuracy presented in Table 2.528

D Potential Broader Impact529

The proposed CacheFlow introduces a fast probaility-aware motion prediction framework, which530

may involve the following broader impacts:531

• Improved Collaboration in Robotics and Automation. In collaborative robotics and532

industrial automation, understanding and anticipating human motion is critical for ensuring533

safety and efficiency. The proposed system enables robots to predict human actions and534

movements with probabilistic confidence, allowing them to adjust their trajectories and535

tasks in real time. This leads to smoother coordination in shared workspaces such as536

manufacturing floors, warehouses, or hospitals, where humans and robots must work in537

close proximity.538
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• Proactive Support in Assistive Technologies. In assistive technologies for the elderly539

and individuals with disabilities, anticipating human motion is essential for delivering540

timely and meaningful support. A fast and uncertainty-aware human motion prediction541

system enables robots and smart devices to proactively assist users by foreseeing movements542

such as standing, walking, or reaching, even in the presence of noisy or partial sensor543

data. Furthermore, such a system could help prevent falls or injuries by detecting signs of544

instability and initiating interventions early.545

• Immersive Interactions in VR and Gaming. Virtual reality (VR) and gaming systems546

stand to benefit from predictive models that can estimate future body movements in real547

time with associated uncertainties. This capability allows VR applications to reduce latency548

and create more responsive environments by anticipating user actions and gestures.549
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NeurIPS Paper Checklist550

1. Claims551

Question: Do the main claims made in the abstract and introduction accurately reflect the552

paper’s contributions and scope?553

Answer: [Yes]554

Justification: The abstract reflects our main contribution, a novel 3D human motion predic-555

tion method named CacheFlow for fast inference and density estimation.556

Guidelines:557

• The answer NA means that the abstract and introduction do not include the claims558

made in the paper.559

• The abstract and/or introduction should clearly state the claims made, including the560

contributions made in the paper and important assumptions and limitations. A No or561

NA answer to this question will not be perceived well by the reviewers.562

• The claims made should match theoretical and experimental results, and reflect how563

much the results can be expected to generalize to other settings.564

• It is fine to include aspirational goals as motivation as long as it is clear that these goals565

are not attained by the paper.566

2. Limitations567

Question: Does the paper discuss the limitations of the work performed by the authors?568

Answer: [Yes]569

Justification: We included the limitation of our method in the Section 6.570

Guidelines:571

• The answer NA means that the paper has no limitation while the answer No means that572

the paper has limitations, but those are not discussed in the paper.573

• The authors are encouraged to create a separate "Limitations" section in their paper.574

• The paper should point out any strong assumptions and how robust the results are to575

violations of these assumptions (e.g., independence assumptions, noiseless settings,576

model well-specification, asymptotic approximations only holding locally). The authors577

should reflect on how these assumptions might be violated in practice and what the578

implications would be.579

• The authors should reflect on the scope of the claims made, e.g., if the approach was580

only tested on a few datasets or with a few runs. In general, empirical results often581

depend on implicit assumptions, which should be articulated.582

• The authors should reflect on the factors that influence the performance of the approach.583

For example, a facial recognition algorithm may perform poorly when image resolution584

is low or images are taken in low lighting. Or a speech-to-text system might not be585

used reliably to provide closed captions for online lectures because it fails to handle586

technical jargon.587

• The authors should discuss the computational efficiency of the proposed algorithms588

and how they scale with dataset size.589

• If applicable, the authors should discuss possible limitations of their approach to590

address problems of privacy and fairness.591

• While the authors might fear that complete honesty about limitations might be used by592

reviewers as grounds for rejection, a worse outcome might be that reviewers discover593

limitations that aren’t acknowledged in the paper. The authors should use their best594

judgment and recognize that individual actions in favor of transparency play an impor-595

tant role in developing norms that preserve the integrity of the community. Reviewers596

will be specifically instructed to not penalize honesty concerning limitations.597

3. Theory assumptions and proofs598

Question: For each theoretical result, does the paper provide the full set of assumptions and599

a complete (and correct) proof?600

Answer: [NA]601
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Justification: Our paper does not include theoretical results.602

