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Abstract
Diffusion models have emerged as powerful gen-
erative models, but their high computation cost
in iterative sampling remains a significant bot-
tleneck. In this work, we present an in-depth
and insightful study of state-of-the-art accelera-
tion techniques for diffusion models, including
caching and quantization, revealing their limita-
tions in computation error and generation quality.
To break these limits, this work introduces Modu-
lated Diffusion (MoDiff), an innovative, rigorous,
and principled framework that accelerates gener-
ative modeling through modulated quantization
and error compensation. MoDiff not only inher-
ents the advantages of existing caching and quanti-
zation methods but also serves as a general frame-
work to accelerate all diffusion models. The ad-
vantages of MoDiff are supported by solid theoret-
ical insight and analysis. In addition, extensive ex-
periments on CIFAR-10 and LSUN demonstrate
that MoDiff significant reduces activation quanti-
zation from 8 bits to 3 bits without performance
degradation in post-training quantization (PTQ).
Our code implementation is available at https:
//github.com/WeizhiGao/MoDiff.

1. Introduction
Diffusion models have emerged as powerful generative mod-
els for producing high-quality data samples, ranging from
images to audio and beyond (Ho et al., 2020; Song et al.,
2021a;b). These models work by iteratively transforming
a simple noise distribution into complex, structured out-
puts, guided by a learned reverse diffusion process. Despite
their effectiveness, diffusion models come with significant
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computational costs (Liu et al., 2022; Li et al., 2023). The
iterative nature of the sampling process, which requires
multiple inferences through neural networks, makes these
models computationally expensive and time-intensive. This
limitation restricts their scalability and accessibility.

Existing works aim to enhance the efficiency of the sam-
pling process in diffusion models through several strategies.
Caching methods, for example, accelerate diffusion models
by reusing intermediate computations (Ma et al., 2024b;
Wimbauer et al., 2024). These methods exploit the sig-
nificant similarities between features at nearby time steps,
enabling the skipping of redundant computations by directly
using cached results. Additionally, quantization techniques
reduce inference costs by converting model weights and
activations into integers using scaling factors (Nagel et al.,
2021; Yang et al., 2019). Among these, post-training quan-
tization (PTQ) stands out as a promising approach since it
estimates scaling factors in a training-free manner, making
it broadly applicable to pre-trained models (Li et al., 2021).
Another line of work focuses on efficient sampling strate-
gies with solvers or samplers, such as denoising diffusion
implicit models (DDIMs), which significantly reduce the
number of sampling steps required in diffusion models, and
speed up the process (Song et al., 2021a).

Our preliminary studies reveal that while caching and PTQ
methods have achieved notable success in accelerating the
sampling process, they also introduce significant limitations.
First, our analysis reveals that caching methods can lead
to reuse errors that accumulate throughout the generation
process, particularly when reuse schedules are not carefully
designed with respect to the time step and reused compo-
nents. For instance, when following the reuse strategy of
DeepCache (Ma et al., 2024b), but slightly modifying the
reused components, we observe that the relative ℓ2 distance
between the features of a standard diffusion model and those
of caching methods increases significantly throughout the
generation process, reaching 40% in the final step, even
when the cache is updated every three steps. On the other
hand, our studies show that diffusion models exhibit sig-
nificant outliers in activations and variations in activation
ranges across time steps, leading to substantial quantization
errors under low-bit activation quantization.
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In this work, we propose Modulated Diffusion (MoDiff),
an innovative, rigorous, and principled framework that ac-
celerates the diffusion sampling process while addressing
the limitations of existing methods. Specifically, we propose
modulated computation to significantly reduce activation
quantization error by leveraging the computation redun-
dancy across the diffusion time steps. Moreover, we further
introduce a novel error compensation modulation to address
error accumulation. Furthermore, we provide theoretical
analyses to explain why the temporal difference results in
lower quantization error and how error compensation effec-
tively eliminates accumulated errors. Our extensive experi-
ments validate the effectiveness of this framework, demon-
strating that MoDiff pushes the activation quantization limit
of PTQ methods from 8 bits to as low as 3 bits without any
performance degradation, all within a training-free manner.

The proposed MoDiff framework inherits the advantages of
existing acceleration methods while addressing their limi-
tations. It significantly generalizes the caching techniques
through modulated computation but reduces apprpoximation
and accumulated error. Additionally, from a quantization
perspective, MoDiff significantly reduces the quantization
error of existing PTQ methods, enabling the use of much
lower activation bit-widths without sacrificing performance.
Notably, MoDiff is agnostic to quantization algorithms and
can be generally applied across different methods, mak-
ing its contribution orthogonal to existing PTQ techniques.
Furthermore, MoDiff imposes no constraints on samplers,
ensuring compatibility with solver-based acceleration meth-
ods. In summary, our main contributions are as follows:

• We present an in-depth and insightful preliminary study
that reveals the limitations of existing acceleration tech-
niques for diffusion models, such as caching and quan-
tization methods, highlighting issues like error accu-
mulation and high approximation error.

• We propose MoDiff, a novel, rigorous, and principled
framework that accelerates diffusion models through
modulated quantization and error compensation. MoD-
iff not only inherits the advantages of existing methods
but also overcomes their limitations, enabling signifi-
cantly more aggressive activation quantization.

• We provide theoretical analyses of quantization error
and the error compensation mechanism in MoDiff,
demonstrating that our approach can significantly re-
duce the required activation bit precision in PTQ.

• Extensive experiments on CIFAR-10, LSUN-Churches,
and LSUN-Bedroom show that MoDiff enables state-
of-the-art quantization techniques to reduce activation
precision from 8 bits to as low as 3 bits without any
performance degradation in a training-free manner.

2. Related Work
Diffusion Models. Diffusion models have become a corner-
stone of generative modeling, achieving remarkable success
across diverse domains such as image synthesis, data distilla-
tion, and molecular modeling (Ho et al., 2020; Hoogeboom
et al., 2022; Su et al., 2024). These models operate on an
iterative framework that involves adding noise in the for-
ward process and learning to remove it during the reverse
process (Dhariwal & Nichol, 2021). However, the iterative
nature of the sampling process makes generation compu-
tationally expensive (Song et al., 2021b; Ho et al., 2020).
To address this efficiency bottleneck, a line of research has
focused on improving the sampling process by optimizing
the variance schedule or employing more advanced ODE
solvers (Song et al., 2021a; Nichol & Dhariwal, 2021; Liu
et al., 2022). For example, Denoising Diffusion Implicit
Models (DDIMs) introduce a non-Markovian formulation
for the diffusion process, significantly reducing the number
of sampling steps required (Song et al., 2021a).

Caching Methods. Caching methods for accelerating dif-
fusion models aim to reduce redundant computations dur-
ing the generative process by reusing intermediate results,
thereby improving efficiency (Ma et al., 2024b; Wimbauer
et al., 2024; Ma et al., 2024a). These strategies address the
high computational cost by selectively storing intermedi-
ate states from the reverse diffusion process for reuse in
subsequent steps. For example, DeepCache reuses cached
upsampled features every N time steps (Ma et al., 2024b).
However, it can accumulate errors in the generation process
with the reusing technique. Existing works rely on heuristic
approaches to determine N , which limits its generalizabil-
ity. Some methods also attempt to preserve model perfor-
mance by fine-tuning diffusion models, but this approach
can be computationally expensive (Wimbauer et al., 2024;
Ma et al., 2024a; Chen et al., 2024). In contrast to caching
methods, our proposed MoDiff introduces a novel and prin-
cipled framework to leverage the computation redundancy
between sampling steps through modulated computing.

Post-Training Quantization. Quantization aims to reduce
inference costs by converting floating-point numbers into
low-bit integers (Nagel et al., 2021; Yang et al., 2019) us-
ing scaling factors. Post-training quantization (PTQ) has
emerged as a powerful approach due to its training-free na-
ture, making it suitable for pre-trained models (Li et al.,
2021). Several studies have explored the application of
PTQ techniques to diffusion models (Li et al., 2023; Wang
et al., 2024; Huang et al., 2024; Shang et al., 2023; He et al.,
2023b; Zhao et al., 2025). For example, Q-Diffusion intro-
duces a time-step-aware calibration data sampling mecha-
nism tailored for diffusion models, achieving strong perfor-
mance with 8-bit activations. However, a common issue
is that existing methods struggle to quantize activations to
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Figure 1. A preliminary study using DDIM on CIFAR-10 with 100 generation steps. (a) The relative ℓ2 distance between the cached and
standard diffusion features in middle block, initialized from the same noise. As the reuse frequency increases, error accumulation becomes
more significant. (b) The distribution of activations and their temporal differences across different diffusion time steps. The blue violin
plots show that activation ranges fluctuate over time and exhibit outliers with long-tailed distributions. In contrast, the orange violin plots
demonstrate more consistent ranges and concentrated distributions.

low bitwidths due to the presence of outlier values with
large dynamic ranges (Xiao et al., 2023; Feng et al., 2024).
One related method is PTQD (He et al., 2023b), which post
processes quantized models to reduce the quantization error.
We pose the detailed comparison to PTQD in Appendix E.

