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ABSTRACT

Information retrieval in Large Language Models (LLMs) is increasingly recog-
nized as intertwined with generation capabilities rather than mere lookup. While
longer contexts are often assumed to improve retrieval, the effects of intra-context
interference remain understudied. To address this, we adapt the proactive inter-
ference (PI) paradigm from cognitive science, where earlier information disrupts
recall of newer updates. In humans, susceptibility to such interference is inversely
linked to working memory capacity. We introduce PI-LLM, an evaluation that
sequentially streams co-referenced key–value updates and queries only the final
values. Although these final values are clearly positioned just before the query,
LLM retrieval accuracy declines log-linearly toward zero as co-referenced inter-
ference accumulates; errors arise from retrieving previously overwritten values.
Attempts to mitigate interference via prompt engineering (e.g., instructing models
to ignore earlier input) yield limited success. These findings reveal a fundamental
constraint on LLMs’ ability to disentangle interference and flexibly manipulate in-
formation, suggesting a working memory bottleneck beyond mere context access.
This test advances Needle-in-a-Haystack/MRCR paradigms by eliminating the
haystack altogether: By isolating and varying the number of co-referenced “nee-
dles,” it directly quantifies interference, revealing a robust log-linear decline in
retrieval as interference grows across SOTA models. This calls for approaches
that strengthen models’ ability to suppress co-referenced information during re-
trieval.

1 INTRODUCTION

Current research indicates that Large Language Models (LLMs) generally struggle with retrieval
tasks when closely related pieces of information are present (Vodrahalli et al., 2024). Furthermore,
reasoning models do not effectively improve performance in these scenarios (OpenAI, 2025a). How-
ever, most studies—having already labeled retrieval as a ‘long-context’ challenge—prioritize input
length as the primary determinant of retrieval difficulty, relegating other factors to a secondary role.

Current studies often conflate search difficulty—the challenge of locating the relevant “needle”
in a vast contextual haystack—with interference—the challenge of correctly identifying that nee-
dle when it is surrounded by similar-looking but incorrect items. Recent long-context bench-
marks—most of which evolve from the original Needle-in-a-Haystack paradigm, such as Deep-
Mind’s Michelangelo (Vodrahalli et al., 2024) and OpenAI’s MRCR (OpenAI, 2025b) primarily
raise task difficulty by lengthening the prompt. Although these studies acknowledge interfering in-
formation’s impact on the retrieval tasks, they do so only in a preliminary way, without explicitly
isolating or quantifying interference’s independent effect on LLMs’ context usage. Consequently,
current research implicitly attributes the difficulty of distinguishing similar information mainly to
greater input length, thereby overlooking interference as a separate, quantifiable factor.

Our work demonstrates that the amount of interfering information—Coreferenced informa-
tion—independently and significantly impacts retrieval accuracy in LLMs (Figure 2). By system-
atically varying interference load, we obtain the first quantitative curve that isolates interference as
an independent factor. To demonstrate that interference effects are independent of input length, we
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include a control condition in which input length is held constant. Anti-interference capacity varies
sharply across models, making it a useful discriminative trait. Crucially, even modest distractor
loads expose a fundamental weakness: current LLMs cannot reliably suppress competing cues.

Interfering information consists of Co-referenced information and is common in many data process-
ing tasks. One of the simplest forms involves key–value pairs, where the key remains the same but
the associated value is repeatedly updated within a sequence. For example, consider a sequence of
blood-pressure (BP) readings, where the task is to keep track of the most recent BP value. BP: 120 –
triage; BP: 128 – 10 min later; BP: 125 – discharge. In this task, the desired output is ‘BP: 125,’ the
last-presented key–value pair. However, retrieval may be impaired by prior semantically similar BP
values, which act as distractors. The search difficulty in such key-value tracking tasks is minimized,
as the target answer is always the last value of a certain key.

Notably, humans demonstrate high accuracy on these tasks. In contrast, our experiments show that
retrieval accuracy in state-of-the-art LLMs declines in a log-linear fashion as the amount of
interference information preceding the target key–value pair increases, as shown in (Figure 2),
a pattern we observed consistently across all models tested.

While standard synthetic key–value retrieval tasks are widely used in LLM evaluations (e.g., Lost in
the Middle), our approach uniquely leverages insights from the proactive interference (PI) paradigm
in cognitive psychology. In classic PI experiments, participants recall the most recent association
for a repeated cue while earlier associations cause interference. Drawing from the PI paradigm,
we fix the retrieval target as the last-presented value of a particular key, thereby minimizing search
difficulty and isolating interference as an independent factor. We ensure this by explicitly prompting
LLMs to retrieve the most recent key–value pair for a given key. We systematically manipulate
the amount of Co-referenced interfering information preceding the target and measure the effect on
retrieval accuracy. This approach allows us to directly quantify the impact of interference strength,
independent of search difficulty.

Surprisingly, we found that a higher interference load leads to a log-scale reduction in retrieval
accuracy even when input length remains constant, revealing that input length and interference
are independent factors affecting retrieval. Moreover, we observed that log-linear declines occur
across multiple interference dimensions (e.g., increasing the token length of the retrieval target),
consistent with the idea that LLM retrieval is limited by a unified capacity—a resource that can
be exhausted along any one dimension, or conserved by reducing load along another. This shared
bottleneck closely mirrors the working memory limit observed in humans.

Cognitive science research on proactive interference (PI) shows that, although humans are also af-
fected by prior interference information, their recall performance typically plateaus: after a certain
threshold, further interference produces minimal additional impairment. This robustness is attributed
to humans’ ability to actively unbind outdated associations from working memory before encoding
new information (Oberauer & Vockenberg, 2009).

Building on these observations, we further investigated whether LLMs could adopt human-like
strategies for managing interference through explicit modulation of memory content. Humans ben-
efit from direct instructions to deprioritize prior interfering information (Festini & Reuter-Lorenz,
2014). To test whether similar explicit strategies could aid LLM performance, we provided natural
language annotations marking the majority of prior information as outdated and irrelevant. Despite
clear instructional cues and explicit annotations, we observed only minimal improvements in LLM
retrieval accuracy.

We evaluated reasoning models with an unlimited reasoning budget and observed the same log-
linear decline in retrieval accuracy. We further injected explicit chain-of-thought (CoT) prompts
into non-reasoning models, instructing them to first analyze the task goal and then retrieve the last
value. However, this intervention yielded no improvement over the baseline; despite producing
extensive reasoning tokens, retrieval performance continued to decline log-linearly.

Our findings can be distilled into the following points.

• Interference overrides recency and instruction. Interfering information consistently and
substantially degrades LLMs’ ability to retrieve target content. Errors are dominated by the
retrieval of prior co-referenced values, even when the correct answers are unambiguously
located near the end of the input.
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• Universal log-linear decay. Across all SOTA models in our study, retrieval accuracy de-
clines in a clear log-linear fashion toward zero with 3 dimensions: increasing update count
(Figure 2), number of tracked keys (Figure 4), and value length (Figure 13). These re-
sults suggest a consistent negative log-linear relationship between retrieval performance
and information load.

• Marginal effectiveness of reasoning models and natural language prompt interven-
tions. LLMs are capable of articulating the correct retrieval procedure, yet they consis-
tently fail to implement it in execution when under interference. These findings reveal a
dissociation between analytical reasoning and execution.

2 INTERFERENCE DOMINATES RETRIEVAL DESPITE RECENCY AND
INSTRUCTIONS:

Our objective is to understand how Large Language Models (LLMs) manage interference when
retrieving information. To reduce searching difficulty and measure the impact of interference, we
designed a synthetic key-value retrieval experiment.

In this test, the input is a sequence of key–value pairs, where a fixed set of keys—each representing
a variable of interest—appears repeatedly throughout the sequence, each time paired with a different
value. Updates for different keys are randomly interleaved. This design mimics, in a simplified man-
ner, real-world logging systems that track multiple physiological variables over time—for example,
blood pressure, heart rate, and oxygen level readings recorded in a patient’s health log.

2.1 EXPERIMENTAL DESIGN

As my secretary, I need you to carefully read a text stream 
where the values of multiple keys are being continuously 
updated. The 3 keys to track include visual art, tools, 
landform. I will ask you to identify the current value of 
each key later. The text stream starts on the next line.

1*visual art: Braque; 1*tools: hook remover; 2*visual 
art: Pollock; 1*landform: moraine; 3*visual art: 
Basquiat; 2*tools: plunger; 2*landform: plain; 3*tools: 
ruler; 4*visual art: seascape; 3*landform: valley; 
4*tools: hammer; 4*landform: dune.

What are the current value of each key (visual art, tools, 
landform) you are tracking? End your response with: 'The 
current value of <key> is <value>.'

The current value of visual art is seascape. The current value 
of tools is hammer. The current value of landform is dune. 

INPUT
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Figure 1: Basic input example for LLM Proactive Interference (LLM-PI) test. In this example, three
keys (“visual art”, “tools”, and “landform”)—color-coded for clarity—each undergo four updates.
In the actual experiment, up to 46 keys were used, each updated up to 400 times with distinct values.
For visual clarity, numerical prefixes (e.g., “1*”) were added to show the update order, but these
were not present in the input. The model is instructed to retrieve the final value for each tracked
key, indicated in bold for illustration. The keys to check are cued both before and after the update
stream.