Guidelines:603

• The answer NA means that the paper does not include theoretical results.604

• All the theorems, formulas, and proofs in the paper should be numbered and cross-605

referenced.606

• All assumptions should be clearly stated or referenced in the statement of any theorems.607

• The proofs can either appear in the main paper or the supplemental material, but if608

they appear in the supplemental material, the authors are encouraged to provide a short609

proof sketch to provide intuition.610

• Inversely, any informal proof provided in the core of the paper should be complemented611

by formal proofs provided in appendix or supplemental material.612

• Theorems and Lemmas that the proof relies upon should be properly referenced.613

4. Experimental result reproducibility614

Question: Does the paper fully disclose all the information needed to reproduce the main ex-615

perimental results of the paper to the extent that it affects the main claims and/or conclusions616

of the paper (regardless of whether the code and data are provided or not)?617

Answer: [Yes]618

Justification: The code to reproduce the main experimental results will be publicly available.619

Guidelines:620

• The answer NA means that the paper does not include experiments.621

• If the paper includes experiments, a No answer to this question will not be perceived622

well by the reviewers: Making the paper reproducible is important, regardless of623

whether the code and data are provided or not.624

• If the contribution is a dataset and/or model, the authors should describe the steps taken625

to make their results reproducible or verifiable.626

• Depending on the contribution, reproducibility can be accomplished in various ways.627

For example, if the contribution is a novel architecture, describing the architecture fully628

might suffice, or if the contribution is a specific model and empirical evaluation, it may629

be necessary to either make it possible for others to replicate the model with the same630

dataset, or provide access to the model. In general. releasing code and data is often631

one good way to accomplish this, but reproducibility can also be provided via detailed632

instructions for how to replicate the results, access to a hosted model (e.g., in the case633

of a large language model), releasing of a model checkpoint, or other means that are634

appropriate to the research performed.635

• While NeurIPS does not require releasing code, the conference does require all submis-636

sions to provide some reasonable avenue for reproducibility, which may depend on the637

nature of the contribution. For example638

(a) If the contribution is primarily a new algorithm, the paper should make it clear how639

to reproduce that algorithm.640

(b) If the contribution is primarily a new model architecture, the paper should describe641

the architecture clearly and fully.642

(c) If the contribution is a new model (e.g., a large language model), then there should643

either be a way to access this model for reproducing the results or a way to reproduce644

the model (e.g., with an open-source dataset or instructions for how to construct645

the dataset).646

(d) We recognize that reproducibility may be tricky in some cases, in which case647

authors are welcome to describe the particular way they provide for reproducibility.648

In the case of closed-source models, it may be that access to the model is limited in649

some way (e.g., to registered users), but it should be possible for other researchers650

to have some path to reproducing or verifying the results.651

5. Open access to data and code652

Question: Does the paper provide open access to the data and code, with sufficient instruc-653

tions to faithfully reproduce the main experimental results, as described in supplemental654

material?655
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Answer: [Yes]656

Justification: The code and instructions will be publicly available on GitHub.657

Guidelines:658

• The answer NA means that paper does not include experiments requiring code.659

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/660

public/guides/CodeSubmissionPolicy) for more details.661

• While we encourage the release of code and data, we understand that this might not be662

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not663

including code, unless this is central to the contribution (e.g., for a new open-source664

benchmark).665

• The instructions should contain the exact command and environment needed to run to666

reproduce the results. See the NeurIPS code and data submission guidelines (https:667

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.668

• The authors should provide instructions on data access and preparation, including how669

to access the raw data, preprocessed data, intermediate data, and generated data, etc.670

• The authors should provide scripts to reproduce all experimental results for the new671

proposed method and baselines. If only a subset of experiments are reproducible, they672

should state which ones are omitted from the script and why.673

• At submission time, to preserve anonymity, the authors should release anonymized674

versions (if applicable).675

• Providing as much information as possible in supplemental material (appended to the676

paper) is recommended, but including URLs to data and code is permitted.677

6. Experimental setting/details678

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-679

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the680

results?681

Answer: [Yes]682

Justification: We specify all the training details on the Section 5. We followed the evaluation683

protocol proposed by the previous method [4].684

Guidelines:685

• The answer NA means that the paper does not include experiments.686

• The experimental setting should be presented in the core of the paper to a level of detail687