Another line of research focuses on quantization-aware train-
ing (QAT), which integrates the quantization process into
the training phase, enabling model parameters to adapt to
quantization (Nagel et al., 2022). These methods effectively
address the challenges of low-bit quantization in diffusion
models (Feng et al., 2024; He et al., 2023a). However, QAT
approaches require costly retraining of diffusion models,
which is orthogonal to but not the focus of this work.
In contrast, the proposed MoDiff framework can be seam-
lessly integrated to state-of-the-art PTQ methods to reduce
activation bit-widths without additional training.

3. Preliminary Study
In this section, we introduce the fundamental concepts of
diffusion models and quantization. Additionally, we ex-
amine the challenges associated with existing caching and
quantization methods with preliminary experiments.

3.1. Diffusion Models and Cache Reusing

Diffusion models consist of two processes: a forward pro-
cess and a backward process, operating over T steps. Using
Denoising Diffusion Probabilistic Models (DDPMs) as an
example (Ho et al., 2020), the forward process incrementally
adds noise to the image at each step, gradually transforming
the data distribution into a standard Gaussian distribution:

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI). (1)

Meanwhile, the reverse process progressively denoises the
Gaussian distribution, reconstructing the original image dis-

tribution step by step with a denoising network:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t), σ
2
t I), (2)

where µθ(xt, t) is predicted by a neural network, while σt is
typically set to βt. With this parametrization, the sampling
process can be expressed as:

xt−1 =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, (3)

where ᾱt =
∏t

i=1(1−βt), and ϵθ(xt, t) represents a U-Net
that predicts the noise. However, since generating samples
requires predicting noise across T steps, the diffusion pro-
cess is computationally expensive for practical applications.

Existing approaches reuse historical computations to accel-
erate the sampling process by exploiting the similarities
between features at adjacent time steps in diffusion mod-
els (Ma et al., 2024b; Wimbauer et al., 2024; Ma et al.,
2024a). However, these caching methods directly reuse
past information, which often cause approximation errors
and deviate from the standard generation path of diffusion
models. This discrepancy introduces errors at each reuse
step, which accumulate over multiple iterations. As a result,
these techniques require careful design of reuse schedules
and even rely on retraining to tune models, necessitating
expensive hyperparameter search.

To illustrate the impact of reuse schedules, we conduct a
preliminary study, where we apply caching to the residual
connections of the U-Net in DDIM on CIFAR-10 without
tuning following Ma et al. (2024b). Specifically, we reuse
the activations from the previous time step for N − 1 steps
and update them at every N -th step. We compare the rela-
tive ℓ2 distance between standard diffusion models and the
variant with reused caching in middle block. As shown in
Figure 1a, the relative error increases significantly as the
number of reuse steps and the time steps grows.
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Figure 2. (a) Standard PTQ methods: The computations at different time steps are independent, with the raw activation a
(l)
t serving

directly as the input to the quantizer. (b) Quantization with our MoDiff: For each linear operator, such as linear layers and convolutional
layers, we cache the output from the previous time step, â(l)

t , and input the temporal difference a
(l)
t−1 − â

(l)
t into the quantizer. The final

output is obtained by aggregating the current computation results of Al with the cached output from the previous step ô
(l)
t .

3.2. Post-Training Quantization

Quantization is an effective technique to reduce the infer-
ence cost of deep learning models by utilizing low-precision
integers (Nagel et al., 2021). Given x, we denote the integer
representation as xint and the dequantization vector as Q(x):

xint = clamp(
⌊x
s

⌉
+ z; 0, 2b − 1), (4)

Q(x) = s(xint − z), (5)

where b represents the quantization bandwidth, and clamp(·)
enforces value cut-offs between two integer bounds. The
parameters s and z correspond to the scale factor and zero
point, respectively. PTQ (Shang et al., 2023) dynamically
estimates the parameters s and z or derives them using
calibration datasets with a pre-trained model. Due to its
simplicity and efficiency, PTQ is widely adopted.

The major challenge for PTQ methods in diffusion models
is to use low-bit quantization. First, the activation tensor
ranges vary significantly across different time steps, as illus-
trated by the height of the blue violin plot in Figure 1b. This
variation makes it difficult for a shared scaling parameter s
to handle all ranges. Second, significant outlier values exist
within the activations at each time step. In Figure 1b, the
width of the violin plot represents the distribution of activa-
tion values for a specific time step. These outliers make it
challenging to select a scaling parameter s that minimizes
both clipping error and rounding error simultaneously.

In a nutshell, both caching and PTQ methods face their
own inherent challenges, highlighting the need for a more
effective strategy that can incorporate historical information
while also mitigating the effects of activation distributions.

4. Modulated Diffusion
In this section, we propose Modulated Diffusion (MoDiff),
a novel framework to accelerate all diffusion models with

low-bit activation quantization, as shown in Figure 2. We
introduce a high-level motivation in Section 4.1. To ease the
understanding, we first present an equivalent reformulation
of the diffusion process to reduce the quantization error in
Section 4.2. Then, we propose novel error-compensated
modulation to address accumulated error across the diffu-
sion steps in Section 4.3. Computation and memory costs
are discussed in Section 4.4, followed by theoretical error
analyses of our MoDiff in Section 4.5.

4.1. High-Level Motivation

While the heuristic design of caching methods exhibit sig-
nificant and accumulated computation errors, the motivation
to leverage computation in previous time steps to reduce
computation in future time steps is still of great interest. In-
spired by the similarity of activation patterns across adjacent
time steps, we measure the temporal differences between
activation values over the diffusion process as a(l)t − a

(l)
t+1,

where a(l)t represents the activation at time step t for the l-th
layer of the denoising network. The distribution of these
differences is visualized in Figure 1b in orange color. Com-
pared to the activations, their temporal differences exhibit a
much smaller and more consistent range across time steps.
Moreover, their distribution is more concentrated, effec-
tively reducing the presence of outliers. These interesting
observation and analyses suggest that a strong motivation to
leverage this temporal stability with quantized computing
to alleviate the computation errors in existing approaches.

4.2. Modulated Quantization

Notation. Let A(l)(·) denote the l-th linear operator in the
denoising network, such as the linear and convolutional lay-
ers, where l ∈ {1, 2, . . . , L}. We denote the input and
output activations for A(l)(·) at time step t as a

(l)
t and

o
(l)
t = A(l)(a

(l)
t ), respectively. Note that we focus on accel-
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erating the computation of linear operators, such as linear
and convolutional layers, since they are the most costly op-
erations in neural networks and account for the majority of
computation during data generation (Zhao et al., 2024).

Motivated by the insights from Section 4.1, we propose a
novel modulated computation to reformulate the computa-
tion of each l-th linear layer in the denoising network in
diffusion models as follows:

o
(l)
T = A(l)(a

(l)
T )

o
(l)
T−1 = A(l)(a

(l)
T−1) = A(l)(a

(l)
T−1 − a

(l)
T ) + o

(l)
T

· · ·

o
(l)
t = A(l)(a

(l)
t ) = A(l)(a

(l)
t − a

(l)
t+1) + o

(l)
t+1

· · ·

o
(l)
1 = A(l)(a

(l)
1 ) = A(l)(a

(l)
1 − a

(l)
2 ) + o

(l)
2

(6)

where the output o(l)
t in time step t can be equivalently com-

puted by incrementally refining the output o(l)
t+1 computed

in previous time step t+ 1 with the modulated computation
A(l)(a

(l)
t − a

(l)
t+1). Specifically, the second equality in each

equation holds because of the linearity of the operator A(l):

A(l)(a
(l)
t ) = A(l)(a

(l)
t )−A(l)(a

(l)
t+1) +A(l)(a

(l)
t+1)

= A(l)(a
(l)
t − a

(l)
t+1) + o

(l)
t+1.