In this task (Figure 1), each input sequence consisted of three parts: 1. Instruction—a brief directive
indicating the task and specifying which keys to track for value updates. 2. Update stream—a
sequence of key–value pairs, where a fixed set of keys each receive an equal number of updates. The
updates for different keys are randomly interleaved and are organized such that the same key does
not appear in two consecutive key-value pairs. 3. Query—a prompt instructing the model to retrieve
the final value associated with each tracked key.
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The retrieval objective was to return the most recent value associated with each specified key. For
each key with update count X, the preceding X–1 key–value pairs served as irrelevant, interfering
updates—sharing the same key but differing in value. This design allowed us to isolate the effect of
interference.

Because the retrieval target is always the value from the last occurrence of each key, search difficulty
is ideally low: the model simply needs to locate the most recent update for each key. While the
random interleaving of updates does not guarantee that the last occurrence of each key is near the
end of the sequence, the retrieval target’s relative position is always clearly defined as the most recent
appearance. As a result, the search space is small and well-informed. The main challenge, therefore,
is not finding the target, but correctly identifying it in the presence of multiple earlier, competing
updates. This mirrors realistic data environments where many variables are updated concurrently,
and interference—rather than search—becomes the limiting factor.

In this particular experiment, we used 46 unique keys, each receiving multiple value updates
throughout the sequence. For each key, the last value it receives is the retrieval target, while all
earlier key–value pairs for that key—totaling 46 × (update count – 1) interfering distractors—serve
to induce interference. Figure 1 provides an example input and its corresponding output for three
keys undergoing multiple updates. We measure accuracy by counting the number of correctly re-
trieved final values across all keys.

This synthetic key–value retrieval task is related to “Lost-in-the-Middle” (Liu et al., 2024), which
examines how the position of the retrieval target within the context affects accuracy. In contrast, our
approach offers finer experimental control over interference: by always probing the most recently
updated value for each key, we hold the target’s relative position constant. In later experiments,
we also fix the total input length, allowing us to systematically isolate and measure the effects of
interference in the retrieval task.
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Figure 2: Universal log-linear decline in retrieval performance due to interference. Increasing the
amount of interfering information preceding a retrieval target within a language model’s input con-
text results in a log-linear decrease in retrieval accuracy across diverse models. The target is po-
sitioned after the interfering information and explicitly referenced in the prompt to reduce search
difficulty and isolate interference effects. (x-axis: the number of Co-referenced information, log-
scaled; asterisk: MoE models).For visualization, models were grouped by estimated parameter size
into four tiers—XS, S, M, and L—shown from top to bottom. Larger models (L group) tended to
degrade more slowly, while smaller models (XS group) declined the fastest.
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2.2 RESULTS AND DISCUSSION

Interference information severely impairs the ability of LLMs to effectively utilize context
information. Across models of varying parameter sizes, we observe a robust log-linear decline
in retrieval accuracy as additional interfering key–value pairs are inserted before the target value
for each key (Figures 2). This log-linear trend reflects rapid initial accuracy loss, with subsequent
interference causing smaller additional declines. Notably, the log-linear effect persists across models
of different developmental stages and model sizes; larger models exhibit a more gradual decline than
smaller ones.

Robustness: Prompt and Sequential Mode. We validated robustness with additional prompt vari-
ants and by switching between random and sequential modes; across all variants, the declining trend
persisted (Appendix C; Figure 9). Each evaluation used freshly sampled input sequences, and we
report 95% confidence intervals via nonparametric bootstrapping for all tests in this paper.

2.3 INCORRECT EXTRACTIONS ARE PRIMARILY ATTRIBUTED TO PROACTIVE INTERFERENCE

LLM extraction errors increase consistently when interference information is present, and analysis
reveals that most errors are from earlier, outdated key-value pairs—mirroring proactive interference
(PI) in cognitive science, where previously learned information hinders the retrieval of more recent
information.

We observed a systematic shift in the distribution of model outputs as interference increased as
shown in Figure 3 (see also Figure 21 for more detailed examples). Across increasing interference,
LLM retrieval errors displayed a systematic three-stage evolution. Stage 1—at low interference,
errors were rare and highly localized to the most recent updates for each key. (“recency errors”).
Stage 2—as interference accumulated, retrieval accuracy rapidly dropped towards zero; errors
shifted further back in the update history, with the model increasingly favoring earlier updates. The
growing temporal span of the error distribution marked a clear drift from recency towards primacy.
Stage 3—as interference further intensified, retrieval accuracy remained near zero. The error
distribution evolved from a dispersed pattern to a tight anchoring on the earliest updates, signifying
a complete dominance of primacy effects. Simultaneously, hallucinations—the output of values
never present in the update history—also increased.
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Figure 3: Distribution of model responses across update positions, showing increasing signs of PI
as update count increases (left to right). The y-axis lists 11 equal-width bins (Bin 1–Bin 11, green)
covering the entire update sequence. The earthy yellow bar indicates the single final update—the
correct retrieval target. Light gray bars (“off values”) denote cases where the model returns a value
not present in the update history (i.e., hallucinations). Dark gray bars (“off keys”) indicate failures to
return any value for the queried key. As update count increases, errors shift from clustering near the
final update to earlier bins, with rising rates of off-values and off-keys. For response distributions
from additional models, see Figure 21 in Appendix.

This distribution change aligns with our “limited resource” hypothesis. Specifically, we observed
a migration in error distribution: as interference increased, models shifted from making localized
recency errors to being strongly anchored in early updates. Even when retrieval accuracy was near
zero, this capacity continued to be consumed, causing the model’s responses to drift progressively
further from the correct values.
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In cognitive science, PI resilience is highly correlated with human working memory capacity. Our
results suggest that an LLM’s anti-interference capability could serve as a metric for its working-
memory-like capacity—not merely the ability to store information, but also the capacity to actively
maneuver and manage it. However, whether this process is continuous or involves distinct phase
transitions requires further investigation.

We further defined an Interference Endurance Score (IES) to quantify each model’s resistance to
interference (Figures 18 and 19). Regression analyses show that model parameter size is predic-
tive of IES, whereas context window length is not. This suggests that, much like working memory
in humans, an LLM’s resilience to interference depends more on its underlying computational re-
sources (parameter size) than on the sheer amount of information it can process (context window).
See Figure 7, Table 1 in Appendix B.0.2 for more details. Mixture-of-Experts (MoE) models
tend to underperform dense models with similar total parameters, likely because only a subset of
parameters is active per forward pass (see Figure 8 in Appendix B.0.2)

3 INTERFERENCE IS INDEPENDENT OF INPUT LENGTH

Retrieval accuracy in language models declines log-linearly as the update count per key increases,
suggesting a limited working-memory-like capacity. However, in the previous experiment, input
length was not controlled; thus, the observed decline might simply reflect increasing context length
rather than genuine interference. To directly test the role of interference, we designed two additional
experimental settings.

3.1 EXPERIMENT SETUP

1. Settings A – Number of Updated Keys (NU ): We fixed the update count for each key
and increased interference by varying the number of distinct keys updated in the sequence
(NU , from 2 to 46). This contrasts with our earlier experiment, which held the number of
keys constant while varying the update count per key.

2. Settings B – Number of Tracked Keys (NT ) at Fixed Input Length: In this condition,
both the update count per key and the number of updated keys (NU ) were fixed, so each
input sequence contained the same number of key–value pairs. However, we varied the
number of keys the model was instructed to track and retrieve at the end—these are the
tracked keys (NT ), chosen from among the NU updated keys, with 2 ≤ NT ≤ NU .
Figure 10 in the appendix provides an example: among 3 distinct keys updated in the
sequence (NU = 3), only 2 are tracked (NT = 2) and queried at the end.

By manipulating interference both with and without changes in input length, we can dissociate the
effects of interference from those of context length; observing similar declines in retrieval accu-
racy across both settings would provide strong evidence that interference, rather than context length
alone, constrains model performance. Input example illustrating how the model is prompted to track
and return values for a subset of updated keys in the appendix. Figure 10.

3.2 RESULTS FOR BOTH SETTINGS

Both Settings A and B exhibit nearly identical log-linear declines in retrieval accuracy, as shown
in Figure 4.Notably, Setting B kept input length fixed while Setting A allowed it to grow.

• Left panel: Number of updated keys in Setting A
• Right panel: Number of tracked keys in Setting B

This similarity indicates that the observed performance drop cannot be attributed solely to
longer input sequences; rather, it is driven by increased interference from tracking more keys.

Furthermore, models that excel in the variable input length setting (Setting A) also performed well in
the fixed-length setting (Setting B), underscoring the robustness of this pattern across experimental
setups. The universal log-linear decline observed, even under fixed input length, suggests that
anti-interference capacity operates as a distinct resource, independent of the total input length.
See Appendix D for a more detailed analysis.
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Figure 4: Varying the number of updated keys (left panels) versus the number of tracked keys
(right panels, with updated keys fixed at maximum) yields only minor differences in retrieval
accuracy. In all conditions, accuracy declines approximately log-linearly with the number of keys.
Each key is updated a fixed number of times—125 in the upper panels and 350 in the lower panels.
Some models exhibit a two-phase decline; MoE models are indicated by “X” markers. Error bars
represent 95% confidence intervals computed via bootstrapping. Model acronyms are used to label
the corresponding curves.