that is necessary to appreciate the results and make sense of them.688

• The full details can be provided either with the code, in appendix, or as supplemental689

material.690

7. Experiment statistical significance691

Question: Does the paper report error bars suitably and correctly defined or other appropriate692

information about the statistical significance of the experiments?693

Answer: [Yes]694

Justification: The Section 5 tells the training details, and our source code will be publicly695

available.696

Guidelines:697

• The answer NA means that the paper does not include experiments.698

• The authors should answer "Yes" if the results are accompanied by error bars, confi-699

dence intervals, or statistical significance tests, at least for the experiments that support700

the main claims of the paper.701

• The factors of variability that the error bars are capturing should be clearly stated (for702

example, train/test split, initialization, random drawing of some parameter, or overall703

run with given experimental conditions).704

• The method for calculating the error bars should be explained (closed form formula,705

call to a library function, bootstrap, etc.)706

• The assumptions made should be given (e.g., Normally distributed errors).707
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• It should be clear whether the error bar is the standard deviation or the standard error708

of the mean.709

• It is OK to report 1-sigma error bars, but one should state it. The authors should710

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis711

of Normality of errors is not verified.712

• For asymmetric distributions, the authors should be careful not to show in tables or713

figures symmetric error bars that would yield results that are out of range (e.g. negative714

error rates).715

• If error bars are reported in tables or plots, The authors should explain in the text how716

they were calculated and reference the corresponding figures or tables in the text.717

8. Experiments compute resources718

Question: For each experiment, does the paper provide sufficient information on the com-719

puter resources (type of compute workers, memory, time of execution) needed to reproduce720

the experiments?721

Answer: [Yes]722

Justification: The Section 5 includes the computer resource used for the experiments723

(NVIDIA A100 GPU).724

Guidelines:725

• The answer NA means that the paper does not include experiments.726

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,727

or cloud provider, including relevant memory and storage.728

• The paper should provide the amount of compute required for each of the individual729

experimental runs as well as estimate the total compute.730

• The paper should disclose whether the full research project required more compute731

than the experiments reported in the paper (e.g., preliminary or failed experiments that732

didn’t make it into the paper).733

9. Code of ethics734

Question: Does the research conducted in the paper conform, in every respect, with the735

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?736

Answer: [Yes]737

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our research738

conforms to it.739

Guidelines:740

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.741

• If the authors answer No, they should explain the special circumstances that require a742

deviation from the Code of Ethics.743

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-744

eration due to laws or regulations in their jurisdiction).745

10. Broader impacts746

Question: Does the paper discuss both potential positive societal impacts and negative747

societal impacts of the work performed?748

Answer: [Yes]749

Justification: The proposed CacheFlow may have broader impacts on robotics, assistive750

technologies, VR, gaming, etc., as detailed in Appendix D.751

Guidelines:752

• The answer NA means that there is no societal impact of the work performed.753

• If the authors answer NA or No, they should explain why their work has no societal754

impact or why the paper does not address societal impact.755

• Examples of negative societal impacts include potential malicious or unintended uses756

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations757

(e.g., deployment of technologies that could make decisions that unfairly impact specific758

groups), privacy considerations, and security considerations.759

20

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied760

to particular applications, let alone deployments. However, if there is a direct path to761

any negative applications, the authors should point it out. For example, it is legitimate762

to point out that an improvement in the quality of generative models could be used to763

generate deepfakes for disinformation. On the other hand, it is not needed to point out764

that a generic algorithm for optimizing neural networks could enable people to train765

models that generate Deepfakes faster.766

• The authors should consider possible harms that could arise when the technology is767

being used as intended and functioning correctly, harms that could arise when the768

technology is being used as intended but gives incorrect results, and harms following769

from (intentional or unintentional) misuse of the technology.770

• If there are negative societal impacts, the authors could also discuss possible mitigation771

strategies (e.g., gated release of models, providing defenses in addition to attacks,772