We further propose to apply a quantizer Q to approximate
the temporal difference before quantized computation1:

ôT = A
(
Q(aT )

)
≈ A(aT )

ôT−1 = A
(
Q(aT−1 − aT )

)
+ ôT ≈ A(aT−1)

· · ·

ôt = A
(
Q(at − at+1)

)
+ ôt+1 ≈ A(at)

· · ·

ô1 = A
(
Q(a1 − a2)

)
+ ô2 ≈ A(a1)

(7)

Since the temporal difference a(l)t −a
(l)
t+1 has a much smaller

and concentrated range as discussed in Section 4.1, its quan-
tization will incur much smaller quantization errors.
Remark 4.1. When the input range falls bellow a tolerable
threshold due to significant computation redundancy, MoD-
iff allows assigning a 0-bit representation in the quantizer,
which skips the computation. This behavior subsumes exist-
ing heuristic caching strategies (Ma et al., 2024b) as special
cases within a generalizable and principled framework, al-
lowing more flexible control over caching.

1Note that the proposed modulated computation will be inde-
pendently applied to every costly linear neural layer, so we omit
the superscript index (l) in the rest of the paper for simplicity.

4.3. Error-Compensated Modulation

While the modulated computation and quantization in
Eq. (7) can reduce the activation quantization errors, com-
paring with the full-precision computation in Eq. (6), the
computation error ot − ôt will be carried over across the
diffusion time steps and cause large accumulated errors. In
this section, we introduce a novel error-compensated modu-
lation to address the error accumulation, which leads to the
complete MoDiff framework as follows:

âT = Q(aT ) (8)
ôT = A(âT ) (9)
âT−1 = Q(aT−1 − âT ) + âT (10)

ôT−1 = A(âT−1) = A
(
Q(aT−1 − âT )

)
+ ôT (11)

· · · (12)
ât = Q(at − ât+1) + ât+1 (13)

ôt = A(ât) = A
(
Q(at − ât+1)

)
+ ôt+1 (14)

· · · (15)
â1 = Q(a1 − â2) + â2 (16)

ô1 = A(â1) = A
(
Q(a1 − â2)

)
+ ô2 (17)

Specifically, we construct an intermediate variable ât to
store the activation that is actually computed through quan-
tization, which keeps track of the quantization errors:

et = (at − ât+1)−Q(at − ât+1) (18)
= (at − ât+1)− (ât − ât+1) = at − ât,

where the second equation comes from Eq. (13). Since we
do not have access to the accurate ot but only its approx-
imation ôt, the incremental refinement will be on top of
ôt. Given that ôt = A(ât) is a feature tranformation of ât,
the residual should be computed based on ât instead of at,
which will compensate the errors and avoid error accumu-
lation. Note that as shown in Eq. (14), ôt = A(ât) only
represents their relation, but the actual quantized computa-
tion is the following: ôt = A

(
Q(at − ât+1)

)
+ ôt+1. A

slight rewrite of this update clearly illustrates how quantiza-
tion error is compensated across the diffusion time steps:

ôt = A
(
Q(at − at+1 + et+1)

)
+ ot+1 −A(et+1),

where the previous time step misses the computation of
A(et+1) but will be compensated in the next time step by
adding et+1 into the input activations.
Remark 4.2. The proposed MoDiff framework is agnostic
to quantization methods and can be applied to existing PTQ
methods. Therefore, it is orthogonal to the contributions of
prior works in this area. Moreover, we argue that MoDiff
is not limited to quantization. It can be extended to other
techniques, such as sparse techniques (Han et al., 2015),
further demonstrating its generality and versatility.
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4.4. Computation and Memory Costs

Computation Cost. We categorize the computing opera-
tions into three main types: matrix multiplication, matrix
addition, and quantization/dequantization. For matrix mul-
tiplication, our method maintains integer-only operations,
identical to standard quantization techniques. Additionally,
by reducing quantization errors, our approach enables the
use of a lower bandwidth for activations, potentially reduc-
ing the computation cost. For matrix addition, our approach
introduces two additional operations in at − ât+1 and ôt+1.
For Quantization and Dequantization, only dequantization
on Q(at − ât+1) is an additional step introduced by our
approach. Modern quantization techniques (Nagel et al.,
2021) indicate that matrix multiplication is the dominant
computational cost during inference. Since our method in-
troduces only a minimal number of additional additions and
quantization/dequantization operations, their overhead is
negligible in comparison to matrix multiplication. Conse-
quently, our approach do not increase or even decrease the
computation cost compared to existing PTQ methods.

Memory Consumption. One limitation of our method is
that it requires additional memory to store the intermediate
variable at and outputs ot for each layer. However, as
demonstrated in Section 5.3, this memory overhead remains
negligible compared to the model size when using small
batch sizes and low-bit activation quantization. Furthermore,
we can locally select the layers that use MoDiff, allowing
for a trade-off between performance and memory efficiency.

4.5. Theoretical Error Analysis

The proposed MoDiff framework enables quantization with
low quantization error while mitigating error accumulation
through error compensation. In this section, we provide
theoretical analyses to formally justify these advantages.
The following theorem establishes the relationship between
input magnitude and quantization error. For simplicity, we
use dynamic quantizers, which determine the scaling pa-
rameter based on the input values to avoid clipping errors,
and we consider vector inputs instead of assuming a specific
distribution for the input data.
Theorem 4.3 (Quantization Error). Let x ∈ Rd be a vector,
and let the quantization bandwidth be b ∈ N. Define the
max-min dynamic quantizer as follows:

s =
max(x)−min(x)

2b − 1
, (19)

z =

⌊
−min(x)

s

⌋
, (20)

xint = clamp(
⌊x
s

⌋
+ z, 0, 2b − 1). (21)

The corresponding dequantization is given by:

Q(x) = s(xint − z). (22)

The quantization error is bounded in terms of the quantiza-
tion scaling factor s, which depends on the range of x and
the bandwidth b. Specifically, we have:

∥x−Q(x)∥22 ≤ s2d =
(max(x)−min(x))2d

(2b − 1)2
. (23)

The proof is provided in Appendix A.1. Theorem 4.3 estab-
lishes that quantization error is directly influenced by the
input range and quantization bandwidth. Specifically, for
a smaller input range, lower-bit quantization can achieve
the same error bound. Our preliminary results show that
the residuals exhibit a significantly reduced activation range,
more than 10× smaller, which suggests that activation bit
precision can be lowered by at least 3 bits while maintaining
comparable quantization error.

To illustrate how error-compensated modulation eliminates
error accumulation, we assume that the inputs are indepen-
dent for simplicity. The following theorem demonstrates
that it reduces error accumulation at an exponential rate:

Theorem 4.4. Let A(·) be a linear operator and consider
a sequence of inputs aT ,aT−1, . . . ,a1, with corresponding
outputs oT ,oT−1, . . . ,o1. Given a quantization operator
Q, we estimate the outputs using standard modulation:

õt = A(Q(at − at+1)) + õt+1, (24)
õT = A(aT ), (25)

where t = T−1, . . . , 2, 1. Similarly, we estimate the outputs
using error-compensated modulation:

ôt = A(Q(at − ât+1)) + ôt+1, (26)
ât = Q(at − ât+1) + ât+1, (27)
ôT = A(aT ), âT = aT , (28)

where t = T − 1, . . . , 2, 1. Suppose the quantization opera-
tor Q satisfies the following error bound:

∥x−Q(x)∥22 ≤ c∥x∥22, 0 < c < 1. (29)

Then, the estimation errors are bounded as follows:

∥ot − õt∥22 ≤
T−1∑
k=t

2T−k−1c∥A∥22∥ak − ak+1∥22, (30)

∥ot − ôt∥22 ≤
T−1∑
k=t

(2c)T−k−1∥A∥22∥ak − ak+1∥22. (31)

The proof is provided in Appendix A.2. Here, we assume
that the quantization error is bounded by the input magni-
tude with a coefficient smaller than 1/2, which is a direct
corollary of Theorem 4.3 with appropriate b as shown in Ap-
pendix A.3. Theorem 4.4 provides two key insights. First,
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Table 1. The IS, FID, sFID, and GBOPs for CIFAR-10 with DDIM under different precisions. The best performance is bolded.
Methods Bits (W/A) GBops IS ↑ FID ↓ sFID ↓ Bits (W/A) GBops IS ↑ FID ↓ sFID ↓
Full Prec. (Act) 8/32 1636 9.00 4.24 4.41 4/32 818 8.78 5.09 5.19