4 RETRIEVAL CAPACITY IS LIMITED BY A SINGLE INTERFERENCE
BOTTLENECK ACROSS DIMENSIONS

Additionally, we observed similar log-linear declines in retrieval accuracy when manipulating
other dimensions of information load, such as increasing the token length of the value in the key-
value pair. The analysis of these different Settings implies that the LLM’s capacity to resist inter-
ference is Limited by a Single Interference Bottleneck Across Multiple Dimensions, paralleling
findings on human working memory capacity. (Baddeley et al., 1975)

A comprehensive analysis and corresponding performance graphs are provided in Appendix E,
which further illustrate the log-linear decline pattern emerges again as token length increases (see
Figure 13).

5 MITIGATING INTERFERENCE

Evidence from cognitive science indicates that humans are capable of actively unbinding prior as-
sociations before encoding new information (Oberauer & Vockenberg, 2009). We hypothesize that
LLMs lack such unbinding mechanisms, which explains their continuous monotonic decline in re-
trieval accuracy as interference increases—ultimately dropping to 0%, indicating complete retrieval
failure under high interference conditions.

We therefore evaluated whether LLMs could adopt human-like mechanisms to manage their work-
ing memory content explicitly or implicitly in response to interference. Specifically, we tested in-
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terventions with prompts instructing the models either to explicitly “forget” prior associations or
to implicitly disregard irrelevant information by marking certain prior updates as outdated. How-
ever, these strategies yielded minimal improvement, revealing that current LLMs lack the ability to
effectively translate either explicit or implicit forgetting instructions into genuine enhancements in
retrieval accuracy.
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Baseline Per-key forget Forward focus
Relevance meta-prompt

Soft session reset
Mock QA reset

Figure 5: Explicit forgetting and focusing prompts inserted during the update stream (as shown in
Figure 14 yielded only marginal improvements in retrieval accuracy. The black line indicates the
baseline condition with no intervention prompt. Solid lines represent several simple natural language
prompts designed to instruct the model to forget previous updates, focus on upcoming ones, or reset
context. For most models, these interventions had limited effect, especially at higher update counts,
where the baseline performance is low. The per-key forget even had a negative effect on gpt-4.1-
mini. The relevance meta-prompt (green dotted), which asked the model to self-assess what to focus
on, was ineffective for all models and even harmful for gpt-4.1-mini. Only the mock QA reset
intervention (orange dashed line), which simulates a user-model interaction, led to a substantial
improvement in retrieval accuracy. However, this strategy was not immune to the overall trend:
accuracy continued to decline with increasing update count (log-spaced).

Natural Language Interventions fail to relieve interference

(i) Attempts to mitigate interference through natural language prompts (Figure 14)—whether by
explicitly marking information as outdated, instructing the model to “forget” earlier updates, or
emphasizing newer information—consistently prove ineffective. Across diverse prompt types and
experiment settings, retrieval accuracy shows little to no improvement and forget prompts can even
reshape errors toward the injection point (i.e., models preferentially pick values just before the “for-
get” cue). See Figure 5 for accuracy under each prompt and Figure 16 for the error localization
pattern; full prompt designs appear in Appendix F. These results indicate the robustness of the in-
terference effect and its resistance to standard language-based prompt interventions. (ii) A “hack”
prompt. Inspired by LLM “hacking” studies showing that models can be coaxed to bypass earlier
instructions (Kuo et al., 2025), we devised a non-natural-language prompt that coaxed the model to
treat preceding input as belonging to an already processed prior task, thereby partially mitigating
interference and improving retrieval accuracy. This ad-hoc “reset” lifts retrieval accuracy across
models (orange dashed line in Fig. 5); however, the overall log-linear decay persist. Full design and
extensive test details are in Appendix F.3.
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6 WHY REASONING MODELS FAIL TO IMPROVE RETRIEVAL: TOP DOWN VS
BOTTOM UP

LLMs were susceptible to interference across all tested prompts. To eliminate potential ambiguities
in task instruction, we designed a CoT style—“activate-locate” prompt (full prompt in Relevance
meta-prompt in Figure 14), which first required the LLM to analyze and state the location of
the target key-value pair within the input. While models could correctly identify that the answer
was at the very end, this knowledge did not translate into improved retrieval performance; accuracy
remained comparable to baseline conditions and still exhibited a consistent decline (Figure 5).

We evaluated various models alongside their reasoning counterparts:(Deepseek V3,R1), (Gemini
Flash 2.0, Gemini Flash 2.5 with Reasoning on) and models offering both Reasoning and non-
Reasoning mode (such as Nvidia-Llama). Consistently, we observed that the latency and cost
of reasoning models are significantly higher than non-reasoning models on this retrieval task, yet
reasoning models do not improve performance in this test (Figure 6).
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Figure 6: Reasoning Models do not improve retrieval performance. Accuracy as a function of update
count is shown for four pairs of Reasoning (CoT) models and their corresponding base (non-CoT)
versions. In three of the four comparisons, the CoT variant performs worse than or equal to its base
model. CoT variants are only tested up to about 100 updates or less due to output overflow (“think-
ing” exhaustion). Solid lines denote base models; dashed lines denote (Chain of Thought)Reasoning
models. The x-axis is log-scaled.

This reveals a discrepancy between an LLM’s top-down analytical reasoning and its bottom-up
information processing and retrieval execution: knowing “where” the answer is does not translate
into its ability to retrieve it under interference. This gap highlights the absence of top-down executive
control in guiding retrieval behavior.

7 CONCLUSION

We propose a framework of ’Limited Anti-Interference Capacity’ in LLMs, which shares several
conceptual similarities with human working memory. LLM’s working memory–like capacity is not
defined by its context window, but is better characterized by its ability to resist interference. These
findings suggest a working memory bottleneck beyond mere context access and call for approaches
that strengthen models’ ability to suppress Co-Referenced information during retrieval.
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REPRODUCIBILITY

The source code for all experiments can be found in the supplementary material and will be publicly
released.

We also provide a static, versioned dataset snapshot (for quick verification) generated from our code;
it is included in the supplement. For speed, this snapshot reports the mean over 10 fixed stationary
sessions and omits 95% confidence intervals—this differs from the full evaluation pipeline, which
computes 95% CIs over repeated runs.

ETHICS STATEMENT

This work evaluates large language models on synthetic key–value tracking tasks. No human sub-
jects, personal data, or sensitive real-world data were used.
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A APPENDIX

A.1 NOTES

All experiments were concluded by May 5th, 2025. For a detailed list of model versions, please
refer to Appendix I.1.

A.2 THE USE OF LARGE LANGUAGE MODELS

We used large language models solely for proofreading (typos, grammar).

A.3 FULL DETAILED EXPERIMENTAL OVERVIEW

Experimental Overview
Our experiments systematically demonstrate that interference is among the primary factors limit-
ing retrieval accuracy in LLMs. Experiment 1 reveals a robust, log-linear decline in accuracy as
interference increases. Experiment 2, which holds input length constant, confirms that this effect
is driven by interference itself rather than input length. Experiment 3 further shows that retrieval
performance is universally constrained by an interference capacity limit, which can be lated in mul-
tiple ways. Finally, we investigate mitigation strategies, offering new insights into LLMs’ ability to
manage in-context information under interference.

B INTERFERENCE DOMINATES RETRIEVAL DESPITE RECENCY AND
INSTRUCTIONS:

Our objective is to understand how Large Language Models (LLMs) manage interference when
retrieving information. To reduce searching difficulty and isolate the impact of interference, we
designed a synthetic key-value retrieval experiment.

Data and Performance Evaluation
To maintain comparability with human performance, we constructed a word dictionary with up to
46 categories, each comprising 400 words. The token lengths of words within each category were
selected to fall within a similar range. Keys were drawn from these category names, and values
were randomly selected from the corresponding categories in the dictionary. This dictionary design
aligns with cognitive psychology proactive interference tests related to human working memory.
Words were randomly selected from the dictionary in each test run to eliminate the potential effects
of specific semantic combinations. Confidence intervals (CI95) were computed using bootstrap
methods after multiple test repetitions.

This synthetic key–value retrieval task is closely related to “Lost-in-the-Middle” (Liu et al., 2024),
which examines how the position of the retrieval target within the context affects accuracy. In
contrast, our approach offers finer experimental control over interference: by always probing the
most recently updated value for each key, we hold the target’s relative position constant. In later
experiments, we also fix the total input length, allowing us to systematically isolate and measure the
effects of interference in the retrieval task.

Models
We evaluated a broad spectrum of state-of-the-art open-source and proprietary LLMs, ranging from
0.6B (Qwen3-0.6B) to 637B parameters (Deepseek-V3), and including major proprietary models
such as GPT, Claude, Gemini, and Grok. Our benchmark covers both dense and Mixture-of-Experts
(MoE) architectures, spanning diverse training data volumes and hardware resources.
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B.0.1 INCORRECT EXTRACTIONS ARE PRIMARILY ATTRIBUTED TO PROACTIVE
INTERFERENCE

For response distributions from additional models, see Figure 21

Given the consistent decline in LLM extraction accuracy when interference information is intro-
duced, we investigated the underlying causes of these errors. Our analysis of the input sequences
that appeared in the LLM’s responses reveals that errors are predominantly influenced by in-
formation encountered before the final, correct update to a given key. This phenomenon is
analogous to proactive interference (PI) in cognitive science, where previously learned information
hinders the retrieval of more recent information.

We observe a three-stage progression in error distribution patterns as interference increases:

Stage 1 – Low Interference, Tightly Focused Errors: When interference is low, retrieval accuracy
is high and the model’s error distribution is sharply peaked around the correct value. Errors, when
they occur, are not random but show a consistent pattern: they tend to be earlier key–value pairs for
the same key, typically located in positions (bins) immediately preceding the final, correct value.This
indicates that the model’s confusion is narrowly constrained and spatially localized.