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from773

feedback over time, improving the efficiency and accessibility of ML).774

11. Safeguards775

Question: Does the paper describe safeguards that have been put in place for responsible776

release of data or models that have a high risk for misuse (e.g., pretrained language models,777

image generators, or scraped datasets)?778

Answer: [NA]779

Justification: There is no high risk for misuse in the models.780

Guidelines:781

• The answer NA means that the paper poses no such risks.782

• Released models that have a high risk for misuse or dual-use should be released with783

necessary safeguards to allow for controlled use of the model, for example by requiring784

that users adhere to usage guidelines or restrictions to access the model or implementing785

safety filters.786

• Datasets that have been scraped from the Internet could pose safety risks. The authors787

should describe how they avoided releasing unsafe images.788

• We recognize that providing effective safeguards is challenging, and many papers do789

not require this, but we encourage authors to take this into account and make a best790

faith effort.791

12. Licenses for existing assets792

Question: Are the creators or original owners of assets (e.g., code, data, models), used in793

the paper, properly credited and are the license and terms of use explicitly mentioned and794

properly respected?795

Answer: [Yes]796

Justification: The licenses and terms of use are explicitly mentioned and properly respected.797

Guidelines:798

• The answer NA means that the paper does not use existing assets.799

• The authors should cite the original paper that produced the code package or dataset.800

• The authors should state which version of the asset is used and, if possible, include a801

URL.802

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.803

• For scraped data from a particular source (e.g., website), the copyright and terms of804

service of that source should be provided.805

• If assets are released, the license, copyright information, and terms of use in the806

package should be provided. For popular datasets, paperswithcode.com/datasets807

has curated licenses for some datasets. Their licensing guide can help determine the808

license of a dataset.809

• For existing datasets that are re-packaged, both the original license and the license of810

the derived asset (if it has changed) should be provided.811
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• If this information is not available online, the authors are encouraged to reach out to812

the asset’s creators.813

13. New assets814

Question: Are new assets introduced in the paper well documented and is the documentation815

provided alongside the assets?816

Answer: [NA]817

Justification: There are no new assets introduced in the paper.818

Guidelines:819

• The answer NA means that the paper does not release new assets.820

• Researchers should communicate the details of the dataset/code/model as part of their821

submissions via structured templates. This includes details about training, license,822

limitations, etc.823

• The paper should discuss whether and how consent was obtained from people whose824

asset is used.825

• At submission time, remember to anonymize your assets (if applicable). You can either826

create an anonymized URL or include an anonymized zip file.827

14. Crowdsourcing and research with human subjects828

Question: For crowdsourcing experiments and research with human subjects, does the paper829

include the full text of instructions given to participants and screenshots, if applicable, as830

well as details about compensation (if any)?831

Answer: [NA]832

Justification: There is no crowdsourcing experiments and research with human subjects.833

Guidelines:834

• The answer NA means that the paper does not involve crowdsourcing nor research with835

human subjects.836

• Including this information in the supplemental material is fine, but if the main contribu-837

tion of the paper involves human subjects, then as much detail as possible should be838

included in the main paper.839

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,840

or other labor should be paid at least the minimum wage in the country of the data841

collector.842

15. Institutional review board (IRB) approvals or equivalent for research with human843

subjects844

Question: Does the paper describe potential risks incurred by study participants, whether845

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)846

approvals (or an equivalent approval/review based on the requirements of your country or847

institution) were obtained?848

Answer: [NA]849

Justification: There is no research with human subjects.850

Guidelines:851

• The answer NA means that the paper does not involve crowdsourcing nor research with852

human subjects.853

• Depending on the country in which research is conducted, IRB approval (or equivalent)854

may be required for any human subjects research. If you obtained IRB approval, you855

should clearly state this in the paper.856

• We recognize that the procedures for this may vary significantly between institutions857

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the858

guidelines for their institution.859

• For initial submissions, do not include any information that would break anonymity (if860

applicable), such as the institution conducting the review.861

16. Declaration of LLM usage862
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Question: Does the paper describe the usage of LLMs if it is an important, original, or863

non-standard component of the core methods in this research? Note that if the LLM is used864

only for writing, editing, or formatting purposes and does not impact the core methodology,865

scientific rigorousness, or originality of the research, declaration is not required.866

Answer: [NA]867

Justification: We used LLMs only for writing, editing, and formatting purposes.868

Guidelines:869

• The answer NA means that the core method development in this research does not870

involve LLMs as any important, original, or non-standard components.871

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)872

for what should or should not be described.873
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