Q-Diff

8/8 409

9.48 3.75 4.49

4/8 204

9.12 4.93 5.03
Q-Diff+MoDiff (Ours) 9.10 4.10 4.39 9.08 5.13 5.18
LCQ 9.01 4.21 4.41 8.80 4.96 4.94
LCQ+MoDiff (Ours) 9.10 4.10 4.39 9.08 4.95 4.95

Q-Diff

8/6 307

8.76 29.16 13.81

4/6 153

8.51 28.60 15.09
Q-Diff+MoDiff (Ours) 9.38 4.19 4.32 8.85 5.62 4.93
LCQ 9.24 4.15 4.61 9.01 4.49 4.94
LCQ+MoDiff (Ours) 9.01 4.21 4.40 8.80 5.01 4.92

Q-Diff

8/4 205

2.19 332.75 100.37

4/4 102

2.47 325.76 92.84
Q-Diff+MoDiff(Ours) 9.71 13.41 11.25 9.60 13.62 11.94
LCQ 10.01 24.09 13.07 9.72 22.50 12.95
LCQ+MoDiff (Ours) 9.08 4.31 4.38 8.82 5.10 4.94

Q-Diff

8/3 153

1.19 457.35 165.79

4/3 77

1.19 457.35 165.79
Q-Diff+MoDiff (Ours) 5.19 90.34 41.26 7.34 47.35 13.87
LCQ 4.06 143.39 33.97 3.86 146.29 33.56
LCQ+MoDiff (Ours) 9.02 4.14 4.38 8.79 4.98 4.95

Q-Diff

8/2 102

1.19 457.34 165.79

4/2 51

1.19 457.34 165.79
Q-Diff+MoDiff (Ours) 1.82 266.68 75.88 1.36 387.75 168.38
LCQ 1.20 429.59 146.46 1.20 430.26 146.91
LCQ+MoDiff (Ours) 8.94 15.85 8.42 8.63 18.10 11.02

MoDiff without error compensation accumulates error more
than linearly over the generation steps, making its perfor-
mance highly dependent on the quantization parameter c.
Second, error-compensation modulation in MoDiff ensures
that errors from previous time steps are reduced exponen-
tially, preventing error accumulation.

Finally, we note that Theorem 4.4 assumes independent in-
puts. However, in diffusion models, at is computed layer by
layer using ot, which can further accumulate errors. As a
result, error compensation has greater meaning in the appli-
cation of diffusion models compared to standard modulation,
as counteracting error propagation is more indispensable.

5. Experiments
In this section, we first introduce the experimental setup.
We then evaluate our method across different quantization
precisions, demonstrating its ability to significantly reduce
activation bit requirements compared to existing methods
across multiple datasets. Additionally, we conduct com-
prehensive ablation studies and present visualizations of
generated images to assess the effectiveness of MoDiff.

5.1. Experiment Settings

Datasets, Models, and Evaluation. We majorly evaluate
the effectiveness of our MoDiff on the CIFAR-10 (32× 32),
LSUN-Bedrooms (256× 256), and LSUN-Church-Outdoor
(256 × 256) datasets (Krizhevsky et al., 2009; Yu et al.,
2015). For CIFAR-10, we use DDIM models with 100 de-
noising steps (Song et al., 2021a). For the LSUN datasets,
we use Latent Diffusion Models with downsampling factors

of 4 and 8, referred to as LDM-4 (Bedrooms) and LDM-8
(Churches), respectively (Rombach et al., 2022). We use
500 sampling steps for LDM-4 and 200 steps for LDM-8. To
demonstrate the generalization capability of MoDiff across
datasets and architecture, we also conduct experiments on
Stable Diffusion and Transformer-based models (Peebles
& Xie, 2023) on MS-COCO (Lin et al., 2014) and Ima-
geNet (Russakovsky et al., 2015), respectively. Additional
details and results are provided in Appendix C.1 and C.2.

We assess generation quality using Inception Score
(IS) (Salimans et al., 2016), Fréchet Inception Distance
(FID) (Heusel et al., 2017), and Sliced Fréchet Inception
Distance (sFID) (Salimans et al., 2016) for CIFAR-10, and
FID and sFID for the LSUN, as IS is not a reliable met-
ric for datasets that significantly deviate from ImageNet
categories. All metrics are computed based on 50,000 gener-
ated images. Additionally, we provide precision and recall
measurements (Sajjadi et al., 2018) in Appendix C.3.

Quantization Methods. We use dynamic channel-wise
quantization and Q-Diffusion as the base quantization meth-
ods and apply MoDiff to both (Dettmers et al., 2022; Li et al.,
2023). We also present results using dynamic tensor-wise
quantization in Appendix D.2. Additionally, we include re-
sults with full-precision activation (32 bits), for comparison.
For weight quantization, we adopt the MSE reconstruction
method, following the Q-Diffusion checkpoints. For ac-
tivation quantization, dynamic channel-wise quantization
determines the scaling factor based on the channel-wise
min-max range of the input. Due to its dynamic nature,
we directly apply MoDiff to this method. In contrast, Q-
Diffusion optimizes the scaling factor by minimizing the
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Table 2. The IS, FID, sFID, and GBOPs for LSUN-Church with
LDM-8 under different precisions.

Methods Bits (W/A) GBops FID ↓ sFID ↓
Full Prec. (Act) 8/32 5015 4.03 10.89

Q-Diff

8/8 1254

4.24 10.57
Q-Diff+MoDiff (Ours) 3.85 10.82
LCQ 4.02 11.53
LCQ+MoDiff (Ours) 3.99 10.06

Q-Diff

8/6 1254

55.13 30.98
Q-Diff+MoDiff (Ours) 5.43 13.41
LCQ 4.50 12.90
LCQ+MoDiff (Ours) 3.89 10.12

Q-Diff

8/4 1254

355.85 187.56
Q-Diff+MoDiff (Ours) 3.97 11.16
LCQ 198.37 161.03
LCQ+MoDiff (Ours) 34.02 10.59

Q-Diff

8/3 1254

367.51 354.59
Q-Diff+MoDiff (Ours) 5.40 13.81
LCQ 341.62 407.68
LCQ+MoDiff (Ours) 12.05 35.29

MSE reconstruction loss using calibration datasets across
different time steps. To apply MoDiff to Q-Diffusion, we
calibrate the activation quantizers by inputting the calibra-
tion datasets into our MoDiff and learn the scaling factors
with the residual. Additional implementation details can
be found in Appendix B. We also perform few-step gener-
ation experiments using MixDQ (Zhao et al., 2024) as the
baseline, with results provided in Appendix D.4.

For quantization hyperparameters, we select weight
bit widths from {4, 8} and activation bit widths from
{2, 3, 4, 6, 8}. For notation simplicity, we use the format
“W/A”, where “W” represents the weight precision and “A”
represents the activation precision. We refer to Q-Diffusion
and dynamic channel-wise quantization as LCQ and Q-Diff,
respectively. Our implementations based on them are de-
noted as LCQ+MoDiff and Q-Diff+MoDiff. We denote
full-precision activation models as Full Prec. (Act).
Remark 5.1. The primary objective of this paper is to demon-
strate the effectiveness of our method. We do not report the
real acceleration metrics, such as running time. Following
existing works (Li et al., 2023; Wang et al., 2024), we evalu-
ate efficiency by measuring the number of binary operations
(Bops) per denoising step for a single image with the help of
DeepSpeed (Song et al., 2023). Implementing acceleration
on specialized hardware is beyond the scope of this work,
but will be a promising future direction, which is plausi-
ble given the increasing hardware support for low-precision
formats such as 4-bit integers (Dave et al., 2019).

5.2. Main Results on CIFAR10 and LSUN

We conducted experiments to generate images using quan-
tized diffusion models and measure their quality. The IS,
FID, and sFID scores for CIFAR-10, Churches, and Bed-
rooms are presented in Tables 1, 2, and 3, respectively. Due

Table 3. The IS, FID, sFID, and GBOPs for LSUN-Bedrooms with
LDM-4 under different precisions.

Methods Bits (W/A) GBops FID ↓ sFID ↓
Full Prec. 8/32 25560 3.45 8.45

LCQ 8/8 6390 3.61 8.65
LCQ+MoDiff (Ours) 3.57 8.44

LCQ 8/6 4609 64.17 63.18
LCQ+MoDiff (Ours) 3.57 6.53

LCQ 8/4 3195 372.30 262.11
LCQ+MoDiff (Ours) 27.88 77.85

to page limitations, we only present results for 8-bit weight
quantization on the LSUN datasets here. For results with
4-bit weight quantization, please refer to Appendix D.1. We
highlight the best performance in bold. Based on these
results, we draw the following conclusions.