Stage 2 – Moderate Interference, Dispersed Errors:: As interference increases, retrieval accuracy
drops, and the output distribution spreads. Retrieval errors now stem from much earlier updates—far
upstream from the target value rather than adjacent positions (bins). with a small but growing frac-
tion now involve values never presented at all (“hallucinations”). This increasing dispersion marks
rising proactive interference and a decline in retrieval fidelity.

Stage 3 – High Interference, Hallucinatory Responses At high levels of interference, retrieval
accuracy collapses and the model’s output distribution undergoes a qualitative shift. The model
increasingly returns values that never appeared in the prompt—so-called hallucinations. At the
same time, a substantial portion of errors remains anchored to the earliest bins, reflecting a persistent
primacy bias toward the first few updates for each key, even as retrieval fidelity breaks down. This
change in retrieval behavior resembles a phase transition: once the model’s anti-interference capacity
is exhausted, it no longer retrieves plausible candidates, consistent with limited-resource theories of
working memory failure.

Figure 21 illustrates this progression: as the update count increases (moving left to right in the
panels), the model’s incorrect responses shift from the most recent value to much earlier, outdated
values, and eventually to off-target ‘hallucinated’ values.

To strengthen the generalizability of our findings, we conducted additional experiments on a broader
set of models, with consistent results shown in Supplementary Figure 21

B.0.2 SIZE OVER INPUT CONTEXT WINDOW

Statistical tests confirm that anti-interference performance correlates with model size and is weakly
correlated with the context window.

To quantify each model’s robustness to interference, we introduce the Interference Endurance Score
(IES). The IES is defined as the area under the curve (AUC) of retrieval accuracy, calculated across
log-scaled update counts. We measure how well a model maintains accurate retrieval as interference
increases, with a higher IES indicating greater resistance to interference. For comparability and sta-
tistical reliability, we compute the IES using the accuracy-versus-update-count function (see Figure
5), which is available for all models tested.

To determine whether model performance is driven more by parameter size or by context length, we
conducted a regression analysis of the Interference Endurance Score (IES) against both variables.
We grouped models into four parameter size classes—XS, S, M, and L—as defined in Figure 2.
Reasoning models were excluded because their more extensive inference processes caused latency
to exceed 200 seconds per task, preventing most tests from completing. To minimize noise from
closed-source models with uncertain parameter counts, we focused on these defined size classes and
restricted our analysis to open models.

The regression (in Table 1 ) shows that parameter size class is a significant predictor of IES (t =
3.03, p = 0.005, N = 30), while context length has no significant effect (t = –0.144, p = 0.886). The
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combined model explains 26.1% of the variance in IES (R² = 0.261). To further clarify the role
of model size, we performed a separate analysis restricted to models with similar context lengths
(128k–131k tokens), which encompasses two-thirds of the non-CoT models. Within this range, the
Spearman correlation between parameter size and IES remains strong and significant (ρ2 = 0.673,
p = 0.0016; see Figure 7). .

XS S M L
Model Size

0.0

0.2

0.4

0.6

0.8

1.0
IE

S
ρ=0.673
P=0.00158

Context Length: 128k-131k (N=19)

Figure 7: Interference Endurance Score (IES, from Figure 18) shows a strong correlation with model
size class (XS, S, M, L; as defined in Figure 2). Each dot represents a model, color-coded as in Fig-
ure 18. A linear regression line is included for visualization, with shaded regions indicating 95%
confidence intervals. The analysis is restricted to models with similar context lengths (128k–131k
tokens, covering about two-thirds of tested non-CoT models. R-squared value is derived from Spear-
man correlation.

Our analysis shows that

Model size—not context window length—is the primary factor that underlies robustness to
interference.

MoE architectures underperform dense models with comparable total parameters (we conjec-
ture that this is because the number of activated parameters in an MoE model is much smaller than
its nominal total).

In cognitive science, performance under proactive interference is a classic probe of working-memory
capacity: individuals with greater ability to maintain and manipulate information show greater re-
sistance to interference. Our findings reveal a striking parallel in large language models (LLMs).
Across all tested LLMs, we observe a consistent, characteristic decline in retrieval accuracy as inter-
ference increases. Moreover, larger models demonstrate greater resistance to interference—a pattern
reminiscent of individual differences in human working memory.

This universal decline, present even in state-of-the-art models spanning a wide range of scales,
training data, and computational resources, suggests that limited resistance to interference is an
inherent property of transformer-based architectures, rather than a byproduct of specific model size
or dataset.

Importantly, our metric captures more than just the context window length or the sheer amount of
information a model can store. It quantifies each model’s effective ability to manage and control
information in the presence of substantial distractors—tracking, updating, and selectively retriev-
ing relevant data amid interference. Thus, anti-interference performance reflects not only storage
capacity, but also the executive control processes that underlie working memory in humans. This

13
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Figure 8: Comparison of retrieval accuracy between Mixture-of-Experts (MoE) and dense mod-
els. Each curve shows retrieval accuracy versus update count for a single model. MoE models are
denoted by ”X” markers and labeled with “MoE” in the legend. Across update counts, MoE archi-
tectures consistently match or underperform dense models with similar total parameter counts, and
in many cases perform comparably to much smaller dense models. (MoE models shown: Llama-4-
maverick-MoE (400B), Llama-4-scout-MoE (109B), Qwen3-30B-A3B-MoE (30B).)

framework enables us to operationalize and compare the working-memory-like functions of LLMs
and human cognition on a principled, quantitative basis.

C ROBUSTNESS: PROMPT VARIATIONS AND SEQUENTIAL MODE

Although absolute retrieval accuracy can shift with changes in prompt wording (He et al., 2024), our
study emphasizes the relative trend of performance decline rather than raw accuracy scores. This
approach effectively neutralizes variability arising from individual prompt formulations.

To further confirm the robustness of the observed proactive interference (PI) effect, we tested ad-
ditional prompt templates explicitly designed to verify task comprehension. Specifically, we intro-
duced meta-relevant prompts that first ask the LLM to articulate the ”task mission”—for example,
explicitly prompting the model to ”describe the goal of this task” before retrieval. This step ensured
the models fully understood the retrieval objective of identifying ”the last value” (see Figure 5,
‘Relevance meta-prompt’). Across these prompt variations, the qualitative trend of performance
decline—specifically, the log-linear decay in accuracy—remained consistently robust.

Additionally, we rearranged the input organization to test PI under both randomly shuffled and
strictly sequential update sequences (i.e., sequential key–value updates without randomization; see
Figure 9). Notably, in sequential mode, retrieval accuracy remains stable until reaching a model-
specific interference threshold, after which performance sharply and consistently drops to near-
zero—a two-plateau, step-like pattern contrasting with the gradual log-linear decay observed in ran-
dom mode. The consistent interference-induced decline across diverse models and input structures
further underscores the robustness and generalizability of the observed PI phenomenon.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

3 6 12 24 48 97 197 400
Update Count / Key

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

gemini-2.0-flash
deepseek-v3-MoE
Llama-4-maverick-MoE
gpt-4.1-mini
mistral-small-2503
Llama-3.1-70b
qwen3-32b
qwen3-30b-a3b-MoE
qwen3-14b
qwen3-235b-a22b-MoE
Llama-3.1-8b
gpt-4.1-nano
gemini-1.5-flash-8b

Figure 9: Step-like failure pattern in sequential key–value update tests. Retrieval accuracy remains
near-perfect as interfering information is added in strictly sequential order, until a model-specific
threshold is reached—after which performance drops abruptly to near-zero. Within the same model
family, larger models exhibit a higher threshold (better capacity). Despite quantitative differences,
all models show the same two-plateau, step-function pattern, reflecting a hard capacity limit. This
stands in contrast to the gradual log-linear decay observed under random update order (see Figure 2).
(x-axis: number of interfering items, log-scaled; asterisk: MoE models)

D INTERFERENCE IS INDEPENDENT OF INPUT LENGTH

Retrieval accuracy in language models declines log-linearly as the update count per key increases,
suggesting a limited working-memory-like capacity. However, in the previous experiment, input
length was not controlled; thus, the observed decline might simply reflect increasing context length
rather than genuine interference. To directly test the role of interference, we designed two additional
Settings.

1. Number of Updated Keys: Increasing the number of distinct keys that are updated within
the context, while holding the update count per key constant.

2. Partial Query at Fixed Input Length: Fixing both the total number of keys and the
update count per key (thus keeping the input length constant), but varying the number of
keys queried—asking the language model to track and retrieve only a subset of the keys
presented.

By manipulating interference both with and without changes in input length, we can dissociate the
effects of interference from those of context length; observing similar declines in retrieval accu-
racy across both settings would provide strong evidence that interference, rather than context length
alone, constrains model performance.

D.1 EXPERIMENT SETUP

D.1.1 SETTING A: VARYING THE NUMBER OF UPDATED KEYS

In this experiment, we fixed the update count for each key (either 125 or 350 update count per key),
and systematically increased interference by varying the number of distinct keys presented in the
sequence-the Updated Keys (NU , from 2 to 46). This contrasts with our earlier experiment, which
held the number of keys constant while varying the update count per key.
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As my secretary, I need you to carefully read a text stream 
where the values of multiple keys are being continuously 
updated. The 2 keys to track include visual art, landform. I will 
ask you to identify the current value of each key later. The text 
stream starts on the next line.
1*visual art: Braque; 1*tools: hook remover; 2*visual art: 
Pollock; 1*landform: moraine; 3*visual art: Basquiat; 2*tools: 
plunger; 2*landform: plain; 3*tools: ruler; 4*visual art: 
seascape; 3*landform: valley; 4*tools: hammer; 4*landform: 
dune.

What are the current value of each key (visual art, landform) 
you are tracking? End your response with: 'The current value of 
<key> is <value>.'

The current value of visual art is seascape. The current value 
of landform is dune. 

INPUT

DESIRED ANSWER

Tracked Keys = 2; Updated Keys = 3

Figure 10: Input example illustrating how the model is prompted to track and return values for
a subset of updated keys, as specified by the parameters tracked keys and updated keys. In this
minimal example, the tracked keys include ”visual art” (blue) and ”landform” (orange); the ”tools”
key (prefixed with a gray index like “1*”) appears in the update stream but is not referenced in the
initial instruction or final query. Ideally, the model should return only the most recent values for
the tracked keys. This setup enables testing whether model performance depends primarily on task-
relevant information, rather than irrelevant updates or input length. Bold text highlights the target
key-value pairs the model is expected to retrieve.

For each input sequence, there are NU relevant key–value pairs, with the retrieval target being the
last value for each key. Depending on the update count, this results in NU × (125 – 1) or NU × (350
– 1) irrelevant, interfering key–value pairs per input sequence. Retrieval accuracy was measured as
a function of NU -Updated Keys .

D.1.2 SETTING B: FIXED LENGTH VERSION

To further isolate the effect of interference, we designed a complementary experiment in which the
total input length was held constant. In this condition, both the update count per key and the number
of updated keys (NU ) were fixed, so each input sequence contained the same number of key–value
pairs. However, we varied the number of keys the model was instructed to track and retrieve at the
end—these are the Tracked Keys (NT ), chosen from among the NU updated keys.

Specifically, the update count for each key was fixed (either 125 or 350 updates per key), and the
number of updated keys NU was also fixed at 46. We then systematically varied the number of
tracked keys (NT , from 1 to 46), i.e., the subset of keys for which the model was asked to report the
final value. Retrieval accuracy was measured as a function of NT , the number of tracked keys.

Figure 10 provides an example input: among NU=3 distinct keys updated in the sequence, only
NT =2 are tracked (queried) at the end.

D.2 RESULTS FOR BOTH SETTINGS

D.2.1 SETTING A RESULT

Increasing interference by raising the number of updated keys consistently produced a log-linear
decline in retrieval performance across all tested model sizes (Left Panel of Figure 11 ). Notably,
even though each key received a fixed number of updates—ensuring a constant interference load
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Figure 11: Varying the number of updated keys (left panels) versus the number of tracked keys (right
panels, with updated keys fixed at maximum) yields only minor differences in retrieval accuracy. In
all conditions, accuracy declines approximately log-linearly with the number of keys. Each key is
updated a fixed number of times–125 in the upper panels and 350 in the lower panels. Some models
exhibit a two-phase decline; for example, grok-3-mini-beta maintains high performance early on,
followed by a sharp drop after a turning point. deepseek-v3 does not complete the full range in the
lower panel due to context length limitations. MoE models are indicated by ”X” markers. Error bars
represent 95% confidence intervals computed via bootstrapping. Model acronyms are used to label
the corresponding curves.

per key—requiring the model to retrieve the final values for a greater number of keys more rapidly
exhausted its anti-interference resources, leading to a substantial reduction in accuracy.

Specifically, in the Left Panel of Figure 11, the x-axis represents the total number of Updated Keys,
and models are instructed to track all Updated Keys. Each key’s update count is fixed at two values:
125 (upper panel) and 350 (lower panel). The overall trend in log-scale is a linear decline in accuracy,
independent of the number of updates per key.

D.2.2 SETTING B FIX LENGTH RESULT

Retrieval performance exhibits a consistent log-linear decline across all tested models (Right Panel
of Figure 11 ). The x-axis represents the total number of Tracked Keys. Notably, larger models
show shallower declines than smaller ones, reflecting greater resistance to interference. Under fixed
input length, increasing the number of simultaneously tracked keys leads to lower accuracy, in line
with this log-linear pattern. For instance, llama4-maverick achieves nearly 100% accuracy when
tracking just two keys, but this drops below 5% when tracking 46 keys, consistently following
the same downward trajectory. These results indicate that, under fixed-length conditions, tracked
keys compete for a limited pool of anti-interference resources, which are rapidly depleted as their
number grows. Practically, this suggests that reducing the number of concurrently tracked keys can
substantially improve retrieval accuracy.
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D.2.3 COMBINED OBSERVATIONS (SETTINGS A AND B)

We observe that both Experiments A and B exhibit nearly identical log-linear declines in retrieval
accuracy as the number of tracked keys increases (see Figure 11, left and right panels). Notably,
this occurs even though Setting B keeps input length fixed while Setting A allows it to grow. This
similarity indicates that the observed performance drop cannot be attributed solely to longer input
sequences; rather, it is driven by increased interference from tracking more keys.

Furthermore, models that excel in the variable input length setting (Setting A) also perform well in
the fixed-length setting (Setting B), underscoring the robustness of this pattern across experimental
setups.

The universal log-linear decline observed, even under fixed input length, suggests that anti-
interference capacity operates as a distinct resource, separate from the total context window
length. In other words, regardless of how much context the model can technically process, its
ability to manage interference is independently limited. This distinction highlights that interference
resistance is a fundamental capability of LLMs—determined not by context window size, but by
deeper architectural or computational constraints within the model.

D.2.4 DISCUSSION/IMPLICATIONS

These findings have important implications for both model evaluation and practical deployment.
They suggest that simply increasing the context window or scaling up input length does not di-
rectly translate into better interference management. Instead, targeted advances in anti-interference
mechanisms or executive control within model architectures may be needed to substantially im-
prove retrieval accuracy when handling many competing, similar items. This perspective reframes
interference resistance as a critical axis of model capability, worthy of focused research and explicit
benchmarking alongside traditional context-length and parameter-count metrics.

E RETRIEVAL CAPACITY IS LIMITED BY A UNIFIED INTERFERENCE
BOTTLENECK ACROSS DIMENSIONS

As my secretary, I need you to carefully read a text stream 
where the values of multiple keys are being continuously 
updated. The 3 keys to track include visual art, tools, landform. 
I will ask you to identify the current value of each key later. 
The text stream starts on the next line.
1*visual art: BraqueBasquiatPopart; 
1*tools: HookremoverNeedlePaintstic; 
2*visual art: PollockCityscapeCubism; 
1*landform: PingoMoraineCanyon;  
2*tools: PlungerJackstandGlasscutter; 
2*landform: PlainBlockfieldScoriacone; 
3*tools: RulerHammerScaffolding; 
3*visual art: SeascapeGraffitiCeramics; 
3*landform: DuneValleyHimalayas.

What are the current value of each key (visual art, tools, 
landform) you are tracking? End the response with: 'The 
current value of <key> is <value>.' Provide the exact current 
value string without modification or breaking it into pieces.

The current value of visual art is SeascapeGraffitiCeramics. 
The current value of tools is RulerHammerScaffolding. The 
current value of landform is DuneValleyHimalayas. 

INPUT

DESIRED ANSWER

Tracked Keys = 2; Updated Keys = 3 Value Length = 3 

Figure 12: Input example with manipulation of the updated values’s length. In this example, three
items from the same category are space-removed, capitalized at the first letter, and concatenated
into a single updated value. Bold text indicates the target key-value pairs the model is expected to
retrieve.

If an LLM’s anti-interference capacity is truly analogous to human working memory, then manip-
ulations that increase working memory demands in humans should produce comparable effects in
LLMs. One such manipulation is the classic word-length effect: in human memory research, in-
creasing the length of words to be remembered impairs performance, as longer items consume more
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working memory resources (Baddeley et al., 1975). This phenomenon provides an additional axis
along which working memory capacity can be taxed.

To probe whether LLMs exhibit a similar sensitivity, we systematically varied the length of words
within key–value pairs by concatenating multiple words into each value. This allowed us to directly
test whether increasing the information load per item would similarly degrade retrieval performance
in LLMs.

In this experiment, we held constant the three previously identified sources of interference: the num-
ber of updates per key, the number of updated keys, and the number of keys to track. To manipulate
interference strength in line with the classic word-length effect observed in human working memory,
we systematically increased the length of the updated value strings. Specifically, we concatenated
multiple dictionary words end-to-end (e.g., AppleOrangeBanana), thereby increasing both the
word length and the token count—the fundamental unit of LLM processing. This manipula-
tion closely mirrors the increased cognitive load humans experience when encoding longer words in
memory tasks. Figure 12 in the Appendix provides an example input.
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Figure 13: Retrieval accuracy as a function of value length, showing a roughly log-linear decline
toward near-zero performance. For clarity, models are grouped by parameter size: large models (L;
≥150B parameters) are shown in the upper panel, and smaller models (< 150B) in the lower panel.
The update count is fixed at 20. Some models exhibit an initial plateau phase, with stable accuracy
for short value lengths (ranging from 1 to 4). At the largest value length tested, accuracy drops
to near zero for most models, with the exception of Grok-3-beta, which retains a performance of
approximately 0.1. MoE models are indicated with “X” markers. Error bars represent bootstrapped
95% confidence intervals.