Generation Quality. Our method preserves high generation
quality and significantly outperforms the base quantization
approach when using lower activation precision across dif-
ferent quantization methods and datasets. Specifically, with
LCQ+MoDiff, activation precision in dynamic quantization
can be reduced to 3 bits for CIFAR-10 without sacrificing
generation quality. In contrast, the base quantization method
experiences a significant performance drop even at 6-bit ac-
tivation precision. For example, the sFID score of Q-Diff
on CIFAR-10 degrades from 4.49 to 13.81. Furthermore,
even at 2-bit activation precision, our method maintains an
sFID of 8.42 on CIFAR-10.

Generality. Our method is generalizable across different
datasets and various quantization methods. For both Q-Diff
and LCQ, our approach consistently improves their perfor-
mance. However, we observe that quantizing activations to
extremely low-bit precision becomes increasingly challeng-
ing for higher-resolution datasets, even with our method. As
shown in Tables 2 and 3, the FID and sFID scores increase
significantly at 3-bit precision for the Churches dataset and
become notably high at 4-bit precision for the Bedrooms
dataset. This challenge arises because LDMs are deeper and
contain higher-dimensional hidden embeddings, making it
more difficult to minimize quantization error.

Efficiency. As shown in Tables 1, 2, and 3, our method con-
sistently reduces binary operations (Bops) for generation.
For a full-precision activation model, one denoising step in
CIFAR-10 requires 1636 GBops. In contrast, LCQ+MoDiff
completes inference with only 154 GBops without any per-
formance degradation, achieving over 10× computational
savings. However, the generation quality (sFID) begins to
degrade at 8/6-bit precision, which requires 307 GBops.

5.3. Ablation Study

In this section, we conduct ablation studies to analyze the
effectiveness of MoDiff. First, we evaluate the impact of
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Table 4. FID on CIFAR-10 using the DDIM sampler in the ablation
study of error compensation. “EC” denotes error compensation
and the best performance is bolded.

Bits (W/A) LCQ LCQ+MoDiff
w/o EC w/ EC

8/8 4.61 4.41 4.40
8/6 13.07 10.21 4.38
8/4 33.97 25.42 4.38

error-compensation modulation. Next, we demonstrate the
compatibility of MoDiff with different samplers. Addition-
ally, we examine how our method balances the trade-off
between memory and computational efficiency. Finally, we
present visualization results to further illustrate the effec-
tiveness of MoDiff in Appendix F. To further demonstrate
the generalization of MoDiff, we also include results on few-
step diffusion models, as presented in the Appendix D.4.
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Figure 3. The relative ℓ2 distance between the features in the stan-
dard diffusion model and the quantized model in middle block. “w/
EC” denotes the use of the error-compensation technique.

Effects of error compensation We demonstrate how the
error compensation technique mitigates error accumulation
by comparing both generation quality and the quantization
error, using DDIM on CIFAR-10 with LCQ. FIDs are shown
in Table 4. To quantify quantization error, we compute the
relative ℓ2 distance between the features of middle block
in the standard diffusion model and the quantized model,
both initialized from the same noise. As shown in Figure 3,
the dashed line represents the relative error without error
compensation, while the solid line represents the error with
compensation. Without error compensation, error accumula-
tion becomes significant below 6-bit precision. In contrast,
with error compensation, the error remains minimal, even
at 3-bit precision. In summary, our technique effectively
avoids error accumulation in modulated computing.

Different Samplers We demonstrate that MoDiff is com-
patible with different samplers in diffusion models. While
DDIM is used as the sampler in our main experiments, we
also evaluate our method with DDPM on LCQ using the
LSUN-Bedroom dataset, as shown in Table 5. Our results

Table 5. FID and sFID on LSUN-Bedrooms using the DDPM sam-
pler under different quantization precisions with LCQ. The best
performance is bolded.

Methods Bits (W/A) FID ↓ sFID ↓
LCQ (DDPM) 8/8 3.61 8.65
LCQ+MoDiff (DDPM) 3.39 8.02

LCQ (DDPM) 8/6 50.17 52.18
LCQ+MoDiff (DDPM) 12.60 13.71

LCQ (DDPM) 8/4 102.16 104.18
LCQ+MoDiff (DDPM) 34.25 30.12

indicate that MoDiff enhances the generation quality of
DDPM, particularly at lower activation bit widths. However,
the improvement is less pronounced compared to DDIM.
This is because the DDPM sampler introduces random noise
at each step, increasing the difference between adjacent fea-
tures. Consequently, this leads to larger residual magnitudes,
which in turn amplify quantization errors. We provide ad-
ditional experiments on PLMS (Liu et al., 2022) and DPM
solver (Lu et al., 2022) in Appendix D.3.

Memory Consumption. As discussed in Section 4, our
method reduces quantization error at the cost of slightly
increased memory usage. In Table 6, we demonstrate that
MoDiff significantly reduces Bops at lower bit precision
while maintaining manageable memory overhead. The re-
sults show that the memory overhead is minimal—no more
than 4 MB. For more details, we refer to Appendix D.6.

Table 6. The relationship between BOPs and memory usage of our
method using DDIM on CIFAR-10 for generating a single image.

Measurement W8A2 W8A4 W8A8 W8A32

sFID 8.42 4.38 4.39 4.41
GBops 102 205 409 1636
Memory (Mb) 35.28 36.4 38.89 35.09

6. Conclusion
In this paper, we propose MoDiff, a principled framework
for accelerating generative modeling. Our preliminary stud-
ies reveal the challenges in caching and PTQ methods. To
address these, we introduce modulated quantization and
error compensation, which reduce quantization error and
mitigate error accumulation. We provide theoretical anal-
yses demonstrating the effectiveness of our approach. Ex-
perimental results show that MoDiff significantly enhances
activation quantization, enabling PTQ methods to operate at
bit-widths as low as 3 bits without performance degradation.
One limitation is that MoDiff reduces computation at the
cost of increased memory usage. Additionally, we evaluate
acceleration based on theoretical computational complexity
rather than real-world hardware speedup. We leave hard-
ware implementation and further memory optimizations of
our MoDiff for future work.
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A. Proof
In this section, we provide proofs for the theorems presented in the main paper.

A.1. Proof of Theorem 4.3

Theorem A.1 (Restated, 4.3). Let x ∈ Rd be a vector, and let the quantization bandwidth be b ∈ N. Define the max-min
dynamic quantizer as follows:

s =
max(x)−min(x)

2b − 1
, (32)

z =

⌊
−min(x)

s

⌋
, (33)

xint = clamp(
⌊x
s

⌋
+ z, 0, 2b − 1). (34)

The corresponding dequantization is given by:

Q(x) = s(xint − z). (35)

The quantization error is bounded in terms of the quantization scaling factor s, which depends on the range of x and the
bandwidth b. Specifically, we have:

∥x−Q(x)∥22 ≤ s2d =
(max(x)−min(x))2d

(2b − 1)2
. (36)

Proof: For any i ∈ {1, 2, . . . , d}, the value xi satisfies the following property:

0 ≤ ⌊min(x)

s
⌋+ ⌊−min(x)

s
⌋ ≤ ⌊xi

s
⌋+ z ≤ ⌊max(x)

s
⌋+ ⌊−min(x)

s
⌋ ≤ max(x)−min(x)

s
. (37)

From condition ( 32), we have:

0 ≤ xint ≤ 2b − 1.

This ensures that the clipping error is zero, meaning we only need to consider the rounding error. Thus, we obtain:

xi −Q(x)i = xi − ⌊xi

s
⌋s (38)

= s
(xi

s
− ⌊xi

s
⌋
)
≤ s. (39)

Therefore, applying this to the ℓ2-norm error bound, we derive:

∥x−Q(x)∥22 =

d∑
i=1

(xi −Q(x)i)
2 (40)

≤
d∑

i=1

s2 (41)

= s2d. (42)

□
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A.2. Proof of Theorem 4.4

Theorem A.2 (Restated, 4.4). Let A(·) be a linear operator and consider a sequence of inputs aT ,aT−1, . . . ,a1, with
corresponding outputs oT ,oT−1, . . . ,o1. Given a quantization operator Q, we estimate the outputs using standard
modulation:

õt = A(Q(at − at+1)) + õt+1, (43)
õT = A(aT ), (44)

where t = T − 1, . . . , 2, 1. Similarly, we estimate the outputs using error-compensated modulation:

ôt = A(Q(at − ât+1)) + ôt+1, (45)
ât = Q(at − ât+1) + ât+1, (46)
ôT = A(aT ), âT = aT , (47)

where t = T − 1, . . . , 2, 1. Suppose the quantization operator Q satisfies the following error bound:

∥x−Q(x)∥22 ≤ c∥x∥22, 0 < c <
1

2
. (48)

Then, the estimation errors are bounded as follows:

∥ot − õt∥22 ≤
T−1∑
k=t

2T−k−1c∥A∥22∥ak − ak+1∥22, (49)

∥ot − ôt∥22 ≤
T−1∑
k=t

(2c)T−k−1∥A∥22∥ak − ak+1∥22. (50)

Proof: Denote the error for standard modulation in Equation (43) as ẽt and for error-compensation modulation in Equation
(44) as êt at time step t. We first compute the error for standard modulation:

ẽ2t = ∥ot − õt∥22 (51)

= ∥ot −A(Q(at − at+1))− õt+1∥22 (52)

= ∥ot − ot+1 −A(Q(at − at+1)) + (ot+1 − õt+1)∥22 (53)

= ∥A(at − at+1)−A(Q(at − at+1)) + (ot+1 − õt+1)∥22 (54)

= ∥A(at − at+1 −Q(at − at+1)) + (ot+1 − õt+1)∥22 (55)

≤ 2|A(at − at+1 −Q(at − at+1))∥22 + 2∥ot+1 − õt+1∥22 (56)

Since ∥(ot+1 − õt+1)∥22 represents the error from the previous time step, applying the submultiplicative inequality yields:

ẽ2t = ∥ot − õt∥22 (57)

≤ 2∥A∥22∥at − at+1 −Q(at − at+1)∥22 + 2e2t+1 (58)

≤ 2c∥A∥22∥at − at+1∥22 + 2e2t+1, (59)

Accumulating the error from time T to t, we obtain Equation (49).

For the error-compensation modulation, we compute:

ê2t = ∥ot − ôt∥22 (60)

= ∥ot −A(Q(at − ât+1))− ôt+1∥22 (61)

= ∥A(at)−A(Q(at − ât+1))−A(ât+1)∥22 (62)

= ∥A(at − ât+1 −Q(at − ât+1))∥22 (63)

≤ c∥A∥22∥at − ât+1∥22 (64)
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Next, we expand at − ât+1:

∥at − ât+1∥22 = ∥at −Q(at+1 − ât+2)− ât+2∥22 (65)

= ∥at − at+1 −Q(at+1 − ât+2) + at+1 − ât+2∥22 (66)

≤ 2∥at − at+1∥22 + 2∥Q(at+1 − ât+2) + at+1 − ât+2∥22 (67)

≤ 2∥at − at+1∥22 + 2c∥at+1 − ât+2∥22 (68)

Substituting this into Equation (64), we complete the proof. □

A.3. Proof of Corollary

Corollary A.3. Let x ∈ Rd be a vector, and let the quantization bandwidth be b ∈ N. Define the max-min dynamic quantizer
as follows:

s =
max(x)−min(x)

2b − 1
, (69)

z =

⌊
−min(x)

s

⌋
, (70)

xint = clamp(
⌊x
s

⌋
+ z, 0, 2b − 1). (71)

The corresponding dequantization is given by:

Q(x) = s(xint − z). (72)

For any 0 < c < 1
2 , we can revise Q with a new bandwidth b̂ satisfying:

∥x−Q(x)∥22 ≤ c∥x∥22. (73)

Proof: From Theorem 4.3, we have:

∥x−Q(x)∥22 ≤ (max(x)−min(x))2d

(2b − 1)2
(74)

≤ 4∥x∥2∞d

(2b − 1)2
(75)

≤ 4∥x∥22d
(2b − 1)2

(76)

To satisfy the desired bound, we choose b̂ such that:

b̂ ≥ log2

(√
4d

c
+ 1

)
. (77)

Thus, the proof is complete. □

B. Implementation details
In this section, we talk about the hyperparameters in our experiments and the implementation details of our MoDiff.

Baselines. For the implementation of baselines, we follow the existing codebase. Specifically, we conduct Q-Diffusion
experiments by directly using their provided code (Li et al., 2023). We also utilize the calibration datasets they provide
to quantize the models at different bit levels. For LCQ, we follow the BRECQ framework and adopt channel-wise
quantization (Li et al., 2021).

MoDiff. For our MoDiff implementation, we incorporate several key techniques:
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• Bias Removal: We remove all bias terms from layers that apply MoDiff. This is necessary because our method, as
described in Equation (13), requires layers to be bias-free to prevent unwanted accumulation of bias terms.

• Warm-up: We apply warm-up at the first step, where we use full activation for computation. More detailed analysis is
shown in Appendix D.5.

• Calibration Dataset Reconstruction: We reconstruct the calibration dataset for Q-Diff + MoDiff, ensuring it captures
nearby information. During calibration, we store the inputs and outputs of MoDiff rather than the raw activations.

• Layer-wise Reconstruction: Instead of reconstructing entire blocks, we reconstruct each layer individually, as we find
this approach leads to more stable performance.

• Hyperparameter Consistency: We do not fine-tune the calibration hyperparameters, as optimizing them is not the
primary focus of our work.

C. Additional Main Results
C.1. Results on Stable Diffusion

To demonstrate that our method generalizes to larger-scale datasets and higher resolutions, we conduct experiments on
MS-COCO 2014 (Lin et al., 2014) using Stable Diffusion v1.4 with DPM solvers(Lu et al., 2022). We apply tensor-wise
dynamic quantization and evaluate the quantized models within the Q-Diffusion framework. A total of 30,000 images are
generated using 50 sampling steps. As shown in Table 7, the resulting FID scores confirm that MoDiff consistently performs
well on large-scale diffusion models.

Table 7. The FID and sFID on MS-COCO with Stable Diffusion using PLMS solver under different precisions. The best performance is
bolded.

Methods Bits (W/A) FID ↓ sFID ↓
LTQ 8/8 12.15 19.05
LTQ+MoDiff (Ours) 12.14 19.05

LTQ 8/6 71.38 59.74
LTQ+MoDiff (Ours) 13.21 20.07

LTQ 8/4 408.42 199.59
LTQ+MoDiff (Ours) 225.22 104.12

C.2. Results on Transformer-Based Models

To evaluate the generalizability of MoDiff across different architectures, we conduct experiments on the Diffusion Trans-
former (Peebles & Xie, 2023). Following PTQ4DiT (Wu et al., 2024), we use DiT-XL/2 as the baseline model. The
experiments are performed on the ImageNet 256×256 dataset (Russakovsky et al., 2015) using tensor-wise dynamic quan-
tization. We generate 10,000 images using 50 sampling steps for evaluation. As shown in Table 8, MoDiff consistently
enhances generation quality under low activation bit widths.

Table 8. The IS, FID, and sFID for ImageNet 256x256 with DiT-XL/2 under different precisions. The best performance is bolded.

Methods Bits (W/A) IS ↑ FID ↓ sFID ↓
PTQ4DiT 8/8 36.91 54.80 89.60
PTQ4DiT+MoDiff (Ours) 37.37 53.76 89.53

PTQ4DiT 8/6 3.41 200.26 373.71
PTQ4DiT+MoDiff (Ours) 36.74 54.74 88.49

PTQ4DiT 8/4 1.45 271.87 207.59
PTQ4DiT+MoDiff (Ours) 17.23 90.91 102.07
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C.3. More Measurements on Generation Quality

In the main paper, we evaluate the quality of generated outputs using Inception Score (IS), Fréchet Inception Distance (FID),
and sFID. Here, we further assess the performance of our method using precision and recall.

The results are presented in Table 9, Table 10, and Table 11. These results demonstrate that MoDiff effectively preserves
precision and recall even at low activation bit levels. For instance, on CIFAR-10, LCQ+MoDiff achieves a precision of 0.58
and a recall of 0.50, whereas LCQ alone results in 0 for both metrics.