E.1 RESULTS AND INTERPRETATION

LLMs exhibit a universal, approximately log-linear decline in retrieval accuracy as the length
of each value increases. The slope of this decline is markedly steeper than for the other three
interference manipulations: increasing value length from one to ten words drives accuracy below
40% for every model tested, and extending it to forty words reduces accuracy to under 5%. Notably,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

this sharp drop occurs even when the number of keys, updates, and tracked keys is held constant,
highlighting the unique impact of item length.

This result demonstrates that increasing the amount of information stored in each retrieved
value—by concatenating more words—adds a distinct, independent dimension of interference, tax-
ing the system’s capacity beyond what can be explained by the number of tracked keys or updates
alone. The effect of value length thus exposes another axis along which the model’s anti-interference
resource can be depleted.

This outcome closely parallels human memory performance, where recalling longer or more com-
plex words substantially lowers accuracy—a classic word-length effect. Taken together with prior
results, these findings reinforce our explanatory framework: all forms of interference—whether from
more keys, more updates, or longer values—tap into a single, unified anti-interference resource
in the model, analogous to a working-memory buffer. As the informational load per item grows,
this capacity is consumed more rapidly, leading to steeper performance degradation. This unified
capacity constraint, shared across all tested dimensions, underscores a structural limitation in current
LLM architectures that mirrors properties of human working memory.

F MITIGATING INTERFERENCE: EMPIRICAL INSIGHTS FROM LLM–HUMAN
COMPARISON

Query the 
current 
values

Simulate 
model 

response

Stream 
remaining 

updates in a 
new session

Instruct 
forgetting 
accumulated 
updates once 
per key

Instruct 
prioritizing 
subsequent 
updates 

Prompt to 
self-identify 
and weight 
recent text

Verbal marker 
to signal 
session 

restart 

...
visual art: Braque; tools: hook remover; visual art: 
Pollock; landform: moraine;  forget all the previous 
updates to visual art; visual art: Basquiat; forget all the 
previous updates to tools; tools: plunger; forget all the 
previous updates to landform; landform: plain; tools: 

...

...
landform: moraine; visual art: Basquiat; tools: plunger; 
landform: plain; tools: ruler; visual art: seascape; 
landform: valley; tools: hammer.

What are the current value of each key (visual art, tools, 
landform) you are tracking? End your response with: 
'The current value of <key> is <value>.' Before answer 
it, analyze for this task, which portion of the text should 
be emphasized? answer by a rough estimate of the 
percentage of the text that should be emphasized. 

...
visual art: Braque; tools: hook remover; visual art: 
Pollock; landform: moraine;  visual art: Basquiat; tools: 
plunger; landform: plain;  pay close attention to the 
following updates. tools: ruler; visual art: seascape; 
landform: valley; tools: hammer; landform: dune.

...

...
visual art: Braque; tools: hook remover; visual art: 
Pollock; landform: moraine; visual art: Basquiat; 

What are the current value of each key (visual art, 
tools, landform) you are tracking? End your 
response with: 'The current value of <key> is 
<value>.'”},
{“role”: “assistant”, “content”: “The current value 
of visual art is Basquiat. The current value of tools 
is hook remover. The current value of landform is 
plain.”},
{“role”: “user”, “content”:  As my secretary, I need 
you to carefully read a text stream where the values 
of multiple keys are being continuously updated. 
The 3 keys to track include visual art, tools, 
landform. I will ask you to identify the value of each 
key later. The text stream starts on the next line.
tools: ruler; visual art: seascape; landform: valley; 

...

...
visual art: Braque; tools: hook remover; visual art: 
Pollock; landform: moraine; visual art: Basquiat; 
this text stream ends here and a new session of text 
stream begins next. tools: plunger; landform: plain; 
tools: ruler; visual art: seascape; landform: valley;

...

INPUT | Per-key forget

INPUT | Mock QA reset

INPUT | Soft session reset

INPUT | Relevance meta-prompt

INPUT | Forward focus 

Figure 14: Example input illustrating intervention strategies designed to mitigate proactive interfer-
ence. Each strategy inserts explicit cues into the update stream, typically near the end (e.g., at the
120th-last update or one-third before the final update). The five strategies are: Per-key forget (green):
An instruction to disregard previous updates for a specific key before a new one (e.g., ”forget all the
previous updates to visual art”). Forward focus (magenta): An instruction to prioritize information
that follows (e.g., ”pay close attention to the following updates”). Relevance meta-prompt (green):
A prompt for the model to self-assess and estimate the proportion of text to prioritize before an-
swering. Soft session reset (brown): A verbal cue marking the start of a new input segment (e.g.,
”this text stream ends here and a new session of text stream begins next”). Mock QA reset (orange):
A simulated dialogue turn including an initial update segment, a query, a mock assistant response,
and remaining updates in a new user turn. Inserted instructional cues are shown in colored text; role
labels in the Mock QA reset are in bold.

Our previous experiments demonstrated that LLMs possess limited anti-interference capacity, with
retrieval accuracy declining log-linearly as interference increases. To better understand and poten-
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tially mitigate this limitation, we compared LLM performance to humans on the same key-value
retrieval task, drawing on strategies from human cognitive experiments to design corresponding
interventions for LLMs.

In contrast to LLMs, humans exhibit a plateau in recall accuracy for the most recent key-value
pair, even as the number of prior updates accumulates. Classic working memory studies attribute
this resilience to executive control mechanisms. Two particularly relevant mechanisms are gating,
which automatically suppresses or discards outdated information as new items are encoded (Ober-
auer & Vockenberg, 2009), and directed forgetting, where individuals intentionally discard certain
information when explicitly instructed to do so (Festini & Reuter-Lorenz, 2014).

LLM retrieval accuracy declines continuously with increasing interference, suggesting the absence
of automatic gating mechanisms. Moreover, humans can engage in explicit, strategic forgetting. To
test whether LLMs might benefit from such strategic forgetting, we simulated this human capability
by providing LLMs explicit prompts instructing them to forget previous key-value pairs. If suc-
cessful, such an intervention would demonstrate that LLMs can emulate human-like release from
interference through external cues, potentially alleviating the limitations of their anti-interference
capacity.

F.1 SIMULATING HUMAN DIRECTED FORGETTING WITH NATURAL LANGUAGE PROMPT

To simulate the human strategy of explicit directed forgetting, we inserted a targeted prompt into the
input sequence that directly instructs the LLM to disregard all prior updates for a specific key. This
prompt is placed at a fixed point in the update stream—immediately before the chunk containing
the majority of the target answer, after most interfering updates have been presented. The directive
reads: “Forget all the previous updates to key,” with key dynamically replaced by the relevant key
for the current task.

The purpose of this intervention is to actively suppress the influence of outdated or distracting infor-
mation from earlier in the sequence, thereby reducing proactive interference and guiding the model
to prioritize only the most recent updates for retrieval. This approach tests whether an explicit nat-
ural language cue can shift the model’s focus in a way that mimics human executive control over
memory. See Figure 14 for examples of the ”Per-Key Forget” prompt.

For comparison, we also tested a ”Forward Focus” prompt, which instructs the LLM to concentrate
on the more recent, relevant portion of the input. This allows us to evaluate whether explicit natural
language instructions—whether aimed at forgetting or focusing—can meaningfully affect model
retrieval performance.

F.2 NATURAL LANGUAGE PROMPT FAILS

The per-key forget prompt—designed to mimic human explicit forgetting—did not significantly im-
prove retrieval accuracy (blue line in Figure 15; ∆ < 10 percentage points compared to the baseline
at 100 updates, black line). Similarly, alternative natural language instructions intended to focus
the model on the target retrieval section were also ineffective. Overall, natural language instruc-
tions—whether to forget or focus—do not effectively reduce interference in LLM retrieval
tasks.

An analysis of the error distribution reveals a critical failure mode: rather than improving retrieval
accuracy, the per-key forgetting prompt consistently caused errors to cluster around the position
in the sequence where the instruction was injected. As shown in Figure 16, models displayed a
pronounced tendency to select earlier values immediately preceding the forget instruction, rather
than the correct, final update. This error pattern indicates that the prompt did not enable the model
to effectively disregard prior information. Instead, it induced a concentration of retrieval errors near
the instructed forget position, reshaping interference rather than mitigating it. In summary, rather
than mitigating interference, these prompts cause errors to cluster around the location of the
prompt, indicating that the model’s anti-interference limitation cannot be overcome by simple
natural language cues.
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Figure 15: Explicit forgetting and focusing prompts inserted during the update stream (as shown
in Figure 14 yielded only marginal improvements in retrieval accuracy. The black line indicates
the baseline condition with no intervention prompt. Solid lines represent several simple natural
language prompts designed to instruct the model to forget previous updates, focus on upcoming
ones, or reset context. For most models, these interventions had limited effect, especially at higher
update counts, where the baseline performance is low. The per-key forget even had a negative
effect on gpt-4.1-mini. The relevance meta-prompt (green dotted), which asked the model to self-
assess what to focus on, was ineffective for all models and even harmful for gpt-4.1-mini. Only the
mock QA reset intervention (orange dashed line), which simulates a user-model interaction, led to a
substantial improvement in retrieval accuracy. However, this strategy was not immune to the overall
trend: accuracy continues to decline with increasing update count (log-spaced).