Table 9. The Precision and Recall for CIFAR-10 with DDIM under different Bits. The best performance is bolded.
Methods Bits (W/A) Precision Recall Bits (W/A) Precision Recall

Full Prec. (Act) 8/32 0.65 0.55 4/32 0.64 0.56

Q-Diff

8/8

0.65 0.55

4/8

0.66 0.58
Q-Diff+MoDiff (Ours) 0.65 0.56 0.65 0.58
LCQ 0.67 0.59 0.67 0.57
LCQ+MoDiff (Ours) 0.66 0.59 0.67 0.55

Q-Diff

8/6

0.46 0.47

4/6

0.47 0.44
Q-Diff+MoDiff (Ours) 0.66 0.57 0.65 0.59
LCQ 0.67 0.58 0.67 0.57
LCQ+MoDiff (Ours) 0.66 0.58 0.67 0.56

Q-Diff

8/4

0.08 0.00

4/4

0.05 0.00
Q-Diff+MoDifff(Ours) 0.54 0.53 0.53 0.55
LCQ 0.47 0.44 0.48 0.43
LCQ+MoDiff (Ours) 0.67 0.59 0.67 0.57

Q-Diff

8/3

0.00 0.00

4/3

0.00 0.00
Q-Diff+MoDiff (Ours) 0.45 0.39 0.33 0.32
LCQ 0.33 0.08 0.35 0.08
LCQ+MoDiff (Ours) 0.66 0.59 0.67 0.57

Q-Diff

8/2

0.00 0.00

4/2

0.00 0.00
Q-Diff+MoDiff (Ours) 0.00 0.00 0.14 0.00
LCQ 0.00 0.00 0.00 0.00
LCQ+MoDiff (Ours) 0.58 0.50 0.58 0.47

Table 10. The Precision and Recall for Church with LDM-8 under different Bits. The best performance is bolded.
Methods Bits (W/A) Precision Recall Bits (W/A) Precision Recall

Full Prec. (Act) 8/32 0.63 0.51 4/32 0.63 0.52

LCQ 8/8 0.62 0.47 4/8 0.62 0.46
LCQ+MoDiff (Ours) 0.63 0.53 0.63 0.53

LCQ 8/6 0.59 0.46 4/6 0.59 0.45
LCQ+MoDiff (Ours) 0.63 0.53 0.63 0.53

LCQ 8/4 0.03 0.14 4/4 0.02 0.07
LCQ+MoDiff (Ours) 0.63 0.53 0.63 0.5

LCQ 8/3 0.00 0.00 4/3 0.00 0.00
LCQ+MoDiff (Ours) 0.61 0.34 0.60 0.34

D. Ablation Study
D.1. Results on Other Weight Precision

In the main paper, we present results for 8-bit weight quantization on LSUN-Churches and LSUN-Bedroom for the page
limitation. In this section, we extend our analysis to 4-bit weight quantization and observe consistent conclusions. As shown
in Table 12 and Table 13, our method successfully maintains generation quality at 4/3 bits for Churches and 4/4 bits for
Bedrooms. In contrast, LCQ experiences a significant performance drop.
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Table 11. The Precision and Recall for Bedroom with LDM-4 under different Bits. The best performance is bolded.
Methods Bits (W/A) Precision Recall Bits (W/A) Precision Recall

Full Prec. (Act) 8/32 0.65 0.45 4/32 0.66 0.41

LCQ 8/8 0.65 0.45 4/8 0.68 0.41
LCQ+MoDiff (Ours) 0.60 0.51 0.62 0.47

LCQ 8/6 0.17 0.13 4/6 0.63 0.43
LCQ+MoDiff (Ours) 0.59 0.51 0.62 0.47

LCQ 8/4 0.00 0.00 4/4 0.00 0.00
LCQ+MoDiff (Ours) 0.40 0.17 0.46 0.22

Table 12. The IS, FID, sFID, and GBOPs for LSUN-Church with LDM under 4-bit weight quantization. The best performance is bolded.

Methods Bits (W/A) GBops FID ↓ sFID ↓
Full Prec. (Act) 8/32 5015 4.03 10.89

LCQ 8/8 1254 4.02 11.53
LCQ+MoDiff (Ours) 3.99 10.06

LCQ 8/6 940 4.50 12.90
LCQ+MoDiff (Ours) 3.89 10.12

LCQ 8/4 627 198.37 161.03
LCQ+MoDiff (Ours) 34.02 10.59

LCQ 8/3 470 341.62 407.68
LCQ+MoDiff (Ours) 12.05 35.29

Table 13. The IS, FID, sFID, and GBOPs for LSUN-Bedrooms with LDM under 4-bit weight quantization. The best performance is
bolded.

Methods Bits (W/A) GBops FID ↓ sFID ↓
Full Prec. 8/32 25560 3.45 8.45

LCQ 8/8 6390 3.61 8.65
LCQ+MoDiff (Ours) 3.57 8.44

LCQ 8/6 4609 64.17 63.18
LCQ+MoDiff (Ours) 3.57 6.53

LCQ 8/4 3195 372.30 262.11
LCQ+MoDiff (Ours) 27.88 77.85

D.2. Results on Tensor-Wise Quantization

In our main experiments, we present results using dynamic channel-wise quantization (LCQ). In this section, we extend
our analysis to dynamic tensor-wise quantization (LTQ), which is more hardware-friendly. We conduct experiments on
CIFAR-10 using DDIM, while continuing to use Q-Diffusion checkpoints for weight quantization. As shown in Table 14, our
MoDiff framework is also effective for LTQ. However, the minimum activation bit-width achievable with LTQ is higher than
that of LCQ. This is because tensor-wise quantization operates on higher-dimensional data, making accurate quantization
more challenging.

D.3. Results on More Samplers

In the main paper, we demonstrate that MoDiff generalizes to the DDPM sampler. Here, we further show its applicability
to additional solvers. Specifically, we perform tensor-wise dynamic quantization using DPM-Solver-2 (Lu et al., 2022)
on CIFAR-10 with 20 sampling steps. Additionally, we evaluate MoDiff with the PLMS solver using 50 steps on Stable
Diffusion with the MS-COCO 2014 dataset (Liu et al., 2022). As shown in Table 15 and Table 7, MoDiff consistently
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Table 14. The IS, FID, sFID, and GBOPs for CIFAR-10 with DDIM using tensor-wise quantization under different precisions. The best
performance is bolded.

Methods Bits (W/A) IS ↑ FID ↓ sFID ↓ Bits (W/A) IS ↑ FID ↓ sFID ↓
Full Prec. (Act) 8/32 9.00 4.24 4.41 4/32 8.78 5.09 5.19

LTQ 8/8 9.08 4.19 4.40 4/8 8.80 5.02 5.21
LTQ+MoDiff (Ours) 9.04 4.21 4.37 8.76 5.05 5.16

LTQ 8/6 8.98 9.93 8.69 4/6 8.89 9.96 8.07
LTQ+MoDiff (Ours) 9.09 4.00 4.27 8.80 5.04 4.42

LTQ 8/4 2.27 306.06 94.28 4/4 2.37 294.88 90.91
LTQ+MoDiff(Ours) 8.37 28.19 19.90 8.35 26.17 18.94

LTQ 8/2 1.19 457.25 165.85 4/2 1.19 457.11 165.61
LTQ+MoDiff (Ours) 4.26 186.04 86.73 3.29 146.52 87.78

improves FID scores across different solvers.

Table 15. The FID on CIFAR-10 with DDIM using DPM solver under different precisions. The best performance is bolded.

Methods Bits (W/A) FID ↓
DPM 8/8 3.92
DPM+MoDiff (Ours) 3.91

DPM 8/6 10.82
DPM+MoDiff (Ours) 3.91

DPM 8/4 299.72
DPM+MoDiff (Ours) 26.54

D.4. Results on Fewer Generation Steps

To demonstrate that MoDiff remains effective with fewer generation steps, we conduct experiments on CIFAR-10 using the
DDIM sampler with only 20 steps. Tensor-wise dynamic quantization is applied throughout. As shown in Table 16, MoDiff
maintains strong performance even under this reduced-step setting.

Table 16. FID on CIFAR-10 using the DDIM sampler in the ablation study of fewer steps.

Methods Bits (W/A) FID ↓
LTQ 8/8 6.93
LTQ+MoDiff (Ours) 6.90

LTQ 8/6 20.28
LTQ+MoDiff (Ours) 6.75

LTQ 8/4 297.21
LTQ+MoDiff (Ours) 22.12

A line of research has focused on distilling diffusion models into few-step variants, which can achieve comparable generation
quality within significantly fewer sampling steps. To evaluate the generalizability of MoDiff in this setting, we conduct
experiments with MixDQ (Zhao et al., 2024), a method specifically designed for few-step diffusion. We use SDXL-Turbo as
the backbone and apply 2, 4, and 8 sampling steps for image generation on the MS-COCO 2014 dataset (Lin et al., 2014),
generating 10,000 images for FID computation. As shown in Table 17, our method is compatible with MixDQ and further
improves performance in the few-step diffusion regime. The performance indicates that it is more challenging to lower the
activation bit for SDXL-Turbo.
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Table 17. FID on MS-COCO using SDXL-Turbo and MixDQ across different generation steps. The best performance is bolded.