F.3 HACK METHOD: MOCK-QA-RESET SUCCEEDS

Inspired by LLM “hacking” studies showing that models can be coaxed to bypass earlier instruc-
tions (Kuo et al., 2025), we devised a non-natural-language mock QA reset prompt (see Figure 14)
that mimics human directed-forgetting. Inserted 120 updates before the final query, this reset cue
leads the model to treat preceding input as belonging to an already processed prior task, thereby
partially mitigating interference and improving retrieval accuracy. While this ad hoc prompt inter-
vention partially reduces interference, it highlights the need for more systematic methods to address
interference in LLMs’ retrieval task.

The prompt has three parts:

• Simulated user query asking for the current value of all tracked keys (e.g., “User: What
is the current value of key1, key2, . . . , key45?”), which frames prior updates as a closed
batch.

• Simulated assistant reply giving fabricated answers (e.g., “Assistant: The current value
of key1 is . . . , key2 is . . . ”), providing explicit closure.

• New user prompt signalling a fresh tracking task, followed by the remaining updates (e.g.,
“User: I will now provide 45 updated key–value pairs. Tell me the most current value. The
pairs begin:”), which marks a clear task boundary and encourages the model to ignore
earlier content.
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Figure 16: A selective per-key forgetting prompt induces a distinct pattern of Proactive Interference
(PI): instead of enabling successful forgetting, the prompt causes retrieval errors to cluster around
the position in the update sequence where the instruction was injected. The figure compares keys that
received a forgetting instruction with a control group; only the instructed keys show this pronounced
error concentration, indicating that the prompt anchored the model’s retrieval errors to that part of
the sequence rather than erasing the information. Earthy yellow bars indicate the correct value—the
final update. Green bars represent earlier (interfering) values, grouped by their relative position in
the update sequence. Light gray bars show “off values” not present in the update history, and dark
gray bars denote “off keys,” where the model failed to return any value. The results shown are from
an experiment with 20 updates per key and 46 unique keys. For a comprehensive analysis across
various model architectures and a wider range of parameter settings, see Figure 22 in the Appendix.

This artificial task boundary partially mitigates interference by prompting the model to deprioritize
earlier input and focus on newly updated information.

The hack prompt substantially improved retrieval accuracy (As shown in Figure 15, orange
line), reducing the effects of interference across all tested LLMs. This hack-based prompt con-
sistently outperformed natural language instructions designed to induce forgetting or refocusing.
For example, with the hack-reset, Gemini Flash 2.0’s retrieval accuracy at 150 update count—under
high interference—matched its baseline performance at only 30–45 update count, demonstrating a
substantial reduction in interference effects.

The success of our hacking-based reset method demonstrates that implementing a gating mecha-
nism can effectively reduce interference in LLMs, closely mirroring the executive gating functions
of human working memory. This result suggests that implementing gating mechanisms in LLMs
could be an effective strategy for reducing interference, mirroring the executive functions of human
working memory.

However, while our reset strategy shows that LLMs benefit from artificially imposed context bound-
aries, this approach remains fundamentally limited. Specifically, our intervention mitigates interfer-
ence by diminishing the influence of all prior information—effectively discarding or bypassing past
associations. Although this provides short-term relief, it is not a viable solution for real-world tasks,
which frequently require selective, context-dependent access to historical data beyond just the most
recent update.

This limitation is further highlighted by additional experiments with natural-language prompts de-
signed to instruct LLMs to ignore or forget prior information—such as the ’soft session reset’ shown
in Figure 14—which were largely ineffective (see performance in Figure 15). These findings indi-
cate that current LLMs cannot be reliably controlled through explicit natural-language user instruc-
tions alone; precise, natural-language-based adjustments of memory and attention remain an open
challenge.
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G SUMMARY

Our systematic investigation of proactive interference (PI) in Large Language Models (LLMs) across
various scales from 0.6B to over 600B, reveals a pervasive susceptibility to interference effects
during retrieval tasks. Critically, LLMs demonstrate a continuous log-linear decline in retrieval
accuracy as interference increases, showing no evidence of a plateau. Moreover, the continuous
decline—characterized by a similar log-linear pattern—emerges independently along multiple di-
mensions of interference load: the number of sequential updates to a key, the number of keys
tracked concurrently, and the token length of each updated value. The convergence of these quali-
tatively similar decline patterns, across orthogonal axes of load, implies that LLMs possess a finite,
resource-like representational capacity that can be incrementally taxed by different, yet functionally
interchangeable, forms of cognitive load, independent of total input size or the model’s maximum
context length. Collectively, these findings indicate that the anti-interference capacity observed in
LLMs closely parallels the properties of human working memory.

We also identify a critical dissociation between the analytical and execution capabilities of LLMs:
even models capable of explicitly articulating effective retrieval strategies fail to translate this analyt-
ical understanding into improved retrieval performance, underscoring a lack of top-down executive
control over retrieval tasks.

Our findings establish proactive interference as a pervasive failure mode in contemporary LLMs and
introduce a novel interpretation: a model’s resistance to proactive interference directly reflects its
underlying working-memory capacity. Unlike traditional metrics that emphasize total input length,
our approach reveals interference resilience as a distinct, cognitively-grounded dimension of model
capability. Since interference is inherent to tasks ranging from summarizing repeatedly updated
information to conducting complex, long-horizon reasoning, enhancing LLMs’ working-memory
robustness becomes critical for practical performance. By providing a structured synthetic evalua-
tion framework explicitly designed to measure susceptibility to interference, this study offers both a
diagnostic tool and a theoretical advance toward understanding and improving LLM cognition. Our
code and datasets are publicly released to foster further investigation into the memory mechanisms
of large language models.

H DISCUSSION

H.1 METHODOLOGICAL CONTRIBUTION

H.1.1 FROM COGNITIVE PARADIGMS TO LLM DIAGNOSTIC TOOLS

Our current work aligns squarely with this research thrust. We do not merely suggest that Proac-
tive Interference (PI) is a problem for LLMs by analogy to humans; we adapt the specific experi-
mental logic of the A-B, A-C, A-D paired-associate learning paradigm—a workhorse of human PI
research—to create a novel, synthetic diagnostic tool for LLMs. This allows for controlled experi-
mentation and the systematic manipulation of variables, moving beyond correlational observations
from general benchmarks towards a more causal understanding of LLM failure modes.

Crucially, the A-B, A-C (and, by extension, A-D, A-E. . . ) schema captures a vast class of real-world
problems: streaming sensor readouts, mutable legal ledgers, and long reasoning chains in which the
same variable is updated and queried repeatedly. By embedding this ubiquitous “value-overwriting”
structure into our testbed, we ensure that the experiment speaks to both practical performance gaps
and deeper theoretical questions about how LLMs process interfering information.

H.2 THEORETICAL EXPLANATIONS AND IMPLICATIONS

Our results suggest that current LLMs possess only an implicit, resource-bounded form of memory
selectivity. Self-attention weights provide a quasi-executive filter that suffices for low–interference
conditions, but unlike human prefrontal gating, it cannot be strengthened or re-allocated on demand.
When the interference budget is exceeded, the model’s retrieval accuracy degrades monotonically to
near-zero performance, revealing the absence of a true top-down control system. Because adaptive
executive control over memory is widely held to be a core component of goal-directed intelligence,
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these findings point to a critical gap between contemporary LLMs and human cognition: transform-
ers can store vast contexts, but they cannot decide how to use—or forget—them.

H.2.1 CONNECTING BEHAVIORAL EVIDENCE WITH MECHANISTIC INTERPRETABILITY

Our research also complements work on the mechanistic interpretability of LLMs, such as the study
of induction heads (Anthropic, 2022). While induction heads offer a plausible mechanism for how
in-context learning and subsequent interference might occur (e.g., an induction circuit strongly en-
coding A-B might resist an A-C update), our paper provides the experimental paradigm to test the
behavioral consequences of such mechanisms when they are confronted with conflicting associative
information. Our synthetic setup is designed precisely to probe the conditions under which these
induction-like mechanisms are robust versus when they are susceptible to PI.

Recent studies have applied human working-memory (WM) tests, such as the N-back paradigm, to
assess the possible WM capacity of LLMs (Gong et al., 2024). While prior work has primarily fo-
cused on transplanting classic cognitive tests from human studies to LLMs, our approach integrates
cognitive science methodologies with tasks modeled on realistic LLM applications. This design
enables more ecologically valid assessments—reflecting typical model usage—and allows for direct
comparison of LLM and human retrieval abilities on matched tasks. Utilizing proactive interference
as a framework, we identify specific behavioral differences and practical limitations that standard
benchmarks often fail to reveal. These results underscore the importance of integrating cognitive
and applied perspectives to advance research on LLM capabilities.

I DETAILED GRAPHS AND TABLES

This section presents detailed test figures that complement the main results. We expand the analyses
to additional models and variants beyond the main essay, providing per-model summaries, rankings,
and distributional diagnostics.

Variable Coef. t P> |t| [0.025 0.975]
Intercept 0.1866 2.045 0.051 -0.001 0.374
Parameter Size 0.1030 3.016 0.006 0.033 0.173
Context Size -3.334e-09 -0.144 0.887 -5.08e-08 4.41e-08

Table 1: Linear Regression Results of Interference Endurance Score (IES) on model parameter
size (ordinal class) and model context window. This analysis aims to determine whether model
performance is driven more by parameter size or by context length. 30 models were grouped into
four parameter size classes (XS, S, M, L)

Notes. (1) All experiments were conducted up to May 5, 2025. Models with explicit date stamps in their
identifiers (e.g., gpt-4o-2024-11-20) represent fixed snapshots, while other identifiers represent the

latest available API endpoints as of the cutoff date. (2) The -thinking suffix indicates the model was evaluated
with its native reasoning/Chain-of-Thought (CoT) mode enabled; the counterpart without the suffix was

evaluated with this mode disabled.