Step Bits(W/A) MixDQ MixDQ+MoDiff

2
8/8 46.48 46.30
8/6 318.68 193.17
8/4 304.77 192.65

4
8/8 44.29 44.74
8/6 318.57 191.59
8/4 325.68 192.74

8
8/8 44.61 43.30
8/6 347.75 210.38
8/4 348.75 212.68

D.5. Results on Warm-up

To verify that warm-up is not the primary source of improvement, we conduct an ablation study by applying warm-up to the
baseline and removing it from MoDiff. The experiments are performed using the DDIM sampler on CIFAR-10 with LCQ.
As shown in Table 18, MoDiff consistently outperforms the baseline under fair comparison, indicating that the observed
performance gains are not attributable to the warm-up mechanism.

Table 18. FID on CIFAR-10 using the DDIM sampler in the ablation study of warm-up. The best performance is bolded.

Bits (W/A) LCQ w/o warmup LCQ w/ warmup LCQ+MoDiff w/o warmup LCQ+MoDiff w/ warmup

8/8 4.19 4.19 4.22 4.21

8/6 9.93 9.53 4.25 4.00

8/4 306.06 299.96 31.22 28.19

Moreover, as indicated by Theorem 4.4, warm-up can be achieved by repeatedly inputting aT . This process converges to the
full-precision activation due to the contraction of the quantization error. As demonstrated in our experiments, approximately
4 to 5 steps are sufficient to reduce the quantization error to a negligible level on CIFAR-10 using 4-bit precision.

D.6. Analysis on Memory Consumption

In the main paper, we present the trade-off analysis between computation cost and memory cost for MoDiff when generating
a single image on CIFAR-10 with DDIM. In this section, we extend our analysis to larger batch sizes selected from {2, 4, 8}.
The results are shown in Tables 19, 20, and 21. The results, shown in Tables 19, 20, and 21, demonstrate that MoDiff
significantly reduces computation cost while incurring only a minimal increase in memory usage.

Table 19. The relationship between BOPs and memory usage of our method using DDIM on CIFAR-10 for generation with batch size 2.
Measurement W8A2 W8A4 W8A8 W8A32

GBops 204 410 918 3272
Memory (Mb) 36.49 38.89 43.69 36.09

Table 20. The relationship between BOPs and memory usage of our method using DDIM on CIFAR-10 for generation with batch size 4.
Measurement W8A2 W8A4 W8A8 W8A32

GBops 408 820 1836 6544
Memory (Mb) 38.89 43.69 53.28 38.09
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Table 21. The relationship between BOPs and memory usage of our method using DDIM on CIFAR-10 for generation with batch size 8.
Measurement W8A2 W8A4 W8A8 W8A32

GBops 906 1640 3672 13088
Memory (Mb) 43.69 53.28 72.47 42.09

E. Compared to PTQD
Post-Training Quantization for Diffusion Models (PTQD) aims to reduce quantization error by post-processing quantized
models, sharing a similar objective with our work. In this section, we highlight the key differences between MoDiff
and PTQD. Compared to PTQD, MoDiff is (1) more general and flexible, (2) free from strong assumptions about error
distribution, and (3) significantly more effective in low-precision scenarios.

(1) PTQD requires solver-specific adaptations to address variance and bias, while MoDiff can be applied across solvers
without modification. Moreover, PTQD is restricted to standard diffusion models, whereas MoDiff also supports cached
diffusion models by compensating for reuse errors in cached components.

(2) PTQD relies on strong assumptions about error distribution, specifically that quantization errors follow a Gaussian
distribution after input rescaling. This assumption can introduce inaccuracies in error estimation. In contrast, MoDiff
leverages the widely observed similarity between timesteps, which is well-supported by prior works (Ma et al., 2024b).

(3) MoDiff performs well in low-precision activation settings, whereas PTQD fails entirely. To demonstrate this, we evaluate
both methods on CIFAR-10 with W8A4 quantization. PTQD yields an FID of 397.12 and fails to produce meaningful
images, while MoDiff achieves a much lower FID of 13.41.

F. Comprehensive Visualization Results
In this section, we present visualization results for CIFAR-10, LSUN-Churches, LSUN-Bedroom, and MS-COCO-2014.
These results illustrate the performance that MoDiff can achieve. For instance, as shown in Figure 5, LCQ+MoDiff closely
aligns with full-precision generation at W8A4, whereas LCQ only captures the image textures. Additionally, LCQ+MoDiff
can still generate recognizable images at W8A3, albeit with some loss of detail.

LTQ+MoDiff W8A8 LTQ W8A8

LTQ+MoDiff W8A6 LTQ W8A6

LTQ+MoDiff W8A4 LTQ W8A4

Figure 4. Visualization of MS-COCO-2014 generated using LTQ and LTQ+MoDiff under 8-bit weight quantization precisions on Stable
Diffusion v1.4.
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Full Precision (Act) W8A32

LCQ+MoDiff W8A8 LCQ W8A8

LCQ+MoDiff W8A6 LCQ W8A6

LCQ+MoDiff W8A4 LCQ W8A4

LCQ+MoDiff W8A3 LCQ W8A3

Figure 5. Visualization of LSUN-Churches 256× 256 generated using LCQ and LCQ+MoDiff under 8-bit weight quantization precisions.

21



Modulated Diffusion: Accelerating Generative Modeling with Modulated Quantization

Full Precision (Act) W4A32

LCQ+MoDiff W4A8 LCQ W4A8

LCQ+MoDiff W4A6 LCQ W4A6

LCQ+MoDiff W4A4 LCQ W4A4

LCQ+MoDiff W4A3 LCQ W4A3

Figure 6. Visualization of LSUN-Churches 256× 256 generated using LCQ and LCQ+MoDiff under 4-bit weight quantization precisions.

22



Modulated Diffusion: Accelerating Generative Modeling with Modulated Quantization

Full Precision (Act) W8A32

LCQ+MoDiff W8A8 LCQ W8A8

LCQ+MoDiff W8A6 LCQ W8A6

LCQ+MoDiff W8A4 LCQ W8A4

Figure 7. Visualization of LSUN-bedrooms 256× 256 generated using LCQ and LCQ+MoDiff under 8-bit weight quantization precisions.
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Full Precision (Act) W4A32

LCQ+MoDiff W4A8 LCQ W4A8

LCQ+MoDiff W4A6 LCQ W4A6

LCQ+MoDiff W4A4 LCQ W4A4

Figure 8. Visualization of LSUN-bedrooms 256× 256 generated using LCQ and LCQ+MoDiff under 4-bit weight quantization precisions.
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Full Precision (Act) W8A32

LCQ+MoDiff W8A8 LCQ W8A8 Q-Diff+MoDiff W8A8 Q-Diff W8A8

LCQ+MoDiff W8A6 LCQ W8A6 Q-Diff+MoDiff W8A6 Q-Diff W8A6

LCQ+MoDiff W8A4 LCQ W8A4 Q-Diff+MoDiff W8A4 Q-Diff W8A4

LCQ+MoDiff W8A3 LCQ W8A3 Q-Diff+MoDiff W8A3 Q-Diff W8A3

LCQ+MoDiff W8A2 LCQ W8A2 Q-Diff+MoDiff W8A2 Q-Diff W8A2

Figure 9. Visualization of LSUN-bedrooms 256 × 256 generated using LCQ, LCQ+MoDiff, Q-Diff, and Q-Diff+MoDiff under 8-bit
weight quantization precisions.
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Full Precision (Act) w4A32

LCQ+MoDiff w4A8 LCQ w4A8 Q-Diff+MoDiff w4A8 Q-Diff w4A8

LCQ+MoDiff w4A6 LCQ w4A6 Q-Diff+MoDiff w4A6 Q-Diff w4A6

LCQ+MoDiff w4A4 LCQ w4A4 Q-Diff+MoDiff w4A4 Q-Diff w4A4

LCQ+MoDiff w4A3 LCQ w4A3 Q-Diff+MoDiff w4A3 Q-Diff w4A3

LCQ+MoDiff w4A2 LCQ w4A2 Q-Diff+MoDiff w4A2 Q-Diff w4A2

Figure 10. Visualization of LSUN-bedrooms 256× 256 generated using LCQ, LCQ+MoDiff, Q-Diff, and Q-Diff+MoDiff under 4-bit
weight quantization precisions.
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