I.1 MODEL VERSIONS

This section provides a comprehensive list of all language models used in our evaluation. All ex-
periments were conducted up to May 5th, 2025. Models with explicit date stamps in their iden-
tifiers (e.g., gpt-4o-2024-11-20) represent fixed snapshots. For other models, we used the
versions detailed below. The -thinking suffix indicates the model was evaluated with its native
reasoning/Chain-of-Thought (CoT) mode enabled; the counterpart without the suffix was evaluated
with this mode disabled.
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Model Name Version/Snapshot
Google Gemini Models
gemini-2.5-flash-preview gemini-2.5-flash-preview-04-17
gemini-2.0-flash gemini-2.0-flash
gemini-1.5-flash-8b gemini-1.5-flash-8b
gemini-2.0-flash-thinking-exp2 gemini-2.0-flash-thinking-exp-01-21
OpenAI Models
gpt-4.1 gpt-4.1-2025-04-14
gpt-4.1-mini gpt-4.1-mini-2025-04-14
gpt-4.1-nano gpt-4.1-nano-2025-04-14
gpt-4o gpt-4o-2024-11-20
gpt-4o-mini gpt-4o-mini-2024-07-18
Anthropic Claude Models
claude-3-5-sonnet claude-3-5-sonnet-20241022
claude-3-5-haiku claude-3-5-haiku-20241022
Alibaba Qwen Models
qwen2.5-72b-instruct qwen2.5-72b-instruct1

qwen3-0.6b qwen3-0.6b1

qwen3-1.7b qwen3-1.7b1

qwen3-4b qwen3-4b1

qwen3-8b qwen3-8b1

qwen3-14b qwen3-14b1

qwen3-32b qwen3-32b1

qwen3-30b-a3b qwen3-30b-a3b1

qwen3-235b-a22b qwen3-235b-a22b1

qwen3-0.6b-thinking2 qwen3-0.6b-thinking1

qwen3-1.7b-thinking2 qwen3-1.7b-thinking1

qwen3-4b-thinking2 qwen3-4b-thinking1

qwen3-8b-thinking2 qwen3-8b-thinking1

qwen3-14b-thinking2 qwen3-14b-thinking1

qwen3-32b-thinking2 qwen3-32b-thinking1

qwen3-30b-a3b-thinking2 qwen3-30b-a3b-thinking1

qwen3-235b-a22b-thinking2 qwen3-235b-a22b-thinking1

Meta LLaMA Models
llama-4-maverick-17b-128e-instruct-maas llama-4-maverick-17b-128e-instruct-maas1

llama-4-scout-17b-16e-instruct-maas llama-4-scout-17b-16e-instruct-maas1

llama-3.1-405b-instruct-maas llama-3.1-405b-instruct-maas1

llama-3.2-90b-vision-instruct-maas llama-3.2-90b-vision-instruct-maas1

llama-3.1-70b-instruct-maas llama-3.1-70b-instruct-maas1

llama-3.1-8b-instruct-maas llama-3.1-8b-instruct-maas1

DeepSeek Models
deepseek-chat deepseek-chat1

deepseek-reasoner deepseek-reasoner1

xAI Grok Models
grok-3-beta grok-3-beta1

grok-3-mini-beta grok-3-mini-beta1

Mistral Models
mistral-small-2503 mistral-small-25031

NVIDIA Models
nvidia llama-3.1-nemotron-ultra-253b-v1 nvidia llama-3.1-nemotron-ultra-253b-v11

nvidia llama-3.3-nemotron-super-49b-v1 nvidia llama-3.3-nemotron-super-49b-v11

nvidia llama-3.1-nemotron-nano-8b-v1 nvidia llama-3.1-nemotron-nano-8b-v11

Table 2: Model versions used in our evaluation
Notes. (1) All experiments were conducted up to May 5, 2025. Models with explicit date stamps in their
identifiers (e.g., gpt-4o-2024-11-20) represent fixed snapshots, while other identifiers represent the

latest available API endpoints as of the cutoff date. (2) The -thinking suffix indicates the model was evaluated
with its native reasoning/Chain-of-Thought (CoT) mode enabled; the counterpart without the suffix was

evaluated with this mode disabled.
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Figure 17: Universal log-linear decline in retrieval performance due to interference. Increasing
the amount of interfering information preceding a retrieval target within a language model’s input
context results in a log-linear decrease in retrieval accuracy across diverse models. The target is
positioned after the interfering information and explicitly referenced in the prompt to reduce search
difficulty and isolate interference effects. (x-axis: the number of Co-referenced information, log-
scaled; asterisk: MoE models).
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Figure 18: Interference Endurance Score (IES) for all models shown in Figure 3, computed as
the area under the curve (AUC) of their accuracy–update-count functions in Figure 2. Higher IES
indicates greater robustness to interference across increasing update counts. Models are grouped by
family using the same color scheme as in Figure 3, and within each family, sorted by parameter size
from large (top) to small (bottom). For a ranking of IES values by magnitude, see Figure 19 in the
Appendix
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Figure 19: Interference Endurance Scores (IES) from Figure 18, re-ordered by IES value in descend-
ing order.
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Figure 20: Explicit forgetting and focusing prompts inserted during the update stream (as shown in
Figure 14 yielded only marginal improvements in retrieval accuracy. The black line indicates the
baseline condition with no intervention prompt. Solid lines represent several simple natural language
prompts designed to instruct the model to forget previous updates, focus on upcoming ones, or
reset context. For most models, these interventions had limited effect, especially at higher update
counts, where the baseline performance is low. The per-key forget(blue line) even had a negative
effect on gpt-4.1-mini. The relevance meta-prompt (green dotted), which asked the model to self-
assess what to focus on, was ineffective for all models and even harmful for gpt-4.1-mini. Only the
mock QA reset intervention (orange dashed line), which simulates a user-model interaction, led to a
substantial improvement in retrieval accuracy. However, this strategy was not immune to the overall
trend: accuracy continues to decline with increasing update count (log-spaced).Experiments used 46
unique keys and a key-value pair length of 6.
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Figure 21: Distribution of model responses across update positions, showing increasing signs of PI
as update count increases (left to right). The y-axis lists 11 equal-width bins (Bin 1–Bin 11, green)
covering the entire update sequence. The earthy yellow bar indicates the single final update—the
correct retrieval target. Light gray bars (“off values”) denote cases where the model returns a value
not present in the update history (i.e., hallucinations). Dark gray bars (“off keys”) indicate failures
to return any value for the queried key. As update count increases, errors shift from clustering near
the final update to earlier bins, with rising rates of off-values and off-keys.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Binned Position in Update Sequence 

Binned Position in Update Sequence 

O
cc

ur
en

ce
 F

ra
ct

io
n

O
cc

ur
en

ce
 F

ra
ct

io
n

0.0

0.2

0.4

0.6

0.8

2/1
9

5/1
9

8/1
9
11

/19
14

/19
17

/19 fin
al

0.2

0.4

0.6

0.8

2/1
9

5/1
9

8/1
9
11

/19
14

/19
17

/19 fin
al

2/1
9

5/1
9

8/1
9
11

/19
14

/19
17

/19 fin
al

0.0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Off keys
Off values

PI responses
Correct

Forget prompt
(half of keys) 

ke
ys

 w
t. 

“fo
rg

et
”

ke
ys

 w
o.

 “f
or

ge
t”

ke
ys

 w
t. 

“fo
rg

et
”

ke
ys

 w
o.

 “f
or

ge
t”

ke
ys

 w
t. 

“fo
rg

et
”

ke
ys

 w
o.

 “f
or

ge
t”

ke
ys

 w
t. 

“fo
rg

et
”

ke
ys

 w
o.

 “f
or

ge
t”

update count = 20 = 45 = 45

gpt-4.1-mini

gemini-2.0-flash

0.0

0.2

0.4

0.6

0.8

O
cc

ur
re

nc
e 

Fr
ac

tio
n 

   
   

   
   

   
 

2/1
9

5/1
9

8/1
9
11

/19
14

/19
17

/19 fin
al

0.2

0.4

0.6

0.8

2/1
9

5/1
9

8/1
9
11

/19
14

/19
17

/19 fin
al

2/1
9

5/1
9

8/1
9
11

/19
14

/19
17

/19 fin
al

Llama-4-maverick-MoE

0.0

0.2

0.4

0.6

0.8

O
cc

ur
re

nc
e 

Fr
ac

tio
n 

   
   

   
   

   
 

0.2

0.4

0.6

0.8

grok-3-beta-MoE
update count = 20 = 45 = 45

Off keys

Off values

PI responses
Correct

Forget prompt
(half of keys) 

Figure 22: The selective per-key forgetting prompt amplifies proactive interference. Keys that re-
ceived a forgetting instruction prior to the final third of their updates exhibited concentrated errors
around the forgetting point, compared to keys without such a prompt. The x-axis indicates the po-
sition of the selected value within the update sequence, categorized for each key. Earthy yellow
bars indicate the correct value—the final update. Green bars represent earlier (interfering) values,
grouped into 19 bins based on their relative position in the update sequence. Light gray bars indicate
“off values” not present in the update history. Dark gray bars denote “off keys,” where the model
failed to return any value.
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